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Abstract— Network data often contain important attributes from various dimensions such as social affiliations and areas of 

expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network 

structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, 

we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation 

over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of 

a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with 

novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. 

Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure 

constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in 

TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by 

revealing multiscale and cross-scale network patterns. 

Index Terms—Compound Graph, Network and Tree, TreeNetViz, Visualization, Multiscale and Cross-scale.

 

1 INTRODUCTION 

Many application domains make use of a compound graph, 
consisting of two subgraphs of a network and a tree in which the 
network nodes are the same leaf nodes in the tree.  For example, a 
Java package contains a set of classes with a hierarchical package 
structure and a class dependency network indicating important 
relationships among classes. Another example would be a scientific 
collaboration network, in which researchers are usually affiliated 
with hierarchical social organizations. Because a network node is 
mapped to a leaf node in a tree in a compound graph, network links 
can also imply connections among tree nodes.  

Visualizing relationships among nodes in a compound graph with 
two structures of network and tree could be important. Actors in a 
social network exhibits a social duality [1], in which each actor can 
be treated as an individual interacting with other individuals, and 
also as part of a social group connecting with other groups. The 
patterns of connections between two individuals, between an 
individual and a group, or between two groups can provide new 
insight into social relationships at different levels of social 
aggregation. For instance, to understand a scientific co-author 
network, a scholar’s activities can be analyzed between different 
groups, from individual activities to cross-university efforts to 
international collaborations. The type of analysis enables us to 
understand an individual’s social activities at different levels [2] and 
also identify the “boundary spanners” in organizations [3]. 

However, revealing patterns of a network over a tree structure is a 
non-trivial task. Existing visualization tools for compound graphs 
fail to fully support exploration of these patterns. Most visualization 
tools of compound graphs mainly focus on the representations of 
both tree and network structures. Few of them support aggregation of 
networks over a tree, interaction and exploration of the patterns of 
the aggregated networks at different tree levels with an integrated 
view of both network and tree structures. They fail to answer those 
questions concerning connections spanning different levels, such as 
how child nodes under a specified parent node are related to other 
tree nodes; in what ways connections in two non-leaf tree nodes may 

differ; and which nodes link two different node groups. 
In this paper, we first define a graph model, TreeNet, to represent 

a compound graph and support multiscale and cross-scale 
aggregation of a network over a tree with the graph model. We then 
present a visualization design, TreeNetViz, to support various 
exploration and interaction of multiscale and cross-scale network 
patterns in the TreeNet graph. TreeNetViz uses a Radial, Space-
Filling (RSF) visualization to represent the tree, a circle layout with 
novel optimization we proposed to show the aggregated network, 
and an edge bundling technique to reduce visual complexity. The 
circular layout algorithm reduces both total edge-crossings and edge 
length with considerations of the hierarchical constraints and the 
edge weights in a TreeNet graph.  

The paper is organized as the following. Section 2 reviews related 
literature. Section 3 introduces our TreeNet graph model to represent 
a compound graph and how to aggregate a network over a tree in an 
on-demand fashion. Section 4 presents the design and 
implementation of TreeNetViz based on the graph model, including 
a novel algorithm to reduce edge crossings. A case study using 
TreeNetViz to analyze a co-author network is described in Section 5. 
The paper concludes with future research directions. 

2 RELATED WORK 

2.1 Compound Graph Visualization 

A conventional approach for visualizing a compound graph with a 
network and a tree is to overlay two types of links in a single view 
with various strategies. The key idea is to convey both hierarchical 
information and network connections in a single representation.   

Several approaches directly add network connections layered over 
Treemaps [4, 5]. Fekete et al. [4] present network connections as 
curves linking the network nodes in a treemap representation. 
Similarly, ArcTrees [5] combines an arc diagram with a one-
dimension treemap to show network connections. The one-
dimension treemap is utilized to present hierarchy information and 
efficiently make use of space compared with a traditional treemap. 
These approaches are intuitive and straightforward but they do not 
consider issues like visual cluttering. 

Some work follows the same approach of integrating two graphs 
of tree and network in one view but reduce visual complexity by 
approaches such as avoiding edge crossings or node occlusion. 
TimeRadarTrees [6] uses a radial node-link tree to represent 
hierarchy information with two sets of circle sectors to show network 
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connections. The inner circle shows incoming edges and the outer 
circles represent outgoing edges, and therefore no actual links are 
used for network connections to avoid edge crossings. However, the 
design of using spatial information to convey network connections is 
not intuitive. Hierarchical Edge Bundling (HEB) [7] bundles 
network edges to avoid edge cluttering with B-Spline curves which 
use the tree structure as a skeleton. This approach can be applied to 
different tree representations such as radial circle, treemap and 
balloon layouts.  In our design, we applied this approach to a Radial 
Space-Filling tree with extra efforts to reduce edge crossings.   

Some graph drawing algorithms also deal with a compound graph 
to reduce edge crossings [8]. In graph drawing, this approach is 
called hierarchical layout, in which nodes are nested in rectangles to 
show hierarchy information, and network edges are polylines 
connecting the rectangles [8, 9]. These approaches emphasize graph 
aesthetics and do not scale very well even for a graph of moderate 
size. 

