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Learning a 3D Human Pose Distance Metric
from Geometric Pose Descriptor

Cheng Chen, Yueting Zhuang, Feiping Nie, Yi Yang, Fei Wu, Jun Xiao

Abstract—Estimating 3D pose similarity is a fundamental problem on 3D motion data. Most previous work calculates L2-like distance
of joint orientations or coordinates, which does not sufficiently reflect the pose similarity of human perception. In this paper we present
a new pose distance metric. First, we propose a new rich pose feature set called Geometric Pose Descriptor (GPD). GPD is more
effective in encoding pose similarity by utilizing features on geometric relations among body parts, as well as temporal information such
as velocities and accelerations. Based on GPD, we propose a semi-supervised distance metric learning algorithm called Regularized
Distance Metric Learning with Sparse Representation (RDSR), which integrates information from both unsupervised data relationship
and labels. We apply the proposed pose distance metric to applications of motion transition decision and content based pose retrieval.
Quantitative evaluations demonstrate that our method achieves better results with only a small amount of human labels, showing that
the proposed pose distance metric is a promising building block for various 3D motion related applications.

Index Terms—human motion, character animation, pose features, distance metric, semi-supervised learning.

1 INTRODUCTION

N the past few years, motion capture technique has

been used extensively. Since 3D pose is the fundamen-
tal element of motion data, distance metrics on 3D poses
have attracted much research interest [1][2][3][4][5].

A proper distance metric on 3D poses serves as a
fundamental building block for many 3D motion re-
lated applications. For example, animators often need
to retrieve relevant motions scattered in the 3D motion
dataset from examples [6][7]. In this case the motion sim-
ilarity is often estimated based on the distances between
poses (probably with time warping techniques [8]). In
the well-known motion graph algorithm [9][10][11], pose
similarity is used to detect satisfactory transition points.
In some other applications such as motion segmentation
[12][13], compression [14][15] and classification [16], a
preliminary step is often to represent each pose as a
feature vector and then pose distance is calculated in
the feature space. Many human-computer interaction
systems also need to estimate pose distance. For exam-
ple, the Tai Chi training system in [17] evaluates the
difference between the student’s pose and the teacher’s
pose. Also, in computer vision, image based pose recov-
ery algorithms evaluate the performance by the distance
between the recovered poses and ground-truth [18]. In
short, working with 3D motion data naturally requires
a discriminative pose feature set and a proper distance
metric in the feature space.
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A lot of previous work uses joint orientations or coor-
dinates straightforwardly (optionally with velocities) as
pose features [2][11][19]. HoweVer, there is a substantial
gap between perceptual pose distance and the coordi-
nates or orientations of individual joints. It has been
indicated that pose discrimination relies heavily on the
relational configuration between body parts [3][4][5][20].
Also, human does not put equal emphasis on different
body parts when understanding poses.

In this paper we propose a new collection of pose
features, referred to as Geometric Pose Descriptor (GPD).
Geometric features have been used in graphics and
vision communities [21][22][23], and here we propose a
new rich pose feature set exploiting geometric properties
and relations between different body parts. GPD empha-
sizes relational body part configurations, which is more
consistent with human perception [5].

Given the pose feature set, another problem is the dis-
tance metric design. The simplest metric is L2. However,
L2 does not sufficiently encode pose semantics. Some
recent work [1][3][5] tries to learn the distance metric
from training data. These distance metrics have shown
superior performance compared with L2. However, one
limitation is that extensive manual labeling is required.
For example, [5] uses 12000 pose pairs labeled by 30
human supervisors. Labeling such amount of data is
expensive and tedious.

On the other hand, because unlabeled 3D poses are
easy to obtain, they can be used to alleviate the exten-
sive need for labels. In this paper we propose a semi-
supervised distance metric learning algorithm, namely
Regularized Distance Metric Learning with Sparse Represen-
tation (RDSR) to learn an optimal Mahalanobis distance
metric based on GPD features. RDSR gracefully inte-
grates information of the unsupervised data relationship
with label information, and has an efficient procedure to
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perform global optimization. Compared with previous
algorithms, RDSR shows better performance with a rel-
atively small amount of labels.

This paper makes contributions in pose features and
pose distance metric learning, and we show that both
bring improvements. We conduct experiments on motion
transition decision and content based pose retrieval.
Various evaluations show that GPD is better than other
features, RDSR outperforms other distance metric learn-
ing algorithms, and the combination of GPD and RDSR
gives the best result.

In the following, after summarizing the related work
in Section 2, we explain GPD feature set in Section 3.
Section 4 presents the RDSR distance metric learning
algorithm. Experiments on motion transition decision
and content based pose retrieval are detailed in Sections
5 and 6, respectively. Section 7 gives the conclusion.

2 RELATED WORK
2.1 Pose Features

It has been known for long that L2 distance on raw joint
coordinates or orientations does not sufficiently reveal
pose similarity. Kovar et al. [24] address this problem
by implicitly exploiting the neighborhood graph of the
motion manifold. To retrieve logically similar motions
given an example, they first retrieve a small amount
of numerically similar motions, and then the retrieved
motions are used as intermediate queries from which
more motions are retrieved. Lee et. al [11] use weighted
joint orientation angles and velocities to represent poses,
where the weights for each joint are set by hand. Wang
et. al [1] improve the method by learning the weights
from human labeled data. Our work can be viewed as
a further extension in three aspects: we propose a richer
feature set, the weights associated with individual joints
are extended to more flexible Mahalanobis distance, and
a new semi-supervised learning method is proposed to
reduce the number of human labels required.

Recently, several new pose feature types have been
proposed. For example, Muller et al. [20][25] define
31 Boolean features for retrieving topologically similar
motions very efficiently. However, the feature set needs
to be manually selected for different motion types. Also,
Boolean features are aimed at efficiency, and are too
coarse for accurate pose distance estimation. Tang et al.
[3] propose Joint Relative Distance that utilizes distances
between joint pairs. Chen et al. [5] construct a feature
pool that enumerates all possible relational features, and
then the relevant features are selected by Adaboost from
a large number of labeled pose pairs. Onuma et al.
[26] propose kinetic energy based features. This type
of feature is defined on an entire motion sequence and
is not suitable for accurate similarity measurement on
a pose-wise level. Ho et al. [4] propose tangle based
features. Tangles successfully encode the twisted contact
of two characters, but they are not suitable to encode
pose similarity of a single character.

