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Fig. 1. Topology of a sparsely sampled 2D terrain for 700 (top) and 4,000 (bottom) random points. Neighborhoods associated with
the k-nearest neighbors and the Gabriel graph often introduce false extrema (red). A denser variant, the diamond graph, considerably
reduces the number of false extrema, while our relaxed empty region graph accurately extracts the correct extrema, requiring only a
marginal number of additional edges per data point over the Gabriel graph.

Abstract—Sparse, irregular sampling is becoming a necessity for reconstructing large and high-dimensional signals. However, the
analysis of this type of data remains a challenge. One issue is the robust selection of neighborhoods — a crucial part of analytic
tools such as topological decomposition, clustering and gradient estimation. When extracting the topology of sparsely sampled data,
common neighborhood strategies such as k-nearest neighbors may lead to inaccurate results, either due to missing neighborhood
connections, which introduce false extrema, or due to spurious connections, which conceal true extrema. Other neighborhoods,
such as the Delaunay triangulation, are costly to compute and store even in relatively low dimensions. In this paper, we address
these issues. We present two new types of neighborhood graphs: a variation on and a generalization of empty region graphs, which
considerably improve the robustness of neighborhood-based analysis tools, such as topological decomposition. Our findings suggest
that these neighborhood graphs lead to more accurate topological representations of low- and high- dimensional data sets at relatively
low cost, both in terms of storage and computation time. We describe the implications of our work in the analysis and visualization of
scalar functions, and provide general strategies for computing and applying our neighborhood graphs towards robust data analysis.

Index Terms—Neighborhood graphs, topology, sparsely sampled data.
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1 INTRODUCTION

With the increasing rate of acquisition and simulation capabilities,
sparse sampling of data sets is becoming a necessity for reconstructing
complex and possibly high-dimensional signals. In scientific simula-
tion, sparse and irregularly distributed samples are required to recon-
struct three-dimensional scalar or vector fields in certain regions of in-
terest without the need to store and process large regular grids. In other
cases, such as the exploration of high-dimensional functions generated
in uncertainty quantification, sampling on regular grids is prohibitive.
The need for sparse sampling may also arise from the acquisition pro-
cess, such as in LIDAR scanning, or from simulation based on Monte
Carlo or particle-in-cell methods, e.g. in the study of magnetic fields
in a tokamak.

Many techniques have been devoted to the analysis and rendering
of data on regular grids, and currently there are efforts to find efficient
counterparts for irregular and sparse data in low dimensions. How-
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ever, the lack of an underlying structure for the samples renders these
techniques inapplicable or difficult to scale to higher dimensions. One
example is the computation of neighborhoods for sparsely sampled
data in arbitrary dimensions. The neighborhood of a sample plays a
crucial role in analyzing and visualizing scalar fields, as demonstrated
by recent data exploration approaches [25, 39], which show applica-
tions of clustering and regression in high-dimensional spaces.

Common to these approaches is the generation of a topological rep-
resentation of the data. Topological representations, such as the con-
tour tree [10] and the Morse-Smale complex [19], are valuable aids
in understanding scalar functions. They help describe a function in
terms of connected components and segment the data into regions of
uniform level set or gradient behavior. Moreover, representations like
the contour tree act as visual structures that can be drawn in the 2D
plane without occlusion problems.

We address the problem of finding good sample neighborhoods that
aid in extracting the underlying topology of the sparsely sampled data.
The problem of finding a good neighborhood can be formulated as
follows: given a scalar function f, a finite sample set V C R?, and a
sample x € V, find the set of neighboring points in V that best describe
the behavior of f near x to allow an accurate classification of x as an
extremum, a saddle point, or a regular point. For instance, a sample
is classified as a maximum if its function value exceeds those of its
neighbors. Intuitively, to ensure an accurate classification, we wish for
each sample to have neighbors in roughly 2d “sufficiently different”
directions (as would be the case on a regular grid), so that the positive



and negative gradient directions are represented by nearby samples.

To understand the importance of choosing a good neighborhood,
consider Fig. 1, where we show a 2D terrain, sampled irregularly us-
ing 700 (top) and 4,000 (bottom) random points. A common choice
for extracting the critical points of this terrain is to create a neighbor-
hood graph consisting of the k nearest neighbors (kNN) to each point.
In Fig. 1(b), we see the neighborhood graph for k = 6 neighbors per
sample point, reflecting the expected number of neighbors in a trian-
gulation of the samples. Maxima of this function are shown as red
or green spheres. Green points correspond to the ground truth max-
ima of the analytical function that describes the terrain. Red points
are false maxima that appear due to poor neighbor connectivity, and
can be regarded as topological noise. We observe that, as we increase
the number of sample points, the number of false extrema increases
proportionally. To counteract this problem, we may use higher quality
neighborhoods, such as the Delaunay triangulation (DT) [22] or less
dense subsets of the DT such as the Gabriel graph (GG) [24]. Fig. 1(c)
shows that the GG may reduce the topological noise.

In this paper, we present a number of contributions in computing
neighborhood graphs that lead to more accurate extraction of topolog-
ical representations of sparsely sampled data at similar computational
cost and graph complexity. These are:

The natural empty region graph: a subset of the so called empty
region graphs (ERG) that guarantees certain neighborhood and space
partitioning properties useful for local analysis. ERGs are neighbor-
hood graphs where two points are connected if a geometric region
around them, called the empty region, does not contain any other
point [8].

The relaxed empty region graph: a variation on the empty region
graphs [8] that results in topological representations that are less sen-
sitive to the sparsity and distribution of the samples than their original
counterparts, as shown in Fig. 1(e).

The stochastic empty region graph: a generalization that introduces
the notion of the likelihood of samples being neighbors.