Another approach is to use multiple views to draw different graphs 
separately and then create links between them. VisLink [10] lays out 
graphs on multiple 2D planes, and then places them in 3D space with 
links between them. Fung et.al. [11] visualize a set of overlapping 
networks in 2.5D representation with each network in an individual 
plane, then using inter-plane edges to represent links between 
networks. Giacomo et.al. [12] propose an algorithm to lay out two 
graphs in two views by one-to-many connections with few link 
crossings, which focuses on the aesthetic criteria of graph drawing. 
Semantic Substrates [13] places graphs into regions defined by users 
based on semantic data and allows users to interactively refine the 
semantic for grouping. This approach separates two interconnected 
graphs and introduces new links among them. It increases the visual 
complexity and requires more cognition cost.  

Unlike tradtional node-link diagrams, another option is a matrix 
view combined with other designs. Network relations are shown 
within adjacency matrix and a hierarchy is added to the 
circumference along the matrix [14, 15]. Honeycomb [15] also 
provides multilevel aggregation of network over tree structue. The 
matrix view eliminates occlusion problems and is good for dense 
graphs, but it is less intuitive than node-link diagrams [16] and needs 
extra space to show hierarchical information compared with HEB [7] 
and our approach. 

In summary, the visualization methods of compound graphs 
discussed above mainly focus on representation of both tree and 
network structures. Few of them, except Honeycomb [15] with a 
matrix view, offer the functionality to aggregate a network over a 
tree upon users’ request, and to interact and explore various patterns 
of aggregated networks at different levels. 

2.2 Multiscale Visualization  

Multiscale visualization enables people to interact with information 
space across different scales of analysis, observation, and activity. 
One underlying technique in multiscale visualization of graphs is 
hierarchical graph clustering and navigation. The clustering could be 
topology-based or content-based [17].  

Topology-based hierchical graph clustering involves a bottom-up 
method to draw multilevel clustered graphs [18] and uses a spring-
force model to determine locations of node clusters [19]. This 
approach offers a well-balanced layout of nodes with and between 
clusters. Some research also addresses interaction and exploration of 
hierarchical graphs. The DA-TU system [20] supports interactive 
visualization and navigation of clustered graphs at different 
hierarchical levels. ASK-GraphView [21] detects hierarchical 
clusters using a topological feature-based decomposition and allows 
users to interactively expand child clusters in each cluster. Auber and 
Jourdan [22] propose a tool that allows users to interactively refine 
node clusters in a hierarchy. Auber et al. [23] also apply multiscale 
visualization in displaying small-world networks. Grouse [24] 
supports interactive exploration of clustered graphs within a 
hierarchy by expanding or shrinking a node.  

Content-based hierarchical graph clustering groups a graph with 
attribute data about nodes or edges. Some visualization techniques 
emphasize graph layout based on the attibute data. Wu et al. [25] 
propose a layout approach to visualize multivariate networks on the 
surface of a sphere with a Self-Organizing Map.  Pretorius and Wijk 
[26] visualize multivariate state transition graphs by hierarchical 
clustering based on a user-defined subset of node attributes. The 
clustering hierarchy is represented by a tree and the aggregated edges 
are shown as an arc diagram. PivotGraph [27] visualizes graphs by 
placing nodes on a grid with two specific dimensions from various 
attributes and aggregating nodes by adding the vaules of two selected 
attributes. This approach can only deal with two attributes at one 
time. OntoVis [28] abstracts a social network with an ontology-based 
schema, then filters and refines the network by desirable elements in 
the ontology schema. In GrouseFlocks [29], nodes in a hierarchy can 
be interactively generated and manipulated by user queries. Mizbee 
[30] is an application to explore conservation relationships in 
comparative genomics data across a range of scales, from genome to 
gene.  

These approaches and applications are based on the hierarchical 
structure generated from the network with either topological or 
content-based clustering. However, the hierarchy information is 
either hidden in the network structure or not explicitly available to 
interact and explore [18-20, 22, 25, 28, 30]. Some of them need extra 
efforts from users to link the hierarchy information with the network 
structure [24, 29], because two graph structures are not integrated in 
a single view. None of them provide aggregation views of a network 
over an existing tree structure in an interactive on-demand style. 

3 TREENET GRAPH 

3.1 TreeNet Data Model 

We first give a definition and description of a TreeNet graph model 
for later discussion. A TreeNet graph is a compound graph 
consisting of two sub-graphs of tree and network along with a node-
mapping schema which defines the relationship between network 
nodes and tree leaf nodes.  A TreeNet graph, TrN, is written as: 

  
( , , )TrN T N   (1) 

where T = (VT, ET) is a subgraph of tree with a node set, VT, and an 
edge set ET; N = (VN, EN) is a subgraph of network with a node set, 
VN, and an edge set EN;  is a mapping function: ( )T Nn n  , 

T TLn V , N Nn V , and VTL is the set of leaf nodes in the tree T.  
A TreeNet graph is a special type of compound graph from 

previous literature [31]. It should be noted that the mapping function 
is from a tree leaf node to a network node in a TreeNet graph. It 
indicates that a tree leaf node can only have one mapped node in the 
network, but a node in network may have multiple corresponding 
leaf nodes in the tree.  

 
Fig. 1. A TreeNet graph example with (a) a scholar collaboration 

network, (b) an affiliation tree and node mapping between them. 

Fig. 1 shows an example of a TreeNet graph. The TreeNet graph 
includes a subgraph of a scholar collaboration network in Figure 1a 
and a subgraph of an afflation tree in Figure 1b. Each node in the 
collaboration network has affiliation information shown in the tree 
(the mapping relationship is shown with the same number in the 
figure). With the above definition, a scholar may have more than one 



affiliation.  

