
Two-Phase Mapping for Projecting Massive Data Sets
Fernando V. Paulovich, Cláudio T. Silva, Senior Member, IEEE, and L. Gustavo Nonato

Fig. 1. Large time-varying multivariate volumetric data projection. The information contained within each simulation cell is represented
as a tuple in a high-dimensional Cartesian space. The proposed PLMP technique projects the high-dimensional instances into
the visual space (bottom-right) in a streaming way. An inspection window (green rectangles) is delimited on the visual space and
instances projected inside the inspection window, which correspond to simulation cells with similar features (mainly characterized by
high gradient pressure), are rendered in 3D. The streaming projection enables the analysis/visualization of voxels with similar features
(projected close to each other in the visual space) on massive time-varying data.

Abstract— Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed
high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is nec-
essary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and
massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection
(PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance in-
formation between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing
large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the
high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.

Index Terms—Dimensionality Reduction; Projection Methods; Visual Data Mining; Streaming Technique.

1 INTRODUCTION

Visualization is currently experiencing a shift from classic approaches,
handling small and isolated problems, to more sophisticated frame-
works that are able to deal with massive complex data composed of
multiple time varying attributes. Many of the new emerging visual-
ization techniques typically represent multivariate data as an m-tuple
which, in turn, is interpreted as coordinates in an m-dimensional Carte-
sian space. The motivation behind this kind of representation is that
techniques such as parallel coordinates [16], scatterplots [12], and pro-
jection [32] can be directly applied to visualizing data from its Carte-
sian coordinates.

Multidimensional projection, in particular, has received significant
attention due to its intrinsic ability to construct visual representations
that respect proximity between instances of data. More specifically,
multidimensional projection methods aim at mapping instances from
the Cartesian m-dimensional space to a p-dimensional visual space,
p = {2,3}, so as to preserve distances as much as possible. In more
mathematical terms, projection methods work by minimizing a given

• F. V. Paulovich and L. G. Nonato are with ICMC - Universidade de São
Paulo, São Carlos, SP, Brazil. E-mail: {paulovic,gnonato}@icmc.usp.br.

• C. T. Silva is with SCI - University of Utah, Salt Lake City, UT, USA.
E-mail: csilva@cs.utah.edu.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

energy, such as the normalized stress function:

∑i j(di j−di j)2

∑i j d2
i j

, (1)

which measures how different the distance di j between instances i and
j in the p-dimensional space is from the original distance di j in the
m-dimensional space.

Multidimensional projection is a special case of a wider class of
techniques called Multidimensional Scaling (MDS). MDS methods
carry out the embedding into a visual p-dimensional space by con-
sidering distance measures (also called dissimilarities) between pairs
of instances, building a visual representation through a minimization
procedure that strongly relies on dissimilarities, avoiding explicit use
of the Cartesian coordinates in a high-dimensional space. In fact, most
multidimensional projection techniques are derived from MDS meth-
ods, relying on distance information to embed data into a visual space.
Distance computation, however, requires extra computational effort
when data is already endowed with a Cartesian representation, which
can make multidimensional projection prohibitive in applications de-
manding interactivity and out-of-core processing of massive data.

This work proposes a novel multidimensional projection tech-
nique, called Part-Linear Multidimensional Projection (PLMP), which
is tailored to handle multivariate data represented in Cartesian m-
dimensional spaces. In contrast to previous methods, PLMP requires
a reduced amount of distance information to carry out the embed-
ding into a visual space, speeding up the projection process substan-
tially. Data instances are projected through a linear mapping built from

Cartesian coordinates of representative instances that should be a pri-
ori positioned in the visual space. As representative instances are po-
sitioned using a nonlinear scheme, the whole projection process is not
purely linear, justifying “Part-Linear” in the name of our technique.
Distance information might be only required to position representa-
tive instances, that is, distances between pairs of representatives are
the only ones that might be required. In fact, if representative samples
are manually positioned in the visual space then distance information
is entirely unnecessary, a property not found in previous methods.

As we show in our extensive comparisons, though PLMP does
not exactly minimize the stress function when linearly projecting in-
stances, the precise (non-linear) positioning of representatives and the
continuity provided by linear mappings ensure satisfactory projec-
tions, better than several MDS methods that rely on pure stress mini-
mization. Moreover, the computational efficiency of PLMP is similar
to the fastest existing techniques for small and medium size data sets,
but has been shown experimentally to be at least one order of magni-
tude faster when processing large out-of-core data. The provided ef-
fectiveness renders PLMP quite attractive in many applications, such
as the streaming projection scheme proposed in Section 6. We show
that if the range of variation of each Cartesian coordinate in the high-
dimensional space is known a priori then representatives can be man-
ufactured rather than chosen from the data set. This fact used in con-
junction with the proposed fast projection scheme enables to project
streaming data, as illustrated in Figure 1. To the best of our knowl-
edge this is the first multidimensional projection technique that is able
to handle streaming data in the context of visualization, representing
an important aspect of this work.

The main contributions of the paper are:
• PLMP: A new multidimensional projection technique that enables

the embedding of high-dimensional data instances in a visual space
while avoiding extensive computation of distances between data
instances (Section 4). The mathematical formulation supporting
our technique is novel, and it can be seen as a generalization of
Principal Component Analysis (PCA) [18] (see Section 4.3).

• Extensive Experimental Results and Comparisons: In this paper,
we present a comprehensive set of comparisons that both attests
the effectiveness of our methodology and provides a panoramic
view on how existing techniques compare to each other. We report
results using 16 techniques. We believe that our comparisons, pre-
sented in Section 5, can be helpful when deciding which method
should be considered for a specific application.

• Streaming Projection: In Section 6 we show how our technique is
suitable for operating in a streaming mode. The basic that we use
is to propose a mechanism to manufacture representative samples
that makes PLMP a streaming data projection technique.

2 RELATED WORK

Most projection methods have been originally proposed in the con-
text of multidimensional scaling, thus operating from dissimilarities
between data instances. In the particular case of projections, dissim-
ilarities are not available and need to be computed. In the following
we provide an overview of the main projection techniques, pointing
out their computational complexity (given in terms of n, the number
of instances), optimization mechanisms, and the overhead introduced
by distance computations. We group techniques into three main cat-
egories: spectral decomposition, nonlinear optimization, and force-
based schemes.
Spectral decomposition: Techniques based on spectral decomposi-
tion, also known as classic scaling, typically compute embedding co-
ordinates for each data instance from eigenvectors associated to the
larger eigenvalues of a double-centered transformation applied to the
dissimilarity matrix (symmetric matrix containing the dissimilarity, or
distance, between each pair of data instances). The very first approach
proposed by Torgeson [37] made use of a costly O(n3) singular value
decomposition to compute eigenvectors. Computational efficiency has
been improved by using sparse dissimilarity matrices, more efficient
methods for eigenvector computation, and multiscale matrix represen-

tation [3, 20]. However, such approaches still face quadratic complex-
ity in practical applications, impairing their use with massive data.

