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Abstract—The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper

describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-

dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman’s Discrete Morse

Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to

merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on

both multicore environments and on massively parallel architectures such as the GPU.

Index Terms—Topology-based methods, discrete Morse theory, large datasets, gradient pairs, multicore, 2D scalar functions.
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1 INTRODUCTION

The Morse-Smale (MS) complex of a real-valued function

is an abstract representation of its gradient flow behavior. It

has been extensively studied both within the computational

geometry and the visualization communities. Research within

the computational geometry community has resulted in better

understanding of the mathematical structure of the complex

and has led to efficient algorithms to compute the MS complex

for piecewise linear (PL) scalar functions [6], [7]. On the

other hand, work within the scientific visualization community

has focused on efficient computation of the MS complex in

practice [4], [11], [13], [14] and effective application to the

analysis and visualization of 2D and 3D scalar fields [12], [17].

Data sizes grow faster than processor speeds resulting in an

ever-present demand for better algorithms to process the data.

In this paper, we describe a parallel algorithm to compute

the MS complex. Our algorithm utilizes the multiple cores

available in the CPU and GPU of a typical desktop computer

to compute the MS complex of large two-dimensional data,

consisting of several hundred million vertices, within a few

minutes.

The definition and computation of the MS complex for

sampled functions requires gradient / steepest path compu-

tation and path tracing, which is inherently serial in nature.

We prove two lemmas on gradient flow paths and symbolic

perturbation that lead to an algorithm for computing the cells

of the MS complex in a few massively parallel steps.
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1.1 Related work

Topology-based methods have become very effective for con-

trolled simplification of features in scalar fields. These meth-

ods are primarily based on ideas from Morse theory [19], the

study of the relationship between critical points of smooth

functions and the topology of the domain. The Morse-Smale

complex partitions the domain into regions. Each region,

defined by a pair of critical points of the scalar function,

is covered by gradient flows between the critical point pair.

MS complexes were introduced first to study dynamical sys-

tems [24], [25]. Edelsbrunner et al. [7] first posed the problem

of computing the MS complex for piecewise linear functions

defined on two-dimensional manifolds. The function was sam-

pled at vertices of a mesh that represented the domain and

linearly interpolated within mesh elements. They interpreted

the piecewise linear function as the limit of a series of smooth

functions and hence used ideas from Morse theory to classify

critical points, follow gradient flows, and compute cells of

a quasi MS complex whose bounding arcs are restricted to

edges of the input mesh. The combinatorial structure of the

quasi MS complex was proved to be identical to that of the

MS complex. Henceforth, we refer to the quasi MS complex

simply as the MS complex. A similar approach was employed

to construct MS complexes of three-dimensional functions [6].

Changes in the topology of isosurfaces of the scalar function

during a sweep of the domain correspond to the features of

interest. Pairs of critical points represent the creation and

destruction of the feature during the sweep. Hence, topological

simplification refers to the removal or cancellation of a pair

of critical points.

Bremer et al. [4] focused on efficient computation of the

MS complex, building a multi-resolution representation of the

scalar field via controlled topological simplification, and appli-

cation of the MS complex to various data analysis and visual-

ization tasks including feature identification, noise removal,

and view-dependent simplification. These early approaches

were based on tracing the gradient paths from saddle critical

points, which produced a boundary representation of cells in
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the MS complex. Later approaches [12], [13] especially for

three-dimensional functions, were based on repeated cancel-

lations applied on an artificial complex created by including

dummy critical points. The cancellations were appropriately

scheduled in order to remove the dummy critical points leaving

behind the true critical points and cells of the MS complex.

The scheduling of the critical point pairs for cancellation plays

a crucial role both in determining the quality of the result and

the efficiency of the algorithm.

Forman developed discrete Morse theory, an analog of

Morse theory used to study cell complexes and discrete

functions defined on them [10]. King et al. described a method

for computing a discrete function on a mesh given a function

sampled at mesh vertices while guaranteeing that the discrete

gradient field agrees with the large-scale flow behavior of the

input [16]. Reininghaus et al. [21], [22] discuss an application

of discrete Morse theory to analyze vector fields. Bauer et

al. [1] discuss computing simplified functions on surfaces such

that the input function is modified by no more than a threshold

δ and all surviving critical point pairs have persistence greater

than 2δ . Discrete Morse theory has also been successfully used

to compute the MS complex of piecewise linear functions.

Early work based on this approach by Cazals et al. [5] and

Lewiner et al. [18] demonstrated applications to segmentation,

visualization, and mesh compression. More recently, Gyulassy

et al. [11] employed this approach for efficient computation of

MS complexes of large data that do not fit in main memory.

They partition the data into blocks called “parcels”, compute

gradient flows on the boundary of the parcels, propagate the

flows to the interior and compute the MS complex restricted

to the parcel. The critical cells created on the boundary are

canceled during a subsequent merge step resulting in the

MS complex of the union of the parcels. This method scales

well for large data. However, the geometry of the MS complex

computed using this method is sensitive to the order of

cancellations chosen during the merge step.

Robins et al. [23] proposed an algorithm to compute

the Morse complex of 2D and 3D grayscale digital images

modeled as discrete functions on cubical complexes. While

the algorithm computes the Morse complex with provable

guarantees on its correctness with respect to the critical cells,

it does not guarantee the geometric accuracy of the complex.

Further, the algorithm does not scale to large datasets.

In summary, the above mentioned methods are slow because

(a) they compute and trace the gradient serially or (b) do

not guarantee that they trace the correct geometry of the

gradient flow. We address the former shortcoming by designing

a massively data parallel algorithm and the latter by ensuring

that we reproduce the gradient flows independent of the choice

of partition.

1.2 Results

The main result of this paper is a parallel algorithm to compute

the MS complex of a two-dimensional scalar function. We

partition the domain into sub-domains, compute gradient flows

within each sub-domain, and merge the gradient flows while

merging the sub-domains. The combinatorial connectivity of

the MS complex is computed during the merge step. The

geometry of the cells of the MS complex is computed in a

subsequent traversal of a history tree that records the merges.

The correctness and efficiency of the algorithm is based on

two key lemmas that are valid for all dimensions:

• The Order Independent Pairing Lemma, which states that

the discrete gradient pairs that define the gradient field

can be computed independent of the order in which the

cells are processed.

• The Order Independent Cancellation Lemma, which

states that the geometry of the gradient flow is computed

correctly independent of the order in which the critical

point pairs on the sub-domain boundary are canceled.

We discuss novel implementation strategies to ensure that the

massive parallelism available in GPUs is fully utilized. We

also describe parallel methods to query the 2D MS complex

for feature identification and visualization. We demonstrate

using synthetic and real-world data that the algorithm is able

to compute the MS complex of very large data sets that do

not fit in main memory. We also discuss an application of our

algorithm to efficient processing and tracking of features in

2D time-varying data.

1.3 Outline

Section 2 presents the necessary background on Morse-Smale

complexes and topological simplification. Section 3 presents

an overview of our parallel algorithm and Sections 4-5 de-

scribe the algorithm in detail. Section 6 discusses imple-

mentation details and Section 7 presents experimental results.

Section 8 concludes the paper.

