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Integrating Isosurface Statistics and Histograms

Brian Duffy, Hamish Carr Member, IEEE, and Torsten Moller Member, IEEE,

Abstract —Many data sets are sampled on regular lattices in two, three or more dimensions, and recent work has shown that statistical
properties of these data sets must take into account the continuity of the underlying physical phenomena. However, the effects of
quantization on the statistics have not yet been accounted for. This paper therefore reconciles the previous papers to the underlying
mathematical theory, develops a mathematical model of quantized statistics of continuous functions, and proves convergence of
geometric approximations to continuous statistics for regular sampling lattices. In addition, the computational cost of various approaches
is considered, and recommendations made about when to use each type of statistic.

Index Terms —histograms, frequency distribution, integration, geometric statistics
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1 INTRODUCTION fects can be dealt with by applying Geometric Measure Theory
integrate over the quantized interval volumes (Sectipn 4
e principal contributions of this paper are thus:

1) We show the importance of understanding Lebesgue
integration and Federer’s Co-Area formula in relation to
guantized data. However, while Lebesgue integration is
necessary to understand the mathematical foundations of
histograms, Riemann integration suffices for our proofs
(Section 4).

) We introduce the necessary correction for quantized
statistics and demonstrate they are in fagiume statis-
tics computed by Riemann integration (Section 6).

3) We provide a formal proof of convergence for quantized

statistics and geometric properties based on Riemann
integration (Section 6).

M ANY areas of science, engineering and medicine stuz‘&
continuous phenomena with scalar functions sampled
finitely in two, three or more dimensions. Even where dis-
continuous boundaries are of interest, sampling theotly sti
assumes that the underlying phenomena and the sampling
process involve functions that are continuous everywhere o
nearly everywhere. Moreover, many algorithms in visualiza
tion and analysis depend heavily on computing statistics or
distributions, and these have historically been basedsurete
samples rather than the underlying phenomenon.

There are three reasons why statistics in visualizationt mus
account for inter-sample continuity. First, histograms aften
noisy, which impedes the ability to detect features of ieséer
and this is directly related to the discretization of the phng
process. Second, visualization methods such as direcineolu We contribute further by splitting scalar field statisticsoi
rendering depend on continuity in order to integrate opticBV0 groups,volume statistic§Sections 5 and 6) ansurface
properties_ Th”'d' multivariate data gives multi-dimemsl statistics (SeCtion 7) We then show the difference between
histograms (i.e. scatterplots) with many more bins, aggiay these (Section 9) and summarise which statistic to usei{®ect
the problems caused by discretization. Continued imprevem 11) based on computational performance (Section 10).
of visualization techniques therefore depends on a sotid-th We therefore start by reviewing previous work (Section
retical footing for calculating distributions from datanspled 2) and the mathematical notation (Section 3) necessary for
from continuous or near-continuous functions. Federer's Co-Area formula (Section 4). Supplementary mate

In this paper, we provide this theoretical footing by shayin'ia!s refating to Section 4 are in Appendix | and II. Finally,
rigorously how histograms (including multi-dimensionas-h Appendix Il gives a detailed account of all data sets and
tograms) measure geometric properties, and how to compli@licit functions used for evaluation throughout this wor
better approximations efficiently.

In practice, this starts with the recognition that statstwf 2 RELATED WORK
sampled continuous functions are dependent on discrieiizata the heart of this work is the relationship between histmgs
in both domain and range. Range discretization (quand@ti o0y other distribution statistics, geometric propertiésso-
means that level sets are interval volumes (Section 5).ewhilonors; considerations of algorithmic efficiency, ancmee
domain discretization (sampling) means that histograms §Reqry. We will discuss measure theory in the next sectieh an
proximate quantized interval volumes (Section 5). These L iew work in visualization on statistics, geometric pedges,
and algorithmic efficiency in this section.

e B. Duffy is with the Oxford Centre for Collaborative Applisththematics Statistical analysis of scalar fields is used in visualorati

(OCCAM) at the Mathematical Institute at the University off@d : : ;
e H. Carr is with the Visualization & Virtual Reality Group atbé School of for purposes S_U_Ch as feat_ur_e detection in large V(_Jlumemc
Computing at the University of Leeds data sets. Traditionally, statistical methods such a®iains

o T. Moller is with the Graphics, Usability, and Visualizati (GrUVi) Lab are used to approximate probability distributions of scala
at the School of Computing Science at Simon Fraser Uniyersit field data. Initially, statistical moments of distribut®mvere