3.2 Multiscale and Cross-scale Network Aggregation 
over Tree Structure 

To analyse a TreeNet compound graph, an important step is to 
construct different aggregated networks derived from the original 
network and the tree structure on users’ demand.  

An aggregated network is generated by applying a cut on a tree to 
specify which nodes need to be visible, then aggregating the edges 
based on the nodes in the cut. An aggregation network in TreeNet is 
constructed as following. We first introduce a cutting line, CL, as a 
set of nodes in the tree, { : }TCL n n V  . Then, an aggregated 
network, AG, is written as: 

  
( , )AG V E  (2) 

where nodes,V CL , and edges, E, are aggregated from the network, 
N, with the parent-child relations in the tree T. The aggregated 
weight of an edge, e, as  

  
( , ) ( ), ( )e u v iji LSet u j LSet v

w A
 

  (3) 

where ,u v V ; Aij is an adjacency matrix of the network N, in which 
a cell aij is 1 if there is edge between node i and j; otherwise the 
element is 0; and LSet(v) is a function to get the matched network 
nodes for leaf nodes of a subtree with root node v: 

  
 ( ) : ( ), ( ) 

Tv V NLSet v t V m m LeafNodes v    . (4) 

For a node pair ( , )u v  in AG, only if the edge weight defined in 
Equation (3) is larger than zero, we say that an edge exists between 
the node pair; otherwise, there is no edge between node u and v. It 
should be noted that the edge aggregation function shown in 
Equation (3) is a simple one calculated by the count of underlying 
edges and can be replaced by other task specific measurements, e.g. 
betweenness, weight and so on. 

 
Fig. 2. Network aggregation in a TreeNet Graph. 

Figure 2 shows an example of network aggregation in the TreeNet 
graph of the previous example shown in Figure 1. In Figure 2a, the 
cutting line (CL) includes two non-leaf nodes, corresponding to the 
two nodes C and D, and five leaf nodes under node E and F. CL 
leads to a different visual structure of the tree (Figure 2c). As a result, 
the child nodes under nodes C and D are aggregated and invisible, 
shown as the numbered nodes in Figure 2b. Finally, we get a view of 
the aggregated network shown in Figure 2d with this cutting. The 
edge between nodes C and D in Figure 2d is aggregated from the 
edges (0, 7) and (0, 8) in the original network shown in Figure 2b.  

Network aggregation can be multiscale and cross-scale. A scale is 
defined by the level (depth) of node in a tree. If nodes in CL are from 

the same level, we say the aggregated network is at this single level. 
A multiscale network is constructed when we have multiple 
aggregated networks generated at different single levels. If the CL 
goes through different levels across a tree, the aggregated network is 
a cross-scale one connecting nodes from various levels. Figure 2d is 
a cross-scale aggregated network.   

4 TREENETV IZ:  V ISUALIZATION OF TREENET GRAPH 

A TreeNet graph consists of two sub-graphs of tree and network. To 
help users understand a compound graph of network and tree, the 
new visualization design should support: 
 readability tasks in general graphs, such as identifying graph 

cardinality (the number of nodes and links), neighbours of a node, 
following a link and visually searching node and link by labels;   

 network exploration and interaction, such as helping users to find 
highly connected nodes, peripheral nodes, connectors between two 
nodes and closely connected clusters; 

 tree exploration and interaction, such as conveying parent-child 
relationship, identifying siblings of a node, common ancestors of 
nodes and a sub-tree of a node;   

 interactive views of multiscale and cross-scale patterns of the 
relationships among network nodes over a tree, such as 
aggregating or disaggregating a network at the same and different 
levels over a tree, showing ego networks and critical paths in the 
multiscale and cross-scale view.  

With these requirements, we design and implement TreeNetViz to 
reveal network patterns over a tree structure. In this section, we 
present the visualization and interaction design of TreeNetViz, and 
elaborate a novel algorithm of circular layout to reduce the visual 
complexity.   

4.1 TreeNetViz Visualization 

The design of TreeNetViz includes a Radial, Space-Filling (RSF) 
technique to represent a tree structure, a circular layout to represent 
an aggregated network, an edge bundling technique to reduce visual 
complexity and an algorithm to improve circular node placement 
with the consideration of various constraints. TreeNetViz is 
implemented with Prefuse Java graph visualization package [32].  

4.1.1 Tree as RSF Layout 

In TreeNetViz, we use RSF technique to show a tree structure which 
is also a backbone over which an aggregation network can be placed. 
The strength of RSF technique is that it can leverage node areas to 
present additional information about nodes while conveying the 
parent-child relationship in a tree [33, 34]. Another advantage of a 
RSF tree in TreeNetViz is that the circular arrangement of nodes in 
tree is an outline over which an aggregated network can be laid.   

The idea of RSF visualization is intuitive: the root node is placed 
in the centre of a circle; child nodes are assigned within the arc 
subtended by their parents with angular width which is part of the 
parent node’s width; the angular width angle of a non-leaf node is 
proportional to aggregation of a property of all its children. In 
TreeNetViz, the angular width indicates the count of all its children 
and leaf nodes have a uniform size. The angular width is controllable 
to show more or less descendant detail, which will be introduced in 
Section 4.3. Figure 3a shows an example of a RSF visualization of 
the tree structure in Figure 1b. The node sector color indicates the 
node scale in the tree structure and the root node is transparent. The 
hierarchy information of the tree is naturally revealed by this 
representation. The implementation of RSF is built upon DocuBurst 
package [35]. 