2.2 Semi-supervised Distance Metric Learning

Given pose features, another important issue is how to
define the distance metric. Distance metric learning has
attracted much research interest [27] [28] [29] [30] [31]
[32]. These research efforts have shown that a carefully
learned distance metric can yield substantial improve-
ments in many applications. To deal with semantic gap,
a practical solution is to incorporate labels [1] [3] [5].
Although labels do help, they require a lot of human
labor. Meanwhile, some unsupervised distance metric
learning algorithms are proposed [27] [32]. However,
due to the lack of label information, the performance
of unsupervised algorithms may be unsatisfactory. On
the other hand, semi-supervised distance learning algo-
rithms [33][34] learn with both labeled and unlabeled
data. In this paper we propose a new semi-supervised
metric learning algorithm named RDSR. For a detailed
discussion of our RDSR method in the context of semi-
supervised learning, please refer to Section 4.4.

3 GEOMETRIC POSE DESCRIPTOR
3.1 Pose Data Format and Human Skeleton Model

Usually, a 3D pose is encoded as a collection of joint co-
ordinates (e.qg. trc files) or orientations (e.g. bvh, asf/amc
files). Converting from orientation based format to coor-
dinate based counterpart is straightforward, while the
reverse is tricky and ambiguous. Two poses expressed
by joint orientations cannot be directly compared unless
they have the same skeleton parameterization. To avoid
unnecessary complication and for better generality, we
use joint coordinates as the raw data of poses (we will
compare with rotation based formats in Section 5.3 and
find no significant performance difference).

In this paper we use a 16-joint skeleton model shown
in Fig. 1(a). The skeleton is a tree structure, where the
joints are nodes. Note that in graphics applications,
there are often more complex skeletons, such as those
containing fingers or toes. Here we assume that pose
distance is only related to the configuration of main body
joints. Therefore, the information from fingers/toes is not
exploited even if it is available.

All joint coordinates and the pose features described
below are expressed in the figure’s local coordinate
frame, which is translated relative to the Hip joint and ro-
tated according to the body’s yaw angle. This is because
pose similarity is independent of global translation and
rotation around the vertical axis.

We define a set of joints, lines and planes on the
human skeleton as shown in Fig. 1. There are 16 joints,
30 lines and 5 planes in total, as explained below.

e Joint. Each joint J is encoded with its coordinate
(Jz, Jy, J=). There are 16 joints in total.

e Line. L; _,, is the line from joint J; to J, if one of
the following three constraints is satisfied:
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Fig. 1. (a) Skeleton model. Green spheres represent joints and orange ellipsoids represent limbs. (b) Lines. Limbs
are already lines. Blue and red dash lines are additional lines of two types. (c) Planes.

1) J; and J, are directly adjacent in the kinetic chain.
This produces 15 lines.

2) If one of J; and J, is end site (Head, L(R)Hand
or L(R)Foot), then the other one can be two steps
away on the same kinetic chain (i.e. one joint is
an ancestor of the other and the difference be-
tween their depths in the tree is two). For example,
L1 shoulder—LHand aNd Lrmip—rToe are two valid
lines. This produces 5 lines. Incorporating these
lines is because the kinetic chains towards end sites
are important in pose perception.

3) If both J; and J; are end sites, then L; _,;, is
a line. This produces 10 lines. This line category
is incorporated because the relations between end
sites play an important role in pose identification.

e Plane. Pj,_.j,_.j, is the plane determined by the
triangle with vertices J;, Jo and Js;. Because planes
are more complex and only a small number of major
planes tend to be noticed in pose perception, only
5 planes are considered, namely: Pcopesi— Neck— Head:
PrLshoulder—LEWbow—LHands  PRShoulder— RElbow—RHand

PLHipHLKnee%LFootv and PRHipHRKneeHRFoot- These
correspond to the planes of torso, arms and legs.

3.2 Pose Features

We define nine types of GPD features (as in Fig. 2),
including eight static features and one temporal feature.
Static features encode the configuration in one pose, and
temporal features represent the variation in time.

3.2.1 Static features

e Joint Coordinate fj (J):
This is the 3D coordinate of the joint J.

fJ_C(J) - (Jzajy;Jz) (1)

Note that Hip’s coordinate is excluded as it is always
(0,0,0). On the other hand, the y coordinate of Hip in
the world coordinate frame reflects the absolute height
of body and is informative in some cases (e.g. discerning
jumping in the air), and hence is included. Therefore, the
total dimension of joint coordinates is 15 x 3 + 1 = 46.

e Joint-Joint Distance fj;_q(J1, J2):
This is the Euclidean distance from joint J; to Js.

fria(J1, J2) = HEH 2

e Joint-Joint Orientation fj; ,(J1, J2):
This is the orientation from joint J; to J,, represented
by vector J;J; normalized to unit length.

Frao( 1, Ja) = unit(Jy ) @3)

where function unit() scales a vector into unit length.

e Joint-Line Distance fjr, a(J, Ly, —1,):
This is the distance from joint J to line Ly, _. ,.

fid(J, Ly —g,) = 2S8a77152/ f13_a(J1, J2) (4)

where Sa ;172 is the area of triangle AJJ,Js. Since we
have already calculated the pairwise distances between
J, J1 and J; as feature fy; 4 in (2), the calculation in (4)
can be accelerated by employing Helen formula.

e Line-Line Angle frr,_a(Lj, s, Ly )
This is the angle (0 to =) from line L, s, to Ly ;.

fuea(Ly—ps Ly )
=arccos (fi_o(J1,J2) © fuo(J1,J3))

where © is the dot product operator on two vectors.