2 BACKGROUND

This section reviews the necessary background on Morse func-

tions and discrete Morse functions required for the algorithm

description.

2.1 Morse functions

Consider a smooth scalar function f : Rn →R. A point p ∈R
n

is called a critical point with respect to f if the gradient of

f ,

∇ f =

(
∂ f

∂x1
,

∂ f

∂x2
, . . . ,

∂ f

∂xn

)
,

is identically zero at p. A critical point is non-degenerate if

the Hessian of f , equal to the matrix of second order partial

derivatives, is non-singular. We call f a Morse function if all

of its critical points are non-degenerate.

The index of a critical point is the number of negative

eigenvalues of the Hessian matrix. An integral line passing

through a point p is a one-dimensional curve l :R→Rn, where
∂
∂ t

l(t) = ∇ f (l(t)), ∀t ∈R and l(0) = p. In other words, it is a

maximal curve in R
n whose tangent at every point equals the

gradient of f at that point. The function f increases along the

integral line. The limit points of integral lines, t → ±∞, are

the critical points of f .

The set of all integral lines that share a common source

p= lim
t→−∞

l(t), together with the point p, is called the ascending
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(a) Morse-Smale function and its
critical points.

(b) Reversed integral lines.

(c) Descending manifold of a max-
imum.

(d) Combinatorial structure of the
MS complex.

Fig. 1: (a) A Morse-Smale function shown as a height field

over a two dimensional domain. Critical points are shown in

red, green, and blue corresponding to maxima, saddle, and

minima, respectively. (b) The reversed integral lines of the

function over the surface. (c) The descending manifold of a

maximum shown as the closure of the set of reversed integral

lines that originate from the critical point. (d) Combinatorial

structure of the MS complex where nodes are critical points

and connecting integral lines are arcs.

manifold of p and the set of all integral lines that share

a common destination p = lim
t→∞

l(t), together with the point

p, is called the descending manifold of p. The ascending

manifolds of all critical points partition the domain. Similarly

the descending manifolds of all critical points also partition

R
n. The Morse-Smale complex is a partition of R

n into cells

formed by the collection of integral lines that share a common

source and a common destination.

The ascending manifold of a critical point of index d

is a (n− d)-dimensional manifold, where as its descending

manifold is an n-dimensional manifold. A Morse function f is

called a Morse-Smale function if all ascending and descending

manifolds of two critical points intersect transversally. Thus,

if the index of two critical points differ by one then their

ascending / descending manifolds either do not intersect or

intersect along a one-dimensional manifold connecting the

critical points. The critical points, referred to as nodes, along

with the 1-manifolds that connect them, referred to as arcs,

form the 1-skeleton of the MS complex, which is referred to

as the combinatorial structure of the complex.

2.2 Simplification

A Morse-Smale function f can be simplified to a smoother

function by repeated application of a cancellation operation

that removes a pair of critical points connected by an arc in

the MS complex. This cancellation corresponds to the removal

of the feature represented by the critical point pair. Features

are ordered based on the notion of persistence, equal to the

absolute difference in function value between the two critical

points. Persistence measures the importance of a critical point

pair [8]. More sophisticated measures of importance based on

persistence have also been described in the literature. Since

the focus of this paper is on the computation of MS complex

and not necessarily on efficient simplification, we restrict our

discussion to the persistence measure. The least persistent

critical point pair is always connected by an arc in the

MS complex [7].

Simplification of a pair of critical points can be achieved

by a local smoothing of the function in the neighborhood

of the two critical points, more precisely within the ascend-

ing / descending manifolds containing the critical points.

The cancellation is realized by updating the 1-skeleton of

the MS complex. For example, consider the case of a two-

dimensional Morse-Smale function after a maximum-saddle

cancellation. The 1-skeleton is updated by deleting the two

nodes, deleting the arcs incident on the saddle, and re-routing

the arcs incident on the maximum to the surviving maximum

adjacent to the saddle (see Figure 2). The embedding of a new

arc is obtained by extending the old arc along the arc between

the maximum and saddle. We allow only those cancellations

that can be realized by a local smoothing of the function.

This is feasible if the pair of critical points is connected by a

single arc. Canceling a pair of critical points that are connected

by two distinct arcs in the Morse-Smale complex results in a

strangulation, which cannot be realized by a local smoothing

of the function.

2.3 Piecewise Linear(PL) Functions

Earlier approaches to compute MS complexes were based on

PL extensions of functions sampled at vertices of simplicial

complexes [6], [7]. Though we adopt the discrete formulation

of MS complexes for our computations, we introduce here

some notions of PL function so that we may establish the

closeness of our approach to the PL approach. For further

reading on the basic notions of algebraic topology, we refer the

reader to the classic text books by Munkres [20] and Hatcher

[15].

A function f sampled at vertices of a simplicial complex

may be extended to form a continuous function that is linear

on every cell. The star of a vertex v is the set of simplices

incident on v. The link of a vertex v is the set of faces of cells

in the star of v, that are not incident on v. The lower star of

vertex v is the set of cells in the star where the PL extension

assumes values lower than f (v). The lower link of a vertex v

is the set of faces of cells in the lower star of v, that are not

incident on v.

The Betti numbers of a cell complex, K, are a useful

characterization of the underlying space of a cell complex.

They are defined for each k = 0,1..,dim(K) and denoted by

βk. Intuitively, β0 counts the number of components of K, β1

counts the number of tunnels in K and β2 counts the number

of voids of K. The reduced Betti number, denoted by β̃k and
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(a) MS complex and reversed integral
lines

(b) Canceling a pair of critical points

(c) Combinatorial realization (d) Geometric realization

Fig. 2: (a) MS complex for a simple height function. (b)

Canceling a pair of critical points, qi, pi+1, of index i, i+ 1

that are connected by a single 1-manifold. (c) Combinatorial

realization: connect all index i critical points (Ni
pi+1

) that are

connected to pi+1 except qi, to index i+1 critical points (Ni+1
qi

)

that are connected to qi except pi+1. (d) Geometric realization:

compute the union of the descending manifold of pi+1 with

the descending manifolds of all index i + 1 critical points

connected to qi. Compute the union the ascending manifold of

qi with the ascending manifolds of all index i critical points

connected to pi+1.

defined for k = −1,0, ...,dim(K), is exactly the same as βk

for all k = 1, ...,dim(K). The zeroth reduced Betti number is

β0 −1 if β0 > 0 and 0 otherwise. Also β̃−1 = 1 if β0 = 0 and

0 otherwise.

Reduced Betti numbers of the lower link can be used

to classify a vertex of a simplicial complex as non-critical

(regular) or critical and to further classify critical vertices.

A vertex in a 2D simplicial complex is said to be regular if

all β̃k’s of the lower link are zero, minimum if β̃−1 = 1 and

β̃0 = β̃1 = 0, simple saddle if β̃0 = 1 and β̃−1 = β̃1 = 0, and

maximum if β̃1 = 1 and β̃−1 = β̃0 = 0. Critical points with

β̃0 > 1 are called multi-saddles.

The weak Morse inequality is a classic result of Morse

theory which states that, given a Morse function f defined

on a manifold, the number of index k critical points of f is

greater than or equal to the kth Betti number [20]. Forman

established the analogous result for discrete Morse functions

[10].