extracted, corresponding to statistically significanttdees. Rangep Embedding Space E = IR™" "
Other statistical moments, such as variance and standdr=R
deviation, skewness and kurtosis proposed by Tenginakai et
al. [1], [2], have also been used to detect salient features. y
Histograms are used in transfer function design [3] to a&ssig B
optical properties to isovalues. Multidimensional histogs
have been used by Kindlmann et al. [4], [5], [6] and by
Kniss et al. [7], [8] to exploit relationships between islues
and gradients. In a further variation, local histogramsewer
proposed by Lundstrom et al. [9] to allow users to examine
sub-regions of the volume in greater detail.
Geometric properties of isosurfaces were introduced by (7 Hx(y
Bajaj et al. [10], [11] instead of histograms in visual irfitees. -
Algorithmically, Shen, Hanson & Livnat [12] used theFig. 1. Here we show the relationship between the domain
range of isovalues in each cell (the span) in data structupés= IR™, the rangeY = IR", and the embedding spaée=
to accelerate isosurface extraction. Similarly, Fujish& IR™™". Note how the inverse image *(y) can exist either as
Takeshima [13] extended a measure of spatial coherence fraraubset f ~1)g(y) of F C E or a subset f 1)x(y) of AC X.
grey-scale images in 2D to volumetric data in 3D, using the
difference between adjacent samples to measure coherefe#, convenience, we shall assume thais of size 1 - more
and one of the principal purposes of this work was to improyaecisely, ofm-dimensional Hausdorff measure 1 (see below).
the algorithmic performance of visualization techniques. Lipschitz Function: As defined in Federer [17], Lipschitz
Carr et al. [14] identified the fundamental relationshipinctions generalize the idea of functions of limited geadi
between statistics, geometry and algorithmic performancel-€. continuous functions. Thus, a functidn X — Y is a
introduced continuity, and argued that algorithmic préiper Lipschitz function from a metric spac¥ to another metric
such as active cell count could substitute for histograms. spaceY iff Va,b € A there is some finite numbét such that:
Scheidegger et al. [15] corrected errors in detail of thiskwo
and showed that geometric surface statistics do not metisire dv((a), f(b)) < Kex(a,b) @
same properties as the histogram. They adjusted the gagomettheredx and dy are the metrics foX andY respectively.
surface statistics via Federer's Co-Area formula to acttam Although this definition applies to a variety of metric spsice
gradient changes over the scalar field, approximating tadigr we are primarily interested in Euclidean spaces, and will
ent with the span of the isosurfacing cells. Although based therefore assume thalk and dy are Euclidean metrics and
geometric measure theory, this work approximated measutkat the functionf is Lipschitz.
with discrete computations and overlooked the existence an Functions as Manifolds. For a Lipschitz functionf :
contribution of cells with no span (i.e. zero gradient). ACX —=BcCY, we can think off as defining a seF =
Bachthaler& Weiskopf [16] extended the continuous mode{gXt, ..., Xm,Y1,.-.,¥n) € E© (X1,...,Xm) € A, f(X1,...,Xm) =
to multidimensional histograms, markedly improving seatt (Y1,...,Yn) € B}. Sincef is Lipschitz,F will be anm-manifold
plots for meshes representing continuous phenomena. embedded in them-+ n-dimensional space constructed by
In summary, work in this area has unified the roles df = IR™ x IR", the direct sum of the space$ = IR™ and
statistics, geometry, algorithmic performance and meas)f = IR". For convenience, we will refer to this space as the
theory, but left several elements unresolved: quantimaitio €mbedding space Bf X andY. Wherem= 2 andn= 1, then
the range, the impact of cells with zero span or gradient, aXd= IR? is the infinite plane shown in Figure & is a region
whether algorithmic approximations can be guaranteedv® gion the plane, and : A— B is a height function defined on
the same answer as the histograms. We therefore first developvhereB C IR is the range of height values taken on by
some notation and summarize the relevant mathematics. Moreover, the embedding spaBe= Ax B C IR* x IR! = IR®
is a three-dimensional space in which the function defines a
terrain, andrF is the terrain itself, embedded .
3 DEFINITIONS & NOTATION If we then projectF perpendicular toX = IR™, it projects
Since the proofs that follow use formal definitions of inteento A, but if we projectF perpendicular toY = IR", the
gration, we state the relevant terms here, referring reater projection of F must beB. For any giveny € B, we can then
Federer [17] or Morgan [18] for further information. We dhaldefine the inverse imagé=1(y) = {xc A: f(x) =y}, i.e. a
stick as strictly as possible to Federer’s notation, algioulevel set in the domaiA. However, we can see from the figure
there are respects in which it could be simplified. that it is also meaningful to discuss the inverse image as a
We also note that the geometric measure theory is rabset ofF: f~1(y) = {(x,y) €E:x€ A)ye B, f(x) =y}. To
restricted to functions with one-dimensional domains araloid confusion, we will usefy'(y) to refer to the inverse
ranges, but applies more generally to functions with aabjtr image inA, but f,gl(y) to refer to the inverse image in the
dimensionality. We therefore start by assuming that we haeenbedding space. Thus, while our immediate interest imglv
a functionf :AC X =IR"—= BcCY =IR" from a subsefA scalar fields, the analysis also applies to multi-variategief
in the domainX = IR™ to a subseB in the rangeY = IR". the formf : X — Y, as shown by Bachthaler & Weiskopf [16].