To facilitate choosing an empty region with desired neighbor prun-
ing properties, we introduce the notion of the umbra of an empty re-
gion. We describe the neighborhoods associated with our new graphs
for samples in arbitrary dimensions, and outline general procedures to
obtain them efficiently. We have studied the impact of these neighbor-
hoods on the extraction of extrema in scalar fields and report our find-
ings here. We discuss implications and applications of our methods in
the analysis and visualization of scalar fields in arbitrary dimensions.

2 RELATED WORK

Analysis and Visualization in High Dimensions. The exploratory
analysis of multi-dimensional functions demands the use of various
data and visual analysis tools, including regression [17], response sur-
face fitting [6] and generalized additive models [28]. For large-scale
and high-dimensional data, these models are applied together with
data reduction strategies such as clustering [3], projection and mul-
tidimensional scaling [11] to data obtained via sampling [48]. Some
of the most common sampling strategies in high dimensions are ran-
dom, Latin Hypercube [35,47] and importance sampling [46], as well
as centroidal Voronoi tessellation [18].

The visualization of high-dimensional functions, however, remains
a challenge. The most common approaches include the projection of
data into scatterplots in 2D or 3D subspaces [15], star coordinates [31],
Chernoff faces [13], Andrews plots [1] and parallel coordinates [29].
A key challenge in visualization is finding the best projection of the
data. Asimov presents the grand tour approach [2], which provides a
sequence of 2D subspaces chosen for viewing. Dimension reduction
techniques and manifold learning approaches are designed to extract
a low-dimensional manifold embedded in a higher-dimensional space,
which can be visualized more effectively in a 2D graphical display, as
surveyed extensively in [21,51].

Topological Analysis. A series of techniques have been proposed
to extract and represent the topology of scalar fields, including contour
trees [53], Reeb graphs [44], and Morse-Smale complexes [19, 37].

Such representations assist analytic tools such as regression [25], fea-
ture extraction [26], classification [23,39] and clustering [12,38].
Efficient algorithms have been proposed for computing these struc-
tures for low-dimensional data, often confined to regular grids. Carr
et al. [10] present an algorithm for computing contour trees in ar-
bitrary dimensions. Pascucci et al. propose a robust algorithm for
computing Reeb graphs on high-dimensional manifolds [42]. Harvey
and Wang [27] construct 2D topological terrains of high-dimensional
scalar functions using nearest neighbor graphs. Oesterling et al. [40]
follow a similar approach for scattered data. Gerber et al. [25] pro-
pose an approximate representation of the Morse-Smale complex for
high-dimensional scalar functions. Carr and Snoeyink [9] describe a
method for computing the contour tree on arbitrary graphs. In their
recent paper, Oesterling et al. [40] hinted at the problem of finding lo-
cal extrema using point clouds and suggested the use of inexpensive
alternatives to the Delaunay triangulation. In this paper, we propose
more robust alternatives based on generalizing empty region graphs.
Neighborhood graphs. Neighborhood or proximity graphs create
a geometric structure that connects two points if they are close in some
sense. These graphs have been well studied and include the relative
neighborhood graph [30], the Gabriel graph [24], B-skeletons [33],
o-local graphs [5], ®@-graphs [32], y-neighborhood graphs [54] and
Delaunay triangulations [22]. These graphs have been well studied in
terms of their geometric properties [4, 8, 14], and have been applied
in geographic analysis [34], pattern recognition [50], clustering [52],
machine learning [49], normal estimation [41] and the extraction of
contour trees [39]. In this paper, we present the first study of the use of
generalized empty region graphs towards robust topology extraction.

3 BACKGROUND

At the core of high-dimensional data analysis is the notion of a neigh-
borhood graph. A neighborhood graph considers data points as ver-
tices interconnected with edges that represent some measure of sim-
ilarity, such as Euclidean distance. We assume that each sample x
carries a scalar function value f(x). In this paper we study several
neighborhood graphs and their influence on the topology of f.

3.1 Scalar Field Topology

A scalar function can be summarized concisely in terms of its topo-
logical decompositions. For example, the contour tree describes how
contours appear, merge, split and disappear as the scalar isovalue is
varied [53], and segments the domain into regions of homeomorphic
level set components. For a piecewise linear function over a triangu-
lation, the contour tree computation amounts to maintaining the con-
nected components of the vertices {x € V : f(x) > ¢} and edges of the
neighborhood graph given by the triangulation. Carr et al. [10] referred
to such a graph augmented with function values as a height graph, and
their contour tree algorithm uses only a height graph as input.

Morse theory allows us to identify critical points and decompose a
scalar function into regions of uniform gradient flow [19]. The result-
ing segmentation, called the Morse-Smale complex, can be approx-
imated in any dimension without the notion of either an interpolant
or gradient by considering steepest ascent and descent paths over the
edges of a neighborhood graph [25].

Both of these approaches classify a sample point as a maximum if
its function value exceeds those of its neighbors (and equivalently for
minima). Saddle points are samples with neighbors whose upward or
downward paths lead to more than one maximum or minimum.

3.2 kNN Graphs

Consider a set of points V = {x1,x3,...,x, } drawn randomly from the
domain Q C R?. Let d(p, q) represent the Euclidean distance between
two points. Among the most common neighborhood graphs are the
e-neighborhood graph G¢(V, E¢) and the (directed) k nearest neighbor
graph Gy (V, Ey). These graphs are defined by

pq € Ee < d(p,q) <e, )

and
pq € E < g€ kNN(p). 2)
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Fig. 2. F measure of extremum detection for several 2D functions us-
ing a kNN neighborhood graph. Clearly, selecting the appropriate & to
achieve maximum precision and recall depends on the function.

where kNN(p) is the set of k nearest neighbors of a point p.