More efficient approaches have been proposed, for instance,
LLE [28] and Isomap [36], whose complexities are close to O(n).
LLE generates a sparse matrix from coefficients given by local lin-
ear fittings, carrying out the eigendecomposition through efficient nu-
merical methods tailored to solve sparse eigenproblems. Isomap aims
at building a distance matrix that approximates “geodesic” distances,
carring out the dimensionality reduction from this matrix. LLE and
Isomap (and their variants [10]) need O(bn) distances, where b is the
maximum number of neighbors for each instance, in order to correctly
accomplish local fittings. Distance computation and eigendecompo-
sition negatively affect the performance of those algorithms (see Sec-
tion 5), since in the worst case they are O(n2). A more efficient
version of Isomap, called L-Isomap (Landmark Isomap), makes use of
randomly chosen representative points (landmarks) to reduce the num-
ber of distance computation to O(bkn log(n)), where k is the number
of landmark points [31].

Subquadratic complexity is achieved by Landmarks MDS [9] and
Pivot MDS [4] techniques, which apply classical MDS to only a small
subset of k representative instances, projecting the remaining instances
through interpolation. Besides being fast, these techniques require dis-
similarities between each pair of representatives and between data in-
stances and representatives, that is, O(k2 + kn) dissimilarities have to
be computed, thus avoiding the computation of the full dissimilarity
matrix. Therefore, the larger the number of representatives the more
costly those algorithms become. Our technique also makes use of a
subset of representatives but requires dissimilarities only between rep-
resentatives, having distance computation of O(k2) complexity.

Fastmap [13] is a technique with truly linear complexity. Although
at first glance Fastmap does not seem to compute any eigendecomposi-
tion, a more detailed analysis shows its close relation with Nyström ap-
proximation of eigenvectors and eigenvalues of a matrix [27]. Fastmap
only requires dissimilarities between each instance and two pivot el-
ements per coordinate axis, making its distance computation O(n).
Comparisons reported in Section 5 show our technique is similar in
performance to Fastmap for in-core data, while presenting a consid-
erable speed-up when handling out-of-core data. Moreover, our tech-
nique generates projections with reduced stress.

Nonlinear optimization: Nonlinear optimization methods rely on
gradient descent schemes to find a minimum for the stress function.
First proposed by Kruskal [21], optimization methods usually have
complexity above O(n2) [15, 29], although reasonable performance
can be reached by using multigrid-based numerical solvers, as shown
by Bronstein et al. [5]. Although convergence can be ensured [8], lo-
cal minima is still an issue. Most optimization methods are formulated
assuming a complete dissimilarity matrix, which adds an O(n2) com-
putational effort in applications where dissimilarities are not available
and have to be computed, such as for Cartesian data.

Aiming to reduce the high computational cost of optimization meth-
ods, Pekalska et al. [26] proposed a speed-up mechanism based on
representative instances. Their algorithm first embeds a subset of k
representative instances using a gradient descent approach and then
places the remaining instances using interpolation. In particular, a lin-
ear mapping is proposed as an interpolation mechanism, however, in
contrast to our method, the linear mapping is computed from dissim-
ilarities between instances and representatives. The computation of
dissimilarities makes Pekalska’s algorithm computationally costly, as
we show in the comparisons.

Force-based schemes: Force-based methods are among the simplest
multidimensional scaling techniques. The basic idea arose from work
by Eades [11], which makes analogy between stress minimization and
mass-spring system, defining forces from the residual between origi-
nal and embedded distances. A naive implementation of a force-based
scheme gives O(n3) complexity. Chalmers [7] proposed a method
that makes use of neighborhood structure and representative samples
which allows forces to be updated in O(n) per iteration, resulting in
a O(n2) algorithm. Chalmer’s algorithm has been further improved,

Fig. 2. PLMP pipeline: darker boxes represent the three main steps of
the proposed technique.

reaching complexities O(n5/4) [23] and O(n logn) [19]. Multilevel ap-
proaches with GPU implementation have also been used to speed-up
convergence and handle large data sets [17, 14]. Most of the algo-
rithms described above require the computation of at least O(n) dis-
tances in each time step, which is a considerable computational cost.

The simplicity and ease of implementation of force-based methods
have motivated their use as a pre- or post-processing mechanism. Te-
jada et al. [35] employ an heuristic to embed instances in R2 using a
force-scheme as a relaxation mechanism. Paulovich et al. [25] pro-
posed a technique called LSP that uses a force-based scheme to first
position a subset of representatives and then map the remaining in-
stances through a Laplace operator. Although LSP presents a good
computational performance, it requires at least O(n) distances in order
to define neighborhoods from which the Laplace operator is derived.
The technique presented in this work also makes use of a force-based
scheme to place representatives in the visual space, but, in contrast to
methods describe above, only distances among representatives need to
be known, rendering PLMP attractive for massive data projection.

3 METHOD OVERVIEW

The reasoning behind our technique is that if one knows how to map a
subset of instances from Rm to Rp (the visual space), p < m, then such
a priori information can be used to compute a linear transformation
Φ : Rm → Rp to project the whole data set efficiently. In fact, given
the linear mapping, the projection of each instance onto Rp reduces to
the product between the matrix representing Φ and the vector corre-
sponding to the Cartesian coordinates in Rm of the instance to be pro-
jected, an operation that can be performed very efficiently. The quality
of the linear mapping essentially depends on the a priori information,
that is, the selection of the subset of representative samples and the
precision with which these representatives have been placed in Rp. As
illustrated in Figure 2, these two aspects are handled independently
in our approach (first and second dark boxes from left to right). In
fact, the positioning of representative samples corresponds to the non-
linear phase of our approach, which is responsible for the good quality
of the linear phase. The final step of our approach, highlighted as the
third dark box in Figure 2, is the linear mapping computation. The lin-
ear mapping is computed by a least-squares approximation from the
Cartesian coordinates of representative samples in Rm as well as Rp.
For low-dimensional projection spaces (p = 2 or 3 for visualization
ends) this computation consists of solving just a few (2 or 3) m×m
symmetric linear systems, which can be done quite efficiently with
modern solvers.

A basic premise of our approach is that the computed linear trans-
formation is a good approximation for the non-linear mapping used to
project representative samples. Due to the continuity of linear trans-
formations, one should expect that instances close to a representative
sample would be mapped close to the projection of that representative
in Rp. As we show in Section 5, if representatives are chosen coher-
ently, that rationale is true, resulting in satisfactory projections. Details
of each step, beginning with the mathematical foundation behind the
linear mapping construction, are presented below.

4 THE PLMP TECHNIQUE

Let H = {h1,h2, . . . ,hn} be a data set with instances hi ∈ Rm. The
Part-Linear Multidimensional Projection (PLMP) technique proposed
in this work aims at finding a linear transformation Φ : Rm → Rp,
p < m, which preserves the distance between data instances as much

as possible. In more mathematical terms, Φ should satisfy:

Φ = argmin
Φ̂∈Lm,p

{
1
D ∑

i j

(
d(hi,h j)−d(Φ̂(hi),Φ̂(h j))

)2
}

(2)

where Lm,p is the space of linear transformations from Rm to Rp and
D = ∑i j d(hi,h j)2.