Domain

X=IR"




Riemann Integration: In real analysis, Riemann integration®anget Embedding Space E = IR"™""
is the most commonly used form. To approximate area unde,

a curve, the x-axis (the domain) is divided into segments. , Y N——— (S5 el
Rectangles are constructed on each segment to fit under (o g w

over) the curve, and the area approximated as the sum of thg B

areas of the rectangles. As the segment length approaatoes ze /4

the sum approaches the area under the curve: from below if
rectangles are fitted under the curve, the lower bound, from
above if rectangles are fitted over the curve, the upper hound

This approach to integration uses Euclidean cross products
between segments in the domain and range of the function
to construct measuring patches, i.e. for IRl — IRl the . . o
corresponding patch is of dimensit®! x IR = IR2, a rectan- Fig. 2: nge we quantize the same funct@ras in Figure 1
gle. Higher dimensional integration can be performed usif§ @ functionfq. In fo, only quantized valuesc B have non--
the same principles by taking rectangular segments in tREIPtY inverse images. Quantization thus replaces the olenif
domain and range, where a rectangle is understood to medn ¥ith @ piscewise manifoléq whose pieces are the inverse
Euclidean cross product of arbitrary dimensions. images (f,")e(i). In the domain, the corresponding inverse

For m-dimensional domains ana-dimensional rangesy  images become interval regioms = (fo*)x(i) defined by
dimensional patches are used instead of segmentananct  isocontours at+0.5 andi — 0.5 of the non-quantized function.
dimensional regions instead of rectangles. We write:

Domain

IRm

- m open-ball covering ofA. The Hausdorff measure is usually
/Af(x)d X (2)  considered the best measure of object size, as it matches

. . more general topological expectations. For a set of dinoensi
where the exponentn can be added when integrating over g Polog P

more than one dimension. While sufficient for most roblemm embedded in a space of dimensi n, the Hausdorff
) . ; ' . oL P Measure is alwaysrdimensional, as it measures the intrinsic
Riemann integration breaks down for certain functions énat

well-behaved in the range but not in the domain, size of the set. Since we will end up with different spaces

Squeeze Theorem: For a given function (x), convergence in which sets can be measured, we will make explicit the

: . .~ space in which we measure by writing3{" to indicate the
is shown by trappind (x) between upper and lower bounquwgdimensional Hausdorff measzre in ?ﬁ(spa{ce
Riemann integrable functiong(x) < f(x) < h(x) for all x

in an open interval containing. excent bossibiw — a. If Hausdor ff Integration: We can also integrate with respect
P 8. Pt P = a to Hausdorff measures. The process is similar to Lebesgue

limx—ag(X) = limx_ah(x) = L, then the Squeeze Theorem . . . . ;
forces lime .o f(x) — L, and similarly for left and right limits. integration, using open balls instead of boxes, and is &vritt

We note that this is a sufficient condition for convergence of / f(x)d A ()
Riemann integrals: as we are using it to prove our result, we A
do not require it to be a necessary condition. where the subscript indicates the space in which we measure.

Lebesgue Measure: To remedy the flaws in Riemann Besicovich Covering Theorem: To link the Hausdorff
integration, Lebesgue stepped back from integrating fansf measure to the Lebesgue measure, the Besicovich covering
and started with the simpler problem of measuring the size ipleorem states that measures based on patch shapes other tha
the setB. Instead of a limit as patch size approached zergpen balls converge provided that there is a constant ratio
Lebesgue use@orel sets collections of subsets oA which between the patch size and open balls.
are closed under countable union or intersection. Proviidad ~ Jacobian: A generalized version of gradient, the Jacobian
a Borel set covers the set of interest, the Lebesgue measygrehe corrective factor that relates elements of regionghef
Z(A) of A replaces the concept of the limit by taking thelomain of a function to images of the function. ForIR™ —
minimum sum of sizes of Borel sets that covérs IR", differentiable atx, the Jacobian is based on thex n

Lebesgue Integration: To integrate a Lipschitz function differential matrixDf of the partial derivatives of each of the
f(x) overA, Lebesgue integration computes the minimal sum output variables with respect to tmeinput variables.
of sizes of the Borel elements multiplied by the valuef ¢X) The k-dimensional Jacobian of, written Jf(x), is the
at the centre of the Borel element. When Lebesgue integratipaximum k-dimensional volume of the image undBrf of

is explicitly intended, it is written as: a unit k-dimensional cube as described by Morgan [18]. If
m rankDf(x) <k, then(Jf(x))? is the sum of the squares of the
/Af(x)dz X (3)  determinants of th& x k submatrices oD f as per Morgah

