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Simulating Multiple Character Interactions with
Collaborative and Adversarial Goals

Hubert P. H. Shum, Taku Komura and Shuntaro Yamazaki

Abstract—This paper proposes a new methodology for synthesiz-
ing animations of multiple characters, allowing them to intelli-
gently compete with one another in dense environments, while
still satisfying requirements set by an animator. To achieve these
two conficting objectives simultaneously, our method separately
evaluates the competition and collaboration of the interactions,
integrating the scores to select an action that maximizes both
criteria. We extend the idea of min-max search, normally used
for strategic games such as chess. Using our method, animators
can eff ciently produce scenes of dense character interactions
such as those in collective sports or martial arts. The method
is especially effective for producing animations along story lines,
where the characters must follow multiple objectives, while still
accommodating geometric and kinematic constraints from the
environment.

min-max based approach [1]. As opposed to a combined objec-
tive function in [1], the competitiveness and cooperativeness
of the actions are evaluated separately by different objective
functions (Section VI). Our proposed method integrates the
functions during the evaluation process (Section V).

One of the advantages of our system is that it is an interactive
system that can reflect updates of the motion data set, action’s
scores, and the parameters of the constraints/objective function
immediately. This feature is highly demanded by animators.
Previous methods based on precomputation [4] or learning
[2], [3], [5] require a huge amount of recomputation to reflect
any updates of the parameters or data set. In order to achieve

this, we choose to use a short horizon optimization using a
rich set of actions. This increases the controllability of the
characters and avoids wobbling or the repetition of similar

series of actions due to quantization error, which tend to

Method.s. Which synthgsize an?mations of multiple charactqﬁgppen when using precomputation-based approaches [2], [4],
competitively interacting are in high demand in the co 5] for persistent, long interactions.

puter animation and game industries. Due to the difficulties

associated with capturing dense interactions through motib@ demonstrate the effectiveness of our method, we simulate
capture, methods based on optimization have been applied/%ious competitive interactions between multiple characters,
combine singly captured motions into competitive interaction#icluding boxing matches, sword fighting, chasing one another
In our preliminary research [1], we reported that the mir@nd @ mass-game scene where the characters locally fight

max based optimization is effective for simulating competitivéeriously with each other while moving based on a predefined
interactions of multiple characters rule to create a large scale texture. We also show that the

_ o ) ) ) method is effective for creating animations along story lines,
One major difficulty is that from the animator’s point ofiy \which high level instructions are given.

view, such scenes have counteracting requirements - they wish

to show serious fighting between the characters at the local

level, while maintaining precise control over the scene by .
specifying the location and movements of the crowd at the N )
global level. This means that the characters need to compgtion editing and synthesis has become a huge research
for their own interests while collaborating with one anothe#’€a With many applications in computer graphics, robotics
to achieve the requirements of the animator. Our previoé‘é‘d biomechanics. Recently, a lot of data-driven techniques to
approach [1] and other optimization-based approaches ﬁgit,_ retarget [6]-[8] or synthesiz_e new sequences of chara_lcter
multi-character control [2], [3] fall short at managing thénotion using pre-captured motion data [9]-[14] are being
cooperativeness and the competitiveness simultaneously.PfRPOsed. The Motion Graph approach [9]-{11] is a method
these methods, an objective function is defined based on {Renteractively reproduce continuous motions of characters,
interests of individual characters and they select actions tl&sed on a graph that is automatically generated from captured
benefit them the most in the future. If we add a cooperatiyBotion data. Since the Motion Graph produces a lot of
objective function that rewards the characters for following tféges and nodes without any context, it becomes difficult to
instruction of the animators, the competing characters will t§Pntrol the character as the user wishes. Recently, therefore,
to penalize each other in achieving these goals. As a resM\fﬂrkS to resolve such problems by introducing hierarchical

category [14], [17], [18] are proposed. Most of these methods

In this research we propose a new method to achieve compgindie characters in the scene individually, and extensions are
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Taku Komura is with the University of Edinburgh. E-Mail: tko- . . . . .
mura@inf.ed.ac.uk Y g Recently, techniques for handling close interactions of multiple
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Fig. 1. The overview of the proposed method to simulate coigeinteractions

difficult to handle because of the large degrees of freedopharacters: First, it requires a huge amount of precomputa-
the close contacts that can cause penetrations of the bodies to find the optimal actions at every state - basically
and the complexity of selecting an optimal action that resultise state space increases exponentially proportional to the
in realistic animation. Here we review different methods fodimensionality. As a result, abstraction of the state based on
creating scenes of multiple characters closely interacting wismpling [2], [5], [24] or basis functions [3] must be used.
one another. If the abstraction is too rough, the actions are not optimal

. . L and the resulting animation can appear awkward. Second, if
a) Capturing multi-character animationSome research hast ere are changes in system parameters such as the objective

_been dc_)ne In capturing Fh_e motions Of. two characters CI_O_S? nctions, body size and available actions, the precomputed
interacting, and synthesizing new motions using prObab'l'StllgsuIts are no longer valid - the time consuming process

methods [19], [20]. Since the motions of several people have&f) evaluating all the state transitions and rewards must be

be captured simultaneously, there are limitations on the typr'gie?)eated from the beginning. Therefore, in this study, instead
of actions which can be successfully recorded. Therefor ! '

.(?T’applying guantization and precomputation, we examine the
lB?ecise status of each character by expanding the search tree
based on the available set of actions during runtime. Although
b) Combining Singly Captured MotionsWhen simulating the simulation has to be paused from time to time for the tree
the interactions of multiple characters based on individual§xpansion process, the system can adapt to the updates in the
captured motions, the main problem is determining when gystem parameters and return the optimal series of actions.