(®)

e Joint-Plane Distance fip_a(J, Pr,—j,—J,):
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fir_a(J, P) fira(Ly, L2)
Fig. 2. Nine feature types. Note that for each feature only the relevant joints, lines and planes are drawn in red.
TABLE 1
Summary of pose features
Type fic | fuaia | fiso | fova | fura | firla | fupa | fPP.a | fix | Total
Count 16 120 120 420 65 435 135 10 16 | 1337
Dimension | 46 120 360 420 65 435 135 10 92 | 1683
This is the distance from joint J to plane Py, _, 7, j,: S
JoacT) = (Jas dys Ty Jus Jy, 1) ©

Jar_a(J, Py~ gy —5)
=f13_0(J1,J) ©unit (f33_0(J1, J2) ® f330(J1,J3))
where ® is the cross product operator on two 3D vectors.

(6)

e Line-Plane Angle fip_a(LJj,—.1,, Prj—1y—73):
This is the angle (0 to ) between line L;,_.;, and the
normal vector of plane Py gy

frpa(Lgy—as, Pri—gy 1)
=arccos (fys_o(J1, J2)
© unit (fJJ_o(Jiv Jé) ® fJJ_o(Jiv Jé)))

O

e Plane-Plane Angle fpp_o(Pr,—s—s, Pri—ay— 1)
This is the angle (0 to =) between the normal vectors
of planes P, .z, and Py .y i

fep_a(Pri— o5 Py gy —a1)
=arccos (unit (i3 o(J1, J2) ® f15 0(J1,J3))
© unit (fJJ_o(J{a Jé) ® fJJ_o(J{a Jé)))

3.2.2 Temporal features

(®)

e Joint Kinetics fj_x(J):
This is the velocity and acceleration of joint J’s coor-
dinate in the temporal domain.

where ¢ and a are the first-order and second-order
derivatives of variable a in the time axis.

In temporal features, we only consider the velocity and
acceleration of the joint coordinates. In theory, we could
also include the derivatives of all the other static fea-
tures. However, the physical meanings of the other static
features’ derivatives are not so obvious. Also, we observe
that including derivatives of all static features does not
seem to improve the results, but significantly increases
the computational burden, as the feature dimension
will be nearly tripled (from around 1600 dimensions to
around 5000 dimensions).

3.2.3 Feature enumeration

Combining the joints, lines and planes with the nine
feature types, and removing duplicated features due to
symmetry or degeneration®, 1337 features are generated
in total, and the entire feature set falls into 1683 dimen-
sions as summarized in Table 1.

Note that in this paper we assume the poses are drawn
from motion clips, and the neighboring poses are known
and the temporal features can be calculated. In practice,
if the poses are static and independent, then we can use
only the eight static features with the same methodology.

1. For example, fjj_q(J1,J2) is symmetric to fy;_q(J2,J1), and
fit_a(J, Ly, j,) degenerates to zero if J is the same as J1 or Ja.
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4 POSE DISTANCE LEARNING

With the GPD features defined in Section 3, each pose is
represented by a vector in R133, Now we need to learn a
distance metric that matches perceptual pose similarity.

One problem of pose distance learning is the effort
needed to annotate a large amount of data. On the other
hand, it is easier to get unlabeled poses. Motivated by the
success of semi-supervised learning [33], we propose a
new semi-supervised distance metric learning algorithm
named RDSR to learn an optimal pose distance metric.
RDSR simultaneously utilizes pairwise label information
as well as the relationship between both labeled and
unlabeled data, and thus takes the advantages of both
supervised and unsupervised learning.

4.1 Problem Definition

We are given the training pose set X = {xi,....xnx},
where x; € R'683 and N is the number of poses. Let X =
[x1,%2,...,xy] € R33N Additionally, we have some
positive labels P = {(xx,x;)|x% and x; are similar},
where x;,x; € X. RDSR learns a Mahalanobis distance
metric formulated as:

d(x;, %)M = \/(Xqi —x;)" M (x; — x;)

where M € R'683%1683 Therefore, learning the distance
metric is equivalent to determining M. Note that by
setting M =1, (10) gives the L2 distance.

(10)

4.2 The objective function

First of all, to make (10) a valid distance metric, M
should be symmetric and positive semi-definite so that
non-negativity and triangle inequality hold. Therefore,
M can be written as M = WW7 for some W e R4xd’
with d’ < d. Hence, (10) can be reformulated as:

d(Xi,Xj) = \/(X7 — Xj)T WWT (Xi — Xj) (11)
The task is then to find the optimal W according to
some criteria encoded in an objective function. We use
three criteria: Esypervision the consistency with the labels,
Ereiationship the consistency with the data relationship, and
a regularizor Eegularization- Generally speaking, Fsupervision
enforces that labeled similar poses are close under the
learned distance metric. Eejationship €nforces that the
relations among all data (both labeled and unlabeled)
should be retained. Eregularization Prevents overfitting.

4.2.1 Using label information

‘P contains labeled similar poses, and we expect that
these similar poses are close in the learned distance
metric. Therefore, we define a criterion Esypervision as the
total squared distance between the labeled similar poses
in the learned distance metric:

Esupervision

= Y x-x) WWT (x —x))

(xk.,%x1)EP
(12)
=Tr Z (WT (xk — x,) (xx —x,)" W)
(xk,x1)EP
=Tr (W'Sy W)
where Sy is the within-class scatter matrix as:
SW = Z (X}C — Xl) (X}C — Xl)T (13)
(xk,x1)EP
Thus, we have the following objective:
min Tr (W'SyW) st W'W =1 (14)

The constraint WIW = I in (14) and hereafter is
imposed to avoid arbitrary scaling.

4.2.2 Exploiting unsupervised data relationship

We use sparse representation (SR) to exploit the unsuper-
vised relationship of data. SR has been used in computer
vision[35][36], and it has been shown to be more effective
than nearest neighbor methods in image analysis [37]
and face recognition [38].