The problem of topology extraction is complicated when dealing
with sparse and irregular samplings. Consider, for example, randomly
sampling the 2D function f(x) = ||x||, which has a single minimum at
the origin, and computing the minima of f by inspecting the neighbors
of each sample in a kNN graph. For sufficiently small values of k, the
neighborhoods are so sparse that all k& neighbors of a sample x may
by chance have a higher function value, causing x to be misclassified
as a minimum, even though x and its neighbors may be very far from
the true minimum. In fact, it is not difficult to see that the expected
number of false minima increases linearly with the number of random
samples n: A sample x will be classified as a minimum if all of its
neighbors appear in the “outward” tangent halfspace defined by x and
V f. For random samplings the neighbors are uniformly distributed in
both directions, and therefore the likelihood of all k£ neighbors hav-
ing a higher function value is roughly 217 For n random samples, the
expected number of minima detected is therefore 2%

One can partially solve this problem by increasing the number of
neighbors k. For the simple radial function f above, fully connecting
all sample points gives the correct answer. However, the functions we
are interested in may have several local extrema, and over-connecting
the neighborhood graph will conceal these extrema. These two issues
of under- and over-connecting neighbors can be described as lack of
precision (many false positives when k is small) and lack of recall
(many false negatives when k is large) in the detection of extrema.
Here precision is measured as the ratio of correctly detected extrema
to the total number of detected extrema, and recall as the ratio of the
correctly detected extrema to the number of true extrema.

A way to measure the quality of extrema detection is via the F mea-
sure: the harmonic mean between precision and recall. Ideally, F =1,
and smaller values are the combined effect of low precision and/or low
recall. Fig. 2 shows how the F measure (y axis) for a number of 2D
functions varies with the number of neighbors k. The ideal k is cho-
sen as the one that maximizes the F' measure. We see that: (1) the
ideal k is different for each function; (2) in some cases, such as the
Schwefel function, no k yields perfect accuracy, and (3) the impact of
selecting a non ideal £ is different for each function, e.g., the Ackley
function drops the F measure to almost O above 30 neighbors, while
the Camelback function stays at F = 0.8 up to 90 neighbors.

Fig. 2 reveals that picking the k that achieves the most accurate
topology is not trivial, and depends upon many factors, including the
sampling strategy and the spatial frequency of the scalar function. One
potential solution to this problem is to regard the false extrema as
noise and to prune them with persistence-based topological simpli-
fication [26]. However, as we show in Section 5.3, the persistence of
false extrema may well overlap with that of the true extrema and noise
in the scalar field. A more robust solution is to make use of better
neighborhoods, such as the Delaunay triangulation and its variants.
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Fig. 3. Density and computational cost of Delaunay triangulation com-
pared to the Gabriel graph in various dimensions. Although a good
neighborhood, the cost of DT quickly becomes prohibitive.

Fig. 4. Empty region graphs. (a) B, C and F are neighbors of A, since
the circles connecting them with A do not contain any other point. (b)
Relaxed ERG. Since D is not a neighbor of A, E can be a neighbor,
since its empty region only contains a non-neighbor of A.

3.3 Delaunay Triangulations

The Delaunay triangulation (DT) of a collection of points in two di-
mensions is a triangulation of the convex hull of the points in which
the circumcircle of each triangle does not contain a sample point. The
edges of this triangulation are a better description of the neighbor-
hoods, since the neighbors represent adjacent Voronoi cells that col-
lectively partition the space around the point. In fact, the Delaunay
triangulation produces a good neighborhood graph for the detection of
extrema. However, the average neighborhood size in a Delaunay tri-
angulation grows exponentially with the number of dimensions [45].
Moreover, the O(nlﬂd/ ﬂ) computational cost of DT is also exponen-
tial in d. This is seen in Fig. 3, which plots for 10,000 random sample
points both the average neighborhood size and the computational cost
as a function of d.

3.4 Empty Region Graphs

As an alternative to DT, a number of simpler, less costly neighborhood
graphs have been proposed, such as the relative neighbor graph (RNG)
and the Gabriel graph (GG), as surveyed by Jaromczyk et al. [30]. A
family of these, known collectively as the empty region graphs, are
more efficient to compute (e.g. they have O(n°) computational com-
plexity) and produce similar or better neighborhoods. Fig. 3 compares
the DT with the Gabriel graph and reveals that, although the neighbor-
hood size of GG also grows exponentially with the number of dimen-
sions, it grows much slower than the DT.

Empty region graphs are neighborhood graphs, in which two points
are connected by an edge if a canonical region R defined by the points
does not contain any other point. More formally, the edges of an empty
region graph G(V,R) = (V, E) are given by

PgEE < R(p,q)NV =0 3)

where the region R defines the neighborhood and is called the empty
region. Fig. 4(a) depicts a small neighborhood using a disk as the
canonical region R. B, C and F are neighbors of A, because their
corresponding disks do not contain any other point. D is not a neighbor
of A, since its disk contains C. E is not a neighbor either, since its disk
contains D. In Section 4.2, we relax this condition to define a different
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Fig. 5. Empty region graphs (blue) and corresponding umbras (gray).

type of neighborhood graph, as shown in Fig. 4(b). For simplicity of
presentation, we assume that R is an open set, i.e., does not contain its
boundary. Some of the most common ERGs are:

Nearest Neighbor Graph (NNG). This is the directed graph that
results from the empty region R(p,q) formed by the open d-ball cen-
tered on p with radius d(p,q).

pqeE < VreV,d(p,r)>d(p,q) @

Relative Neighborhood Graph (RNG). This graph is defined by
a lune-shaped region consisting of the intersection of two d-balls of
radius d(p, q), one centered on p and the other centered on g, i.e.,

pq € E = VreV, max{d(p,r),d(q,r)} > d(p,q) 5)

Gabriel Graph (GG). This is the graph defined by a d-ball centered
at %(p + g) with diameter d(p,q), i.e.,

pg€E < VreV, d(p,r)*+d(q,r)* >d(p,q)* (6)

Diamond Graph (DG). The DG empty region is formed by the
intersection of two solid circular cones with axis pg, angle 0, and
apexes at p and g, respectively.

pqEE < VreV, max{drpq,Lrqp} > 0 @)

Unless otherwise stated, we use 6 = % as the canonical diamond
graph.