pick a particular action. One solution Is 10 d_efine a rgwar@ Controlling Scenes of Multiple Character$he advantage
function that evaluates how much each action benefits tgg,, approach for controlling characters, is that we can sim-
.charallcter. n (_aach state - many mgthods have been propogﬁge realistic competition while enabling cooperation among
in this Q|regtlon._ Lee et al. [2] §|mulgtes a scene of WRharacters to satisfy the directions given by the animator. Al-
boxgrs fighting with each oth_er using S'F‘g'y captured ShadcfWough many methods enable animators to edit the trajectories
boxing. They propose functions to guide the characters 80 2 crowd [27], arrange the formation of characters [28],

approach and hit their opponent. Liu et al. [21] alternate 9] or design / edit the interactions of characters [4], [30],

computes the motions of individual characters in close cont &] there has been no approach which can construct a scene
by using spacetime optimization. Treuille et al. [3] PropOSe @here the characters competing locally while cooperating to

method to _control _pedestrian characters to avoid one anm%%ﬁieve the demands from animators.

using walking motion. Shum et al. [1] propose to use game

tree expansion to intelligently control characters. This papéarrecent research by Kim et al. [32] also introduces a user-

extends the work of Shum et al. [1] to generate characters witiendly interface for animators to plan and adjust interactions

counteracting objectives. among multiple characters. However, since the characters have
) . .. hointelligence, every interaction has to be specified manually

¢) Reinforcement Learninghmong the research synthesizing,,, e animator. Our research focuses on controlling the

multi-character animations by optimization, [2] and [3kparacters intelligently so that they automatically interact and
are based on reinforcement learning. In reinforcement IearfBIlow high level commands

ing [22], rewards are defined for each character and the

characters select their actions so that their accumulated reward

in the future is maximized. The rewards and transitions to I11. SYSTEM OVERVIEW

different states are examined, and the policy that determines

the action at every state is precomputed. As a result, threour system, every character has its own action level Motion
characters can select the best action in real-time. It has a@ph [1], in which the edges represent semantic actions. The
been used to control pedestrians to avoid obstacles in theeractions of each character are simulated by expanding the
streets [23], [24], training a computer-controlled fighters [25fame tree and evaluating the states in the future. For the
[26], and to simulate cooperative and competitive interactioesaluation of the future states, we prepare two functions -

between characters [5]. There are several problems with usthg competitive function and the cooperative function. The

reinforcement learning to simulate the close interactions fifrmer simulates intelligence for competitive behaviors, while

them to simulate close interactions have been developed.



the latter allows the characters to achieve common goawided by double support phases. If the sum of squares of
such as instructions given by an animator. The functions atee acceleration of the joints between two segments is above
integrated in the min-max framework to decide the action @f predefined threshold at the moment of segmentation, the
the character. segments are merged, since the body can be conducting attacks
afnd defences. Finally, we classify the actions according to the

The outline of our system is shown in Figure 1. It consists ?rajectories of the joints with large accelerations.

five steps:
i _ We build a Motion Graph [9]-[11] at the action level rather
1) Capture the motu_m O_f a single a_ctor. i than at the frame level, as in [15], [16], [33]. This is done
2) Segmgnt th_e m0t|0n_|nto semantlt_: actions, and orgam&g extracting the starting poses and the ending poses of the
the actions in an action level Motion Graph. actions and grouping similar poses together. Let us call this

3) Expand the game tree to predict future states of interags, sirycture the action level Motion Graph (Figure 2), in

tlon.l h . q ) biective f which the edges represent actions and the nodes represent
4) Apply the competitive and cooperative objective fun nostures. Planning based on such a graph is similar to the

tions to the min-max framework to evaluate the optim ay a human does, as they also use basic action groups such

action. i i as attacks and defences, as fundamental entities during fights.
5) Let the characters perform the optimal action. Then,
repeatedly expand the game tree to generate a continuous
animation. '& K
Wik Dodge Punch
Steps 1 and 2 are precomputed, while steps 3 to 5 are
performed at run-time. J? Nf
. S . . Kick
The two major contributions in this paper are: Kick Punch

« We propose a new method to simulate dense interactions Avoid
of multiple characters by applying techniques from gamgy 2. An action level Motion Graph generated from the boxingtion.
theory such as game tree expansion and min-max searc%.

« We propose a new approach that enables characters
compete, while cooperating to satisfy requirements set
by the animator.

The rest of the paper is composed as follows. Section N our previous work, we simulated characters intelligently
describes how the captured motions are preprocessed. Secé@npeting with their opponents [1]. In this method, whenever
V explains our framework for simulating dense interactiond character needs to select an action, we expand a game tree
using game theory. Section VI gives further details on tHe compute the possible future outcomes, and apply min-max
objective functions we designed. Section VII describes ti§€arch to select the optimal action. However, min-max search
system we use to model the contacts of the virtual charactdfssurprisingly inefficient at encouraging collaboration between
Section VIII presents the experimental results, Section Ite competing characters, such as following a predefined path.

discusses the pros and cons of our method, and SectiorA)8ystem that considers this problem would need to define an
concludes the paper. objective function that awards the characters when they walk

along the path. Unfortunately, under the min-max framework,
the characters consider the benefits of their opponents to be
IV. DATA ACQUISITION AND ANALYSIS their own penalties, and thus prevent each other from following

the, path. As a result, the deeper the tree is expanded, the

Here we explain the steps used to preprocess the Captuéﬁgarter they are at blocking one another, and the worse they

motion data and prepare the data structure for real-time :
are at following the path.
character control.

V. MULTI-OBJECTIVECHARACTER CONTROL

. . . Instead of tweaking the objective functions, we propose a

Firstly, we capture long sequences of motions from a single . :

. : R éw scheme to embed them into the min-max framework. In
subject. We define the term “motion” as the raw-captured da : . .

D : . is section, we explain our control method which enables

and the term “action” as a semantic segment of the motion ywe

captured. In the field of fighting, an action can be an atta<t: e characters to compete with one another locally, while

(such as a left straight, jab or a right kick), a defence (such Still cooperating with the others to satisfy the requirements
' ' of the animator. We first explain the game tree expansion

parrying, blocking_ or ducking), a transition (such as steppi_qﬁat we have used for simulating competitive interactions
to the left, stepping forward or a backwards step), reactive [1] (Section V-A). Next we explain how we enhanced

motions when being hit or pushed away, or their combinatior[%_ o
) - is approach to separately evaluate the competitiveness and
Such tagging can be done for other activities as well. . . . .
cooperativeness of actions and integrate them (Section V-B).
We have developed an automatic motion analyzer that ségnally, we explain how we can prune non-plausible choices
ments and classifies raw motions into actions. This is dooéactions to increase the reality of the scene and reduce the
by first partitioning a long motion sequence into segment®mputational cost (Section V-C).



b; atty, it can expand another node tgtasa; is still going
on. Finally, when they ends at,, the blue character expands
the tree again.