Lebesgue measures and integration are a key aspect of %e&on_venlently, .Wht.-:‘ren =1 (ie. T is a scalar f|eld),. thg

metric measure theory and are discussed in Section 4.1. acobian _matr|x is simply am x 1 v_ector, and the Jacobian is
Hausdorff Measure: In general topology, sets are covere(tJhe magnltuc_zle of the gradient d €. ‘Jlf(x.) - ”D.f(X)H' I

with open balls (abstractions of circles / spheres). Witina s m=n=1, f is a curve embedded in two dimensions, and the

ilar definition to Lebesgue measures, the Hausdorff measure tpis gefinition of the Jacobian comes straight from Mords] 3.6,

of an objects7(A) is the sum of the sizes of the minimalwho uses a point differentiable atrather tharx. We usex for consistency.



slope of the tangent line is the Jacobian. For arbitrargnd easy to see that Nearest Neighbour interpolation recaststru
n, the Jacobian measures distortion from the dornfatn the f by assigning the valué(p) to each poinig € Vor(p).
manifoldF. For clarity, Appendix | shows a worked example. Delaunay Cells. Our approximations using geometric prop-
Sampling (Discretization in the Domain): We assume erties are not calculated with the Voronoi cells. Instead,
that the continuous functio : A— B has been sampled atas in Marching Cubes and related algorithms, we calculate
a discrete set oN distinct pointsPy on a regular lattice. geometric properties using the Delaunay c&lk(Py) of the
Since a regular lattice is defined by a setrofindependent point setRy. Formally, the Delaunay compleRel(Py) is the
vectorsVj € X =IR™, j = 1...m, each sample poinp can be set of cells which satisfies the condition that no pointip
written as the weighted sum of integer multiples of the ves;to is in the interior of any closed ball circumscribing any dall
p= 3L wjVj :w; € Z The sethy of sampling points is then Del(Py). A point setPy in X = IR™ is said to be degenerate

all distinct sample pointg; in the domainA: if there is any set o+ 2 or more points fronPy on the
m boundary of any closed ball that contains no other vertitfes.
Av={p=) wVj:wjeZpecA} (5) the point set is not degenerate, then all cell®l(Py) must
=1

be simplices (triangles in 2D, tetrahedra in 3D).

whereN is determined by the number of points on the lattice Where Ry is degenerate, however, cells may be arbitrary
within the domain A. As we will see in Section 5.3, a set ofonvex polyhedra. For Cartesian sampling lattices, theubel
patches covering the domain is induced by the Voronoi celisty cells arem-cubes with sample points as vertices: i.e. the
of the sampling points ify. As N increases, these patche®elaunay cellsare the cells used by marching algorithms.
can then be used for Riemann integration. Boundary Conditions: Voronoi cells at the boundary of the

Quantization (Discretization in the Range): In addition domain may not actually be homeomorphic. We avoid this by
to quantizing in the domain by means of sampling, machimgfsetting the samples by half a lattice unit, i.e. by assgni
representations of data quantize in the range: even floatithgt a point sample occurs at the centre of the pixel rattzar th
point values are quantized at the level of machine epsilon. Rhe corner. The Delaunay cells of these samples are then non-
a scalar fieldf : X — IR, the effect of this is to divide the uniform, as half- and quarter- pixels occur at the boundary.
domain into a set of disjoint regions with distinct values. 1To keep our computations consistent, we therefore make the
2D, where a scalar field can be represented as a terrain in 3nplifying assumption that the function is periodic acrad
quantization results in a new functidg that takes the form of boundaries, resulting iN Delaunay cells of size /N each.
a set of terraces, as shown in Figure 2. Where quantization is
combined with sampling, these terraces then get approzonat
by sets of prismatic columns perpendicular to the domain. 4 FEDERER’S CO-AREA FORMULA

Level Set Measure: Given any functionf, the level set \ye oy turn to one of the major results in geometric measure
measurers measures the size of the_level set for each g'V‘?Heory - Federer's Co-Area Formula [17]. However, the use of
valuey €Y. For any ValL_’e ofy, 1"f (y) is thus the Hausdorff this work in computational statistics and visualizatiors kar-
measure of the inverse image " (y). ied significantly in notation, making the relationship beem

i (y) = 2™ " (7 1(y) (6) publishedi papers unclear. Moreover., there is a significant fl
_ _ ] ) in how this theorem has been applied. We therefore develop
Histogram: For a discrete set of quantized samples, th&e required results directly from Federer's Co-Area Fdanu

histogram is the proportion of the samples with a given valug,q yse Appendix Il to reconcile the notation in previouskwor
The histogram samples are at the centers of Voronoi cells. We

assume that the total volume of the domain is 1 and the size

of a Voronoi cellK is sizgdK) = 1/N (see the discussion of4.1 Lebesgue Measures in Domain and Range
boundary conditions below), as there &teectilinear Voronoi
cells in each lattice, one for each sample. We therefore elef
the histogram oveN samples to be:

As stated above, Lebesgue integration is often used toratteg
Wer the range of a function rather than the domain. This can
be used in several ways, but the simplest is that any intégral
Hn(i) = z sizgK) (7) merely the Hausdorff measure of a particular set. For exampl
f(p)=T,pePy for f(x) : IR — IR, we can measure the ar9§§1f(x)dx between

Voronoi Cells: As previously shown [14], histograms com-the curve and the-axis, or we can measure the s_|zeFofthe
puted for a sampling involve the Voronoi cells of the samplegerIength of a segment df plotted in two dimensions.

For each poinp € Py, its Voronoi cell is the set of points that FOr the purposes of this paper, we are primarily interested
are closer top than to any other sample: in the measure ofF - but as we will see shortly, Lebesgue

o integration can readily be extended to other integrals. &® s
Vor(p) ={qe A:d(q,p) <d(q,p)vp' € AN\ {p}} (8) how various measures relate, we return to Figure 1.
Figure 3 shows samples on a square lattice in two dimensions"ce f is @ manifoldF in the embedding spack, it is
as dots, and their Voronoi cells as squares. Since a regdiafural to measura, B, or F, and to ask how these measures

lattice uses integer-weighted sums of the basis vectots, ¥ refated. To get the measurefofwe take:

Voronoi cells except those at the boundaries will be home- m - m
omorphic and have the same Hausdorff measure. It is then A (A) = Aldf X ©)



For the measure df, we start with Federer's Area Formula Although it might seem that this equation computes the
3.2.3 [17], where for a Lipschitzian functioh: IR™ — IR™"  Hausdorff measure oF, the Jacobian,f(x) used in this

with m< n and an.Z™ measurable sek: equation is not the same as that used in Equation 11. We
. . provide a small example in Appendix | to clarify this issue.
/AJmf(X)di” X:/IRHN(”A,)/)dff y (10)  Moreover, Equation 14 is primarily about measuring a

g . hat iff i h beddi region, rather than integrating a function over that regidris
Morgan [1.] points oqt that Ift s a smoo-t embedding, yask of integration is done by introducing a new function in
then the right hand side of Equation 10 is the HaUSdorIEederer’s Theorem 3.2.12. In this, we take @y integrable

measure off (A), i.e. the left-hand side of Equation 9. Beforgg \ aiued functiorg: X = IR™ — TR (wherelR is the extended
proceeding, we observe that Federer u$eg, m andn to realsIRU {—w} U {w}). Then

refer to different things here and in the Co-Area formula.
We therefore regularize the notation by defining a mapping /g(X)Jnf(X)dgmxz// g(x)d. 2™ "xdLMy  (15)
functiong: IR™ — IR™™" : g(X) = (Xq,...,Xm, f1(X),..., fa(X)) A BJ/f1(y)
which parameterizes the manifofdfrom the regionAin the  and, with subscripts indicating the integrating space:
domain. Sinceg is Lipschitzian withm < m+n, it satisfies _ o
the requirements for Equation 10, and we can compute th g(x)Jnf(x)dfmx:// g(x)dg" "xdL"y (16)
Hausdorff measure df: A BJ(1eW)
m g m This implies several things about the use of Federer's Co-

He'(F) = /Ang(X)df X (11)  Area formula for scalar and multivariate fields and applica-
: . L tions. We defer this discussion to Appendix Il, along with
using the Jacobiadng(x) to correct for the projection. We the relationship between Riemann and Lebesgue integration

give a smalllexample in Appendix | to clarify the hotation, 4 yeconciliation of Federer's notation with that used in
and the relationship between the Area and Co-Area Formull':}.f,e related work. At this stage, we can make the following

It is also possible to compute measures ot (y) in A or in observations:

E: sincey is fixed, fg Lis restricted to a subspace Bfparallel . L
to the domairX, as shown in Figure 1. The Hausdorff measure 1) A!thOUQh _Lebesgue |ntegrat|on_ is more general than
Riemann integration, many practical problems are solved

-1 . . . i
of f(y) must then be identical iX andE: with Riemann integration for the sake of simplicity.

my) = JB""((FHx(y) 2) Lebesgue integration was introduced in part to deal with
pemen -1 functions that were well-behaved in the range but not
e ((FHe) : : . _
in the domain. In the case of functions quantized for
= /(fﬁl) - 1dog" "x 12) machine computation, we actually have functions that
E

are well-behaved in the domain but not in the range.
3) Although Federer’'s Co-Area Formula uses Lebesgue-

4.2 Federer's Co-Area Formula integrable functions, all of our data sets in practice are

For cases where Riemann integration breaks down, integrati sampled at finitely many locations - our reconstructed

can often be done over the ranye= IR" rather than the function is therefore always Riemann-integrable.

domainX = IR™. If f is invertible, this is trivial, but if not, a  4) For the geometric approximations of distributions intro

different approach is instead needed. duced by Carr et al. [14], convergence is easier to prove
In general,f is non-invertible:f ~1(y) is a set of dimension with the mechanics of Riemann integration.