Formally, each pose x; in X can be approximately
reconstructed as a combination of other poses:

X; R A 1X] + e + a;,NXN = Xa;, S.t. Qiq = 0 (15)
where a; 1, ..., a; y are reconstructing weights of x; (with
a;; = 0 to avoid trivial self-reconstruction), and a; =
[ai,...,a; n]T is the reconstruction weight vector.
According to SR [37][38], a; in (15) should be sparse,
i.e. only a small proportion of training poses should be
used to reconstruct x;. If no constraint is enforced on the
sparsity, then x; can be approximated with very small
error by dense weights that are not informative on the
real data structure. Following [38], a; can be derived by:

a; = argmin |x; — Xay[|, +7[ail,, (16)

a;,j(1<j<N)

where |.||, and |.||, are L2 norm and L1 norm, re-
spectively. a; reflects the discriminative information, i.e.
relations between x; and other poses. A reasonable as-
sumption is that such information be retained under the
learned distance metric. Or saying in another way, the
weights a; should be discriminative in approximating
the data in the learned distance metric. Therefore, we
define a criterion Eiclationship aS the residual error of
approximation in the learned distance metric:
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Erelationship

N
= Z (x; — Xai)T WW7 (x; — Xa;)

i=1

- (17)
=Tr <WT <Z (Xi - Xal) (Xi - Xai)T> W)
=1
=T (WTX (Iy — A) (Iy — A)T XTW)
=Tr (W'XS, X"W)
where Iy is the N x N identity matrix, A = [ay,...,an],
and Sy, is the N x N Laplacian matrix:
Sp=(Oy—A)(Iy—A)" (18)
Thus, we have the following objective:
min Tr (W'XS. X" W) st W'W =1 (19)

4.2.3 Regularization

To prevent overfitting, care should be taken that the
learned distance metric does not go too far away from
the original distance metric. For this, we introduce a
regularizor. Let d;; be the L2 distance between x; and
x;, and d;; be the learned Mahalanobis distance. The
deviation from the original data relationship is measured

by:

(20)

> ldi —dj]
1,

Because W € R4x4" and W'W =T, there exists a
columnly orthogonal matrix W e R**(@=4) guch that

WW7 + WW' =L Thus we have:

dij — di;
=(x; — xj)T(xi —x;) — (% — xj)TWWT(xZ- -x;) (21)
=(x; — xj)TWWT(xi -x;) >0
Therefore, (20) can be rewritten as:
di;| = Z (dij — i)

2 s —dig =3
" e (22)

= Z (xi — ;)7 (x; — x;) — Tr (WTXScXTW)
i,
where S¢ is the centering matrix defined as:

Sc=1Iy— %1N15 (23)
where 1y = [1,1,...,1]7.

We would like to minimize (22) to prevent large
deviation from the original distance metric. Note that the
first term of (22), =, ; (xi — x;)" (% — x;), is a constant.
Therefore, if we define Eregyiarization @S the second term:

Eregularization =Tr (WTXSCXTW) (24)

then the objective becomes maximizing Eyegularization:

max Tr (W XScX"W) st W'W =1 (25)
4.2.4 The complete objective function
Combining (14), (19) and (25), we get:
Ere ularization
W* = arg max 7 g 1+ Et
TW= relationshi s rvision
WTw=I elationship supervisio (26)

Tr (WT (XSCXT) W)
= argmax
WTW=I Tr (WT (XSLXT + OéSW) W)
where Sy, S and S are given in (13), (18) and (23),
respectively, and « is the weighting parameter.
After solving (26), the optimal W* is incorporated into
(11) to make the desired pose distance.

4.3 Optimization

Eq. (26) is a trace ratio optimization. By defining A =
XScXT and B = XS X” 4+ aSyy, the problem becomes:

— Tr (WTAW) n
T e Tr (WTBW)
T T ’
Let n* = hax %, where W € R4 It has

been proved in [39] that »* is bounded by:

Mower S 77* é nupper (28)
where Nigwer and Nupper are given by:
nlower = TT (A)/TT (B) (29)
d’ d’
Thipper = Zi:l Q; Zi:l Bi (30)

where o;(1 < i < d’) are the first d’ largest eigenvalues of
A and g;(1 < i < d’) are the first d’ smallest eigenvalues
of B. Following [39], we define a function:

f(n) =

Given a value n = 7, the corresponding matrix W,
where f(n;) is reached is given by:

e T (WT(A —nB)W) (31)

W, = argmaxTr (WT(A — nlB)W)
WTW=I
which can be solved by eigenvalue decomposition.
The key to solving (27) is the following observation:

(32)

if f(m) > 0,then n* >

33
if f(m) <0,then n* < (33)

The proof of (33) is given in Appendix A. From (28)
and (33), we can employ binary search as in [39] to get
the globally optimal n and then solve for W using (32).

The procedure of RDSR is summarized in Fig. 3.
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Input:
unlabeled poses {x;}(1 <i < N},x; € R'%
constraints P = {(x.,x;)|x; and x; are similar}
Output:

pose distance function d(x;, x;)

Procedure:

1) Compute Sy, S; and S¢ according to (13), (18)
and (23), respectively.

2) Define A = XS-X” and B = XS, X" + aSy.

3) Compute 7jgyer and 1ypper according to (29) and
(30), respectively.

4) while Nupper — Mower > €

= 0.5 x (Uumn-r + ”In\\'n-r)

if max Tr(W'(A—-nyB)W) >0
WTW=I
Mower = 1}

else
Nupper = 1]

endif

endwhile

5) Solve for optimal W~ given 5 by (32).

6) Return distance function as
/ - -
d(xi,x;) =/ (xi — x;)T WW*T (x; — x;).

Fig. 3. Summary of RDSR procedures.

4.4 Discussion

Our RDSR algorithm has some relations and differences
with regard to other conventional algorithms.

4.4.1 Measure of data relationship

In many machine learning algorithms, a proper measure
encoding data relationship is very important. Many well
known distance metric learning methods can be formu-
lated as optimization based on some similarity measure
on training data points, which is typically expressed as
a similarity graph or matrix [40].

For supervised methods, the similarity measure can be
directly derived from labels. For unsupervised methods,
the measure can only be inferred from the data it-
self. For semi-supervised methods, both supervised and
unsupervised measures are used. The former enforces
that the learned distance should be consistent with the
labels, while the latter often exploits the structure of the
data and enforces the consistency throughout the data
manifold. This is the basic idea of many semi-supervised
algorithms (including our RDSR). For example, by in-
crementing the criterion of LDA with a smoothness
term derived from knn, we get SDA (Semi-supervised
Discriminant Analysis) [34].