In some situations, a character may be forced to stop midway
. through the current action and perform another action. For
B A B 8 Tiga instance, in fighting, when a character is hit, it will be either

knocked down immediately, or just lose its balance and walk

Fig. 3. An expanded game tree showing a fight between two deasac g few steps backward to recover. These response motions

The distance along the vertical axis represents time. The nodes represenW .
states of the fight after either of the characters has selected a new act be decided based on the current state of the bOdy and

and the edges represent the choices of actions. The dotted lines indicateth® impulse added to the body. In such cases, we terminate
continuation of the current actions while the opponent selects its own.  the corresponding edge, insert a new node that indicates the
current action being forced to stop, and insert another edge
that corresponds to the response motion starting at that node.
In Figure 5, the blue character seleajsand the red character
ﬁ]electsbl. It turns out that the red character will be hit by
%1; blue character at. The red character is forced to discard

A. Game Tree Expansion

We adopt methods used for artificial intelligence players
strategy games such as chess to control our virtual charact
since such methods can model the decision making proces%ﬁ
areal human. Intelligent players consider the long term benefft,
rather than the immediate one, when making a choice. For
example, in chess, a movement that shows the greatest effect

in one ply, such as taking a valuable piece like a castle oBa Evaluating Competitiveness and Cooperativeness
bishop, is not necessarily the best choice for achieving a win. ) _ -
By expanding the game tree and evaluating the static positi%th's section, we explain how we evaluate the competitive-

after a few plies, a choice can be made that benefits the plaf)&8S and the cooperativeness of the series of actions performed
in long run. Here we apply a similar approach to evaluate t the characters and select an optimal action which combines

long term benefit of performing each action. both perspectives. The major improvement of our method is
that we define two separate functions to calculate the score
The major difference between character interaction and che$sompetitiveness and cooperativeness. When calculating the
is that the choices made by the characters are performgfg term benefits of launching an action, the competitive
in a continuous time domain. To apply the tree expansi@finction evaluates the nodes in the same way as the ordinary
method, we need to customize our game tree such that discigig-max framework, such that the character selects a node that
planning can be performed with continuous actions of differeg{aximizes its own benefit while minimizing the opponent's
durations. Every node in our game tree represents the stgfgefits. On the contrary, the cooperative function evaluates
of interaction between two characters when either of themi$e nodes as in ordinary dynamic programming, such that the

about to select a new action. The edges from the node repreggitefits of both characters are simply accumulated over time.
the possible choices of actions in such a state. Starting at the

root node, considering the character that is about to selectRifft we need to compute the scores of competitiveness and
action, we add edges to the node based on the performaifl@perativeness of the leaf nodes of the game tree. For every
actions. Then, we evaluate future states of interaction for esk¢igee, we define two functions to evaluate the competitiveness
of the edges, and continue to expand the sub-trees. Notice tffaf""(€)) and the cooperativeness{¢°H(e)). The details of

the two characters perform their selected actions concurrentfje objective functions will be explained later in Section VI.
and whenever any of them finish their actions, a sub-tree §thout loss of generality, suppose character A is competing
expanded. Figure 3 shows an example of an expanded gaMi@ character B and is expanding the game tree to select an
tree, where the vertical axis represents time. The blue chara@glion. The node expanded by A is called a max node, as A
starts the game tree expansion with two choices of actmnsltries to maximize its score, and that by B is called a min node,
anday, at timet;. Based on the choice of the blue character, the
red character has choices of actions to counteratst &otice

that the action selected by the blue character is still going on
when the red character starts a new action, as indicated by the
blue dotted lines. When acticay ends attz, another level of
nodes will be expanded by the blue character according to the
current actions of the red character, as indicatecabyo ag.

'latter part ofo; shown by the dotted line, and perform a
ling back actionbsy.

Since the actions in our game tree have different durations, the
order of expansion does not necessarily alternate. If a character
selects a Iong action, its opponent may perform several aCthJibS. 4. The expansion of the game tree does not always akerBaice the

before another. In Figure 4, the blue character selects a lag§on selected by the blue character is long, the red character expands two
actiona; att;. When the red character expands a short motidgyels of tree before the blue character further expands.




Equation 3 at the root node. It is to be noted that the com-
petitive and cooperative functions are integrated differently at
min and max nodes - by addir§°°P(n;) at the max nodes
and subtractingS*°°P(n;) at the min nodes, both characters
will tend to select actions that results in large absolute values
of S°°P(n;). As a result, the animator can effectively control
the characters through the cooperative function while making
the characters seriously compete with each other through the
gompetitive function.

Fig. 5. The character is forced to stop the current action tfopge a reactive
action when being hit. Since the reactive motion is determined by the syst
rather than selected by the character, there is only one outgoing edge.

C. Pruning Non-Plausible Choices

as it tries to minimize A's score. The scores of competitiveness

and cooperativeness of a leaf ndda the tree are defined as:In order to reduce the computational cost and avoid non-
plausible interactions, we prune the bad choices of actions

om _ compy _ comp/ a.
SemHl) - = Z F (&) Z F (&) when expanding each node in the game tree. Although there
ooy _ aeemachoop ejeemi.,Fcoop ‘ (1) are a huge number of choices for actions to launch, many of

0 = Zl (&) + Z (&) them result in illogical, meaningless behaviors (Figure 7). We
& Cmax € min evaluate the actions based on the following criteria and those
whereel . represents the set of edges from the max nodé§)satisfied are excluded from consideration.

ande! . represents those from the min nodes during the path
from the root towards leaf node Figure 6 (Left) gives an
example of the leaf node evaluation. In the figure, for the leaf
nodel, its score of competitiveness and cooperativeness can be
computed bySOMA|)=F MM gy)+FMAg,) —F Mg ) and
SPOOR(1)=F°°P(eg)+F °°°P(e,) +F°°P(ey ), respectively.