2.4 Discrete Morse functions

Discrete Morse theory was developed by Forman [10] to study

the topology of cell complexes. A d-cell αd is a topological

space homeomorphic to a d-ball Bd = {x ∈ E
d : |x| ≤ 1}. For

example, a vertex is a 0-cell, an edge between two vertices is

a 1-cell, a polygon is a 2-cell, and in general a d-dimensional

polytope is a d-cell. We will restrict our attention to cells of

the above kind, which can be represented by a set of vertices.

A cell α is a face of β , denoted α < β , if α is represented

by a subset of vertices of β . The cell β is called a coface of

α . A face α is called a facet of β if α < β and dim(α)+1 =
dim(β ). In this case β is a cofacet of α denoted by α �β .

The set of zero-dimensional faces of a cell α is called the

vertex set of α denoted by Vα .

A cell complex K is a collection of cells that satisfies two

properties: (a) If α belongs to K then so do all faces of α , and

(b) If α1 and α2 are two cells in K then either they are disjoint

or they intersect along a common face. A regular cell complex

is a cell complex in which, given two incident cells, β d+1

and γd−1, there are exactly two cells αd
1 ,α

d
2 such that γd−1 <

αd
1 ,α

d
2 < β . In this paper, we consider only finite regular cell

complexes. A filtration of a cell complex K is a sequence of

nested cell complexes K0,K1, . . . ,Kn, such that K0 is the empty

cell complex, Kn is the cell complex K, and Ki is obtained by

attaching one or more cells to Ki−1 for i = 1..n.

Note that a simplex is a d-cell which has exactly d + 1

vertices in its vertex set. A simplicial cell complex is a cell

complex whose cells are d-dimensional simplices such as

vertices, edges, triangles, tetrahedra and so on. A simplicial

complex is also a regular cell complex.

Given a regular cell complex K representing the domain, a

function f : K → R is said to be a discrete Morse function if

for all d−cells αd ∈ K,
|{β d+1 | αd < β d+1 and f (β )≤ f (α)}| ≤ 1 and

|{γd−1 | γd−1 < α and f (γ)≥ f (α)}| ≤ 1.

A cell αd is critical if
|{β d+1 | αd < β d+1 and f (β )≤ f (α)}|= 0 and

|{γd−1 | γd−1 < α and f (γ)≥ f (α)}|= 0

A discrete vector is a pairing between two incident cells that

differ in dimension by one. A discrete vector field on K is a

set of discrete vectors such that every cell in K is represented

in at most one pair of the field. A V -path is a sequence of

cells

αd
0 ,β

d+1
0 ,αd

1 ,β
d+1
1 , . . . ,αd

r ,β
d+1
r ,αd

r+1

such that αd
i and αd

i+1 are facets of β d+1
i and (αd

i ,β
d+1
i ) is a

vector, i= 1..r. A V -path is called a gradient path if it contains

no cycles (see Figure 3). A discrete gradient field is a discrete

vector field that contains no non-trivial closed V -paths. We

refer to discrete vectors in a discrete gradient path as gradient

pairs.

Maximal gradient paths of the discrete Morse function

correspond to the notion of integral lines of Morse functions.

Ascending / descending manifolds are similarly defined for

discrete Morse functions.

2.5 Simulation of simplicity

Simulation of simplicity (SoS) is a programming technique

that allows us to cope with degenerate data for many geometric

algorithms [9]. In the context of Morse-Smale complexes
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Fig. 3: A discrete Morse

function defined over a

2D cell complex. The

gradient pairs are shown

as arrows oriented to-

wards the higher dimen-

sional cell. Dashed red

arrows denote edge-quad

pairs and solid blue ar-

rows denote vertex-edge

pairs. Critical cells are

shown in red (maxima),

green (saddle), and blue

(minima).

we require that the function be nowhere flat to ensure non-

degeneracy. Implementing SoS is simple in this case. We

simulate a non-degenerate function using the available order

of vertices in the storage device and hence consistently resolve

comparisons when function values at two vertices are equal.

In the following section we assume that f (x) �= f (y) for all

vertices x �= y. We discuss how to extend this technique to

obtain a total order on all input mesh cells in Section 4.

3 ALGORITHM OVERVIEW

In this section, we present an overview of our approach

towards the design of a parallel algorithm to compute the MS

complex for two-dimensional scalar functions. When the entire

dataset fits in memory, the MS complex is computed by a two-

step algorithm:

Stage 1. Compute the discrete gradient on the domain.

Stage 2. Compute the combinatorial MS-complex and the

geometry of ascending / descending manifolds of

critical points.

Section 4 discusses in detail how a discrete gradient field

based on the scalar function is computed and how that is

used to extract the combinatorial structure of the MS-complex.

Specifically, a technique to extend a scalar function sampled

at vertices of a regular CW-complex to a totally ordered

discrete Morse function is discussed. The definition of this

function for a CW-cell relies only on the scalar values of its

vertex set. This motivates a massively parallel algorithm to

determine discrete gradient pairs (of CW-cells). The extraction

of the qualitative structures of the MS-complex using the

discrete gradient field and a simple BFS algorithm is then

discussed. The BFS algorithm, being serial, does not scale well

to massively parallel environments. For this case, we describe

an alternate method for traversal which is applicable only to

2D datasets. We corroborate the relevance of the computed

MS complex by arguing the closeness of its critical points

and gradient pairs to the PL formulation of critical points and

gradients.

For large datasets that do not fit in memory, a split and

merge strategy is adopted. The gradient computation proceeds

without change. The algorithm for large datasets is split into

five stages:

Stage 1. Split the domain into sub-domains. Compute the

discrete gradient on each sub-domain. Compute the

combinatorial MS complex on each sub-domain.

Stage 2. Merge the combinatorial MS-complexes of each

of the sub-domains.

Stage 3. Simplify the MS-complex

Stage 4. Traverse the history of merges in reverse order

to determine the incidence of geometry of ascend-

ing / descending manifolds of critical points that are

outside the sub-domain.

Stage 5. Extract the geometry, restricted to the sub-domain,

of the ascending / descending manifolds of critical

points (that lie possibly outside the sub-domain).

Section 5 discusses the strategy to merge the sub-domain

pieces. Essentially, we mark gradient pairs that cross a com-

mon boundary as critical. This enables us to identify these

pairs as critical points of the MS complex of both sub-domains,

perform a merge, and simplify them away. We show that the

MS complex is combinatorially and geometrically unaltered

by the merge procedure. Furthermore, we show that the order

of these cancellations do not alter the resulting MS complex.

Since the number of gradient pairs crossing common bound-

aries is significant, storing the geometry of the ascending / de-

scending manifolds of these critical points along with the

combinatorial connectivity data strains memory requirements.

We propose an alternate scheme, whereby we traverse the

history of merges in reverse order to infer the geometric

contribution of the canceled critical points to surviving critical

points. Stage 1 and 5 can proceed in parallel on each sub-

domain whilst the other stages merge sub-domains and thus

proceed hierarchically.

In both cases of small and large datasets, the algorithm to

compute the discrete gradient pairs works for higher dimen-

sional data also. However, for massively parallel environments

the subsequent stage of the algorithm, which traverses the

gradient field, is restricted to 2D datasets.