4.1.2 Network as Circular Layout   

TreeNetViz uses a circular layout to show node connections in a 
network. A good circular layout can reveal patterns in a graph, such 
as clusters, ring and star topologies. More important, it naturally uses 
the circular arcs of generated by a RSF layout and integrates both 
network and tree structures in a single diagram without introducing 
duplicated node representations. Our design circularly arranges the 



 

network nodes on the corresponding positions on the circle outlined 
in RSF and connects node sectors within the circle. The circular 
layout is also improved with an algorithm discussed in Section 4.4. 

Figure 3b and 3c show two examples of circular layout of 
networks in TreeNetViz design. Figure 3b shows the layout of the 
original network in Figure 1a with RSF and Figure 3c shows the 
aggregated network of Figure 2d (note that the circular layouts in 
Figure 3b and 3c have been optimized with our algorithm introduced 
in Section 4.4). The expanded parent nodes are transparent and 
labelled with grey color. The edge uses the same color of the node 
with the higher scale in the two edge nodes. For example, the edge 
between node 4 and UnivD has the same color with UnivD which 
has a higher scale than node 4 in Figure 3c. The line thickness 
indicates the aggregated weight of an edge. One problem with the 
straight line of edge in the circular layout is that some edges may be 
occluded by node sectors. For example, the edge between nodes 2 
and UnivD is behind the node sector UnivD in Figure 3c. This issue 
can be alleviated by the edge bundling technique introduced in the 
following section. 

4.1.3 Edge Bundling 

Edge bundling is an effective way to reduce visual cluttering in 
graph-based visualization [7, 36]. With a special routing approach, 
edge bundling can also solve the visual occlusion of edge and node 
sector mentioned above. The edge bundling approach in TreeNetViz 
is adapted from HEB [7]. The edges are bundled hierarchically with 
B-Spline curve and the control points are the centres of node sector 
area in the RSF tree. Figure 3d shows the results of the edge 
bundling of the network in Figure 3c with bundling strength  =0.75 
(a larger  , [0,1]  , yields more curved and closely bundled edges). 
The control points are circled and highlighted in Figure 3d. We can 
observe that there is no occlusion among edge and node sector. 

4.2 Interactions 

In TreeNetViz, we designed several interaction techniques to help 
explore and analyse a TreeNet graph. The interaction tools include 
multiscale and cross-scale views with network aggregation, node 
sector distortion, an ego-network view and a critical path view. The 
interactions provide functionalities to understand multiscale and 
cross-scale patterns of a network over a tree in comparison to 
previous tools [26-30].   
Multiscale view. Users can use a slider provided in TreeNetViz to 
control which scale a network should be aggregated and displayed. 
This presents aggregated network patterns at different scales of 
interest. Figure 4a, 4b and 4c show the network patterns at the scales 
of country, university and individual with the TreeNet graph shown 
in Figure 1. Note that when the view is drilling down/up along the 
scale of affiliation, the hierarchical structure of affiliation is also 
explicitly shown.  
Cross-scale view. Users can get a cross-scale view of a network over 
a tree structure by expanding or collapsing a node. By double 

clicking a collapsed non-leaf sector in a RSF tree, users can expand a 
sector to exam connection patterns of its direct child nodes at a lower 
scale. This is a drill-down action. Similarly, double clicking an 
expanded node can collapse its sub-tree and trigger a drill up action.  
Users can also have multiple nodes expanded or collapsed.  Figure 
3d is a cross-scale view of the network at three scales. The 
transparent nodes expand to show details and colored nodes are 
nodes of interest from the aggregated network.  
Node Sector Distortion. Users can dynamically change the angular 
width of a sector to show different details. Users can increase or 
decrease the width of a node by scrolling the mouse wheel to up or 
down when the cursor is hovered over the node. Adjusting a node’s 
angular width affects its sub-tree proportionally and also changes the 
angular width of its siblings in an oppose manner. This distortion can 
provide increased details on nodes of interest. More than one node 
can be adjusted with this interaction. For example, the sector of node 
CtryA and its children in Figure 5a are enlarged compared with 
Figure 4c. 

   
(a)                                                     (b) 

Fig. 5. (a) An ego-network view and (b) A critical path view. 

Ego-network View. By right clicking on a node, an ego-network 
view is activated. An ego-network consists of the direct neighbours 
of a node of interest and links among them. When the view is 
activated, the ego-network of the clicked node is highlighted with X-

                    
            (a)                              (b)                                       (c) 

Fig. 4. Aggregated networks at different scales: (a) the country level;  

(b) the university  level; (c) the individual level. 

 

      
                     (a)                                                           (b)                                                      (c)                                                        (d) 

Fig. 3. TreeNetViz Design: (a) a Radial, Space-Filling (RSF) layout of the tree structure; (b) the optimized circular layout of the basic network  

overlaid on RSF tree; (c) a RSF circular layout of the aggregated network in Fig 2d; (d) the view after edge bundling with  =0.75. 



Ray metaphor (all incident nodes and edges turns into grey and non-
incident edges are hidden). Figure 5a shows the ego-network of node 
1. This view offers us a clear view of the local network of node 1. 
Critical Path View. While an ego-network view shows a local 
structure of a node, a critical path view illustrates how to reach a 
target node from a source node. By left clicking a node as the source 
and left clicking the other node as the target with “Shift” key down, a 
critical path between them is shown in the view. For example, in 
Figure 5a, we can see node 1’s neighbourhood, but we don’t know 
how to reach node 8 from node 1. Figure 5b shows that node 1 and 8 
are connected by node 0.  