« Body penetration: Penetration is one of the most signif-
icant artifacts in computer animation. Actions that cause
one character to brutally overlap with any others are
considered invalid. If none of the actions can avoid such
penetrations, we try to select those that are penetration-
free at the last frame, so that the next interaction does
not start with penetrations.

e
, e 4 e « Facing angles: Although the virtual characters have full
PR 1 __, / \ /‘ \ knowledge of their opponents and do not require vision, it
MaX =t 5 looks strange for them to perform actions without looking
\ at the opponents. Therefore, we require characters to face

their opponents in the last frame of an action.
! « Out of range: It is logically meaningless to launch
Fig. 6. (Left) The scores of the leaf nodes (squares in thedjgane evaluated actions such as punches and dodges if the opponent is
from the root node tlo the Ieaf‘nodes Wi_th Equation 1. (Right) Min-max is very far away. However, the game tree approach does not
ﬁgr&gucted by recursively applying Equation 3 and 2 from leaf nodes to root consider Iogical meaning, and the characters may perform
’ such actions for other purposes , such as waiting for time

The next step is to propagate the scores of competitiveness and ©© elapse befo-re more relevant motions can take place.
cooperativeness from the leaf nodes toward the internal nodes, Since such actions look unnatural, we prohibit characters
and finally to the root node to select the action at the root. Both from attacking or defending when the opponent is farther
the competitive and cooperative scores of the internal nodes away than 1 or 3 meters, respectively.

are computed based on the min-max rule recursively from thes 1llogical combinations of actions: When being attacked,
leaf nodes towards the root node, as shown in Figure 6 (Right). Only defensive actions make logical sense, but such
We compute the scores of competitiveness / cooperativeness actions may not be selected if they are ineffective due
of an arbitrary internal node, which has a set of children to timing or position. However, real humans prefer to

ni, and simply copy the scores: only allow the character to defense when the opponent is
attacking.

SOMAN) = SOMANLeg) B
S99P(n) = SP(Npegy The criteria listed above are in descending order of importance.
If none of the actions can satisfy all criteria, the actions that

wherenpes is selected among; by satisfy those of higher importance will be selected.

om . 00 . .
Nbest= {Z:gmﬁ;ﬁi((ss;mpz(;'))jsszoo;(r:')))) 2: :2 mﬁlxnnooddee (3) By pruning the actions as explained, we can increase the reality
i of the interactions and greatly reduce the computational cost
Equations 3 and 2 are applied to evaluate all internal nodefs expanding the game tree. Empirically, we can prune at
recursively from the leaf nodes towards the root node. Theast half of the available choices using these pruning policies.
optimal action to be performed is finally selected by applyinghis would reduce the computational cost approximately by



prefers to escape from their opponent, high scores are given
to actions that increase the distance between them.

The scoring term encourages the character to interact with
the opponent following the rule of the game. It evaluates how
effective the action is at competing with the opponent. In
general, it is defined as the weighted sum of the damage the

character gives to and receives from the opponent:
Fig. 7. Examples of actions launched by the green charactérhidwe to
be pruned: (Left) Penetrating the opponent. (Middle) Turning its back to the fscore _ WJDrDJr —Wp D™ (5)
opponent while fighting. (Right) Defending while opponent is far away.

where D' is the damage that the character gives to the
N _ _ _ opponentDP~ is the damage received, ang, wy are positive
O(zm"), wherem is the number of available actions ands  eight constants for each term. The weight constants depend
the depth of the game tree. The rea_lders are _referred to Sect@nthe competing style of the character. For boxing, if the
VIl for the actual performance during experiments. fighter is an outboxer that is less aggressivg, is set small
andwp is set large. If the fighter is running out of time and
is losing the fight, it has to fight more aggressively regardless
of the risk of being hit; in that caseyy is increased and
In this section, we explain the details of the objective fun(\:/\-lD 1S decr.eased. In our flghtlng examples.’ the damage is
. : ) . Set proportional to the velocity of the attacking part and the
tions used in Equation 1 to evaluate the competitiveness an " ) o
. : ! " -vUlnerability of the part being hit:
cooperativeness of the interactions. The competitive function
evaluates the effectiveness of an action at competing with the D— [Vattack|

opponent. The cooperative function evaluates how much the \%

character is following the instructions given by the animatognere Vattack| is the norm of the velocity of the attacking
By combining the two functions, controllable characters CORggment at the moment it lands onto the opponghts
ducting realistic competitions can be realized. a constant value set to 100 for normalizng the velocity,
Wheing attack IS @ weight indicating the vulnerability of the body
» ) part that is being attacked. In our SySt@Meing attack iS Set to
A. Competitive Function 1.0 for the torso, D for the head, and.0 for the limbs. In

. : . . . the sword fighting experiments, the sword is considered to be
Here we explain the details of the competitive function, whic Nghting exp
he attacking segment.

evaluates how well each character is competing with the other
characters during close interactions. Through observationsTdife action combination term evaluates the suitability of a
various competitive interactions including fighting, chasingerformed action when the opponent is conducting a specific
and sports, we find that the objective function of the characteastion. The previous two terms explained above are useful
can be well represented by three terms. These arenihee- in evaluating the numerical performances of actions when
ment term that encourages the characters to move towards ttempeting with opponents, but they fall short in representing
opponents and orient itself for interactions, ¥wering term the implicit factors that affect the action selection process.
that evaluates the scoring criteria of the game and encouraghsse implicit factors, such as the appropriate style of defense
the characters to compete, and #wion combination term for an attack, are difficult to evaluate numerically and require
that evaluates the suitability of the action with respect to tlexpert knowledge. We manually set upattion combination
actions done by the other characters. table that helps to determine the optimal actions to perform
based on the action taken by the opponent. Each record in
?ﬁe table contains three entities: the character’s action, the
opponent’s action, and a suitability value that describes how
£ — g (0 — B3)2 4+ W (r —rg)? (4) effective the character’s action is with respect to the opponent’s
action. A positive value encourages the character to perform
where 6, r are the relative orientation and distance from theuch an action when the opponent’s action corresponds to the

opponent respectivel\gy, rq are their preferred values, andone in the record, while a negative value discourages such an
Wwg, W; are the weight constants for each ternis computed gction:

by projecting the head-facing direction vector onto the ground. {

VI. OBJECTIVE FUNCTIONS

X Wheing attack (6)