4 MS COMPLEX ALGORITHM

We now describe our algorithm to compute the MS complex

under the assumption that the dataset fits in memory. We first

describe a canonical extension of scalar functions sampled at

vertices to discrete Morse functions and demonstrate why it

is not a suitable extension for computing the MS complex.

Next, we introduce a weighted discrete Morse function which

satisfies a key property leading to an algorithm that computes

gradient pairs in parallel. We discuss how the gradient field

defined by the collection of gradient pairs is used to extract

the MS complex. Finally, we analyze the computed gradient

field and argue for its correctness.

4.1 Discrete function

Given a regular cell complex K with vertex set V and a

scalar function f : V → R, a canonical extension of f to a

discrete Morse function, Fd : K →R, is defined recursively on

a cell α as Fd(α) = maxσ<α Fd(σ) + ε , where ε > 0 is an

infinitesimally small real value [11]. Extending the function

f in this manner results in all cells becoming critical with
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Fig. 4: The weighted dis-

crete function is defined re-

cursively as a weighted sum

of the function value at faces

G0 and G1. Faces G0 (in red)

and G1 (in blue) for an edge,

triangle and quad cells are

shown. The function value at

vertices increases along the

vertical axis.

respect to the discrete Morse function Fd . This implies that

each cell in the input is essentially a cell of the MS complex.

Further, newly introduced critical cells that are incident on

each other can be canceled using an infinitesimally small

persistence threshold ε to create an ε-persistent MS complex.

The motivation for extending the function f to Fd is that the

MS complex can be computed via repeated cancellations of

ε-persistent pairs. The collection of ε-persistent critical point

pairs are viewed as a pairing of incident cells or discrete

gradient pairs. The pairs are represented by arrows from

the lower dimensional cell to the higher dimensional cell

indicating descent. These pairings constitute a discrete gradient

field. Gyulassy et al. [11], [13] compute the MS complex via

a sequence of cancellations of the ε-persistent critical point

pairs. However, this approach does not necessarily compute

paths of steepest descent. Consider the case when two cells,

β1,β2, share a common facet α such that Fd(β1) and Fd(β2)
are written as

Fd(β1) = Fd(α)+ ε
Fd(β2) = Fd(α)+ ε .

Either one of β1 or β2 can be paired with α . For both pairs,

the difference in value of Fd is equal to ε . The tie is broken

arbitrarily in this case.

4.2 Weighted discrete function

We now describe a method to extend a given real valued

function ( f ) on the vertex set (V ) of a given mesh (K) to

a function (Fw) that is defined on all cells of the mesh.

We show that this function is a discrete Morse function

and that it imposes a total order on the cells. Since the

algorithm for computing the MS complex requires only the

order between cells, we describe a symbolic comparator that

does not explicitly compute the function value. We assume

that the input vertices are totally ordered based on the input

function specified at the mesh vertices.

4.2.1 Definition of Fw

We define a weighted discrete function Fw on a d-dimensional

cell αd recursively as

Fw(α
d) = Fw(G0(α

d))+ εd ×Fw(G1(α
d)),

where ε is an infinitesimally small positive real number,

G0(α
d) = argmax

γ<αd

Fw(γ), and

(a)

(b)

(c)

Fig. 5: (a) A scalar function, f , defined on the vertices is

recusively extended to a discrete Morse function Fw. The value

of Fw is shown for each cell. (b) Gradient pairs determined

by algorithm ASSIGNGRADIENT. (c) The combinatorial MS

complex computed using a BFS traversal on the gradient field.

G1(α
d) = argmax

γ<αd ,Vγ∩V
G0(α

d )
=φ

Fw(γ).

VG0(α) is the vertex set of G0(α
d), and argmax denotes the

value of the argument γ that maximizes the function. Similar

to Fd , Fw is also equal to f at mesh vertices. The weighted

version of the discrete function ensures that when two cells

share a common face whose function value is the maximum

among both face sets, then the tie is broken using the second

maximum face whose vertex sets are disjoint from the above

common face. See Figure 4 for the definition of the weighted

discrete function for some common cell types. Figure 5a shows

the expansion of Fw for a function sampled on a 2D grid.

G0(α
d) is necessarily a d−1 cell. This is because Fw of any

d−1 face of αd is greater than all faces incident on the d−1

cell. Thus, the d −1 cell that maximizes Fw will have higher

function value than all faces of αd . Also G1(α
d) must exist for

all cells with d > 0. Theoretically, we require Fw(G1(α
d)) to

be strictly positive to ensure that its value at cofacets is greater

than at the facet. This assumption is valid if we rescale the

range of f to [0+ δ ,1], δ ∈ (0,1). In practice we obtain the

order on the cells via a symbolic comparison and do not need

to explicitly compute Fw.

4.2.2 Fw is well defined and totally ordering

For Fw to be well defined we require G0, G1 to be unique.

The cells G0(α
d) and G1(α

d) for a given αd are unique if

Fw induces a total order on all cells of dimension less than d.

This suggests an inductive proof, which we outline below.

Since f (x) �= f (y) for all x �= y, Fw is well defined and

induces a total order on all zero-dimensional cells. Now,

assume that Fw induces a total order on all cells of dimension

less than d. We will show that we can order two cells αd
1 ,α

d
2

or αd
1 ,α

d′

2 where d′ < d and α1 �= α2.

Let G0(α
d
1 ) = γ1 and G1(α

d
2 ) = γ2. We have Fw(α

d
1 ) =

Fw(γ1) + εd × Fw(G1(α
d
1 )) and Fw(α

d
2 ) = Fw(γ2) + εd ×

Fw(G1(α
d
2 )). Assume that γ1 �= γ2. Cells γ1 and γ2 have

dimension less than d and can therefore be ordered. We
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choose ε to be arbitrarily small, so that the comparison

of Fw(α
d
1 ) and F(αd

2 ) is dominated by the comparison of

F(γ1) and F(γ2).i.e. Fw(γ1)< Fw(γ2)⇒ Fw(α1)< Fw(α2) and

Fw(γ1)> Fw(γ2)⇒ Fw(α1)> Fw(α2).
If γ1 = γ2 then the second term induces an order on α1

and α2. Note that if αd
1 �= αd

2 then G1(α
d
1 ) �= G1(α

d
2 ) because

K is a cell complex. This is because if two d-dimensional

cells intersect they do so along a single common cell whose

dimension is less than d. The cells αd
1 and αd′

2 can be ordered

using a similar argument. Thus, the weighted discrete function

Fw is well defined and induces a total order.

4.2.3 Symbolic comparison of cells

We essentially require only an ordering of cells in K and

not the explicit values of Fw. We now describe a method to

establish this order using comparisons.

The value of Fw(α) is equal to the weighted sum of Fw at a

subset of the vertices of α . Further, since G0(α) and G1(α) are

also vertex disjoint, no vertex appears more than once in the

above sum. Replace the coefficient of Fw(G1(α)) to εT (G1(α)),

where T (α) is equal to the number of terms in the weighted

sum of Fw(G1(α)). It can be easily verified that Fw remains

well defined and induces the same total order. This is because

T (αd) ≥ d. The function Fw(α) is therefore expressed as a

weighted combination of the function values at a subset of

Vα . Thus, the ordering of cells follows from a lexicographical

ordering where a cell α is represented as an ordered list of

vertices, Sα , which is a subset of the vertex set, Vα .