B-Skeleton. The so-called lune-based fB-skeleton is a one-
parameter generalization of the RNG and GG, defined as follows:

e For 0 < B < 1, the empty region is the intersection of all d-balls
with diameter d(p,q) /B that have p and ¢ on the boundary.

e For 8 > 1, the empty region is the intersection of two d-balls with

diameter Bd(p,q) centered at (1 — g)p—i- gq and %p—O—(l — g)q.

It follows that B = 2 gives the RNG, while = 1 is the GG. Thus,
B parameterizes a family of empty region graphs. Later on, we will
exploit this property to define a probabilistic ERG. Note that geometric
inclusion of one region within another also implies a partial order of
the resulting neighborhood graphs (in terms of their edges), so that:

RNGCGGCDGC (B< %)-skeleton (8)

4 GENERALIZED EMPTY REGION GRAPHS

We have seen that the shape of the empty region R directly determines
which edges to connect in an empty region graph. Although R could
in principle be any set, we define certain desired properties of a neigh-
borhood that reduce the ERGs to a family of what we call “natural”
ERGs. To simplify exposition, we assume that p is at the origin and
thatd(p,q) = 1.

Natural Empty Region Graph (nERG). A nERG G(V,R) has an
empty region R with the following properties:

(a) (b) (c) (d)

Fig. 6. Diamond graph empty region construction using umbra inversion.

e Ris a subset of the unit ball. This ensures that g can be excluded
from being a neighbor of p only by points r € R(p,q) closer than
q is to p. Thus, NNG C nERG for any R.

e R is symmetric about the hyperplane orthogonal to and bisecting
pq. As a consequence, G is an undirected graph.

e Ris a hypersolid of revolution around pq. Thus R is coordinate-
free and G is invariant to affine transformations of V.

e R has p (and therefore g) on its boundary. This prevents a point
at infinity from being a neighbor.

e R is simply connected. This ensures that there are no pockets in
space where possibly distant points are “safe” from the empty-
region test.

As a consequence of our definition, the largest natural region is the
one associated with the 2-skeleton (the RNG), and the smallest is the
unit line segment, or the 0-skeleton.

4.1 Space Pruning Umbras

ERGs produce good neighborhoods because each neighbor prunes the
space around it, thus limiting the number of possible neighbors in any
given direction. To better understand this, consider the space that is
pruned by a neighbor g with respect to a sample point p. For any
other point s in the domain, ps cannot be an edge if ¢ lies in the empty
region R(p, s). For the Gabriel graph, for instance, these points s lie on
the opposite side of the hyperplane through g that is orthogonal to pg
(see Fig. 5). Because point g shadows all the points in that region, we
call it the umbra U(p,q) of g with respect to p. We define the umbra
implicitly as follows:

Umbra of an empty region R. The umbra U (p,q) associated with
an empty region R(p,q) is the region containing all points s such that:

seU(p,q) <= qE€R(p,s) Q)

Fig. 5 shows four ERGs and their umbras. We see that the RNG
and the GG both prune the space in halves, the former being more re-
strictive than the latter. On the other hand, the -skeleton (f = \%2)

prunes a quarter of the domain (in 2D), corresponding to the set of
points closest to one of the four possible directions along the two di-
mensions. However, unlike in DG, this conical umbra has its apex at
q and not at p, and therefore the resulting graph can be dense. What
follows is a method for computing ERGs based on the desired shape
of the umbra region.

4.1.1

Designing an empty region with desired neighborhood pruning proper-
ties can be challenging, and often times it is easier to prescribe the um-
bra. The umbra readily determines what regions of space are pruned by
a given point, which may be hard to infer directly from the empty re-
gion. Fortunately empty regions and their corresponding umbras form
a duality related by a homeomorphism—each point in R maps to a

ERG Construction via Umbra Inversion



unique point in U. This mapping is given by the inversion transfor-
mation. A point g~! is the inverse of ¢ with respect to a hypersphere
centered on p with radius p if:

d(p.q)d(p,q~ ") =p* pqll pg’ (10)

For all points r € R(p,q), ¥~ € U(p,q) where r—! is the inverse of r
with respect to the circle centered at p with radius d(p,q). Moreover,
r~2 =r, and in two dimensions ! with respect to the unit circle is
simply the complex conjugate inverse of r.

Proof. To understand why points in the umbra and the empty
region are related by inversion, let us define points r € R(p,q) and
s €U(p,q). Therefore, g € R(p,s) (see Fig. 6(d) for the DG). R(p,s)
is denoted by the rotated gray diamond and R(p,q) by the light blue
diamond. Since R(p,q) and R(p,s) are similar and they are formed
as solids of revolution around the corresponding edge, Zrgp = Zgsp.
Thus, since they also share a common angle Zrpg = Zspq, trian-
gles Apgr and Apsq are similar. This implies d(p,q)/d(p,s) =
d(p,r)/d(p,q), or d(p,r)d(p,s) = d(p,q)*>. Thus, s =r~! with re-
spect to a circle centered at p with radius d(p,q). O

Using inversion, one can construct an empty region starting from a
parametric definition of the desired umbra. Natural ERGs, however,
are symmetric. We can incorporate these symmetries in the umbra as
well. The empty-region symmetry with respect to the edge pg im-
plies the same symmetry of the umbra, i.e. R and U are hypersolids of
revolution. The orthogonal symmetry with respect to the hyperplane
bisecting pq corresponds to the invertive symmetry with respect to the
circle centered at g with radius d(p, q).