Solving the minimization problem (2) directly becomes prohibitive
for large values of n. We overcome such a hurdle by approximating
the linear mapping Φ rather than solving (2) explicitly. The approx-
imation is carried out using a priori information obtained from rep-
resentative samples embedded in Rp. More precisely, suppose that a
subset H ′ = {h′1,h′2, . . . ,h′k} with k� n instances from H has already
been mapped to Rp in a way that distances are preserved as much as
possible (the positioning of representative instances in Rp is discussed
in subsection 4.2). Denoting the projection of h′i in Rp by h′i, the ideal
linear mapping Φ minimizing (2) should satisfy:

Φ(h′i) = h′i (3)

for every i = 1, . . . ,k. Equation (3) allows us to compute an ap-
proximation for the transformation Φ by considering the product be-
tween each row of the matrix representing Φ and instances in H ′.
More specifically, consider the product between the first row of Φ and
h′i, i = 1, . . . ,k, which result in:

φ11x′1,1 + · · ·+φ1mx′1,m = x′1,1
φ11x′2,1 + · · ·+φ1mx′2,m = x′2,1

...
φ11x′k,1 + · · ·+φ1mx′k,m = x′k,1

(4)

where φ1i, i = 1, . . . ,m are the entries in the first row of the matrix
representing Φ, (x′j,1, . . . ,x

′
j,m) are the coordinates of h′j in Rm and

x′j,1 is the first coordinate of h′j in Rp. The system of equations (4)
gives rise to a linear system Lφ = b, where L is a k×m matrix with
entries x′j,1, . . . ,x

′
j,m in the row j, φ is the transpose of the first row of

Φ, and b is the vector containing the first coordinate of h′j, j = 1, . . . ,k.
Assuming that k is larger than m (which is generally the case for

large data sets), the first row φ of Φ can be approximated by solving
the following normal equation:

LT Lφ = LT b (5)

A complete approximation for Φ can be obtained by repeating the
process above for each line of Φ, that is, p linear systems of size m×m
have to be solved to compute an approximation for Φ. In the context
of visualization, p is equal to 2 or 3 and Φ can efficiently be approx-
imated even for moderate values of m using either fast Cholesky fac-
torization methods devoted to solve the normal equations (5) or the
conjugate gradient method. Note that we did not make use of distance
information in the mathematical deduction described above, that is,
the linear mapping Φ is approximated from the Cartesian coordinates
of representatives. In fact, distances will only be needed to position
representatives in Rp, as discussed in subsection 4.2.

In order to gain intuition and better understand the pro-
posed projection method lets analyze the geometrical struc-
ture behind the minimization scheme described above. As
can be seen from Equation (4), entries in the first row of
Φ can be interpreted as coefficients of a linear mapping that

assigns to each point in Rm a scalar
representing its first coordinate in the
visual space. The coefficients φ1 j of
the linear mapping from Rm to R are
computed by fitting a hyperplane to the
known points (h′j, x j,1) ∈ Rm ×R, as
illustrated on the left. Therefore, the
first coordinate of any instance hi in the

Fig. 3. Comparison between clustering and random sampling schemes
for two different data sets. Clustering scheme tends to produce better
results only for small number of samples.

visual space is given by the distance between hi and its image on the
hyperplane in Rm+1. The same reasoning extends to the other rows of
Φ. It becomes clear from the geometrical interpretation that represen-
tative instances carry most of the data information to the visual space.
Consequently, the quality of the obtained approximation depends ba-
sically on two factors: the choice of H ′ and how precisely instances h′i
are placed in Rp regarding their original distances in Rm. The mech-
anisms we use to address these aspects are discussed in the following
section.

4.1 Sample selection
As previously mentioned, the quality of the mapping produced by the
PLMP technique depends on the choice of representative instances
comprising the subset H ′. Our implementation uses a random scheme
to select representatives and we provide below a justification for such
a choice.

A tenable assumption would be to pick out a representative h′i for
each group of instances that characterize a well defined cluster in the
original space. Lets focus initially on how to choose a representative
h′ for a single group of instances H = {h1, . . . ,hn}. A reasonable as-
sumption is to choose h′ equidistant from all instances it represents, in
mathematical words, h′ should minimize the function

f (~x ′) = ∑
i
|~x ′−~xi |2 (6)

where~x ′ and~xi are coordinate vectors of h′ and hi respectively. Setting
the gradient of f equal to zero we find that h′ is given by the following
point:

~x ′ =
1
n ∑

i
~xi (7)

Equation (7) shows us that the best representative for a group of
instances embedded into an Euclidean space is not an instance itself,
but the average of the instances belonging to that group. Based on this
result, we would expect that applying a clustering scheme to the data
set and choosing the centroid of each cluster as representatives would
produce good results in terms of distance preservation. Surprisingly,
this rationale is only partially true in practice, as can be seen in the
graphics shown in Figure 3, which depict the resulting stress when one
increases the number of representatives using the clustering scheme
mentioned above (we use bisecting k-means algorithm [33] to build
the clusters) and using a random choice of representatives. As one can
observe in both examples, the clustering scheme tends to work better
for a small number of samples, however, when the sampling rate in-
creases and gets close to

√
n, random and clustering schemes produce

very similar results in terms of stress. In fact, we notice this behavior
not only in the two examples shown in Figure 3 but in most of the tests
we have carried out. Random and cluster-based schemes behave sim-
ilarly when the number of samples increases as a consequence of the
heuristic employed by clustering algorithms (we have tested cluster-
ing schemes other than bisecting k-means which gave similar results),
which end up evenly distributing clusters (and centroids) in the whole
domain, being exactly what is expected of a random sample.

The results discussed above encourage us to use
√

n random sam-
pling as the mechanism to choose representative samples. However,
it is worth noting that uniformly sampling representatives may not al-
ways be the best option. For example, if the density of data changes
considerably throughout the domain, more precise results should be
reached by choosing a larger number of representatives in denser re-
gions of the domain. Estimating the density of data, though, is a diffi-
cult and costly task. Since fast projection is one of our main goals, we
have opted to use the possibly less accurate but computationally more
efficient uniform sampling in all examples presented in this paper.

4.2 Positioning samples
Two main aspects should be considered when positioning represen-
tative samples in Rp: the number k of samples in H ′ and the preci-
sion in terms of distance preservation. These two aspects can not be
considered independently, as the computational cost and accuracy for
positioning representative instances depend directly on the number of
samples, that is, the larger the number of samples the more costly and
inaccurate (due to local minima) their positioning tends to be. A re-
duced number of representatives, however, can also negatively impact
in the final linear projection.