A conventional method to build unsupervised mea-
sure of data relationship, such as in ISOMAP [41], LLE
[42] and SDA [34], is knn. Another common choice is to
use some simple non-linear similarity functions such as:

M;j o exp (sz — XjH/O'Q) (34)

where ¢ is the bandwidth parameter. One problem of
these conventional methods is that they assume the
data relationship measure is solely dependent on the
numeric L2 distance, which does not necessarily encode
the intrinsic data similarity. Another disadvantage is that
they are sensitive to the parameters [43].

In this paper, RDSR employs sparse representation
(SR) to build the unsupervised similarity measure. The
advantage of SR lies in two aspects. First, it is more dis-
criminative. Second, SR allows adaptive neighborhood.

4.4.2 Trace ratio criterion

Many distance metric learning algorithms try to simul-
taneously maximize a term Tr (W7AW) and mini-
mize another term Tr (W BW). LDA is an example,
where A and B are the between-class and within-
class scatter matrix, respectively. For these methods, a
natural choice for the complete objective would be to
maximize the ratio between the two traces, i.e. max-

T
imize %. Conventionally, this trace-ratio cri-
. . . . T
terion is approximated by ratio-trace 7' (7VV$T§$VV), or

T
determinant-ratio % (where |.| is the matrix de-
terminant), because the latter two can be solved in
closed-form by generalized eigenvalue decomposition
[44]. However, as pointed out by [45], this kind of
approximation deviates from the original objectives and
may have negative effects on the results. In this paper,

we directly optimize the trace-ratio objective.

5 EXPERIMENTS ON MOTION TRANSITION
DECISION

In this section we perform experiments on determining
optimal motion transitions, which is important for many
motion synthesis applications [9][10][11]. Given a set
of motion sequences, new motions can be synthesized
by linking different motion segments, where the ”good-
ness” of the transition is judged by the distance between
the two linking poses. In the following, Section 5.1
describes the data and evaluation methodology. Sections
5.2 to 5.5 analyse the results in different respects.

5.1 Experiment Setup
5.1.1 Training data

All data (training and testing) in this section is from
CMU motion capture dataset. For the training data, we
select some motion clips performed by several subjects.
The selected motion clips contain almost 30 minutes
data in total, and belong to a variety of types, including
walking, running, jumping and modern dancing.

Note that because the motions are performed by dif-
ferent subjects, for each clip, we uniformly scale all the
joint coordinates according to the body height (this is
done for both training and testing clips)?. This helps to
reduce the effects introduced by different builds.

2. Since each CMU motion clip has a corresponding T-pose, this
normalization is straightforward.
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During label generation, a frequent situation in ma-
chine learning happens: there are far more negative sam-
ples than positive samples, as only a very small propor-
tion of possible pose pairs are suitable for transition. This
unbalance is not a problem for RDSR, as RDSR does not
rely on negative data. However, for many other methods
that utilize both positive and negative data, the positive
and negative data should be balanced. Moreover, for
evaluation purpose, we also expect a balance between
positive and negative data in the testing set.

A typical solution to this unbalance, such as in cascade
and bootstrapping framework [47], is to use only a small
amount of “difficult” negative samples by filtering out
a large amount of “easy” ones by some (often simple)
rules. In our case, this is also applicable, as most neg-
ative pose pairs can be easily recognized by some simple
criteria, such as the mean Euclidean distance between
corresponding 3D joints, which can be formulated as:

K

4(xi,%) = 2 3 dpe (e ) (35)
k=1

where c¥ is the 3D coordinate of the £™" joint in pose x;.

Specifically, all pose pairs are divided into two groups
G1 and Gg. A pose pair (x;,x;) is put into G; if and
only if d(x;,x;) < 7. We set 7 = 100mm, and around
20 percent of the pairs are put in G;. The pose pairs in
Gy (which are "easy” negative samples) are discarded,
and the pairs in GGy are sent to 5 persons with animation
experience for manual labeling®. For each pose pair, the
corresponding transition is displayed, and each person
independently labels it as a good or bad transition.
The final labeling is made in such a strategy that only
the pairs labeled positively (negatively) by at least 4
persons are used as positive (negative) pairs. Other pairs
are excluded. We adopt this relatively strict strategy to
reduce the noise in labels. In this way we generate 500
positive (similar) pose pairs for training. Similarly, we
also generate 500 negative (dissimilar) pose pairs.

We use P = {(xk,x1)|xx and x; are similar} and Q =
{(xk,x1)|x and x; are dissimilar} to denote the positive
and negative pose pairs, respectively. Note that RDSR
only uses positive pairs in P. The negative pairs in Q
are used by some other algorithms involved later.

All the original poses contained in the selected motion
clips can be used as the unlabeled data. However, the
number is too large, making the algorithm inefficient.
Therefore, we randomly select 5000 poses as unlabeled
training data. In Section 5.5 we will analyze the effect
of unlabeled data, and show that the choice of 5000
unlabeled poses is suitable in this scenario.

5.1.2 Testing data

Testing data is generated in a similar way as training
data. We select some other motion clips of walking,

3. Here we can see another advantage of filtering out “easy” negative
samples first. If such filtering is not performed, most samples sent to
human labeling will be obviously negative, wasting the human labor.

running, jumping and dancing performed by characters
different from those in training data. Then, 500 positive
and 500 negative pose pairs are generated for testing
by another 5 persons different from those in acquiring
labels for training data. We use P’ and Q’ to denote the
positive and negative pairs for testing use, respectively.

Note that the motion data used in training and testing
are performed by different subjects in CMU dataseet,
and that the training and testing data are labeled by dif-
ferent human supervisors. This ensures that the result is
not tuned to specific motion subjects or human judgers.

5.1.3 Evaluation Criterion

Given any pose distance function d;; = d (x;, x;), its per-
formance on motion transition decision can be evaluated
using the testing pose pairs P’ and Q’. The number of
correctedly decided pairs of a pose distance d;; at a given
threshold § is calculated by:

nas = [{(xi,%;) | (xi,%;) € P" and di; < 6}
+ {(xi, %) | (xi,%;) € @ and dy; > 6}

The final precision of a pose distance d;; is the best
correct proportion over all possible thresholds:

(36)

= max __Nds___
s [P+ 11l

This precision is determined by exhaustive search for
optimal ¢ value.