. 71 . .
m—n rather than a point. Howevef, ~(y) can be measured For the above reasons we will prove convergence using
for eachy, and the Co-Area formula integrates oWeE Y  Riemann integration rather than Lebesgue integration.
rather than ovek € X. Thus, for a givenZ™ measurable set

A'in the domain of a Lipschitz functioh: X =IR™ — Y = IR"
wherem > n, Federer's Co-Area formula (3.2.11) states tha? _CONVERGENCE OF HISTOGRAMS )
Having understood the Co-Area Formula, we turn our attentio

/Jnf(x)d.zmx:/%m*”(Aﬂ f1(y))d.g"y (13) to the histogram, and in particular, to demonstrating that t
_ A _ B _ . histograms of a quantized function represent volume $tatis
Adding subscripts to show the integrating space, we get: Specifically, histograms fundamentally represent the oreas

1 of an interval volume defined by quantization.
/ InF(X)d.L™x = / AMNAN(FHAW)ALTy  (14)
A B

In other words, we can integrate over the projectiorFof -1 Quantization and Interval Volumes

into the domainX = IR™ or the projection of into the range We consider a quantized functidig. In machine arithmetic,

Y =IR". In either case, the integration computes the measwe sample with a fixed number of bits - usually 8, 12, 16 or
of patches in the projection, then multiplies those measurg2. For simplicity, we assume a functidp that is quantized
by a perpendicular measure estimating spatial distori@n. to integer values, as shown in Figure 2. Here, all function
Riemann integration, the patches are a set of disjoint patclvalues in the rangé — 0.5,i+ 0.5) are rounded off ta, with
that sum up to eithef or B, while Lebesgue integration takesthe result that the function displays a distinct series epst
the minimum sum over all Borel covers of eith&ror B. bounded (in the domain) by the isocontours at isovalued5



andi+ 0.5. The inverse image of any integee B is then
the regionA; = fo,'(i) C A in the domain that is bounded
by these two isocontours. It then follows for scalar fields in
three dimensionsf= 3,n = 1) that these regions are interval
volumes, as described by Guo [19] and Fujishiro et al. [20].

5.2 Measuring the Interval Volumes

We now observe that(gl(y) is an interval volume of dimen-
sionmiff y€ B is an integeti, and of dimension 0 otherwise.
It then follows that Equation 6 cannot be applied to compute
an (m-— n)-dimensional Hausdorff measure fax,, and that

fq is discontinuous and thus not Lipschitz.

However, we can remedy this problem if we observe that
eachA; is a bounded subset of the domain and thatf is
(still) a Lipschitz function. Applying Equation 15 té;, we
can computer,, in terms of f as follows:

. Upper Bound . Lower Bound . Histogram
Fig. 3: The Voronoi cells of sample points can be used to

mo(i) = AM(A) prove convergence of the histogratiy to 7, asN — co.
= '/Aq 1d.2™x the patches need not be of uniform size, but our proofs assume
1 a regular lattice, so all patches will be of unifosizgK).
= / / ——dg" "xd.L"y To demonstrate that the histogram converges to the measure
Y J(t-Hewna [IDF]]

of the interval region, we define an upper bolg(i) and a
d™ "xd.My (17) lower boundLy (i) which are known to converge correctly by
i-05 J(t-eqy) [|OF]| the Squeeze Theorem, and show that the histogtatti) is
Interestingly, in this form, the Jacobian is retained, and f¥apped between these bounds. For our lower bdw(d), we
becomes clear why the formulation in Scheidegger et al. [18punt the set of Voronoi cells strictly contained in the m
performs as desired: the Jacobian term is required for tfRgion, as shown by green squares in Figure 3, and multiply
Lebesgue integration, which is performed over an interyal BY siz§K). As Ln(i) is contained inside the interval region
size 1. Similarly, Bachthaler & Weiskopf’s mass density][16t must converge because the interval region conveiges)
formulation already includes the Jacobian in their definiti IS analogous to the lower Riemann sum of a 1D function.
of g(&). We note that they render to an image, thus implicitipimilarly, for our upper boundn(i), we choose the set of
quantizing the result to bins of fixed siz8y. In effect, Voronoi cells intersecting the interval region, as showlag
therefore, their model performs a Riemann sum with regiogguares in Figure 3. Ad(i) is the total cover of the interval
of size 3y, and produces the same result as the histogram.region it must also convergen(i) is analogous to the upper
Moreover, a corollary of this is that the sum mf, over all Riemann sum of a 1D function. By Riemann integration, these
integeri € Y must be the total volume of the domafn bounds converge a¥ increases andizgK) decreases:

Vol(A) = Z o (i) (18) lim L (i) = 1o (i) = lim Un(i) (20)

Now, as shown by red circles in Figure 3, the histogram
counts all samples whose values quantizg fce. all samples
in the interval regiomd;. We claim thatHn(i) > Ln(i) for all
N. First, every Voronoi cell in Figure 3 which is counted for
5.3 Histogram Convergence Ln(i) is entirely contained idy, and therefore the sample that
We take our definition of the histograhty, and assume that defines it must be i, i.e. the sample quantizes itolt then
the samples are on a square lattice as in Figure 3. From Secifjlows that the samples corresponding to these Voronds cel
3, we know that the Voronoi cells in a regular square latticd® a subset of the samples counted by the histogram, and the
are all of Hausdorff measursizeK) = 1/N. We claim the inequality holds. By a similar argumert (i) < Un(i), i.e.:
limit of the histogramHy tends tort, asN tends to infinity: Ln(i) < Hn(i) < Un(i) (1)

i+0.5 1

Before covering the implications of this, we first show ths t
histogram converges tor, as sampling resolution increases

h',@mHN(i) = Tiig (1) (19) Then, as the Voronoi cebiz€K) approaches zero, the his-
togram is trapped between two converging sequences, and

We have assumed in Section 3 tHats Riemann integrable. : : .
[Ryst also converge tay, (i), as in Equation 19.

We therefore measure the size of the region bounded by
two contours ai + 0.5 andi — 0.5 using Riemann integration
over the Voronoi cells of the samples, as shown in Figure g GEOMETRIC VOLUME STATISTICS

As the patch size approaches zero, the area computed Wi#lving proven that the histogram converges to the Hausdorff
then converge to the correct answer in the limit. In generaheasure of interval volumes, we next wish to prove that



(a) 32 x 32 (b) 128 x 128

Fig. 4: In (a) and (b), a spherical distance field was sampietl quantized to the range [0-20]. Cells containing isoconto
j =11 are marked in green. Cells marked red are homogeneoss ioglbduced by quantization, where all values equal

geometric approximations of volume statistics convergiéo TABLE 1: Empirical results from the 94 8-bit and 23 12-bit

same result. However, in constructing the proof, it becom@ét@ sets used by Carr et al. [14] show a large percentage of

apparent that the formulas reported by Carr et al. [14] ag§'C Spans. For tr_\e 12-bit data sets, with more quantization

Scheidegger et al. [15] need correction, as they do not banlfivels, the proportion of zero spans unsurprisingly desesa

all of the consequences of quantization correctly. Type All  Medical Measured  Synthetic
Scheidegger et al. [15] approximated contour size by irvers gbit ~ 31.40%  25.70% 44.10%  25.20%

gradient weighting either the area of triangulated is@se$ 12bit  8.98% 5:57% 14.72% 4.63%

or the number of active cells for any given isovalue, then

approximated gradient magnitude with the span of the ceflo statistic exists to be inverse gradient-weighted. Assalte

While the result converged empirically, there is a subtfeatf Carr et al. [14] and Scheidegger et al. [15] do not process

that is evident in particular for active cell count statsti homogeneous cells, and therefore do not include them in the
We observe that contours are typically extracted usingerall statistics - contrary to Equation 18.

marching algorithms that divide the space into a mesh whose

vertices are sample points, then extracted separatelydn ea .

cell of the mesh. Carr et al. [14] showed that for a regui&l Evidence of Homogeneous Cells

lattice of sample points, the appropriate mesh is the DefauriThe existence of homogeneous cells may seem a quibble. In

complex of the samples, instead of the Voronoi complex. quantized data, however, they are surprisingly common, and
For a given isovalue, the values at a cell's vertices areaffect the accuracy of geometric statistics. Before prdicee

compared to and classified aBlackif their value is> i, white we therefore confirm their existence in implicit functionsla

if <i. A surface is constructed in the cell iff some vertices atie real-world data. A more detailed account of these data set

black and others white. Now consider a cubic DelaunayKell can be found in Appendix Ill. We illustrate this in Figure 4,

all of whose vertices have isovalbeFor all isovalues< h, all  using a circular distance field over the domiRA constrained

vertices are classified black, so no contour is drawn, white fto the sampling window = [—1,+1] andy = [-1,+1]. The

isovalues> h, all vertices are classified white, and no contowesults of this are shown in Figure 4 for the rarjgg20]. As

is drawn. Under trilinear interpolation, however, evenjrmpo cell size decreases, a smaller proportion intersects thiogo

x in the cell has function valué (x) = h. Correspondingly, at isovaluej =11 (shown in green), and homogeneous cells

the inverse imagd ~1(h) = K is a volume, not a surface. Inappear between active cells, as shown in red.