Based on these ideas, we show how to construct the DG umbra.
For simplicity, and without loss of generality, let p = (0,0),q = (1,0).
A portion of the boundary of the DG umbra is defined by the line
y = x. Because the resulting empty region must be symmetric, we
define the umbra only for points (x,y) outside the unit disk centered
on ¢, as depicted in Fig. 6(a). Reflection of the partial umbra with
respect to the symmetry circle results in a circular arc with endpoints
(1,1) and (1,0), as shown in Fig. 6(b). Finally, the region is completed
by including its reflection across the x axis (Fig. 6(c)). The diamond-
shaped empty region is obtained from the umbra by inversion.

We here showed how to construct the empty region parametrically.
The (complement of the) empty regions in our ERG definitions are all
expressed implicitly, however, in the form f(p,q,x) < 0. It is easy
to show that the implicit empty region f(p,q,x) < 0 maps to the im-
plicit umbra f(p,x,q) < 0, and vice versa. Furthermore, any desired
symmetries can easily be enforced in an implicit representation.

Sparse ERGs like GG may be too restrictive in the way they prune
space. But reducing the size of the empty region further comes at
the cost of a rapid increase in graph complexity and potential over-
smoothing. To alleviate this problem, we introduce two new families
of neighborhood graphs below.

4.2 Relaxed Empty Region Graphs

We now relax the containment condition for sample points. We ob-
serve that in the original ERG all points V around p prune the space
of potential neighbors, whether they are neighbors of p or not, which
may unnecessarily exclude otherwise good neighbors. For instance,
it is possible to arrange points on a path around a sample p as a cas-
cading sequence in which each point shadows the next one, leaving
us with only a single nearest neighbor. To address this, we relax the
empty-region condition, so that only established neighbors shadow
other points, as follows:

Relaxed Empty Region Graph (rERG). Let N(p) = {q: pg € E}
denote the neighbors of a vertex p, and let ¢; denote the i nearest
sample to p, with gg = p. A rERG with empty region R and umbra U
is defined in terms the following recurrence:

N(p)={a1} (11)

Ni(p)=Ni-i(p)U({ai} () ~Ulp,r) (12)
reN;i—1(p)

N(p) =N,—1(p) (13)

P(pg) = 1

0<P(pq) <1s
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Fig. 7. Stochastic empty region graphs. Left: Edge pqg exists with prob-
ability P = 1 if no point exists within the light blue region; with probability
P < 1 if at least one point exists within the light blue region; and with
probability P = 0 if at least one point exists within the dark blue region.
Middle: sERG encoding probability. Thick edges have a larger probabil-
ity than thin edges. Right: A random draw of this SERG.

where n is the number of data points. In other words, we construct
N(p) by adding points in order of increasing distance, as long as
they are not shadowed by any point already in N(p). By this def-
inition alone, rERGs are not symmetric. We thus define two vari-
ations: the symmetric rTERG (srtERG) and the mutual rERG (mr-
ERG), as the union and intersection of the rERG and its transpose,
respectively, i.e., pg € sSrERG <= pq € rERGV qp € rERG, and
pq € mrERG <= pq € rERG A\ gqp € rERG.

Since we consider only a subset of the points in V in the contain-
ment test, it is easy to see that ERG(R) C rERG(R) for all empty re-
gions R. In our experiments, we observe that relaxation only adds a
few slightly longer edges than the original ERG, both for the mutual
and symmetric graphs.

4.3 Stochastic Empty Region Graphs

There is a tradeoff between the accuracy of the topology extraction
and the size of the neighborhood. For example, the Gabriel graph is
relatively sparse, and although it produces fewer false extrema than
the k-nearest neighbor graph, it is less precise than the f3-skeleton for
B < 1. However, the -skeleton grows much faster in size. A graph
with a better trade off may lie between those two. In the search for such
a graph, we point out that empty region graphs are based on binary
decisions that do not take into account how far inside the empty region
a point is. Thus, slight perturbations in the sampling pattern may have
large effects on the resulting ERG. Consider for example a point r near,
but inside, the boundary of an empty region R(p, ¢), which invalidates
pq as an edge. However, it takes a small displacement to make r appear
outside R, and pg now becomes an edge (assuming no other points lie
within R). In fact, point » may not invalidate the edge for a slightly
different empty region shape. Now consider a point 7 in the middle
of the empty region. After a small displacement, it is likely that /
remains within the empty region. We say that the “neighborliness” of
p and g is more sensitive to r than it is to /.

Based on this observation, we present a generalization of empty
region graphs, called the stochastic ERG, which is a weighted neigh-
borhood graph in which each edge has an associated probability:

Stochastic Empty Region Graph (sERG). Let R, be a family of
empty regions parameterized by a random variable & € [, Omax]-
Let xg(x) denote the indicator function, i.e., xg(x) = 1 if x € R and
zero otherwise. For R(p, ¢) uniformly drawn from R, define P(p, q,r)
as the probability that r € V is not within R(p, q):

1 amax
P ’7r:1,7/ rydo (14)
(p 1 ) Omax — Onin J Qpin XRa(p,q)( )
Then the probability that vertices p and ¢ form an edge pq is
P(pq) = minP(p,q,r) (15)
reVv

The resulting weighted graph is called the stochastic empty region
graph. A realization sERG* of this stochastic graph is a draw from
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Fig. 8. ERG complexity as a function of dimensionality. RNG grows
linearly with the number of dimensions, while GG and its supersets grow
exponentially. Our rERGs grow similar to the corresponding ERGs, and
the extra cost is not significant. B = 1/+/2 for the 3-Skeleton plot.

the probability function, such that:

pq € SERG* < P(pq) >u (16)
with the random variable u drawn from a probability distribution. For
simplicity, we assume a uniform probability distribution and u is cho-
sen as a constant for the whole graph. Alternative definitions, such as
picking u adaptively, require further analysis and is beyond the scope
of the paper. From this definition, we see that a (deterministic) empty
region graph is a special case of a SERG with probability function
P(p,q,r) =1 _XR(p,q)(r)'