In the case of simplicial complexes, this ordering is equal to

the sorted order of all vertices. For quad cells in a rectilinear

mesh, it is the ordered vertices of the edge with highest value

of Fw followed by the ordered vertices of the edge disjoint

from the first edge. This ordering of vertices is a specific

permutation of the vertex set. Similarly the ordering for a three

dimensional cube mesh is a specific permutation of the vertex

set. Note that it is not necessary for the set Sα to contain

all vertices of Vα . For example, the size of Sα will remain

four for a hexagon cell in a hexagonal tessellation of the two

dimensional plane whereas α contains six vertices.

4.3 Computing gradient pairs

We now outline our algorithm that computes gradient pairs

using the comparator based weighted discrete function defined

above. We prove that the pairs found by the algorithm are

unique and independent of the order in which the cells are

considered, thus providing scope for parallelizing the algo-

rithm.

Algorithm 1 ASSIGNGRADIENT (Cell complex K)

1: for all α ∈ K do

2: Pα = {β |α �β and α = G0(β )}
3: if Pα �= φ then

4: β = MinF(Pα)
5: pair cells (α ,β )

In the above algorithm, α denotes a cell in the complex K,

and β is a cofacet of α , denoted by α �β . The set Pα is the

collection of cofacets, β , of α such that α = G0(β ). In other

words, Pα is the set of cofacets of α where α is the facet

with the maximum value of Fw. Figure 5b shows the gradient

field determined by the algorithm ASSIGNGRADIENT for the

function in Figure 5a.

ORDER INDEPENDENT PAIRING LEMMA. The pairing deter-

mined by the algorithm ASSIGNGRADIENT is independent of

the order in which cells are processed. In particular, if a cell

α pairs with its cofacet β then β will not pair with any of its

cofacets.

Proof: Inconsistencies occur if the algorithm determines

two or more pairs for the same cell. A cell present in two

pairings can be of the nature (α,β ),(α,β ′) or (α ′,β ), (α,β )
or (γ ,α), (α,β ) where γ �α �β .

This first conflict is trivially not possible because for a cell

α we determine a unique pair from a set of candidate facets.

In the second case, if β were to be paired with two different

facets, α and α ′, then β ∈ Pα ,Pα ′ . But, from the definition of

Pα we know that G0(β ) is unique and equal to either α or α ′.

Therefore, β must either belong to Pα or to Pα ′ but not both.

So, β is paired either with α or with α ′.

To prove that the third conflict does not arise, we show that

if α pairs with one of its cofacets β , then α is not the lowest

pairable cofacet of any of its facets i.e. β = MinF(Pα) implies

α �= MinF(Pγ) for all γ �α . This will imply that if α paired

with β , then it is not paired with any other cell γ . Consider a

facet γ of α , γ �α . If α /∈ Pγ then there is nothing to prove

because the algorithm will not pair γ with α . Now assume

α ∈ Pγ . For a regular cell complex, if γ is a face of a cell β
such that dim(γ) = dim(β )−2, then there exists exactly two

cells σ1,σ2 such that γ �σ1 �β and γ �σ2 �β . Without loss

of generality, we relabel σ1,σ2 as α,α ′. Since (α,β ) form a

pair and not (α ′,β ), we have Fw(α
′) < Fw(α). Hence, it is

sufficient to show that α ′ ∈ Pγ .

Assume that α ′ /∈ Pγ . There exists γ ′ �= γ ∈ K such that γ ′�
α ′ and α ′ ∈ Pγ ′ . This implies Fw(γ

′)> Fw(γ). Since Fw(α) =
Fw(γ)+ ε and Fw(α

′) = Fw(γ
′)+ ε we have Fw(α)< Fw(α

′).
This is a contradiction. Hence, we have α ′ ∈ Pγ and Fw(α

′)<
Fw(α). So, if (α,β ) is a pair then α �=MinF(Pγ) for any γ <α ,

which implies that there is no such pair (γ ,α).

4.4 Computing the MS complex

Once the discrete gradient field is computed, the descend-

ing / ascending manifolds and the combinatorial MS complex

are extracted as a collection of gradient paths. The descending

manifold of a critical point is equal to the closure of all

gradient paths that originate from that critical point. This

is computed using a breadth first traversal of gradient pairs

beginning from the critical point. The ascending manifold is

the closure of the set of gradient paths that terminate at a given

critical point. This is computed using a breadth first traversal

of reversed gradient pairs beginning from the critical point.

A combinatorial connection between any two critical cells is

established if there is a gradient path that connects them.

Figure 5c shows the combinatorial MS complex extracted

from the gradient field shown in Figure 5b. For multicore
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environments, multiple BFS traversals from critical points are

launched. The number of parallel BFS traversals launches

usually depends on the number of cores.

Since the BFS algorithm is essentially a serial algorithm

we adopt a different strategy in the case of massively parallel

environments. This strategy is applicable for 2D discrete

gradient fields. 2D discrete gradient paths that originate at

maxima split but do not merge and discrete gradient paths

that terminate at minima merge but do not split [5]. Thus,

every gradient pair on a path from a maximum is immediately

preceded by a unique source which is either another gradient

pair or the maximum. Similarly, every pair on a path to

a minimum is succeeded by a unique destination which is

either another gradient pair or the minimum. The traversal

is now posed as an iterative search for the source/destination

extremum of every gradient pair. For completeness, maxima

are their own source and minima are their own destination.

Each work item (thread) is mapped to iteratively determine

the eventual source/destination of a gradient pair. At every

iteration the source of gradient pairs that are on gradient paths

originating from a unique maximum is updated to the source of

its source. Similarly, the destination of gradient pairs that are

on gradient paths terminating at a unique minimum is updated

to the destination of its destination. The iterations stop when

all pairs find their unique source or destination. For a path

of length n, the first iteration updates each node’s source to

the gradient pair at a distance two. The next iteration updates

it to the gradient pair at a distance four. Thus, the process

terminates in log2(n) steps. Though the worst case asymptotic

complexity of this traversal is n log2(n), in practice we observe

that traversal requires log2(n) time due to the parallelization.

The combinatorial MS complex is computed by querying the

source/destination of gradient paths that originate/terminate

at facets/cofacets of saddles. The geometry of extrema is

available as a disjoint set of trees rooted at them. However, the

geometry of saddles is not directly available and is extracted

by serial BFS traversals.

4.5 Analysis and Correctness

In this section, we argue for the correctness of the MS complex

computed by our algorithm. Specifically we show that the

computed critical points and gradient pairs are close to those

of the PL function.

4.5.1 Closeness of critical cells to PL critical points

The weighted discrete function Fw(α
d) is defined recursively.

In order to obtain a simple expression, we introduce Gi
0(α

d)
that allow us to unravel the definition of Fw(α

d) up to

i levels of recursion. Let Gi
0(α

d) denote the G0 function

applied i (≥ 0) times on a cell αd . For example, G2
0(α

d) =
G0(G0(α

d)),G0
0(α

d) = αd . Define ε-lower star of the vertex

v as the set of cells σd such that v = Gd
0(σ):

εLST (v) = {σd ∈ K | v = Gd
0(σ

d)}

We note that if K is a simplicial complex, v is a vertex and the

function is a PL extension of samples at the vertices, then the

ε-lower star of v is exactly the lower star of v (See Figure 6a).