Pa (37)

5.2 Result of GPD+RDSR

Here we report the evaluation result using the pro-
posed pose distance metric GPD+RDSR, which learns
a distance using RDSR from GPD as pose features.
Note that GPD features need to be normalized before
any further processing. The normalization contains two
steps. First, because GPD contains heterogeneous fea-
tures, the normalization is conducted independently on
each dimension by linearly transforming each dimension
to span in the range [0, 1]. The transformation can be
expressed as:

x;/ =Ux; +v (38)
where U = diag(uy,...,uq), v = [v1,...,v4]7, and x;’ is
the transformed feature vector. u; and v; are scaling and
shifting constants for the ;™ dimension, and can be easily
determined by the maximum and minimum value on
this dimension. After normalizing on each dimension,
the feature vector of each pose is normalized to unit
length in R space.

The rank of matrix W in Equation (27) is a parameter.
The results at different ranks are plotted in Fig. 4. When
the rank is very small (< 20), the precision is low,
because such low-rank distance metric is too simple
and not informative enough. On the other hand, as the
rank becomes very large (> 100), the precision gradually
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TABLE 2
Time consumed on each computation step in training.
Calculate Sy, | Calculate S, | Calculate S | Calculate A | Calculate B | Final optimization
Time (sec) 3.6 5260 0.03 6.3 6.3 16.5

80

mean precision (%)

70 S SN S N S Y N S S S S S
5 10 20 30 40 50 60 70 80 90 100 150 200 250 300
rank

Fig. 4. Performance of GPD+RDSR on different ranks.

drops. This is because the learned metric is forced to
be very similar to L2. As an extreme, if W is full
ranked, then WW7 becomes identity matrix, making
the learned metric exactly L2. In order to determine the
optimal rank, one conventional method is to use some
criteria. One common criterion is Fisher criterion. The
optimal rank in the experiments of this paper roughly
ranges from 30 to 90, depending on the data. However,
as the performance is relatively insensitive to the rank
as shown in Fig. 4, we fix rank(W) = 50 in all the
experiments below.

Now we shift the attention to efficiency. The calcula-
tion of GPD feature vector on a pose is within 50 ms on
highly non-optimized Matlab code. The optimization of
the RDSR objective function (See Fig. 3) has O(d*) com-
plexity due to the eigenvalue decomposition required to
solve (32). Before this optimization, several calculation
need to be done, including calculating Sy, in (13), Sp
in (18), S¢ in (23) and calculating matrices A and B
used in (27). Table 2 lists the actual time consumed in
each step recorded on a PC with 3.2GHz CPU using
the same data configuration as described in Section 5.1.
It can be seen that the calculation of S; takes most of
the time. This computation needs to be done only once
during training stage. In the testing stage, calculating the
distance between two poses is very fast (typically takes
1 or 2 ms given GPD).

5.3 Comparing with Other Pose Distance Metrics

In this subsection we take an application-oriented view
and compare our method (GPD+RDSR) with some other
pose distances in computer animation literature.
Suppose each pose x; is encoded by:
o .0 .1 .1 m m)

X; = (cz,rt,ct,rz,..ci , T

(39)

where ¢! € R? and r{ € S? are the 3D coordinate and ori-
entation angles of the Hip joint, respectively, ¢} € R3 and
r¥ € S* are the 3D coordinates and orientation angles of
the & joint, respectively, and m + 1 is the number of
joints (including Hip). Based on this representation, the
considered pose distances are as follows.

e Orientation based Distances.
1) Joint Orientation Distance (JOD).

dij = d (e, ¢f) + > di (v} x}) +AZd2 i, 1)
k=0

(40)

where ¥ is the velocity of joint k in pose x;,

dg(.,.) calculates the Euclidean distance between
joint coordinates or between joint velocities, dg (., .)
calculates the distance of joint orientations in S?,
and X is the weighting parameter controlling the
importance of velocity. It has been reported in [1]
that the performance is insensitive to the value of
A and we follow their way by setting A = 1.
2) Weighted Joint Orientation Distance (WJOD).

dij z’ j +Zwde r;, j +)‘ZwkdE za ]
(41)

This distance is similar to JOD defined in Equation
(40), except that now each joint is associated with
a weight wy. This is the distance used in [11]. They
set wy, to one for joints on shoulders, elbows, hips,
knees, pelvis and spine, and set wy, to zero for other
joints. We follow the same way.

3) Learned Joint Orientation Distance (LJOD).
This distance defined in [1] is in the same form as
WIJOD which is defined in (41). The difference is
that, other than heuristically setting weights, the
weights are learned from training pose pairs by
least-squares minimization.

e Coordinate based Distances.
1) Joint Coordinate Distance (JCD).

m m

z;—ZdQ cl,ch +/\Zd2 GRS

This is the coordinate-based counterpart of JOD.
2) Weighted Joint Coordinate Distance (WJCD).

(42)

m m

73—ZwkdE cl,c +/\Zwkd2 (eF,eb) 43)
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This is the coordinate-based counterpart of WJOD,

and we follow the same weight settings as WJOD.
3) Learned Joint Coordinate Distance (LICD).

This is the coordinate-based counterpart of LJOD

by learning the weights using LMS minimization,

and we follow the same weight settings as LJOD.

e Feature based Distances.
1) Joint Relative Features + LMS learning (JRF+LMS).

U*ZquHdE ) j’] H (44)
(u,v)
This is the pose distance introduced in [3]. (u,v) are

pairs of joints. Thus, (44) considers the weighted
difference of Euclidean distances between joint
pairs. The weights w, , are learned from positive
and negative pose pairs by least-mean-square min-
imization, similar to the learning of weights in [1].

2) Relational Geometric  Features  + Boost
(RGF+Boost).
dij= Y wallfulxi) = fu(x)l. (45)
fu€F

This is the pose distance introduced in [5]. f, € F
denotes a feature in feature set F, which is a huge
pool (more than 500000). Adaboost is employed to
select a small amount of features that are relevant.
The weights w,, for the selected features are set to
one and all other weights are zero.
3) GPD+RDSR.
The method proposed in this paper.