Although one may use any set of empty regions {Ry}, this tech-
nique becomes practical when Ry has a natural parameterization, as
is the case with the f-skeleton and the 6-dependent diamond graph,
because their empty regions are nested as the parameter value varies.
Consequently, a point x that lies between the inner and outer empty
region Ry, and Rg,, , respectively, falls on the boundary of some
empty region Ry with & € [0, Opnay]- Finding the corresponding o
for a point r € V is straightforward for both of these ERGs. Conse-
quently, when r € Rg,,,. \ Ra,,,» We may compute P(p,q,r) in closed
form as

O — Qpin

P(p,q,r) = an

Omax — Onin
Otherwise, P(p,q,r) = 0 whenever r € Ry, (p,q), and P(p,q,r) = 1
if r ¢ Ra,,,, (P 9)-

Note that for all possible draws sERG* of the stochastic empty re-
gion graph, we have

ERG,,,, C SERG* C ERGy,,, (18)

This suggests that the topological accuracy of any particular realiza-
tion sSERG* is bounded by those of its enclosing ERGs. However, as
we shall see, a remarkable result is that in the aggregate, when con-
sidering multiple draws, the precision and recall of a SERG may both
exceed those of its bounding graphs.

An example stochastic empty region graph is shown in
Fig. 7(middle), where the thickness of each edge is proportional to its
probability. A random draw from this graph is shown in Fig. 7(right).

A topology extracted using an sERG is a stochastic topology, where
each extremum has a probability associated with it. Extrema with low
probability are likely to be false extrema caused by neighborhood arti-
facts, while extrema with high probability are likely to be true extrema.
To compute this probability, we perform a series of random draws
from the SERG. The probability of a data point being an extremum
amounts to the relative number of graphs in which this extremum ap-
pears. Sec. 5.2.1 discusses results of stochastic topologies.

5 EVALUATION

To evaluate the impact of our neighborhood graphs, we study the graph
density, accuracy in extrema detection and distribution of persistence.
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Fig. 9. F measure for several ERGs as a function of sample size n. Our
relaxed diamond and Gabriel graphs consistently score well.
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Fig. 10. Precision and recall plots for two functions with different spa-
tial frequency using a fixed n = 100,000 samples. Relaxation greatly
improves precision at only a small loss in recall.

An ideal graph should be as sparse as possible and result in perfect
precision and recall. We tested different graphs on random samplings
of a number of optimization functions from 2 to 9 dimensions. In our
methodology, we use the performance of the Gabriel graph as a rep-
resentative ERG and compare it to that of kNN. For low-dimensional
functions, we compare to DG as a representative of a dense ERG and
to sparse graphs such as RNG for high dimensions.

5.1 ERG Density

Establishing bounds on the number of edges in ERGs has been an
active line of research. It is known that for random samplings the
Gabriel graph has complexity O(Zd ) in d dimensions [30]. Diamond
graphs, being supersets of the Gabriel graph, also grow exponentially,
but much slower than DT. Fig. 8 shows the average number of neigh-
bors as a function of the number of dimensions for various ERGs,
using a sample set of 100,000 random points. Based on our experi-
ments, we observed that our relaxed ERGs do not increase the number
of neighbors dramatically over any of the original ERGs. The ramifi-
cations of this result are important. Relaxed ERGs are usually faster
to compute than their original counterparts due to fewer containment
tests. Moreover, as we discuss in the following sections, the inclusion
of longer edges along different directions considerably improves the
precision of extrema detection.

5.2 Topological Precision and Recall

One of the advantages of using empty region graphs over kNN is the
improvement of precision and recall in the detection of extrema. To
classify a detected extremum as a true or false positive, and to find
false negatives, we computed the ground truth for a number of ana-
Iytic functions [43]. We include these extrema as part of the sample
points to be able to classify each extremum as either a true or false pos-
itive. We then measure the harmonic mean of precision and recall—the
F measure—to combine precision and recall in the same plot.
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Fig. 11. Persistence distribution for two 2D functions, one where the per-
sistence of true (black) and false (red) extrema is separable by a single
threshold (a) and one where it is not (b). The distribution of false minima
has a lower mean persistence for GG and DG, so that any persistence-
based simplification becomes more effective for these graphs than for
kNN. In (b), only the DG can separate the two distributions, which is not
possible (reliably) with kNN.

Fig. 9 plots the F measure (higher is better) as a function of sample
size n for several 2D functions. As noted in Section 3.2, the preci-
sion decreases as we increase the number of random samples. Note
that an equivalent precision to that of the Gabriel graph (at an aver-
age of four neighbors per point) is achieved by the kNN graph with
k = 6 neighbors. Thus, it becomes more economical to use the sparser
Gabriel graph. Conversely, for a similar cost (6 neighbors per point),
we can afford the diamond graph, which results in higher precision.
Fig. 9 also shows that our relaxed ERGs produce a higher F measure
than the non-relaxed ERGs. Together with Fig. 8, which shows that
the rERG increase in size is marginal, this plot suggest that the relaxed
graphs are a better choice of neighborhood.

In higher dimensions, we lose the ability to detect extrema, as the
point density decreases. Fig. 10 plots the precision and recall for
two functions in multiple dimensions, with sample set size n constant.
Since GG increases exponentially with dimensions, we only compare
it with a sparse graph, such as the RNG. Denser graphs result in low
recall. We compare these with two kNN strategies: a pessimistic strat-
egy that uses a dense graph (k = 90) and an optimistic strategy with
neighborhoods increasing linearly with the number of dimensions d
(here k = 2d). We observe an increase in precision with increasing
dimensionality, but accuracy is not improved, as recall decreases with
d. Since the number of samples is kept constant, in higher dimensions
these graphs detect fewer extrema, whether true or false. In the limit,
for very high dimensions, all random points are likely to be at the
boundary of the domain and the only detected extremum is the global
one. Nonetheless, the precision of our relaxed ERGs is considerably
higher with a slower decrease in recall.