(a) (b)

Fig. 6: (a)εLST (cells in purple) and εLLK (cells in dark gray)

of a vertex, for a function sampled at the vertices. Other cells

are shown in light gray. (b) Gradient vector pairs and critical

cells determined by the algorithm ASSIGNGRADIENT.

Similarly, define ε-lower link (εLLK) of a vertex v to be the

set of faces of cells in εLST (v) that are not incident on v.

We show that any gradient algorithm that pairs cells within

the ε-lower star of a vertex v must retain at least β̃k−1 index k

critical cells in εLST (v), where β̃k is the reduced Betti number

of εLLK(v).
We first claim that the filtration K induced by attaching cells

in increasing order of Fw is a valid. Furthermore, we claim that

the cells in εLST (v) are ordered contiguously by Fw. The first

part of the claim is true because faces of a cell always have

function value lower than that of the cell (by definition of

Fw) and therefore appear before the cell in the ordering. For

the second part, consider any γd /∈ εLST (v). We can express

Fw(γ
d) as

Fw(γ
d) = Fw(G

d
0(γ

d))+
d

∑
i=1

ε i ×Fw(G1(G
d
0(γ

d)))

by successively rewriting the leading term. Since γd /∈ εLST (v)
we have that Gd

0(γ
d) �= v. By writing the expression for Fw for

all cells σd′ ∈ εLST (v) in the above form, the comparison

of γd and σd′ will be dominated by the comparison of cells

Gd
0(γ

d) and Gd′

0 (σd′). Hence γd would precede or succeed all

cells of εLST (v).
Next we observe that algorithm ASSIGNGRADIENT pairs

cells within the εLST of a vertex v, i.e. if (αd ,σd+1) is a pair

then both αd and σd+1 belong to the ε-lower star of some

vertex v and no other vertex v′. This follows from the definition

of εLST and Gi
0. Thus the same pairs are determined for a

given ε-lower star attached to a given ε-lower link regardless

of other cells in the cell complex.

Consider the hypothetical situation where a vertex v′ pre-

cedes v in the filtration such that εLST (v′) is a duplicate of the

εLST (v) attached to εLLK(v). We will relate the reduced Betti

numbers of εLLK(v) to the increase in the Betti numbers of the

complex after attaching v and its ε-lower star (See Figure 7).

Let Kv′ denote the cell complex obtained after attaching v′ and

its ε-lower star. Since the gradient pairs are determined within

the εLST (v), they are not affected by gradient pairing in the

rest of the complex. Assume that the gradient field is optimal

in the sense that the number of critical points of index k (nk) is

exactly the same as the kth Betti number (βk). In this scenario

the net effect of attaching εLST (v) is the creation of β̃k (k+1)
cycles. For example if β̃−1(εLLK(v)) = 1, attaching εLST (v)
would create a new component. In other words it increases
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Fig. 7: A cell complex

where a duplicate of

εLST (v) precedes v in the

filtration and is attached

to εLLK(v).

the β0 of Kv′ by one. Similarly if β̃0(εLLK(v)) = c, attaching

εLST (v) would increase β1 of Kv′ by c. If β̃1(εLLK(v)) = 1,

attaching εLST (v) would increase β1 of Kv′ by 1. Thus

attaching εLST (v) causes an increase in βk of Kv′ by β̃k−1.

Since the gradient field was optimal before εLST (v) was

attached, nk should increase by at least β̃k−1 to satisfy the

weak Morse inequality (nk ≥ βk). Since the only new cells

were that of εLST (v), the new critical points must be present

within the εLST (v).

This result shows that PL critical points are approximated

by a critical cell incident on the PL critical vertex. Further-

more multi-saddles are also approximated with the appropriate

number of critical cells.

4.5.2 Steepest descent

Consider a PL function defined on a simplicial complex whose

function value at vertices is known. The gradient pairing

algorithm will attempt to pair a cell αd with a cell σd+1,

where σd+1 is a simplex formed by adding a vertex to Vα and

the new vertex has function value lesser than all vertices in

Vα . For every point on αd , the gradient of the PL interpolant

is oriented towards the new vertex. Hence the gradient lines

originating from the interior of αd , are oriented towards the

interior of σd+1. Because of the discontinuity of gradients of

PL interpolants on cells that are shared, the gradient algorithm

will pair the d+1-cell attached to αd with minimum function

value. This will be the d+1-cell attached to αd with minimum

function value on the vertex not present in Vα , therefore

maximizing the magnitude of the gradient. Hence the gradient

vector pairing agrees with the maximal PL gradient on a

simplicial complex.

In the case of two dimensional rectilinear grids using a

bilinear interpolant it is seen that the same argument applies

except for the case when the quad contains a face saddle. In

this case we see that gradient at the mid point of the maximal

edge has steepest descent gradient towards the quad element.

Figure 8 shows the comparison of the continuous gradient

of the analytic function sin(x)+sin(y) evaluated at the vertices

of the two dimensional rectilinear grid, with the discrete

gradient computed on the grid using the gradient algorithm.

The discrete gradient pair arrow are aligned along edges for

vertex-edge pairs and orthogonal to edges for edge-quad pairs.

In both cases, they agree with the gradients computed for the

analytic function at mesh vertices.

5 OUT-OF-CORE ALGORITHM

We now discuss the computation of the MS complex of 2D

scalar functions with a focus on large datasets that do not fit

entirely in memory. The computation is done in five stages (see

(a)

(b) (c)

Fig. 8: (a) Gradient field of the function sin(x) + sin(y)
evaluated at mesh vertices. (b) Close up view of the gradient

field. (c) Discrete gradient vectors for function sampled at

vertices.

Figure 9). The data is first hierarchically partitioned into sub-

domains blocks. The partitioning stops when the sub-domains

are small enough to fit in memory.

5.1 Gradient and MS Complex on sub-domains

The computation of the gradient proceeds as outlined in the

previous section. To obtain a equivalent gradient field on a

subdomin, the gradient algorithm needs only a cell’s cofacets

and their facets in the domain. The cell complex of the

sub-domain is extended to include the set of cells that are

incident on the shared boundary of sub-domains and gradient

is computed only on the initial sub-domain cell complex (see

Figure 9a). Thus, we obtain identical pairings for cells along

the shared boundary when we process all sub-domains that

share the boundary cell.

To facilitate merging we mark all gradient pairs that cross

a shared boundary as critical (see Figure 9a). We establish the

validity of this step in the following section.

5.2 Merging sub-domain MS complexes

Next, we merge the sub-domains in a bottom up fashion by

identifying boundary critical point pairs and canceling them

when they enter the interior of the union. The cancellation

repeatedly merges the MS complex across the sub-domains

till we obtain the MS complex of the input function.