Note that JOD, WJOD, JCD and WJCD does not in-
clude a learning stage, so they don’t utilize training data.

The comparison results are plotted in Figure 5. The
first thing to notice is that GPD+RDSR does give the
best precision. Comparing JOD, WJOD and LJOD, we
can see that WJOD is better than JOD and LJOD is better
than WJOD. This means that assigning different weights
to joints does help, and that the weights learned from
training data is better than those heuristically specified
to one or zero. This is consistent with the observation
made in [1]. The same trend can also be found for
JCD, WICD and LJCD. Also, notice that the overall
performances of orientation based distances and coor-
dinate distances are comparable. Regarding the feature
based distances, JRF+LMS is comparable LJOD/LIJCD,
RGF+Boost is better than JRF+LMS, and GPD+RDSR is
better than RGF+Boost.

5.4 Comparing with Other Features/Algorithms

The contribution of the paper lies in two aspects: the
pose feature set GPD and the learning algorithm RDSR.
The comparison in Section 5.3 demonstrates the advan-
tage of GPD+RDSR. However, it is not clear whether
both GPD and RDSR are helpful. In this subsection we
answer this question by inspecting the performance of
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Fig. 5. Comparing different pose distances.

different pose features and distance learning methods.
We consider four pose features:

« JO: Joint Orientations.

« JC: Joint Coordinates.

« JRF: Joint Relative Features as defined in [3].

o GPD: Geometric Pose Descriptor proposed in this
paper.

On the other hand, we consider five different distance
learning algorithms:

e L2: L2 is used on corresponding pose feature vec-
tors.

« LMS: This is the weighted L2 distance, with weights
learned using the same method as in [1].

« Xing: This is the distance metric learning algorithm
proposed by Xing et. al [28].

o SDA: This is the Semi-supervised Discriminant
Analysis algorithm proposed by Cai et. al [34].

o RDSR: The algorithm proposed in this paper.

Note that among the above algorithms, L2 does not
perform any learning. During training, LMS, Xing and
SDA utilize both positive labels P and negative labels
Q, and RDSR utilizes only P. On the other hand, LMS
and Xing are supervised, while SDA and RDSR are semi-
supervised.

Combining the pose features and the learning algo-
rithms, the comparison results are shown in Fig. 6. First,
comparing the rows in Fig. 6, we can see that RDSR is
the best of the learning algorithms. Then, comparing the
columns in Fig. 6, we can see that GPD is the best pose
feature set.

This experiment shows that both GPD and RDSR
make contributions. First, by representing each pose us-
ing GPD, we have a discriminative representation. Then,
RDSR learns a distance metric based on the GPD feature
vectors. The combination of GPD and RDSR gives the
best performence among all the compared alternatives.

Note that RGF which is proposed in [5] is not included
in this comparison, as its dimension (> 500000) makes it
prohibitive for RDSR.
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Fig. 6. Comparing with other features/algorithms.

5.5 Analyzing the Effect of Unlabeled Data

Fig. 6 gives an illustration that RDSR and SDA out-
perform other algorithms. Since RDSR and SDA are
semi-supervised algorithms, it seems that unlabeled data
does help, and a question naturally arises: how does the
performance vary along with different amounts of unla-
beled data? In this subsection we answer this question
by giving an analyze on the effect of unlabeled data.

As mentioned above, 500 labeled pairs are used for
RDSR and 1000 labeled pairs are used for SDA. Here, we
fix the label data, and change the number of unlabeled
data. Specifically, we randomly choose N’ poses from
the pose repertoire as the unlabeled training data and
perform RDSR and SDA. The case of N’ = 0 (where
no unlabeled data is used and the algorithm becomes
pure supervised) needs special attention. For SDA, it
simply degenerates to traditional LDA [48] if N’ = 0.
For RDSR, N’ = 0 means that the terms Eiegularization and
FErelationship are dropped from the objective function (26)
and the objective becomes:

1
W* = arg max <7)

= argmin Tr (WTSWW)
WTw=I Esupervision

WTW=I
(46)

which can be solved by SVD on Sy .

The performance variation is plotted in Fig. 7, with the
number of unlabeled data varies from 1000 to 10000. It is
easy to see the improvements introduced by exploiting
unlabeled data during training.

Fig. 7 can also serve as a support to our selecting 5000
unlabeled data during training. Further increasing the
number of unlabeled data will not notably impact the
precision but will increase the computational burden.

6 EXPERIMENTS ON CONTENT BASED POSE
RETRIEVAL

In this section we demonstrate the effectiveness of
the proposed method in content based pose retrieval.

11
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Fig. 7. Performance variation with different numbers of
unlabeled data used in training.

Pose/motion retrieval is very important in many ani-
mation systems. As motion datasets often lack proper
semantic annotations, animators often need to search
for similar motions/poses scattered in the dataset given
examples. On the other hand, evaluating similarity be-
tween motions is often based on evaluating the sim-
ilarity between poses. Given an appropriate distance
metric at pose-wise level, the similarity between two
motion clips is typically evaluated at pose-wise level
after alignment/wrapping in time axis [20][8]. Therefore,
we focus on pose-wise level retrieval in this section.
Specifically, given a query pose, the database poses are
ranked according to the pose distance, and k nearest
poses are returned as results.

6.1 Data

We still use CMU motion capture dataset. In this section
we use a subset including motion clips from 15 subijects,
which contains nearly 800000 poses.

The goal of content-based pose retrieval is different
from deciding optimal transitions. In Section 5, we pay
attention to the visual continuity between poses. Here,
however, we pay attention to the pose semantics. For
example, a moderate crouching pose is semantically
similar to a deep crouching pose, but the two poses are
negative for transition: linking them will generate sig-
nificant visual discontinuity. In general, pose semantics
put a more relaxed constraint on similarity: two poses
can be notably numerically different, but they are still
semantically similar. Actually, numerically very similar
poses are of no challenge, as we know they should be
semantically similar.