5.2.1

Stochastic ERGs are useful for detecting extrema in an stochastic man-
ner. Fig. 13 shows an example of a 2D function, where kNN graphs
introduce false extrema. Topological simplification based on persis-
tence throws away true extrema as shown in Fig. 13(b). ERGs result
in a quality tradeoff depending on the density of the graph, as shown

Stochastic extremum detection
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Fig. 12. Persistence (mean and standard deviation) of false extrema as
a function of dimensions. In both, GG performs consistently better than
kNN. The sparsity of RNG results in increasing mean persistence for
higher dimensions for (b), where the number of extrema grows with d.

in Figs. 13(c) and (d). GG results in higher recall with lower preci-
sion, while the f-skeleton produces maximum precision at the cost of
reducing recall. We computed a stochastic ERG and removed those
extrema with probability less than 0.1. As shown in Fig. 13, we were
able to obtain perfect precision and recall.

5.3 Persistence Distribution

Topological persistence, the difference in function value between two
critical points, indicates if an extremum is part of the signal or is due to
noise [20]. To evaluate persistence, we extracted the extrema for some
2D functions for which we know the exact location of each extremum.
We then fit a probability density function to the detected true and false
extrema, as shown in Fig. 11. Black and red points indicate the per-
sistence of true and false extrema, respectively. If the probabilities of
false and true extrema do not overlap, removing false extrema is easy,
as shown in Fig. 11(a). Since in general it is unknown if an extremum
is true or false, finding a good threshold is easier if the spread of false
extrema is small, as shown for the GG and DG in Fig. 11(a). Fig. 11(b)
shows a case where the false and true distributions overlap and finding
a single threshold to remove all false extrema is not possible without
removing other true extrema. In fact, the number of simplified true
extrema is much smaller for the GG and DG than for kNN. More than
half of the extrema are removed at persistence 0.2 for kNN, while only
one sixth for the GG (at persistence 0.03) and none for DG.

We extended our study to higher dimensions, as shown in Fig. 12,
for up to 100,000 random points along two to six dimensions. As
in Fig. 10, we focus on sparse neighborhood graphs (RNG and GG),
which lead to better recall than denser neighborhoods in high dimen-
sions. We observe that the Gabriel graph has a distribution of per-
sistence with lower mean (line plot) and considerably lower standard
deviation (area plot) than kNN. In this case, we use k = 3d.The de-
creasing trend is explained by the inability to detect many true or false
extrema in high dimensions, i.e., a reduction in recall. For the relaxed
graphs, this particular experiment yielded perfect precision, so the per-
sistence plots (not shown) are horizontal lines with mean 0. Fig. 12(b)
shows the result for Ackley’s path function, in which the number of
extrema grows exponentially with the number of dimensions. We also
notice a considerable difference in the standard deviation of persis-
tence between kNN and GG. The RNG, however, results in a much
higher average persistence. After six dimensions (keeping n constant),
the sampling density does not suffice to extract false or true extrema,
so the overall distribution of persistence due to topological noise de-
creases. For the relaxed Gabriel graph, the number of false extrema is
considerably lower and the persistence curve (not shown) lies barely
above 0 for two to four dimensions.

Although persistence simplification may not be robust to topologi-
cal noise due to the neighborhood connectivity, ERGs and our variants
reduce the chances of having false extrema with high persistence.

5.4 Sampling Quality

So far we have assumed that sample points are randomly distributed.
With better sampling strategies, we increase the likelihood of extract-
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Fig. 14. F measure dependence on sampling quality. The x axis shows
the number of iterations towards their centroidal Voronoi tessellation,
starting from random (x = 0) with larger x being closer to CVT. Our re-
laxed ERG consistently shows little sensitivity to the randomness of the
samples, compared to ERG and kNN with k = 4.

ing the correct topology. Regular grids, assuming a sampling density
at the Nyquist rate, help us extract the correct extrema. Unfortunately,
it may not be possible to impose a regular grid even in low dimensions.
Other sampling strategies include the centroidal Voronoi tessellation
(CVT), which can be approximated well in low dimensions using a
randomized iterative algorithm [18] starting from an arbitrary sample
distribution. To evaluate the performance of neighborhood graphs un-
der different sampling conditions, we parameterized the sample set
by the number of iterations performed in the randomized CVT algo-
rithm. A small number of iterations produces a nearly random sam-
pling, while after a large number of iterations the sample set converges
to the CVT. Fig. 14 shows the convergence rate of the F measure for
some 2D functions. The relaxed Gabriel graph is considerably less
sensitive to the sampling quality than kNN and GG. We observed a
similar behavior for other relaxed ERGs (not plotted for clarity).

5.5 Summary of Evaluation

Our evaluation suggests that: (1) The Gabriel graph is a good base
graph for extracting topology. As the size of GG increases exponen-
tially with the number of dimensions, a sparse graph like RNG is bet-
ter suited for higher dimensions. (2) The choice between the natural
ERG or our relaxed version depends on how important precision is
over recall. Our relaxed ERGs provide considerably higher precision
than ERGs, and are less sensitive to number, dimensionality and ran-
domness of the data points. (3) ERGs estimate considerably more ex-
trema than our relaxed counterparts. Persistence-based simplification
can help discard false extrema, and our relaxed ERGs may be used to
choose an appropriate persistence threshold.

6 RESULTS

We have explored three applications of our graphs in the process of
understanding and visualizing complex scalar fields.

Gradient estimation. One of the applications of neighborhood
graphs is the estimation of gradients at each sample point. Gradients

can be used to fit a smooth surface to a collection of points, and to
estimate the normals for correct lighting. Fig. 15 shows a surface fit
for the Marschner-Lobb function using 10,000 random points. From
left to right we show the result using the ground truth function values
and gradient, and the estimated gradient using kNN (k = 4), GG, GG-r
and the Delaunay triangulation. kNN introduces noisier normals for
a bumpy appearance. Although this can be alleviated by adding more
neighbors, this usually smooths away important features in the data.