In order to accurately preserve distances during sample positioning
we employ the precise non-linear Force Scheme [35] technique. As
previously mentioned, the Force Scheme has O(n2) complexity, where
n is the total number of instances to be placed in Rp. As discussed
in the previous subsection, k =

√
n randomly chosen representatives

yield a good balance between computational cost and quality of the
final linear mapping. Moreover, using

√
n representatives renders the

force scheme linear in the number of instances. It is worth pointing
out that k is a parameter and, as such, it can be tuned by the user to fit
specific applications.

The resulting linear mapping is expected to be in agreement with
the organization of representative samples, and any rearrangement of
sample instances should directly impact the organization of the final
projection. This characteristic can be exploited towards providing user
control during projection, that is, by handling control points the user
can incorporate some knowledge about the data organization on the
final projection. This flexibility is exploited in one of the applications
described in Section 6.

4.3 PLMP as a generalization of PCA
The matrix LT L in Equation (5) is indeed a covariance matrix, so why
not to use Principal Component Analysis (PCA) [18] to approximate
Φ rather than the proposed least-squares scheme? The answer for this
question comes from the following analysis.

We can write L = UDVT using the singular value decomposition
of L. A simple algebraic manipulation shows that the eigenvectors
resulting from PCA should minimize ‖Lφ −λu‖2, where λ is a sin-
gular value in the diagonal matrix D and u is a column of the matrix
U. On the other hand, the solution of Equation (5) is also a minimizer
of ‖Lφ − b‖2, where b is the vector containing the Cartesian coordi-
nates of representatives in the visual space, which can be adjusted, if
desired, to be equal λu. Therefore, the methodology proposed in this
work can be seen as a generalization of PCA, where more flexibility is
provided by handling the vector b.

Since the energy minimized by PCA is not directly related to the
stress function (distances to the fitting subspace are minimized rather
than the stress function), PCA is prone to produce projections with
high stress and poor visual quality. The nonlinear Force Scheme used
by PLMP to position representative samples in the visual space intro-
duces the stress minimization component not present in PCA, render-
ing PLMP a more flexible projection method. In fact, the combination
of a nonlinear followed by a linear mapping makes PLMP behave very
differently from a PCA-based mapping, resulting in projections with
lower stress and better visual quality.

4.4 Computational complexity
The computational complexity of PLMP can be computed as O(R +
P+S+ I), where R,P,S, and I are the complexities for choosing repre-

Table 2. Methods employed in comparisons. The first column contains
name abbreviations, the second column shows the source reference,
the third column contains the computational complexity, and the symbol
X in the last column indicates whether the original code has been used
rather than our implementation. n and k represent the total number of
instances and the number of samples, c is the number of iterations, and
m is the dimensionality of the high-dimensional space.

Name Source Complexity Original

FastMap Faloutsos and Lin [13] O(n)
L-MDS de Silva and Tenenbaum [9] O(k3 + kn) X
Pekalska Pekalska et al. [26] O(2k3 + kn)
Pivot Brandes and Pich [4] O(k3 + k2 + kn) X
GlimmerG Ingram et al. [17] O(cn log(m)) X
GlimmerC Ingram et al. [17] O(cn log(m)) X
LSP Paulovich et al. [25] O(k2 +n2) X
Classical Torgeson [37] O(n3)
Hybrid Jourdan and Melançon [19] O(n logn) X
Force Tejada et al. [35] O(cn2) X
Chalmers Chalmers [7] O(cn) X
Smacof de Leeuw [8] O(cn2) X
L-Isomap Tenenbaum et al. [31] O(k2n)
LLE Roweis and Saul [28] O(n2)
Sammon Sammon [29] O(cn2)

sentatives, projecting the representatives, solving the system of Equa-
tions (5), and projecting the whole data set, respectively. Considering
a random choice of representatives, R = O(1). Getting

√
n represen-

tatives and using the Force Scheme to position them in Rp, P = O(n).
Since the linear system (5) can be solved using an iterative solver such
as Conjugate Gradient, and considering k =

√
n representatives, we

end up with S = O(k2) = O(n) [30]. Finally, the complexity for pro-
jecting the entire data set is I = O(n) (O(pmn) to be more precise),
since it only requires the product between the matrix Φ and the coor-
dinate vector representing each data instance. Therefore, the overall
complexity of PLMP is O(n).

5 RESULTS AND COMPARISONS

In order to verify the quality of the obtained results we compare the
proposed PLMP technique against fifteen existing methods. All the re-
sults were generated in an Intel R© CoreTM i7 CPU 920 2.66GHz, with
an NVIDIA R© Quadro FX 3800 video card and 8GB of RAM mem-
ory. PLMP is implemented in Java, as is the numerical solver – we
use the Cholesky factorization available on Java Colt Project (http:
//acs.lbl.gov/˜hoschek/colt/). We are using Cholesky
rather than Conjugate Gradient (CG) because the linear system (5) has
to be solved twice and the already computed Cholesky factorization
can be used in the solution of the second system, thus resulting in a
performance gain.

Table 2 contains the complete list of compared methods. The tech-
nique denoted by “Pekalska” refers to the linear mapping scheme de-
scribed in [26] and “GlimmerG, GlimmerC” refers to the GPU and CPU
implementation described in [17], respectively. Original codes, kindly
provided by the authors, were used for techniques ticked as X. We use√

n samples when running L-MDS, Pekalska, Pivot, and Hybrid. By
using n iterations for Chalmers and Sammon, and 50 iterations for
Smacof and Force, we achieve precise projections. With the exception
of “GlimmerC/G”, which are implemented in C++/GPU, all other tech-
niques are purely implemented in Java. All tests were conducted con-
sidering the Euclidean distance on the original m-dimensional space.

We have employed seven distinct data sets in our experiments, some
of them synthetic, permitting us to analyze the different techniques in
data sets that vary in size and data dimensionality. The WDBC is a
breast cancer data set obtained from digitized images of breast masses.
Its instances are classified into two distinct groups, the malignant and
benign cancer. The Wine-red and Wine-white sets are related to red and
white variants of the Portuguese “Vinho Verde” wine. These include
different measures of the wine’s feature, which indicate its quality. The
Segmentation data set is composed of instances randomly drawn from
a database of 7 outdoor images. The images were hand-segmented to

Fig. 4. Boxplot of times (log scale) shown in Table 1

create a classification for every pixel, defining 7 different classes on
the data set. Shuttle is composed by log information instances split
into 7 different classes. The Mammals is an artificially generated data
set representing different features of mammals belonging to four dis-
tinct classes (dogs, cats, horses, and giraffes). Finally, Explosion cor-
responds to a sample of time step 99 of a data containing information
from a simulation of an ionization front instability propagation during
the formation of a galaxy. The Explosion data set was obtained from
the IEEE Visualization 2008 Contest data set [38] and the remaining
ones were recovered from the UCI Machine Learning Repository [2].