We first establish the equivalence of gradient paths and the

paths computed by a sequence of cancellations. A consequence

of this result is that we can process the sub-domains in parallel
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(a) Gradient and MS complex on sub-domain (b) Merging and Simplification

(c) Traversing merge history (d) Extracting geometry

Fig. 9: MS complex for large domains is computed in five stages. Data is first split into sub-domains. (a) Gradient is computed

on sub-domains. Unpaired cells and gradient pairs incident on shared boundary are marked critical. Combinatorial MS complex

on each sub-domain is computed. (b) The combinatorial MS complex of the domain is computed by identifying and canceling

gradient pairs incident on the shared boundary. (c) The history of merge cancellations is traversed to reveal the incidence of

critical cells across sub-domains. This information is used to trace the geometry of the cells of the MS complex. (d) For each

sub-domain, the geometry of the descending and ascending manifold of an incident critical cell restricted to the sub-domain

is extracted.

and later merge them to obtain the MS complex while ensuring

combinatorial and geometric equivalence.

ORDER INDEPENDENT CANCELLATION LEMMA. Let

p,α0,σ0, . . . ,αi,σi, . . . ,αk,σk,q denote a gradient path

between two critical points p and q. This gradient path

is faithfully traced independent of the scheduled order of

boundary critical point pair cancellations.

Proof: In the above gradient path, canceling pair αi,σi

results in establishing the connectivity between σi−1,αi+1.

Iterating forward, we see that cancellation of any pair along the

gradient path successively establishes connectivity between the

preceding and succeeding surviving critical point. Eventually

the critical points p,q are connected by an arc. Thus combina-

torially, this is equivalent to the MS complex obtained without

by tracing a path directly from p or q without any intermediate

step of creating boundary critical points. The same argument

extends to prove the resulting geometric equivalence.

As a consequence of the above lemma, we can schedule

cancellations of boundary critical point pairs in any order.

Gyulassy et al. [11] also employ a divide and conquer ap-

proach to compute the MS complex. However, they partition

the domain into “parcels” that do not share common boundary.

The merge step, therefore, has to process new cells and

may introduce new critical points. Hence, they are not able

to ensure the geometric equivalence of the MS complex.

Our partitioning scheme is the central reason for the Order

Independent Cancellation Lemma to be true.

5.3 History Tree

One of the implications of declaring all boundary cells and

their outgoing / incoming pairs as critical is the creation of

a large number of critical cells. Since the merge operation

involves cancellation of critical points, the ascending and

descending manifolds need to be computed and merged.

However the number of cells that are present in the ascend-

ing / descending manifold of a critical point is O(n), where

n is the number of cells in the cell complex. This leads to a
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large memory foot print of intermediate complexes.

The artificial critical points represent regions through which

flow enters / leaves a sub-domain. Therefore, recording the

combinatorial connectivity to a surviving critical point at the

boundary is sufficient to compute the ascending/descending

manifold restricted to the sub-domain. We record this infor-

mation during the merge step and are therefore able to compute

the 1-skeleton of the MS complex with a small memory

footprint. The recorded combinatorial connectivity between

boundary critical points is used later to extract the geometry

of the gradient paths. We now describe how we traverse the

history of cancellations to compute the geometry of the arcs.

Consider a series of k cancellations to determine the com-

binatorial connection between two critical points pi and qi−1.

The series of canceled critical point pairs is equal to the

gradient path connecting the two critical points:

p, . . . ,α i−1
k−1,σ

i
k−1, . . . ,α

i−1
k ,σ i

k, . . . ,α
i−1
k−2,σ

i
k−2, . . . ,q

Consider the final cancellation that determines the connection

between p and q. Before cancellation, p is contained in as-

cending connections of αk and q is contained in the descending

connections of σk. Before the cancellation of the (k − 1)th

pair, α i−1
k is connected to σ i

k−1. By retaining this information,

after the kth cancellation we can infer that σk−1 is connected

to all surviving critical points in the descending connections

of αk’s pair. Extending this further to previous cancellations,

we see that if we traverse the critical point pairs in reverse

order of their cancellations, we can infer the entire geometry

of the gradient path. This is accomplished by traversing the

history tree, which records all merges, in a top-down manner.

At the leaf of the history tree, we obtain the combinatorial

connections from the BFS traversal within the sub-domain.

5.4 Geometry extraction

The history tree traversal returns the points of entry and exit

of all critical cells that have gradient entering or leaving the

sub-domain. Thus the geometry of the descending/ascending

manifold of a critical cell restricted to the sub-domain can be

computed by tracking the gradient from the cells of entry/exit

that are on shared boundaries. If the critical cell is contained

in the sub-domain then the geometry is computed as indicated

in the first stage.

6 IMPLEMENTATION

In this section we briefly outline our experimental setup for the

various stages of our algorithm. We proceed with two setups,

one leveraging multicore architectures and another targeted

at massively parallel architectures, namely the GPU. We use

the OpenCL framework for programming the GPU. We report

the implementation and results for rectilinear two-dimensional

grids.

6.1 Gradient Pairs and MS complex on sub-domains

Since we work with grid domains, we use the centroids of

cells to represent them. We scale the cell identifiers by two

so that they are integral values. Therefore cell information is

maintained as two-dimensional buffers with the same size as

that of the domain. This simplifies queries for facets / cofacets,

which can now be computed using arithmetic operations with

boundary conditions.

For the gradient information we require one buffer to store

the pair of the cell and a flag buffer to store whether the

cell is critical or paired or both in the case of boundary

critical pairs. While working with the GPU for the gradient

assignment we need to mirror these buffers in both the CPU

and GPU . This is required only for geometry extraction in

the final stage of our algorithm. The counting and collection

of critical points from the flag buffers is posed as the parallel

prefix sum problem [2], [3]. The prefix scan implementations

have asymptotic complexity of O(nlog2(n)) but in practice

we observe that traversal requires log2(n) time due to the

parallelization.

For the CPU implementation, the standard BFS algorithm

is used considering cells as nodes and edges between cells

if they are pairs or if they are adjacent on a gradient

path. For the GPU implementation, we adopt the iterative

source/destination search described in Section 4.4. Since there

is an issue of concurrent updates, we use two buffers to store

the source/destination information. Each iteration reads the

source/destination information from one buffer and updates

it to the second buffer. In the next iteration the roles of the

buffers are swapped. A global boolean is initialized to f alse

and set to true if a cell updates its buffer.

6.2 Merging

To enable stream processing of sub-domains we recursively

divide the domain along a single axis. The desired level of

subdivision is adjusted to accommodate the largest possible

sub-domain within memory (GPU memory in the case of the

GPU implementation). The recursive subdivision leads to a

hierarchical structure with 2d sub-domains, where d is the

depth of the recursion, and 2d − 1 intermediate nodes that

represent the hierarchy. Merging of intermediate nodes in each

level can be done in parallel.

6.3 Simplification

We perform a persistence based simplification of the final

MS complex. The simplification affects the MS complex

computed for each sub-domain. The MS complex of a sub-

domain is updated by identifying surviving critical points,

deactivating them, and introducing new critical points that may

have become incident on the sub-domain. Since simplification

by persistence does not require any geometry computation,

we simplify before we traverse the history tree and push the

results down the tree.