4.3 Hierarchy-awareness Weighted Circular Layout 

In TreeNetViz, one important issue is in what order to place the 
nodes of an aggregated network along a circle. A good placement of 
nodes can reduce visual complexity and present patterns of relations 
in a network saliently. Although the problem of circular layout is 
studied in previous work [37, 38], the layout presents some new 
requirements in TreeNetViz: 
 It should consider the restriction of tree structure. Traditional 

circular layout methods [37, 38] place the network nodes along a 
circle at a single level. In TreeNetViz, nodes of an aggregated 
network, which is generated by expanding or collapsing tree nodes, 
may be from different levels of a tree. So the circular layout 
should be restricted by the tree structure.  

 It should consider the weight of edge.  The edge of an aggregated 
network in TreeNetViz has a weight, which depends on its 
aggregated value and level on the tree. The edge weight is 
encoded with line width. Therefore edges with high weight should 
be addressed properly to avoid visual cluttering in the circular 
layout. In addition, we may need to avoid edge crossings with the 
edges from preferable levels, such as lower or higher levels in the 
tree.    

Besides, previous approaches only minimize either the total number 
of edge crossings [37] or total edge length [38]. However, in some 
cases, two layouts with same number of edge crossings may have 
different total edge length (Figure 6 shows such an example). Both 
the total number of edge crossings and total edge length should be 
considered in a circular layout. 

 
Fig. 6. Two layouts with the same number of edge crossings but 

different total edge length.  

With the observations shown above, we propose an algorithm, 
Hierarchy-awareness Weighted Circular Layout (HWCL), to place 
nodes of an aggregated network with the constraints of tree hierarchy 
and edge weight, and the considerations of both of edge crossings 
and length.  

The basic idea of HWCL is to place network nodes along a circle 
or an arc to avoid visual cluttering of links among nodes. It first sets 
criteria of less visual cluttering and then uses a heuristic approach 
(try different combinations of node order) to achieve a local optimal 
solution based on the criteria. In HWCL, the criteria of visual 
cluttering are the combination of the number of edge crossings and 
edge length.  

HWCL first considers tree hierarchy when placing nodes. The 
child nodes only can be placed and re-ordered under the arc of their 
parent node.  The order of parent nodes must be decided before their 
children are placed. Only the nodes at the first level (under the root 
node in the tree) can be placed without the constraint of their parent 
node.  At each step, we place the child nodes only under one parent 
node. The child nodes under a parent node with larger child count 
have a higher priority to reorder. With this rule, when users expand 
or collapse a node, this node will not be re-ordered, its position 
remains same, and only the child nodes are shifted to reduce the 

visual cluttering. This can keep the tree structure and make the 
layout consistent to reduce users cognition cost. 

Further, HWCL also utilizes the weight of edge. The idea is that 
edges with high weight have more visual complexity than those with 
low weight, because the highly weighted edges have large costs of 
edge crossings and length. The edge weight is controllable by its 
aggregated value and level in the tree.  The goal is to reduce the total 
number of crossings and length of highly weighted edges. 

4.3.1 Algorithm Background 

Suppose we have an aggregated network given in Equation (2), and 
it is an undirected graph with n V nodes and m E edges. Define 
a neighbourhood of a node v as ( )  { :{ , } }N v u V v u E    . We 
use similar notations in [37]: A configuration of node placement, G,  
is a position mapping function ( )  { : 0, , 1}v i n   , in which   
indicates node positions (either clockwise or counter-clockwise) 
along a circle. Then, we can define that the order of  u is large v in 
the placement   as (i.e. u is encountered before v in the placement) 

  ( ) ( )u v v u     (5) 

In the placement  , two nodes, u and v, are consecutive, denoted as 
u v , if ( ) ( ) 1v u   . 

4.3.2 Cost Functions 

The idea of the algorithm is to place the nodes to minimize the total 
cost in a placement of nodes. Our assumption is that a good node 
placement has fewer total edge crossings and short total edge length. 
Thus, in our approach, the cost function consists of two parts: the 
total weighted edge crossings and weighted edge length. 

We define a weighted crossing as: 

1 2

1 2

( ) ( )
( , )

0

w e w e
e e


 


 if 1 2 1 2u u v v    , 
            (6) 

otherwise. 

where 1 1 1{ , }e u v  and 2 2 2{ , }e u v , and ( )w  is an edge weight 

function. The total cost of weighted edge crossings in a 

placement  is:  

  
1 2

1 2,
( ) ( , )

e e E
e e  


  (7) 

The weighted length of an edge e E is defined as  

( ) ( , )
( )

( ) ( , )

w e hop v u
e

w e hop u v



 



 if ( , ) ( , )hop v u hop u v  , 
              (8) 

    if ( , ) ( , )hop v u hop u v . 

where ( , ) ( ( ) ( ))hop v u v u    mod n.. We use the shorter hops 
between the two nodes of an edge along the circle as the length 
metric and weight this length by the edge’s weight. Therefore, the 
total cost of weighted edge length in a placement  is:  

  ( ) ( )
e E

e


  (9) 

The final cost function consisting of the two components is 
written as: 

  
( ) (1 ) ( ) ( )            (10) 

where [0,1]  is a control parameter to balance the weight of edge 
crossing and length. 