Therefore, considering the high frame rate of CMU
dataset and repetitive nature of motions, we should only
use a small subset of poses that differ from each other.
Otherwise, if we used all the 800000 poses, the database
would contain many very similar poses and all metrics
will get very high precisions, making the comparison
non-informative.
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Guided by the above principal, for each subject, we
select 200 poses by k-means clustering on the poses,
using the simple pose distance as in (35). In this way,
we get 200 x 15 = 3000 poses in total, on which the
experiments are performed. This strategy ensures that:
1. The selected poses reasonably cover the diversity
of poses; 2. The selected poses differ from each other
(because they are k-means clustering centers). Note that
all poses are rotated to the same yaw angle before k-
means, because pose semantics is independent of the
body’s vertical rotation.

To acquire label information, some pose pairs are
generated from the 3000 poses and are labeled as pos-
itive or negative. In this section, 1000 pairwise labels
(500 positive and 500 negative) are used as supervision
information in training.

6.2 Results and Discussions

Pose retrieval is conducted in such a way that for each
query pose, its pose distance to each database pose is
calculated and ranked accordingly. For each query, the
top s database poses are returned (s is termed as the
”scope” of the retrieval). During each case of retrieval,
one pose from the 3000 poses is used as query example
and the remaining 2999 poses are used as database
poses to be retrieved. As there are no ground-truth data
available to evaluate the retrieval performance, similar
to many retrieval applications where the performance is
measured by subjective evaluations, the retrieval results
are judged by human. Each retrieved pose is marked as
correct or incorrect and the precision is the percentage
of correct results in the s returned results.

We perform 500 retrieval cases using four different
pose distance metrics*: WJOD, JRF+LMS, RGF+Boost
and GPD+RDSR, whose definitions are in Section 5.3.
The results are shown in Fig. 8. GPD+RDSR outperforms
other pose distance metrics in most cases. When scope
s = 5, the performance of different methods does not
vary significantly. This is because for each query there
are typically a couple of poses in database that are very
similar and easy to find even using a naive method.
When the scope becomes larger (> 10), the performance
difference becomes more notable.

Fig. 9 to Fig. 11 give some examples. In Fig. 9 the
query example is a pose of raising the left leg taken
from modern dance motion of subject 49. The top ten
retrieval results of WJOD, RGF+Boost and GPD+RDSR
are shown. Incorrectly returned poses are marked by
dash ellipses. Both WJOD and RGF+Boost return sev-
eral incorrect poses, while using GPD+RDSR all re-
turned poses are correct. In this case, it is understand-
able that GPD provides more discriminative features
than simple joint coordinates or rotations. For example,
fri_a(LrHip—LEnee, LLKnee—LFoot) (the angle between

4. Theoretically, we could perform 3000 cases. As the evaluation
involves a lot of human labor, we just perform evaluation on 500 cases.
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Fig. 8. Retrieval precision comparison of different dis-
tance metrics and scopes.

Fig. 9. Retrieval results for a modern dance pose. Incor-
rectly returned poses are marked by dash ellipses. The
poses marked by dash rectangle are correctly returned
pose with notable different skeletons.

left thigh and left calf), f;; o(LFoot, RFoot) (the orien-
tation between two feet) are potential effective features.
Also, note that the 9th returned pose of GPD+RDSR
(annotated with a dash rectangle) is correctly returned
although its skeleton is notably different from the query
example (the distances from Hip joint to both LHip and
RHip are large).

Fig. 10 is a cartwheel pose of subject 81, where both
WJOD and RGF+Boost return three incorrect poses and
GPD+RDSR returns one. If we use joint coordinates or
rotations, or some simple logical feature, a cartwheel
pose might be recognized as a pose supported by the
right foot and right hand. However, this simple criterion
is not enough, as some incorrectly returned poses are
also supported by the right foot and right hand. For
GPD, the ambiguity is smaller. For example, the angle
made between two forearms, the angle between the left
(or right) arm and the torso plane are all potentially
informative in this case.

Fig. 11 is another example, where the query is taken
from “jumps, flips, breakdance” motion of subject 85.
This is a difficult case, where half of the returned poses of
WJOD and RGF+L2 are incorrect. GPD+RDSR performs
better by returning three incorrect poses.

7 CONCLUSION

In this paper we have proposed a new pose distance
metric on 3D motion data. First, poses are represented by
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Fig. 10. Retrieval results for a cartwheel pose. Incorrectly
returned poses are marked by dash ellipses.

GPD + RDSR

Fig. 11. Retrieval results for a flip/breakdance pose.
Incorrectly returned poses are marked by dash ellipses.

GPD (Geometric Pose Descriptor) as a rich set of geometric
features focusing on relations between body parts. Then,
the distance metric is learned from the features by RDSR
(Regularized Distance Metric Learning with Sparse Represen-
tation) by considering both labeled and unlabeled data.

We perform extensive experiments to evaluate our
proposed GPD feature and RDSR algorithm on motion
transition decision and content based pose retrieval. The
proposed method can be applied to various 3D motion
applications where evaluating pose similarity is needed,
serving as a fundamental building block.

In the future we would like to develop a distance
metric between motion clips based on the pose-wise
distance proposed in this paper. We also plan to study
on pose distance that is suited for identity recognition,
i.e. recognizing the subject performing the motion.

APPENDIX A
PROOF OF (33) IN SECTION 4.3

Following notations in Section 4.3, first, we can prove:

*

Tr (WTAW,) Tr (WTAW)
——————— < maX —— e =1
Tr (WIBWy) ~ wiw=1 Tr (WTBW)
=Tr (W] AW,) —n* x Tr (W] BW;) <0
=Tr (W] (A -n"B)W;) <0

(47)

On one hand, f(n:) can be rewritten as:

flm) = max Tr(W'(A—mB)W)

=Tr (Wi (A—-mB)W))
=Tr (W{(A—mB—n"B+n"B)W;)
=Tr (W{(A-7"B)W,)

+ (" —m) x Tr (W{ BW))

(48)

From (47) and (48), if f(n1) > 0, then (n* — 1) X
Tr (W{BW,) > 0. Considering that 7r (W{ BW) >
0, we have the following observation:

if f(n1) > 0,then n* > (49)

On the other hand, we have:

F(m) = TrW T (A= B)W*]+ (" =) Tr(WBW")
(50)
Because T (W*T(A —7*B)W*) = 0, we have the

following observation:

if f(n1) <0,then n* < (51)

This concludes the proof.
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