Table 1 shows the result of projecting the seven distinct data sets
with PLMP and the methods described in Table 2. Numbers in the
first column (below the name of each data set) represent the number
of instances (left) and the data dimension. For example, the first data
set WDBC has 569 instances each one with 30 attributes, that is, each
instance is embedded in R30. Each entry in Table 1 contains two mea-
sures: normalized stress (top), given by Equation (1), and computa-
tional time (bottom, highlighted with the letter “s” after the last digit).
Empty entries in the table mean that either the corresponding method
took longer than three hours to accomplish a projection or memory
resources were not enough to load all the data (dissimilarity matrix
in most cases) needed to run that method. The sole exception is the
empty entry in the GlimmerC column, which is due to a flaw in the
code when processing the wine-red data set.

Boxplots from data in Table 1 are presented in Figures 4 and 5.
Figure 4 shows that PLMP outperforms other methods regarding com-
putational times while still being competitive in terms of stress mini-
mization (see Figure 5). Only Fastmap presents computational times
comparable to that of PLMP, however, its stress tends to be worse.
Classic and Pivot are designed to minimize a strain function rather
than normalized stress while L-Isomap minimizes geodesic distances.
In fact, MDS techniques differ in the energy they try to minimize and
finding a fair mechanism to compare all of them is not an easy task.
Therefore, we follow the trend of other authors [17], using normalized
stress as measure of precision for all different techniques.

In addition to enabling a wide range of comparisons with PLMP,
Table 1 also provides other interesting information, easily seen from
boxplots in Figures 4 and 5. For example, one can notice that among
the five fastest techniques (PLMP, Fastmap, L-MDS, Pekalska, and
Pivot) Pekalska’s method produces the best result in terms of stress,
followed by our PLMP approach. The GlimmerC/G techniques gives
good stress results, making them a good alternative in applications
involving data sets of moderate size and not having fast projections
as main requirement. The high computational times of LLE is a con-
sequence of the O(n2) distance computations used to define neigh-
borhoods and the solver we are using to perform the linear fittings
required by LLE. Sub-quadratic methods could be employed to find
neighborhoods and a sparse eigenvector solver could be used to ac-
complish the fittings, the attained poor stress results did not encourage
us to incorporate those speed-ups in our implementation.

Table 1. Result of running sixteen projection methods in seven different data sets. The two numbers appearing in each entry correspond to stress
(top) and computational time (bottom).

PLMP FastMap L-MDS Pekalska Pivot GlimmerG GlimmerC LSP Classical Hybrid Force Chalmers Smacof L-Isomap LLE Sammon
WDBC 0.0672 0.1243 0.0603 0.0631 0.2951 0.0603 0.0731 0.1008 0.0558 0.1218 0.0555 0.1980 0.1132 0.0422 0.2674 0.0655

569×30 0.030s 0.003s 0.002s 0.008s 0.003s 0.670s 0.751s 0.146s 0.080s 0.284s 1.194s 5.531s 5.646s 0.039s 4.155s 35.13s
Wine-red 0.1243 0.2608 0.1302 0.1127 0.3048 0.0853 0.1322 0.1000 0.1636 0.0691 0.1092 0.2325 0.1039 0.3199 0.0855

1,599×11 0.008s 0.006s 0.014s 0.030s 0.011s 0.779s 0.489s 0.775s 0.262s 9.800s 25.79s 31.17s 0.118s 145.0s 795.4s
Segmentation 0.0681 0.0914 0.0491 0.0399 0.3648 0.0366 0.0657 0.0399 0.0461 0.0972 0.0439 0.5181 0.1107 0.1705 0.4006 0.0506

2,100×19 0.015s 0.010s 0.015s 0.049s 0.021s 0.576s 3.777s 0.498s 1.596s 0.445s 17.78s 55.31s 80.03s 0.168s 341.2s 1764s
Wine-white 0.1443 0.3940 0.1527 0.1026 0.5251 0.0949 0.2081 0.1527 0.1116 0.1868 0.0747 0.0770 0.1827 0.1351 0.6707
4,898×11 0.024s 0.016s 0.047s 0.162s 0.073s 1.403s 6.474s 8.869s 8.261s 1.849s 108.4s 241.1s 449.2s 0.579s 5097s
Mammals 0.0380 0.0414 0.0429 0.0305 0.3279 0.0234 0.0445 0.0313 0.0365 0.1087 0.0315 0.0500 0.1055 0.0894

10,000×72 0.174s 0.085s 0.265s 0.752s 0.424s 4.316s 26.61s 18.12s 20.63s 9.370s 445.9s 4225s 2183s 3.122s
Explosion 0.0123 0.0070 0.0044 0.0016 0.7435 0.0014 0.0172 0.0132 0.4247 0.0186 0.7194 0.0941

30,000×10 0.126s 0.110s 0.812s 2.723s 2.250s 2.060s 53.25s 59.28s 76.24s 5460s 10092s 48.74s
Shuttle 0.0372 0.1156 0.0817 0.2295 2.8926 0.0272 0.0713 0.1187 0.4599 0.5209

43,500×9 0.172s 0.276s 1.376s 4.252s 4.267s 4.521s 58.99s 113.9s 177.4s 21.47s

Fig. 5. Boxplot of stress shown in Table 1

Figure 6 shows a log− log plot of average time vs. average stress
of the data in Table 1. Points on the bottom left correspond to the
five techniques with the best performance in terms of computational
times as well as stress minimization, namely, PLMP, Fastmap, L-
MDS, Pekalska, and GlimmerG. Therefore, those five techniques are
the only ones able to compete with PLMP in terms of stress minimiza-
tion and computational times simultaneously. Due to GPU memory
constraint, GlimmerG does not scale properly, encouraging us to sub-
mit only the first four techniques (PLMP, Fastmap, L-MDS, Pekalska)
to a second round of comparisons using larger data sets.

Three distinct data sets have been employed in the second set
of comparisons, two are synthetic, called Mammals and Explosion,
and one is real, named Fibers. Mammals and Explosion are the
same data sets previously mentioned, but with a larger number of in-
stances. Fibers was obtained from the 2009 Pittsburgh Brain Compe-
tition (PBC) – Brain Connectivity Challenge (http://pbc.lrdc.
pitt.edu/), comprising a set of 250,000 three-dimensional fiber
tract pathways, from which a portion is classified into 8 different
classes. To calculate the similarity amongst the fibers we transform
each one into a multi-dimensional vector composed of 30 coordinates
derived from Fourier spectral coefficients of each pathway [6]. Only
the magnitude (real part) of the high-frequency coefficients are consid-
ered to compose the vectors, since they contain the most information
about finer details of the fiber shape. The three data sets were sampled
in two different resolutions: 100K and 200K instances, given a total of
six data sets. The performance of the four algorithms on these six data
sets can be seen in Table 3 and in the boxplots depicted in Figure 7.

As one may notice, PLMP and Fastmap are at least one order of
magnitude faster than the other two techniques. Regarding stress min-
imization, PLMP and Pekalska present the best results. It is worth
pointing out that the stress boxplot of Fastmap reflects the high vari-

Fig. 6. log− log plot of average Time vs. average Stress: the five dia-
monds closest to the origin represent techniques with the best combined
performance of stress minimization and computational times.

ance w.r.t stress quality presented by that technique. It is clear from
Figure 7 that PLMP is the most attractive technique when stress qual-
ity and computational efficiency are considered simultaneously.