We also need control the weight of edges from different levels. In 
Equation (3) and (5), the weight function is defined as: 

  ( ) (1 log ) (1 ( ))e ew e w sqrt level            (11) 

where elevel is the level of the edge e, we is the aggregated edge 
weight, defined in Equation (3), and , [0,1]   are parameters 
controlling the impact of the aggregated edge weight and edge level 
from the tree structure over the final weight. For example, if the link 
patterns at lower levels are of interest, we want fewer edge crossings 
and length with lower level edges, and we can set a large  value.  



 

To sum up, the algorithm goal is to find an “optimal” placement, 

0 , of the graph, G, to minimize the total cost, namely:  

0( ) min ( )    . In this algorithm, we use two-stage optimization 
to solve this problem. 

4.3.3 Two-stage Optimization 

To solve the NP-hard problem of circular layout [39], we use a two-
stage heuristic optimization derived from paper [37] to minimize the 
total cost in a placement. The first stage is to initialize the positions 
of node with certain rules. Then, we follow a greedy strategy to 
search a locally optimal placement for nodes.  
Stage 1: Node Position Initialization 
In the first stage, we begin with a single node and append other 
nodes to the front or end of the placed nodes. Only one node is 
selected and appended at a time. In the initialization, we need to 
decide node selection and appending strategies. 

Node Selection Strategy. At each step, we choose the node with 
the largest number of placed neighbours. If two nodes have the same 
number of placed neighbours, we favour the node with the least 
number of unplaced neighbours. The rationale of this strategy is to 
introduce fewer open edges (an open edge connects a placed node 
with an unplaced one), and therefore avoid causing more edge 
crossings or increasing the total edge length when a new node is 
placed in the later.  

Node Appending Strategy. We append node to the end that 
results in fewer edge crossings with the open edges. At this stage, we 
append each node to either the front or the end of the placed node, 
and do not try every possible position. This is to reduce the 
computation complexity and further optimization is conducted in the 
second stage. Note that the crossings with close edges are not 
considered because they are same for both ends.  
Stage 2: Node Sifting Optimization 
After nodes are initially placed in a circle, we use sifting to move a 
node along the circle to find a locally optimal position. The sifting 
approach was original proposed for binary decision diagrams [40] 
and used in edge-crossing minimize in circle layout [37].  

The idea of node sifting is to iteratively swap a node with its 
neighbour in one direction, and find the position with the smallest 
cost shown in Equation 10. Then, we can place the node to the 
position with the smallest cost. After all nodes have been 
repositioned, we say a round of node sifting is completed. 

To find the smallest cost for each node, we do not have to 
calculate the total cost in Equation 10, and only need to calculate the 
change of cost in each swapping. Because only the positions of the 
two swapped nodes are changed in each step, the change of the edge 
crossings and length are only related the two nodes. Thus, we focus 
on the cost change of the two swapped nodes. 

Let the placements before and after swapping as  and 
' respectively. The crossing number of two consecutive nodes, u 

and v, is: 

  
( ) ( )

( ) ({ , },{ , })uv x N u y N v
c u x v y 

 
   (12) 

The change of crossing cost, c , is: 

  ( ') ( )vu uvc c c     (13) 

The total length of a node, u, is: 

  
( )

( ) ({ , })u x N u
u x


  (14) 

The change of length is  

  
( ') ( ) ( ') ( )u u v v        . (15) 

The cost change,  , in each swapping can get by: 

  
(1 ) c        . (16) 

Thus, in each iteration of node swapping, we can record the cost 
change,  , and then find the position with minimal cost. After each 
iteration, the node is placed to the locally optimal position obtained 
above. 

In practice, node sifting converges quickly and the computation 
complexity is acceptable. Usually, a local optimal placement can be 
achieved by a few rounds of node sifting and each round can be done 
with ( )o nm  [37]. The experiments in next section also confirm this. 

4.4 Circular Layout Experiments 

We conducted several experiments to show the performance of 
HWCL with variant strategies. The dataset is from a real research 
field (the background and details of data are introduced in the case 
study of Section 5.1). The network has 847 nodes and 2,498 edges, 
and a tree structure with three levels (a root node, 10 nodes at the 
first level, 90 nodes at the second and 847 at the bottom).  

In the following experiments, we started from the aggregated 
network at the first level (n=10, m=17). Then we expanded the node 
one by one to the second level. Every time we expanded a new node, 
TreeNet generated a new aggregated network. We repeated this 
process at the third level. In this way, we can have hundreds of 
networks with different numbers of nodes and edges to conduct 
experiments. Note that the number of nodes in the series of networks 
is not continuous, because the node number under the expanded node 
at each step is different.  

 
Fig. 7. The final cost of initialization and sifting optimization of different 

rounds compared to random layout. 

 
          (a)                                                   (b) 

Fig. 8. The costs of edge crossings and total length with  =0, 0.5 and 

1: (a). Relative cost of crossings (b) Relative cost of length. 

 
Fig. 9. The final cost with different combinations of edge weight and 

level parameters.  

4.4.1 Algorithm Convergence 

The first experiment was to show that the sifting heuristic converges 
in a few rounds. Figure 7 compares the final cost in Equation (10) 
after initialization and four rounds of sifting optimization. The final 
cost is set with 0.5  , the average of the number of edge crossings 
and the total edge length, and weight parameters are controlled 



with , 0   . The horizontal axis is the number of nodes (not 
continuous). The vertical axis is the ratio of the final cost after 
initialization and sifting optimization to the cost of random layout.  
As we expected, the final cost is reduced in a few rounds and no 
obvious improvement after round 4. Thus, the round number is set as 
4 in TreeNetViz. 