6.4 History tree

The history tree that records the merges is traversed to

compute the incidence of surviving critical points on sub-

domain boundary. Because of the hierarchical decomposition,

the traversal can be done in parallel for all nodes within a

level.
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(a) CPU out-of-core (b) GPU in-core (c) GPU out-of-core

Fig. 10: Time required to compute the MS complex for the wgauss dataset cumulated over the five stages of the algorithm.

(a) The 8192× 8192 data does not fit in CPU memory. (b) Data fits in CPU but not GPU memory. (c) Data fits neither in

CPU nor GPU memory.

6.5 Fast Geometry Queries

Once we know the combinatorial structure of the MS com-

plex at the boundary of a sub-domain, the computation of

descending and ascending manifolds is essentially a traversal

of gradient paths from these entry and exit points along with

the paths that originate from or terminate at the critical point.

In our implementation, we track only the surviving saddle

points, because maxima partition the diverging gradient flows

and minima partition the converging gradient flows. In our

experiments we recompute the gradients because we found

that the disk latency involved in storing the gradient and

retrieving them later is costlier. This is because, recomputing

the gradient requires only a single read of the function values

at the vertices.

7 EXPERIMENTAL RESULTS

We now present results of our experiments on both synthetic

and the hurricane Isabel data set from the Vis 2004 con-

test [26]. All experiments were performed on a workstation

with two Intel Xeon quad core processors, 8GB RAM, and

nVidia GeForce 260 GTX graphics card which has 196 cores

and 896MB RAM. The first synthetic data set sine is a

sinusoidal function sampled over a rectilinear grid. The second

synthetic data set wgauss is a 2D Gaussian distribution

centered at the origin and weighted by a radially decreasing

sinusoidal curve. The wgauss dataset contains large number

of critical points and degenerate regions which help to stress

test our algorithm. We study the performance and scalability

of our algorithm using these two synthetic data sets.

Figure 10a shows the speed up obtained for wgauss sam-

pled on an 8192×8192 grid for varying number of processors

using the CPU implementation. Time is cumulated over the

five stages of the algorithm. The data is processed out-of-

CPU-core (not all data is present in CPU memory) to conserve

memory. The graphs indicate near linear scaling with the

number of cores. We observed a similar execution profile for

the sinusoidal dataset with 16384×16384 data points. The MS

complex was was computed in 3 minutes and 6 seconds.

To study the scalability of the algorithm with input sizes we

conducted experiments with the wgauss dataset computed on

(a) (b)

(c) (d)

Fig. 11: (a),(c) The full resolution descending and ascending

Morse complex for the wgauss dataset for a grid size of

1024×1024. (b),(d) The simplified descending and ascending

Morse complex simplified upto 10%. As expected the descend-

ing manifolds partition the domain into regions that correspond

to peaks and the ascending manifold partition the domain to

regions that correspond to valleys.

various grid sizes. Figure 10b shows results from the GPU

execution for the wgauss for varying grid sizes and the

corresponding speed up. Here the data is resident in the CPU

memory.

Figure 10c shows results from an out-of-CPU-core execu-

tion on wgauss using the GPU for varying domain sizes.

The size of the sub-domains is restricted to contain 1 million

points. Figure 11 shows the full resolution and simplified

descending and ascending Morse complex of the wgauss

dataset with a grid size of 1024×1024.

Hurricane Isabel was a strong hurricane that struck the west

Atlantic region in September 2003. We consider a simulation

of this event [26]. The domain is a 3D rectilinear grid of

size 500×500×100 available over 48 time steps. We extract

a 500× 500 grid representing the land/sea surface to study

the pressure (Pf), temperature (TCf) and magnitude of wind
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(a) Pressure (b) Wind speed

Fig. 12: Time taken for computing the MS complex for all time-steps for simplification thresholds of 0.1%, 1%, 5% and 10%

for (a) Pressure and (b) Magnitude of wind velocity fields. Time taken for stages one, three and five are shown in the breakup

along y-axis. Stages two and four are not present since the data for each field of each time-step fits in GPU memory. Time

taken for geometry extraction in stage five reduces drastically if the MS complex is simplified.

(a) (b) (c)

Fig. 13: (a) The wind speed field of the 1st time step over the surface (function normalized to [0,1]). (b) The full resolution

ascending Morse complex (c) The simplified MS complex retains significant critical points. The most persistent minimum

corresponds to the eye of the hurricane.

velocity fields over time. We compute the MS complex for all

three scalar fields in each time step using our parallel algorithm

and track significant features in the data. Figure 12 shows

the execution profile, along with the stage wise breakup of

time, for the pressure and magnitude of wind velocity fields,

for various simplification thresholds. Since the data in each

field of each time-step fits in GPU memory, the merge and

history tree traversal stages are not present. We observed that

the time required for computation of the MS complex for most

time steps was below 0.5 seconds. Without simplification, the

time required to compute the MS complex increased up to 6

seconds. However, it dropped below 0.5 seconds for several

time steps once we simplified critical pairs below a 0.1%

persistence threshold.

Figure 13 shows the decomposition of the domain into

ascending manifolds of the critical points of wind speed.

Our implementation supports the interactive extraction of

these manifolds using a parallel algorithm. We simplify the

wind speed field within each time step to identify significant

features after removing all the small features. Figure 1 in

the appendix shows the result of this experiment using the

wind speed, where we track the ascending manifold of the

most persistent minimum corresponding to the eye of the

hurricane. Currently, we are able to process each time-step

of the speed within 0.5 seconds for simplification threshold of

above 5%, thereby supporting interactive analysis of the data.

With additional optimizations we hope to be able to further

reduce the processing time and hence enable real-time analysis

and feature tracking on larger time-varying data.

8 CONCLUSIONS

We have described the first parallel algorithm to compute

MS complexes. Our approach is based on two key lemmas

on the gradient-based pairing of cells and critical pair can-

cellations. The algorithm performs well on both multicore

environments like the CPU and massively parallel architectures

like the GPU. We describe fast methods for querying the

MS complex, in particular to extract the ascending / descend-

ing manifolds of a query critical point.

In future, we plan to extend our implementation to three-

dimensional grid and unstructured meshes. The algorithm

can be implemented for multicore CPUs without change.

For GPUs, the key challenge is the design of an efficient

parallel BFS procedure. Unlike 2D discrete gradient fields

that decompose into trees (Section 4.4), 3D gradient fields

do not. Specifically the discrete gradient field restricted to

paths that originate at 2-saddles or terminate at 1-saddles is,

in general, a directed acrylic graph whereas discrete gradient

paths that originate/terminate at extrema form a tree. We

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, SEPTEMBER 2010 14

believe a synergistic approach, using both the CPU and the

GPU should yield good performance.

Our algorithm does not implicitly handle noisy data. This

can be a problem in case of large datasets because of the large

number of low persistence critical points which will have to

be tracked through the various stages of the algorithm. For

large noisy datasets, we advocate the approach adopted by

Gyulassy et al[11], where a first round of simplification is

done to eliminate low persistence critical point pairs within

sub-domains before they are merged.

The development of fast parallel methods for other tasks like

creation of a multi-resolution representation and segmentation

using the MS complex are also interesting open problems.
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[9] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Trans.

Graph., 9(1):66–104, 1990.

[10] R. Forman. A user’s guide to discrete Morse theory. Séminaire
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