Figure 8 provides a qualitative visual comparison of the resulting
projections from the four techniques. Notice that visual results of
PLMP are quite similar to the other three methods, supporting our as-
sertion that PLMP has the best trade-off between speed-up and stress.
Moreover, one can see that PLMP was able to separate the classified
instances in a satisfactory way (each color corresponds to similar in-
stances classified as ground truth) in most of the cases.

In order to analyze the scalability of our technique, mainly when
facing massive data which can not be completely loaded in memory,
we implement an out-of-core (OOC) version of our method. More
specifically, instead of loading the full data set into memory, only a

Table 3. Comparing the four fastest projection methods. The two num-
bers appearing in each entry correspond to stress (top) and computa-
tional time (bottom).

PLMP FastMap L-MDS Pekalska
Mammals 0.0379 0.0410 0.0357 0.0326
100K ×72 0.409s 0.363s 4.291s 10.48s

Fibers 0.0668 0.4485 0.1517 0.1655
100K ×30 1.066s 0.914s 11.89s 20.54s
Explosion 0.0065 0.0192 0.0037 0.0017
100K ×10 0.578s 0.647s 6.234s 13.14s
Mammals 0.0339 0.0417 0.0474 0.0335
200K ×72 2.064s 3.697s 64.85s 72.40s

Fibers 0.0525 0.4259 0.1459 0.0473
200K ×30 1.661s 1.816s 36.17s 58.90s
Explosion 0.0054 0.0081 0.0068 0.0030
200K ×10 1.545s 1.094s 24.35s 58.93s

Fig. 8. Projection layouts for five different data sets. The first four data sets are endowed with labels which allow identification of similar instances.
Labels are mapped as colors in the plots, providing a qualitative analysis of the projections. Stress is shown in the top right.

Fig. 7. Boxplot of stress (dark blue) and times in log scale (light blue) for
the results shown in Table 3. The vertical axis on left and right shows
the scale for stress and times, respectively.

small part is read into a buffer and data is retrieved from the buffer.
For the sake of comparison, we also implement an out-of-core version
of Fastmap (following the same approach), which is the only technique
with similar times to PLMP (see Figure 3). A drawback when imple-
menting the out-of-core version of Fastmap is the need of traversing
the whole data set several times to compute pivot elements, which neg-
atively impacts the computational cost. PLMP, though, requires only
traversing twice the data set to project the whole data.

Figure 9 (left) shows the resulting computational performance of
PLMP and Fastmap as well as their out-of-core versions on Explosion
data set sampled in distinct resolutions from 200K to 500K. While
computational times of PLMP and Fastmap are practically identical
when processing in-core data, Fastmap’s performance drops off con-
siderably for OOC data. In fact, OOC-PLMP is at least one order of
magnitude faster than OOC-Fastmap. More importantly, the overhead

of OOC-PLMP is small, enabling its use in massive data. Projections
generated with OOC-PLMP and OOC-Fastmap for a complete time
step of the Explosion data set, which contains 36,902,400 instances,
are shown on the right in Figure 9. Transparency is used to give more
insight about the concentration of instances in the visual space. OOC-
PLMP project the 36.9M instances in 234.16s on the same machine
previously mentioned with an ordinary disc of 7200rpm, which is
a very reasonable processing time for such a huge data set. OOC-
Fastmap took 1,757.95s to project the same data, an order of magni-
tude slower than OOC-PLMP.

6 APPLICATIONS

As previously mentioned, the reduced requirement for distance infor-
mation renders PLMP appropriate for new applications. In the follow-
ing, two applications are outlined, showing how the nice properties of
PLMP can be used to interact and drive projections and how PLMP
can be used to project streaming data.

Fig. 9. Comparison between OOC-PLMP and OOC-Fastmap. Left:
OOC-PLMP is one order of magnitude faster than OOC-Fastmap while
presenting a small overhead when compared with in-core PLMP. Right:
OOC-PLMP and OOC-Fastmap projections for a complete time step of
Explosion data set with 36,902,400 instances.

Fig. 10. Different projections of the Mammals data set produced by
changing the position of representatives. Each picture shows the posi-
tion of representatives (main frame) and the final projection of the whole
data set (top-right window).

6.1 Handling the Position of Representatives
As discussed in Section 4, PLMP builds the linear mapping from
Cartesian coordinates of some representative instances. Therefore, the
layout of a projection can be changed, up to an extent, by manipulat-
ing representatives in the visual space. Although attempts have already
been made toward steering projections [39], the freedom to move rep-
resentatives renders our methodology more versatile. Figure 10
presents three different projections of the Mammals (10K) data set ob-
tained by changing the position of representatives. Notice that for this
data set the final projection, shown on the top-right window, follows
the position of representatives exactly. That behavior is always ob-
served when groups are well separated in the high-dimensional space
and representatives are chosen for each group.

As one can observe in Figure 11, the manipulation of representa-
tive samples can improve the quality of the final layout even when
instances are not clearly separated in the original space. In Figure 11,
on the left, we show the projection produced by automatically placing
representatives using the Force Scheme. On the right, representatives
were interactively re-positioned and used as the basis for the construc-
tion of the linear mapping, improving the separation of groups con-
siderably. The silhouette coefficient [34] of each projection, shown at
the bottom of the images, confirms the better separation when repre-
sentatives are “manually” placed in the visual space. The silhouette
coefficient, which was originally proposed to evaluate clustering algo-
rithms, measures both the cohesion and separation between grouped
instances. Given a data instance hi, its cohesion ai is calculated as the
average of the distances between hi and all other instances belonging
to the same group as hi. The separation bi is the minimum distance
between hi and all other instances belonging to other groups. The sil-
houette of a projection is given as the average of the silhouette of all
instances and is calculated as Sil = 1

n ∑
n
i=1

(bi−ai)
max(ai,bi)

, thus ranging in
the interval [−1,1]. Large values indicate better cohesion and separa-
tion between groups of instances.

An important aspect of handling the position of representatives is
that knowledge about the data can be used to improve the resulting
layout. For example, the user can interact with representatives trying
to reach a projection that best matches his/her expectations in terms of
group formations.

6.2 Streaming Projection
As far as we know, existing projection techniques require for each
instance of data (at least) its distance to representative samples, thus
enforcing to traverse the entire dataset at least once before starting the
projection. PLMP, in contrast, does not require distances to represen-
tative instances, therefore, if representatives and their position in the
visual space are known a priori, it is possible to build the mapping
Φ and project instances immediately after accessing then, characteriz-
ing a streaming projection mechanism. However, to implement a truly

Fig. 11. Different projections of the Segmentation data set. On the left
is the projection generated by taking the Force Scheme as a mecha-
nism to position representatives. The picture on the right shows the
result of manually placing representatives in the visual space. Silhou-
ette coefficients (bottom) quantitatively confirms the group separation
improvement resulting from manually positioning representatives.

streaming version of PLMP we need the representative samples, which
until now have been extracted from the original data set. We show in
the following that with some knowledge about the data, representa-
tives can be “manufactured” without traversing the original data set,
thus allowing PLMP to be used as a streaming projection technique.