Detection of ridge-like features. Fig. 16 shows a vorticity field. To
understand such a field, it becomes computationally practical to extract
and analyze features, such as those associated with ridges and valleys
in the data. To compare the performance of different neighborhood
graphs on feature extraction, we computed the cancellation tree of the
scalar field, as suggested by Bremer et al. [7] and Correa et al. [16],
which is a concise subset of the Morse-Smale complex that connects
maxima or minima in a tree. We sample 100,000 random points and
compare the different graphs with the topology obtained using a reg-
ular grid. kNN (k = 6) and GG introduce spurious minima, resulting
in a noisy topology, seen as small branches emanating from the main
vortex spiral. Compared to kNN and GG, our relaxed GG results in
features that are easier to visualize and understand, and with a density
similar to the one observed using a regular grid (which requires 1 mil-
lion points). Fig. 16(e) also shows that stochastic ERGs are equally
or more effective. In this case, we show a number of semi-transparent
cancellation trees for several random realizations of the SERG. More
opaque branches correspond to extrema with higher probability than
those of semi-transparent branches. We notice that the most proba-
ble structure largely agrees with the topology extracted using a regular
grid.

Contour tree segmentation. Another application of topological
analysis is the construction of contour trees, which encode the way
contours merge and split as the isovalue changes. One way to visu-
alize and compare contour trees is to obtain their corresponding seg-
mentation of the domain, where each segment corresponds to a branch
between critical points in the contour tree [10]. Fig. 17 shows the de-
composition of a 2D function using 100,000 random samples, where
each colored region represents a distinct branch (for comparison with
the regular grid, each irregular sample is plotted as its Voronoi cell).
For kNN and GG, the resulting segmentation is noisy, and it is difficult
to identify large connected components. Our relaxed Gabriel graph,
on the other hand, produces a segmentation more similar to those ob-
tained using Delaunay triangulation and the “ground truth” sampling
on a 1025 x 1025 regular grid. Compare for example the segmenta-
tions in the top right corner of the domain. The F measure (aka. Dice

coefficient) F = %

formation / between the regular (X) and irregular (Y)) segmentations,
normalized by the average entropy H (cf. [36]).

here measures the amount of mutual in-

7 DisScusSION AND CONCLUSION

We have demonstrated that local data analysis tools, such as those in-
volved in determining whether a point is a local extremum or a regu-
lar point, are sensitive to the choice of neighborhood used to connect
nearby sample points, one such tool being topological decomposition.
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Fig. 15. Gradient estimation. 2D quadratic fit to 10K random points using the gradients estimated using different neighborhood graphs. Visually,
only the errors in kNN stand out as a bumpier appearance. The mean square error (MSE) of the gradients is considerably larger for kNN, when
compared to better approximations such as DT.
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Fig. 16. Topology extraction from a vorticity field. (a) A 1025 x 1025 regular grid. (b, c) Using kNN and GG over 100,000 random samples, we
obtain additional false topology. (d, e) Our relaxed GG and stochastic ERG produce cleaner topologies, closer to (a). For the sERG, we overlap
the topologies obtained from random draws. Branches with high opacity are regions with higher probability.
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Fig. 17. Contour tree segmentation of a 2D function. Each colored region represents a branch in the contour tree. Due to topological noise, the
kNN and GG segmentations are noisy and have many spurious components. Our relaxed GG produces cleaner results, and resembles more the
segmentations using a regular grid and the DT.

‘We found that: recall, e.g., in optimization problems, in which case relaxed ERGs are
Natural ERGs generate neighborhoods that help extract criti- more practical.
cal points more robustly than kNN graphs. We also observe that Persistence simplification alone is in general not sufficient for

persistence-based simplification is more robust for ERGs than kNN  removing false positives. However, the probability of being a crit-
graphs. One of the reasons is that kNN neighbors may not be well ical point is, since it is obtained from a draw of “possible” graphs,
distributed in direction. When all neighbors appear in the same half-  which incorporates additional information from several likely neigh-
space (which is likely to happen in kNN graphs), the chance of find- borhoods. We conclude that a combination of persistence and proba-
ing a false extremum with arbitrarily large persistence increases. This  bility thresholds leads to more accurate and precise topologies.

has important implications in topological analysis and visualization of As we attempt to sample in higher dimensions, the chances of
noisy data, and may suggest heuristics to determine the appropriate  finding interesting topology decrease rapidly. Also posed as the
persistence thresholds based on the behavior of different ERGs. curse of dimensionality, poor sampling of a high dimensional space

Relaxed ERGs improve precision but may lead to a reduction results in missing local extrema. Even for the GG, the neighborhood
in recall. We have seen that ERGs result in higher precision than ANN  becomes dense and soon connects all data points. Ideally, a neigh-
graphs for comparable & values (i.e., in 2D, GG and DG require about  borhood proportional to the number of dimensions will have a better
4 and 6 neighbors, respectively). Relaxed ERGs, by definition, can  chance of finding interesting features. Our results suggest that the
only result in higher precision, since they include previously ignored relaxed RNG performs considerably better than the RNG when the
neighbors along underrepresented directions. There may be an impact  sampling density is low.
in recall, when the sampling density decreases. Certain cases may oc- The extraction of a good topological representation of a scalar field
cur when rERGs add neighbors far from a point, resulting in undesired ~ remains an open challenge, and more so in irregular and sparsely sam-
long edges, which limits recall. This is usually solved by restricting  pled data. This paper is a stepping stone towards robust topology anal-
the search to a maximum number of neighbors or a maximum radius.  ysis that empirically correlates the accuracy and precision of extrema
On the other hand, there may be cases where precision is preferred to  detection with the choice of neighborhood graph.
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