The movement term guides the characters towards the targ
opponent by evaluating the distance and facing angle:

wsS if the action pair exists in the table

_ ; comb _
In our system, we always sé4 = 0 so that the character tries f =10 otherwise

to face the opponenty depends on the type of interaction

and the movement style. For example, in boxing, an infightethere ws is a weight,S is the suitability value recorded in
prefers to keep short distance between themselves and thie& table. In our system, this term is only used to evaluate
opponents. In that casgy is set small such that higher scoreshe defensive power of each action with respect to each attack
are given to actions that bring the character closer to its enerhy. the opponent, which is difficult to evaluate numerically
On the contrary, for an outboxer or a passive fighter, whoom the motion data. It is known in boxing that sway back

()



motions are effective for avoiding upper cuts and hooks, amy dynamically updating\™ andA~, the animator can control
head slips are good for avoiding straight punches. There dhe flow of the animation. In our system, we use this term to
various factors such as the direction the punch is approachoantrol one character to knock down another. By requesting
from, and whether the defender can see the attacker all throwglcharacter to perform falling down actions, we implicitly
the motion, that support these basic techniques. Howeverratuire that the character to be knocked down by the opponent,
is difficult to numerically evaluate all such factors only fronsince falling down actions cannot be performed without being
the motion data. By using the action combination table, wet.

can take into account the knowledge of experts, such as hew .
inally, the two terms are summed to compose the cooperative

effective every defensive action is with respect to variOL%s A
unction:
attacks.
.- . . ) Fcoop: fm0\2+ freq (11)
The competitive function is composed by summing the three
terms:
FComp_ fmoul  gscore | fcomb 8) VIlI. PHYSICAL INTERACTIONSBETWEEN CHARACTERS

The competitive function is general enough to produce varioM$ adopt Jakobsen’s [34] technique that uses particles to
competitive interactions such as fighting, chasing, and spogénulate the rigid body’s dynamics. Each joint is represented
For example, in chasing, we can increase the preferred distaR¥ea particle, and is activated by external force calculated
for the character running away, and shorten it for the chasBy. @ PD controller [35]. Since the location of segments
For sports like basketball, we can design a scoring functi&@n be constrained in this method, we fix the supporting
that considers the probability of throwing the ball into théoot onto the ground to prevent it from sliding. The body

basket, so that the character will try to shoot when there is §8gments are modeled with spheres and cylinders to reduce the
opponent to their front. computational cost of collision detections. We add repulsive

forces to the segments when a collision occurs to avoid
penetrations.

B. Cooperative Function The effect of stepping back or falling down are synthesized

The cooperative function evaluates how much the charactB¥ concatenating the appropriate response motions in the
are cooperating to achieve a common goal. In general, gtabase according to the condition of the impulse and the

animator specifies such a goal to design a scene. body postures [36], [37]. The initial motion when the impulse
is added is simulated by rigid body dynamics, then the posture

Typical commands by an animator for controlling charactefs compared with the initial postures of the response motions

may be following a specific path when moving, and launching the database. Once an appropriate motion is discovered, the
a specific style of actions at a specific time. Such observatigio motions are blended.

leads us to implement a cooperative function composed of the

movement term and theaction requirement term.
) - VIll. EXPERIMENTAL RESULTS
The movement term guides the characters to the position

specified by the animator. It evaluates how close the chargge simulated scenes of multiple characters fighting and
ters’ global position and orientation are to their desired valughasing each other using singly captured motions of shadow
at the end of each action: boxing, swinging a sword and running around. In this section,

2 2 we first explain the capturing sessions and preprocessing steps.
Wy (y = Ya)” +Wp(P — Pa) ©) Next, we give detailspof hog\JN the competitli?/e I?nteractiogs ofp
where y, p are the global orientation and position of thdighting and chasing simulated between the characters. Finally,
character in the world coordinate system, py are their we explain how the scenes involving multiple characters are
desired valuesy, andw, are their weights. Empirically, we controlled by the animator.
found that if we wish a character to simply follow a predefined
trajectory, it is effective to remove the terms of orientation and ) )
define the trajectory as a series of check points, updating the Motion Capture and Preparation Processes
values ofpg whenever a checkpoint is reached.

me\B _

An optical motion capture system was used to capture the
The action requirement term encourages the character tanotions of a single actor. The frame rate was set to 60

perform actions specified by the animator. It gives a high scopestures per second. We have captured motions of shadow
if such actions are successfully performed: boxing for 7 minutes, sword swinging for 15 minutes, and

running around for 1.5 minutes. They were automatically

segmented by our motion analyzer into 279, 612 and 215
actions respectively. The analyzer can mistakenly split slow
and less energetic actions that involve multiple steps, as we
where w, is the weight, A" is the set of actions to befirst segment the motions by the foot-step pattern and then
performed andA~ is the set of actions not to be performedmerge them according to the body acceleration. We manually

Wa when A" performed
f®=¢ —w, whenA~ performed (10)
0 otherwise



validate and amend the segmentation, which usually takes 20
to 60 minutes depending on the number of the actions.