Suppose that every instance of a data set H is contained in a hyper-
cube C = [α1,β1]× [α2,β2]×·· ·× [αm,βm]⊂Rm, where the intervals
[αi,βi] are known in advance. The rationale behind our “manufac-
turing” approach is that if points are randomly drawn inside C then
a linear mapping Φ can be built by considering the random points as
representatives. If the number of random points is large enough to en-
sure that every instance of H has a manufactured representative in its
neighborhood, continuity should ensure a good result when mapping
H using Φ.Recalling that the Force scheme places manufactured sam-
ples in the visual space respecting their original distances, the neigh-
borhood of those representatives should also be coherently positioned
by Φ, thus producing in a good projection for instances in H.

Figure 12 confirms our assumption regarding the manufactured rep-
resentatives, showing that a drastic loss of quality (in terms of stress)
is not introduced when representatives are manufactured rather than
picked out from the original data set. Notice that the stress produced
by the streaming version of PLMP (representatives chosen inside the
hypercube containing all instances) is still better than the ones gener-
ated by Fastmap and L-MDS (boxplot on the right). The graphic on the
left in Figure 12 shows a comparison of the stress produced by PLMP
when representatives are manufactured or taken as samples from the
original data. Notice that the stress degradation is quite uniform, con-
firming that randomly spreading representatives in the hypercube con-
taining the data seems to be an acceptable approach.

For the sake of comparison, we have implemented a random projec-
tion scheme [1] which can also project instances without any knowl-
edge about the geometrical structure of the data. We have found that
for large data sets PLMP is at least one order of magnitude more ac-
curate than the random projection. The reason is that random projec-
tion methods usually rely on the Johnson-Lindenstrauss lemma, which
ensures tight error bounds only when the projection space has dimen-
sion O(ε−2 log(n)), where ε is the maximum allowed distortion of the
pairwise distances on the projection space and n is the number of data
instances. Therefore, no guarantee can be provided when n is large
(massive data sets) and the projection space is low-dimensional, as is
the case in our applications. Moreover, the non-linear stage of PLMP
ensures an accurate positioning for the manufactured representatives,
characteristic not present in any random projection scheme.

A better mechanism to measure how the linear mapping Φ varies
when representatives are chosen in the hypercube is the distortion fac-
tor (DF) of linear transformations [22]. DF is defined as the ratio of
the largest singular value to the smallest singular value of Φ and the
closer to 1.0 the better the mapping is. Figure 13 depicts the DF of
Φ for an increasing number of representatives. Notice that in both ex-
amples DF converges to a constant value (this behavior was noticed
in all tests we have carried out), showing that Φ tends to have a fixed

Fig. 12. Left: PLMP resulting stress when representatives are manufac-
tured (blue) and sampled from the original data (green, log− log scale).
Right: Boxplot of the stress resulting from the streaming implementation
compared with techniques shown in Table 3.

distortion after considering a sufficient number of representatives.
DF is also an interesting metric to measure how much Φ distorts

neighborhoods. In fact, DF to 1.0 means that Φ is not substantially
“stretching” (or “shrinking”) neighborhoods during projection. The
example shown on the left of Figure 13 corresponds to the Fibers data
set and shows that DF converges to a value close to 1.0. Not coinciden-
tally, the stress produced by PLMP in the Fibers data set (see Table 3)
is substantially better than the ones produced by Fastmap and L-MDS.

The distortion factor can also be used as a tool to choose the number
of random points to be sampled in the hypercube. In fact, we can pro-
gressively increase the number of representatives, computing Φ and
its DF for each set of representatives, until DF converges. Notice that
this procedure can be done as a preprocessing step, not introducing
any additional cost for the streaming projection itself.

Figure 1 illustrates the potential of the streaming version of PLMP
to assist visual data analysis applications involving massive data sets.
In that example, instances are continuously projected into the visual
space, allowing the user to interactively select regions of interest (the
green rectangles in the bottom-right windows) to be further inspected.
Simulation cells corresponding to instances falling inside the user de-
limited regions are rendered in 3D, enabling the visualization of simi-
lar data features over time.

7 DISCUSSION AND LIMITATIONS

Results and comparisons shown in Section 5 clearly highlight
the effectiveness of PLMP for projecting data embedded in high-
dimensional Cartesian spaces. Such a good performance is a con-
sequence of combining the reduced number of distance information
required (if any) with the continuity of the linear mapping, which pre-
serves neighborhood relations satisfactorily. Another important char-
acteristic of PLMP is its simplicity in terms of computational imple-
mentation, essentially requiring only a numerical solver for the normal
equation (5).

The extensive set of comparisons presented in Section 5 provides
a panoramic view of existing techniques in terms of computational
cost as well as quality of stress minimization. Besides confirming that
PLMP presents the best trade-off in terms of computational times and
stress quality (see Figure 6), the given comparisons enable an assess-
ment of other methods in practical examples, which is important when
deciding on the appropriate technique for a specific application.

Our tests have shown that PLMP is very robust with respect to the
choice of representatives, that is, stress measure is barely affected by
changing the set of

√
n randomly chosen representatives (this can also

be justified from the distortion coefficient). As pointed out in the
streaming application described in Section 6, good results can also be
obtained by randomly manufacturing representatives in the data do-
main. The idea of using manufactured representatives rather than data
samples could also be adapted to other methods, however, the need for
distances impairs their use in out-of-core data and streaming applica-
tions, rendering PLMP quite unique in this context.

The possibility of interactively changing the position of representa-
tives in the visual space is another interesting feature of PLMP. In fact,
only the right side of the normal System (5) is affected when represen-

Fig. 13. Distortion of the linear mapping Φ when representatives are
randomly sampled from the data set and randomly drawn in the hy-
percube containing the data (left: Fibers, right: Explosion). Distortion
converges to a constant when the number of representatives increases.

tatives are repositioned in the visual space. Therefore, using Cholesky
factorization, the linear mapping Φ can be updated in real time when
interacting with representatives, thus enabling a truly interactive pro-
jection mechanism for visual data analysis. It is worth noticing that
due to the need for distance computation, interactivity can hardly be
achieved with other projection methods.

A limitation of PLMP, which is a direct consequence of its strength,
is the requirement of having embedded data, that is, in contrast to
MDS methods, PLMP can not handle dissimilarity information di-
rectly. This characteristic hampers PLMP to be useful in problems
where dissimilarity is the only information provided. The need for the
number of representatives to be larger than the dimensionality of the
data (k > m) is another weakness of PLMP. This limitation can impair
the use of PLMP in problems involving data embedded in very high-
dimensional spaces, such as visual exploration of text collections [24],
where data easily reaches thousands of dimensions. The effective-
ness of manufacturing representatives inside hypercube containing the
data also deserve further investigation. Although good results were
obtained in the tests we have carried out, it is important to analyze,
for instance, the quality of projections in data sets containing many
outliers that increase the size of the hypercube, thus allowing repre-
sentatives in “void” regions of the space.