4.4.2 Impact of the Crossing and Length Cost 

We also compared the layout results of different combinations of 
edge crossings and total length used in the final cost with Equation 
(10).  Figure 8a and 8b compare the edge crossing cost and total 
length cost in the layout optimization with different values of  =0, 
0.5 and 1. The weight parameters are set with , 0   . The vertical 
axis is the ratio of the cost of our algorithm with different  to the 
cost of random layout.  We can see that the crossing cost of  =0 
(algorithm using only edge crossings) and  =0.5 (algorithm using 
both edge crossings and length) are almost the same in Figure 8a, but 
in terms of the length cost,  =0.5 is slightly better than  =0 as 
shown in Figure 8b. In addition, Figure 8a shows that only using the 
length cost (  =1) can reduce the crossing number (with relative 
value less than 1), but its effectiveness to reduce crossing is not as 
good as using edge crossings by comparing  =1 and 0.5 with  =0. 
However, the performance to reduce total length of the algorithm 
with  =1 decreases quickly as the number of nodes increases as 
shown in Figure 8b. We conclude that our algorithm incorporating 
both edge crossings and edge length can reduce two types of costs 
than the approach considering only either edge crossings or edge 
length, but the choice of  is tricky and needs large scale of 
experiment, which is beyond the scope of this paper.  

4.4.3 Impact of Edge Weight and Level  

The last experiment investigated the impact of edge weight and level 
over layout results. We compared four combinations of level and 
weight parameters by using unweighted final cost (no weight used in 
Equation (10), namely ( ) 1w e   ) with 0.5  . In Figure 9, the two 
digital numbers in the legend indicate the combination of weight and 
level parameters. For example, “00” means 0, 0    and “05” 
for 0, 0.5   . All combinations generated good cost results 
compared to the random layout. The two lines with 0.5   have 
lower cost than the two with 0  , which indicates that edge weight 
can reduce visual cluster. The effect is more obvious as the node 
number increases. On the contrary, we see that the two lines with 
different  but same  almost overlap, which shows that impact of 
level is not obvious. 

In summary, the HWCL converges very quickly and the round 
number of four is used in TreeNetViz. Both the number of edge   
crossings and total edge length improve the layout results, but there 
is no general rule how to balance two parts. In our design, we treat 
them equally with  =0.5. Finally, the edge weight has larger impact 
to reduce the final cost compared with edge level and 0.5  and 

0.5  are used TreeNetViz. Figure 10 compares the results of an 
aggregated network without and with HWCL optimization. It shows 
that HWCL largely reduces visual cluttering. 

5 CASE STUDY:  A CO-AUTHOR SOCIAL NETWORK OF 

MEDLINE 

In this section, we present a case study using TreeNetViz to analyze 
a co-author network and help understand collaboration patterns 
among diabetes researchers at University M. Diabetes research was 
selected because the topic is studied in many disciplines, ranging 

  
 

(a)                           (b) Fig. 11. The largest component in the 

collaboration network of diabetes researchers. Fig. 10.  Comparison of random layout and HWCL with the same aggregated network:  

(a) Random Layout; (b) HWCL. 

   
(a) (b) (c) 

Fig. 12. The collaboration network at the college level: (a) the aggregated network; (b) the ego network of “Medical School”; (c) a critical path 

between “Medical School” and “School of Kinesiology”. 



 

from social sciences to public health to life science and biomedical 
research. This case study aims at understanding the patterns of peer-
to-peer collaboration across organizational boundaries and 
discovering potential collaborators. While conventional methods 
provide answers to questions such as who are those most connected 
authors and how well they are connected (like Figure 11), these 
methods cannot address questions concerning complex social 
activities, such as:  
 How do collaboration patterns vary across departments and 

colleges?  
 What do cross-department collaboration networks look like? and 
 Who are those researchers acting as “boundary liaison” to connect 

different departments and colleges?   

5.1 The Data 

Data were collected through two steps. In the first step, primary 
diabetes terms from MeSH (Medical Subject Headings) [41] were 
used to search MedLINE research articles published from 2006 to 
2010, and a collaboration network was constructed based on the co-
author relationship of the retrieved articles. The second step searched 
the name directory for researchers identified as affiliated with 
University M and builds a tree structure based on the organizational 
structure. The names of authors are anonymized. Two collections 
were combined and cleaned to obtain the final dataset.  

 
Fig. 13. The view of collaboration among departments. 

 
Fig. 14. The view of collaboration among individual researchers. 

The dataset includes 614 articles, 847 authors and 2,498 co-author 
relationships. The largest component of the network is shown in 
Figure 11. The author affiliation is selected to create a tree with two 
levels: college and department. TreeNet model identified 10 college-
level nodes and 90 department-level nodes. A node at the college 
level can also be a school or a research centre. Thus, when we use 

the term “college” henceforth, we also mean school and research 
centre. 

5.2 Multiscale Exploration 

With TreeNetVis, users can examine collaboration patterns at three 
different levels: collaborations involving authors from different 
colleges, different departments, and also individuals.  

The network patterns at different scales can reflect the power and 
status of collaboration resources, and the access control to social 
groups and individual authors. For example, in Figure 12a, which 
shows the collaboration network at the scale of colleges, the size of 
node sector represents the number of researchers in a group, and 
thickness of an edge shows the collaboration strength between two 
groups. From this figure, we can gain some insights into the status of 
a college in the university collaboration network, such as “Medical 
School”, which not only has the most researchers but also the most 
active intra-college collaboration activities; “LSA” (Literature, 
Science and the Arts) and “Public Health” are ranked the second and 
third, in terms of the number of researchers. 