We implemented an action combination table explained in Sec-
tion VI to evaluate the effectiveness of defensive actions with
respect to different attacks in the boxing database. To speeq
up the table creation process, instead of specifying all records'
manually, we first annotate the target position and directioy. 8. (Left) Infighters simulated by our system that prefsharter distance

for attacks. Next, the defences are annotated with the pOSitffﬂﬁn the opponent and short range attacks. (Middle) Outboxers simulated by
and direction they are defending from (Table 1). The systef, Yo 1" refer & onger dstance fom the opponert and long range
then automatically inserts records into the action combinati@ghting by expanding the game tree.

table by pairing all the attacks with defences. The suitability

value for each pair is defined &= Nmatched/ Ndefence Where
Nmatched IS the number of common elements in the attackEs
and the defence columns considering the position and th
direction, andngefenceiS the total number of elements in the
defence column (Table II). The equation favors defences th
are effective to the attack while specific to the areas being
attacked. Finally, the animator may amend or add records ir
the table. The whole process takes around one hour.

Fig. 9. (Left) The green character chasing and catching the bharacter.

Each character model has 6 degrees of freedom for the traffight) Two characters chasing one character.

lation and orientation of the root, and 72 degrees of freedom
for the joint (_)rlentatlo_n. The parameters .Of the Compet'tlvsemulated a less intelligent fighter by setting the intelligence
and cooperative functions for each experiment are shownin : :

. level to two, and a smart fighter by setting the level to four.
Table Il and Table 1V, respectively. i . : .

In such a case, the intelligent fighter always wins the match
as its decision is based on greater expansion of the game tree.
Experiments were also done to examine the interactions of two
characters sword fighting (Figure 8 Right). Again, the strength
In order to examine the effectiveness of the min-max searohthe fighters could be controlled by changing the depth of
at simulating competitive interactions, various fighting andame tree.

chasing scenes were created by adjusting the parameter?\lof . . .
the objective function and the depth of the game tree ext, we simulated one character chasing another by using
’ the running motion (Figure 9 Left). The preferred distance

We first simulated a fighting scene between two characters bbytween them is set short for the chaser and long for the

using the shadow boxing actions. We can create different stykecaper. Moreover, the scoring function was adjusted such that
of fighting by adjusting the objective function - infighting stylea high score is given to the chaser when it catches the escaper,
was simulated by decreasing the preferred distance between

the characters and giving higher scores to successful shart

B. Competitive Interactions Between Two Characters

. + -
range attacks such as upper-cuts and hooks (Figure 8 Left————— Ivoﬁ Ivofl gg oréjm 1”35 Iv(l)% IVOSZ
An outboxing style was simulated by inc_re_asing the preferreéf,fghter 10t | 10t | o | o5m | 10°/100 T | 1P | 1
distance between the characters and giving higher scores tautboxer 10t | 10 | 0° | 20m | 10t/10° T | 10° | 1P
successful long range attacks such as straight punches (Figukexer (Path) 1811 1811 0° | 0.8m 1? 1g 1$
8 Middle). The intelligence level of the characters can tesxg:g ig:g (Path) iol iol 80 igm 105 105 102
controlled by altering the depth of the game tree expansion. /\/%haser 10t |10t | o0 | o1m 105 0 0

Runaway 10t | 10t | 0° | 3.0m 0 10° 0
_ _ - Chaser (Path) 10t | 10t | 0° | 0.1m 10° 0 0
A_“‘h"“ . P"S'g"“ Direction Runaway (Path) 10t | 10t | 0 | 3.0m 0 10° | 0
lRJEW;I:Li Kick Sgge’r %’rg%r -[?):;gr Torsal E?Wn;r ds T The parameters used for short range and long range attack respectively
d : TABLE Il
?UCk Back Uead, ¥pper ‘Il:orso T Eror_mt, Htolnzl(jntal g THE PARAMETER USED IN THE COMPETITIVE FUNCTION TO SIMULATE
ump bac pper OTS_?ABE\IIEVEII' 0orso| orizontal, Upwards VARIOUS EFFECTS
EXAMPLE ANNOTATIONS OF ATTACKS AND DEFENCES
Wy | Wp | W,
Character’s Action | Opponent’s Action | Suitability Value, S Boxer (Path) 0 [ 10" | 10°
Duck Right Jab 3/4=0.75 Sword fghter (Path) | 0 | 10! | 10°
Duck Upwards Kick 1/4=0.25 Chaser (Path) 0|10 | O
Jump Back Right Jab 1/4=0.25 Runaway (Path) 0 |10t] O
Jump Back Upwards Kick 3/4=0.75 TABLE 1V
TABLE I THE PARAMETER USED IN THE COOPERATIVE FUNCTIOT@UNLISTED

EXAMPLE RECORDS IN THE ACTION COMBINATION TABLE

SIMULATIONS DO NOT REQUIRE THE COOPERATIVE FUNCTION



(d)

Fig. 11. (a) A crowd of characters fighting with opponents while following the formation specified by the animator, which is visualized by the red area. (b)
Characters fighting with weapons in pairs and following the trajectories. (c), (d) Examples following the story line. (c) The strong green enemy first attacks
the blue character but gets hit by a car at the end. The two characters cooperatively follow the path while fighting. (d) The two characters sword fighting.
The blue character retreats into an alley where an ally joins in to knock down the green enemy.

and a high penalty is given to the escaper when it is caugtgach a check point, they perform any required actions and
As a result, the chaser tries to approach the escaper, while wWadt until the indicated timing is passed. Then, the system
escaper tries to get away. When we increase the intelligerspecifies the next check point. The movement term in the
level of the chaser to four and lower that of the escaper to twogoperative function in Equation 11 awards an action that
the chaser can catch the escaper quickly. Further increasguides the characters to the next check point, while the
the intelligence level generates similar results, becauseaion requirement term encourages the characters to conduct
difference of two levels is already large enough for the chasthie specified actions. Since the movements of the characters
to easily catch the escaper. We can also simulate scenes of am® spatio-temporally constrained, we can design a scene
characters collaboratively chasing one character by summicantaining a lot of characters with little risk of unexpected
the objective functions of the two chasers (Figure 9 Right).collisions. Using this method, we can simulate a large number
of characters following instructions.