8 CONCLUSIONS

In this work we proposed a novel projection technique called Part-
Linear Multidimensional Projection (PLMP), which is shown to be
very effective when processing large and complex data sets. PLMP
can be seen as a generalization of PCA where a nonlinear stage is in-
troduced so as to provide more flexibility on how data is projected in
the visual space. The comprehensive set of comparisons we provided
shows that PLMP outperforms existing projection methods with re-
spect to computational times while still being competitive in terms of
stress minimization. Moreover, the potential of using PLMP to project
streaming data opens new possibilities for applications which could
not be addressed until now, such as the visual analysis of data origi-
nating from remote sensing or surveillance system. Therefore, flexi-
bility, effectiveness, and ease of implementation render PLMP one of
the most attractive projection methods for high-dimensional data em-
bedded in Cartesian spaces. We are investigating the applicability of
PLMP as an interactive tool to segment volumes, which is a difficult
task to be done with existing tools. The possibility of interactively
repositioning representative samples so as to better separate “clusters”
is another feature that deserves to be further explored.

ACKNOWLEDGMENTS

We thank Matt Berger for the discussion regarding the generalization
of PCA and for his many suggestions that help us to improve the text.
We also thank Claurissa Tuttle for her comments and suggestions. This
work was supported in part by grants from Fapesp-Brazil and CNPq-
NSF. Our research has been funded by the National Science Founda-
tion, the Department of Energy, and IBM Faculty Awards.

REFERENCES

[1] D. Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687,
2003.

[2] A. Asuncion and D. Newman. UCI machine learning repository, 2007.
[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-

tion and data representation. Neural Comput., 15(6):1373–1396, 2003.
[4] U. Brandes and C. Pich. Eigensolver methods for progressive multidi-

mensional scaling of large data. In M. Kaufmann and D. Wagner, editors,
Lecture notes in Computer Science, volume 4372, pages 42–53. 2007.

[5] M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh. Multigrid
multidimensional scaling. Numerical Linear Algebra with Applications,
13:149–171, 2006.

[6] O. Bruno, L. G. Nonato, M. Pazoti, and J. Batista. Topological multi-
contour decomposition for image analysis and image retrieval. Pattern
Recognition Letters, 29:1675–1683, 2008.

[7] M. Chalmers. A linear iteration time layout algorithm for visualising
high-dimensional data. In IEEE Visualization, pages 127–ff., 1996.

[8] J. de Leeuw. Applications of convex analysis to multidimensional scaling.
Recent Developments in Statistics, pages 133–146, 1977.

[9] V. de Silva and J. Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical report, Stanford, 2004.

[10] D. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proc. Natl. Acad. Sci., 100:5591–
5596, 2003.

[11] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium,
volume 42, pages 149–160, 1984.

[12] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Multidi-
mensional visual exploration using scatterplot matrix navigation. IEEE
Trans. Vis. Comp. Graph., 14(6):1141–1148, 2008.

[13] C. Faloutsos and K. Lin. Fastmap: A fast algorithm for indexing,
datamining and visualization of traditional and multimedia databases. In
ACM SIGMOD, pages 163–174, 1995.

[14] Y. Frishman and A. Tal. Multi-level graph layout on the gpu. IEEE Trans
Vis Comput Graph., 13:1310–1319., 2007.

[15] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress ma-
jorization. In Lecture Notes in Computer Science, volume 3383, pages
239–250. Springer, 2005.

[16] J. Heinrich and D. Weiskopf. Continuous parallel coordinates. IEEE
Trans. Vis. Comp. Graph., 15(6):1531–1538, 2009.

[17] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel mds on the
gpu. IEEE Trans. Vis. Comp. Graph., 15(2):249–261, 2009.

[18] I. Jolliffe. Principal Component Analysis. Springer, second edition, 2002.
[19] F. Jourdan and G. Melançon. Multiscale hybrid mds. In Information

Visualisation, pages 388–393, 2004.
[20] Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvectors

computation for drawing huge graphs. In IEEE Information Visualization,
page 137, 2002.

[21] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29:115–129, 1964.

[22] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
[23] A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm for

sub-quadratic multidimensional scaling. In IEEE Information Visualiza-
tion, page 152, 2002.

[24] F. V. Paulovich and R. Minghim. HiPP: A novel hierarchical point place-
ment strategy and its application to the exploration of document collec-
tions. IEEE Trans. Visual. Comp. Graph., 14(6):1229–1236, 2008.

[25] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transactions
on Visualization and Computer Graphics, 14(3):564–575, 2008.

[26] E. Pekalska, D. de Ridder R. P. W. Duin, and M. A. Kraaijveld. A new
method of generalizing Sammon mapping with application to algorithm
speed-up. In M. Boasson, J. A. Kaandorp, J. F. M. Tonino, and M. G.
Vosselman, editors, Annual Conference of the Advanced School for Com-
puting and Imaging, pages 221–228, 1999.

[27] J. Platt. Fastmap, metricmap, and landmark mds are all nyström algo-
rithms. In Intl. Workshop Artificial Intelligence and Statistics, pages 261–
268, 2005.

[28] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by lo-
cally linear embedding. Science, 290(5500):2323–2326, December 2000.

[29] J. W. Sammon. A nonlinear mapping for data structure analysis. In IEEE

Transactions on Computers, volume C-18, pages 401–409, May 1969.
[30] J. Shewchuk. An introduction to the conjugate gradient method with-

out the agonizing pain. http://www.cs.cmu.edu/ quake-papers/painless-
conjugate-gradient.pdf, 1994.

[31] V. D. Silva and J. B. Tenenbaum. Global versus local methods in non-
linear dimensionality reduction. In Advances in Neural Information Pro-
cessing Systems 15, pages 705–712. MIT Press, 2003.

[32] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views
of high-dimensional data using class consistency. Computer Graphics
Forum, 28(3):831–838, 2009.

[33] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In Workshop on Text Mining, ACM SIGKDD Inter-
national Conference on Data Mining, pages 109–110, 2000.

[34] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

[35] E. Tejada, R. Minghim, and L. G. Nonato. On improved projection tech-
niques to support visual exploration of multidimensional data sets. Infor-
mation Visualization, 2(4):218–231, 2003.

[36] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, December 2000.

[37] W. S. Torgeson. Multidimensional scaling of similarity. Psychometrika,
30:379–393, 1965.

[38] D. Whalen and M. L. Norman. Competition data set and
description. In 2008 IEEE Visualization Design Contest.
http://vis.computer.org/VisWeek2008/vis/contests.html, 2008.

[39] M. Williams and T. Munzner. Steerable, progressive multidimensional
scaling. In INFOVIS ’04, pages 57–64, 2004.