Some structural features on inter-college collaboration are 
presented in Figure 12b with an ego-network view. For example, 
Figure 12b is the ego network of “Medical School” whose 
neighbours are highlighted with X-Ray mode. It shows some cliques 
at this scale, such as the one consisting of “Medical School”, “LSA”, 
“Life Science Institute”, and “Public Health”. Collaboration between 
Medical School and Public Health is the strongest. Also, the view 
helps identify a peripheral player “School of Kinesiology” with blue 
color. This college is connected to “Medical School” only via 
“School of Public Health” as shown in Figure 12c.  

Changing the level of observation and analysis can provide more 
details about collaboration at other levels. For example, moving the 
scale of department, we can see how researchers collaborated across 
departments (Figure 13). Obviously, the collaboration patterns 
dominate among several large departments. At the scale of 
individuals, we can see those active researchers with dense 
connections, and general collaboration trends are shown in Figure 14. 

 

 
Fig. 15. A cross-scale view of departments under college LSA with 

with other colleges. 

5.3 Cross-Scale Exploration 

TreeNetVis allows users to understand co-author patterns across 
different social levels and identify connectors spanning over 
different social entities.  

Cross-scale views first present patterns how actors collaborate 
with each other from different scales. Figure 15 shows how the 
departments in “LSA” cooperated with other colleges. We find that 
most departments inside this college rarely collaborate with each 
other, but connect with other outside departments. This view 
indicates that it might be necessary to further explore why 



departments do not collaborate and how to motivate local 
collaborations. Figure 16 shows the collaboration pattern of 
researchers in “Biochemistry Dept” with all others. These 
researchers also have more outside connections than internal ones. 

 

 
Fig. 16.  A cross-scale view with connections over all three levels. 

 
Fig. 17.  A liaison at the department level connecting two schools. 

 
Fig. 18.  The researcher “Auth525” on a critical path. 

Cross-scale views also help users find out which social actor at one 
level acts as a “liaison” to link with other actors at another level. 
Let’s go back to the example shown in Figure 12c. We know that 
“School of Kinesiology” and “Medical School” are connected by 

“School of Public Health (SPH)”. At this point, we may want to 
know which department in “SPH” connects them. The cross-scale 
view in Figure 17 shows that “Hlth Behaviour & Hlth ED Dept 
(HBHED)” at the department level serves as the liaison connecting 
two schools. Drilling down “HBHED” to individual level (Figure 18), 
we can find the researcher connecting two different schools is 
“Auth525”.  

As shown in this case study, TreeNetVis allows the analysis of 
complex research collaboration with more depths. With this tool 
alone, users can examine the relationships among social entities at 
the levels of college, department and individual, and explore cross-
scale connections. TreeNetVis reveals some interesting phenomena 
that cannot be easily identified with conventional social network 
analysis tools, such as inactive collaboration among researchers 
within the same department and key researchers who connect various 
centres and departments. Such findings lay a foundation for further 
research to understand questions like:  
 what makes an actor become a connector between different 

organizations;  
 what are the barriers to intra- and inter-organizational 

collaborations respectively; and  
 what roles connectors play in collaborative projects (“mailman” or 

fostering significant sharing and intellectual contribution). 

6 CONCLUSION AND FUTURE WORK 

In this paper, we proposed an approach to model and visualize a 
compound graph including two subgraphs of tree and network. The 
TreeNet models the compound graph and supports multiscale and 
cross-scale network aggregation over the tree structure in the graph. 
TreeNetViz supports the exploration and interaction of a TreeNet 
graph by using a Radial, Space-Filling (RSF) visualization to 
represent the tree structure, a circle layout to show the aggregated 
network, an edge bundling technique and a novel circular layout 
algorithm to reduce visual complexity. Our case study of using 
TreeNetViz to analyze a co-author network indicates the potential of 
our approach in support of understanding the social network patterns 
over the affiliation hierarchy. 

The research has some limits. First, TreeNetViz still faces the 
scalability issue as do most graph visualizations.  For example, a 
node sector becomes hard to manipulate when a large number of 
nodes are arranged along the circle. There is still visual cluttering of 
edges when lots of edges are incident in a view, although some 
optimizations of reducing edge crossings and length have been done. 
Second, current design does not support modifications of the tree 
structure. In some cases, users may need to merge, add and delete 
nodes in the tree structure. The modification results in different 
aggregated networks and connection patterns.  

We will extend our work in two directions. First, we will extend 
the TreeNet graph model and aggregation metrics. A general graph 
model is desirable to support more diverse compound graphs which 
do not only consist of two tree and network subgraphs, but also 
hybrid of them.  We will also explore some quantitative metrics to 
support more complicated analysis tasks in TreeNet graph. For 
network aggregations, we can provide different approaches for nodes 
and edges, such as betweenness, eccentricity, authority and hub, and 
clustering coefficient [42]. Some measures of node similarity are 
also under development to predict link in the network. Second, we 
also want to explore other interaction techniques to alleviate the 
visual complexity. For example, we can provide some other 
Focus+Context interactions, such as showing the details outside the 
circle suggested by [33]. For the edge routing, some other strategies 
to layout edges can also be studied, such as drawing internal edges in 
a group outside of the circle to avoid crossings.   
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