C. Animator Controlled Competitions First, using the running around motion database, a scene in
which one character chases another in a circular trajectory
Here we present examples of the animator controlling the created (Figure 10 Left). A number of check points are
scenes through the cooperative term. We show examplesp@dpared on the floor so that each of the characters passes them
the characters flghtlng or ChaSing one another while fO"Oerwnh the correct t|m|ng We can create a scene where many
paths given by the animator. Each of the paths is modelgirs perform such chasing while avoiding colliding with one
as a series of check points to be reached by the charactgfother by defining multiple trajectories (Figure 10 Right).
Each check point is defined by a 2D position on the floor,
an optional timing value, and optional requirements on thdext, we show a scene with a large number of characters
actions to be conducted when passing by. When the characfegksting in pairs along spiral trajectories, creating a spreading-
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out formation as indicated by the red area in Figure 11(d)ee is expanded for three levels for each character. However,
The characters wearing red gloves are designed to kndble computational cost increases exponentially with the num-
down their opponents when the pairs reach the final chebkr of levels which are expanded. For example, creating the
point, as shown in the right-most image of Figure 11(a¥ame video with five level game trees will take hours to finish.
This is done by setting up the action requirement term Nevertheless, from our experience, long horizon planning
the cooperative function. Another example using the swortsually does not create interesting animations. One reason
fighting motion was also created as shown in Figure 11(h$. that they become too “smart” and careful, and therefore
Although the trajectories overlap spatially, they do not overlegvoid performing anything that leads to disadvantages. As
in the temporal domain, and hence the pairs of charactersaloresult, the characters become less active, which is not
not run into one another. what the animator wants to see. We have examined from
our experimental results that a depth level of up to four is

Finally, we show examples where scenes are created alg . . . ) .
y P Uctive to produce intelligent and interesting movements of

story lines given by the animator. In action films, often ther, o .
. L e characters. In addition to that, the tree expansion process
are scenes where the main character faces a situation that . : .
L : . an easily be broken down into multiple parallel processes.
he/she is in danger but finally survives at the end due

. . %re specifically, we can implement a multi-thread system
some unexpected events. Using the boxing data, we created ' .
in"which each thread expands a sub-tree of the whole game

a scene in which the main character fights with a stror}% '
: . . e. As multi-core processors become cheap and popular, the
enemy and survives because the enemy is crashed into by a ca

(Figure 11(c)). By adjusting the depth of the tree expanderth'?dE()rrnar“:e of our method can be greatly enhanced.

we control the strength of the characters such that the maine pruning rules mentioned in Section V-C were shown
character keeps on getting hit. Both characters collaborativedy be effective in our experiments. We simulated around 10
walk along a given path that is composed of a sequenggnutes of interactions with each of our motion databases
of check points. We locate the last check point at a stregding three level game trees. The number of actions before
with a lot of passing cars, and use simple bounding boxesdad after pruning are recorded and the average is calculated
detect collisions between the characters and the cars. Bagkshle V). Pruning is less effective on the sword swinging
on the storyline, the character colliding with the cars argatabase, mostly because the preferred distance for sword
forced to perform a falling down action. A similar exampléighting characters is long, and hence the body penetration
where the main character is fighting with a strong enentpnstraint becomes less effective.
was created using the sword fighting data. The main character
retreats into an alley where a hero suddenly jumps in to knock
down the enemy (Figure 11(d)). We design the trajectories for IX. DISCUSSIONS
each character to follow, and use the action requirement term
to request the enemy be knocked down by the hero at the. . .
. . . Sing our method, animators can simulate the close compet-
last check point. The advantage of this approach is that the . . S
. A : : Itive interactions of multiple characters based on individually
animator only needs to specify high level instructions such as . . . . ;
. captured motions and specify details such as the trajectories
the path the characters pass through and the overall timin

the events. The system will then plan the individual actions the characters during the animation.

launched by the characters to complete such requirementsThe action combination table mentioned in Section VI pro-

vides animators with an interface to embed manually designed,

plausible interactions into the scene. Stylized and artistic
D. Computational Costs combinations of specific attacks and defences may rarely
i i i i appear if the interactions are only evaluated by the objective
The comput_a_uon time depgnds on the size of the act|c_)n ction. Using the action combination table, the animator can
the cor_mef:tlwty of _the Motion Graph,_and the compIeX|t_y O|fnake such interactions appear with minimal adjustment of
the objective function. In general, using a computer with Me objective function. The action combination terfifo[™)

Pgntium 4 Dual core (3GHz) and 2GB of RAM, it takes % currently defined as an element of the competitive function
minutes to create a video of length 30 seconds when the ga@eom& This is because the term is used to model the attack-

defence relationship, and we wish the smarter character to
perform better defensive motions. However, if the animator
wants the two characters to cooperatively perform stylized

# of Actions # of Actions Percentage
Before Pruning | After Pruning | Pruned
Boxing 1200 355 70.4%
Sword Swinging 94.3 682 27.7%
P 0,
Fig. 10. (Left) One character chasing another character ircalar trajectory. Running-Around | 958 TABLEV 403 S7.9%

(Right) A large scale scene in which many chgracters co_nductlng similar oy ERAGE NUMBER OF ACTIONS BEEORE AND AFTER PRUNING WHEN
movements can be s_ynthesued. The check points are adjusted so that the EXPANDING ONE NODE
characters do not collide into one another.
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interactions, the term has to be moved to the cooperative fun
tion (Fc°°P), otherwise the two characters will prevent their
opponents from acting as indicated in the action combinatio
table.

Our framework can be expanded to simulate interactions fc
multiple characters such as a basketball game. The simple
approach is to expand a game tree for all characters in tr
scene, and evaluate the combined benefits from all allies ar
opponents. However, since expanding such a huge game tree

is computational costly, it would be better to apply a multiFig. 12. The characters controlled by the proposed methodfallmy the

_ [p— ; accurately (top) while those controlled by Interaction Patches cannot
level control strategy deSIang a representation based ollow the path well due to the lack of samples (bottom). We used the same

the formation of the_ whole team, and expanding the gargg of actions in these animations and the bottom animation is produced from
tree at that level. Min-max search can be used to select @78 Interaction Patches.

best formation taking into account the counter formation by
the opponent team. Individual actions by the characters can be
simulated by simple path planning using the motion graph.reinforcement learning [2] and state machine-based dynamic

programming [5]. One general issue with such methods is that
In our model, we assume each character has perfect knowlegas; \;syally suffer from the high dimensional state space, and

about its opponent in terms of the opponent's strategy and heaive solution results in rough quantization [2] or reduced
action evaluation functions. Due to such knowledge, the Mify mper of action samples [5], which can cause lower precision
max search always gives the optimal result. However, if thg gt re predictions and less controllability of the characters.
knowledge of the opponent is incomplete and inaccurate, Rnetheless, it has a great potential if it can be solved, for
opponent-model search that takes into account the mistages nsje, by representing the value function by a sum of basis
made by the opponents may perform better [38]. To implggnciions [3], as we will be able to produce multi-objective
ment opponent-models in our system, one simple approagly cter animation in real-time.

is to observe the actual moves made by the opponent. During

the tree expansion process, we determine the probability of thee method can also be combined with Interaction Patches
opponent launching each action, based on the observed histf4};, which precomputes the close interactions between two
and evaluate the opponent nodes using the expectation valggaracters based on the user specified pattern and their spa-
This would be an interesting direction for future research. tiotemporal concatenation. Interaction Patches are effective

Our svstem is a simplification of NON-zero-sum Games Ifor synthesizing stylized interactions with minimal number
y P 9 + B sample motions. However, the disadvantages is that it is

which the gain of a player may not necessary be the loﬁgt very suitable for long persistent interactions between two

?r:;hﬁo?]psgrgegan[qsggr\tlvgfstl& p!fysizﬁqggme ggci?:uvr\:tlr?% t?%aracters, as similar combinations of actions are likely to
. 'p ystem only rbe repeated over time, and the connectivity of the interaction
cooperative function, and handle it differently such that the

function benefits both characters. As a future work. it woul atches is low if the two characters continuously interact. On
be interesting 1o investioate the' ossibility of a I — e other hand, the proposed method is effective at making the
g g P Y bplying haracters follow control signals from an animator. Animators
method to more complex non-zero-sum games, in which t & . . - .
i can effectively combine both for synthesizing an animation
gain depends not only on the loss of the opponent, but al : . .
S ) ong a given story line. For example, the animator may
on other objective factors such as the skills of the player. : . -
precompute the final scene where the enemies are finished off
When a system reaches an equilibrium, all players in thg interaction patches,_ anq gt_Jide the fighting _characters there
game are unable to obtain better rewards by changing they the proposed multi-objective approach. Figure 12 shows
control strategies [39]. In our research, we try to avoid th@ comparison between the proposed method and Interaction
equilibrium because when such a condition is reached, tRatches for producing persistent long interactions between
system is very likely to stay in the same state for a longvo characters. The latter performs sub-optimally because
duration, which leads to monotonic animation. One examp®8ly a limited choice of patches are available for temporally
of the equilibrium in a fight scene is that both characters stugrncatenating, which results in poor quality following of the
defending [25], which is not pleasant from the animator’s poifitstructions given by the animator.
of view. Fortunately, since each action has particular values for b dthati . h ) dth i
its attacking / defending position and duration, the state spa & © ser\_/fg that in movies, t”e 3nw_r0nrgent gn t dest(Try ine
is highly irregular. This reduces the chance that the charact Fsa spr)]eu |chscerr1]e|are u;ualy esllgnbe .anﬁ used only once
stay at an equilibrium point. Furthermore, we give a penalty{ roughout the whole movie. It would be ineffective to run a

actions that have been recently used, such that the equilibriﬂmc?lmpu_ta;'on s_,ystem forlsucg_a purpose. Instead,danlmatr?rs
point shifts in the state space at every time step. usuatly wis t_o Interactively adjust parameter_s and see t €
results immediately. Our method does not require any training

Our idea of multi-objective control is general enough tor precomputation stage, and any changes in the system are
be used with other precomputation-based methods suchreffected immediately. The Interaction Graph [5] and other




reinforcement learning systems require a long training stagej

that could take hours. Once the parameters and the objective

12

M. Gleicher, “Retargetting motion to new charactel€3mputer Graph-
icsi Proceedings, Annual Conference Serigs. 33-42, 1998.

functions are changed, or if the story line is updated, thi§7] J. Lee and S. Y. Shin, “A hierarchical approach to interactive motion
precomputation needs to be repeated from the beginning.

editing for human-like figures,Proceedings of SIGGRAPH'99p. 39—
48, 1999.

There are some drawbacks to our system. Firstly, the criteri[@] Y. Abe, C. K. Liu, and Z. Popovi¢, “Momentum-based parameter-
for pruning the sub-tree when expanding the game tree must
be determined by an expert who knows the nature of the
interactions well. Such criteria can change according to the
interaction - however, the criteria listed in Section V-C can bé°]
applied well to various competitive interactions. Secondly, we

cannot currently handle persistent, continuous contacts whiéf
appear in martial arts when squeezing the joints or locking the

torso or limbs. One way to handle such interactions is to com-
bine the proposed approach with the topology coordinates [30].

Such a combination would be useful for 3D computer gam
that involve motions of continuous contact, such as wrestling
games.

[13]

X. CONCLUSIONS [14]

In this paper, we have presented a method to simulate
competitive scenes in which multiple characters are clos bé]
interacting with one another. We first expanded the game tree
and applied min-max search to determine the actions of each
character. Then, we have shown that various SterS of flghtl[]_g] T. Kwon and S. Y. Shin, “Motion modeling for on-line locomotion

and chasing can be simulated by changing parameters, such synthesis,” inProceedings of the 2005 ACM SIGGRAPH/Eurographics
as the depth of the game tree and the evaluation function.
We also embedded the cooperative functions into the mid?]
max framework so that the characters cooperatively follow

instructions from the animator while competing with eacH3]
other. As a result, we can create intelligent characters that
compete well while being easily controlled.

[19]
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