practice, this is avoided by classifying vertices as wHitbey Once we have shown that this effect occurs for simple

are< i, so no surface at all is extracted. analytical functions, it is natural to ask whether homogerse
We refer to cells whose vertices share an isovalue eslls exist in real data sets. To consider this, we took theesa

homogeneous cellSince the span of such a cell is zero, usin4 8-bit and 23 12-bit data sets used by Carr et al. [14] and

it to approximate inverse gradient magnitude would cause eomputed the number of homogeneous cells in each. Table 1

exception. But contouring algorithms treat homogeneols cereports our results - as we can see, even for scanned daté sets

as inactive for all isovalues, so no surface is extracted, ais not uncommon to have 2530% of the cells homogeneous.




In practice, floating point data is re-quantized to lower
precision to compute histograms of scalar fields. For this
reason we restrict ourselves to the typical quantizatioel$e3,

10 or 12 bit. We note that for floating point data homogeneous
cells will occur with much lower frequency.

1.5 25 35 4.5

Fig. 5: Interval regionsd; intersecting a single ceK. The [l vrverone [ toversound @ cet ot

isovalue range in the cell is from 1.0 to 5.0, and we accollingrig. 6: For our approximatiorBy (i) andCy (i), the Delaunay

Given linear interpolation, the slabfy andAs are then half . 55N - o,

the width of the remaining slabs, as half of the ranges that

round off to 1 and 5 are outside the cell. This leads to the following approximation @k
_ | Dn() = Y sizdK)di(K) (22)
We also observe that the volumetric coherence introduced KeDel(Ry)
by Fujishiro & Takeshima [13] relates to the homogeneous 0 ANK=0
cells. These cells have zero span, and must necessarily have ’ _ B
the same isovalue at all of the vertices. Since this imphes t L N ANK # Q_spar(_K) =0
there are samples at isovaliedjacent to other samples at  di(K) = mpacyy ANK#0i=min(K) (23)
isovaluei, homogeneous c_ells occur along the main diagonal er(K)’ AINK #0,i = maxK)
of the co-occurence matri®s, but are excluded from the 1 otherwise
volumetric coherenc€ CM by a term(i —i). Since low values spar(k)”

of VCM are taken to mean highly coherent volumes whiclwhere Del(Ry) is the Delaunay complex dfy and min(K)

can be rendered efficiently, the connection between statistand maxK) are the extremal values of the cell.

geometry and algorithmic performance can again be seen. In this formulation, Delaunay cells entirely outside the
interval region A; contribute 0, those entirely inside (i.e.
homogeneous cells) contribute 1, and other cells cong&ibut
a proportion of the cell based on/dpanK) as shown in
Figure 5. We note that the result of this is that each Bell

6.2 The Histogram & Geometric Statistics is guaranteed to contribute 1 to the overall computations th
preserving the measure Afas the sum of the measuresAf

We now know that hlst_ograms appro?qmate measures of_ inter- VoI(A) = S Dn(i) (24)

val volumes, and previous computations based on continuous i

?rr;ulaz combined W'Ith discrete fextrictlon gsmé; Ma_rchmgs required by Equation 18. We claim that the limit B
ubes o not gorrecty accoqnt or t_e gntlre omain. Wﬁust tend torr, asN tends to infinity:

will see in Section 9 the practical implications of this. g&ir

however, we modify the formulas explicitly to account foeth ,LILTWOO Dn (i) = mig (i) (25)

entire domain, and prove convergence to the correct result. . .
P g Figure 6 shows the proof: note the parallel with the proof

We observe that an interval regidy includes isovalues in for the histogram, except here the integration patches are
the rangeli —0.5,i +0.5). From Section 3, we assume that thgye|qunay cells instead of Voronoi cells. Delaunay cells liyho
Delaunay cells wrap around, and tisi&K) =Vol(A)/N. in the interval region;, i.e. with span zero, form the lower

The span of a ceK is spanK) = maxK) —min(K), andK  bound.%\(i) of the squeeze, while the cells that intersect the
intersectsspan(K) 4+ 1 interval regiongy;, as shown in Figure interval regionA; form the upper bound(i). Dy is then
5, wherespan(K) =5—1=4, but there are 5 interval regionstrapped betweer¥y and%y as shown in Figure 6 by shading
A1,...,As intersecting the cell. Of theséy covers isovalues the fraction of the cell attributed toy (i) by Equation 23.
in the rangg1.0,1.5) — i.e. the range is half as great as #g1, . . .

SO we givegl andAg, (i.e. Amin andAnax) half as much size as (i) < Dn(i) < ZA() (26)
the remaining regions. This is precise for linear interpola  Applying the squeeze principle again it follows thHag; must
but not for other interpolants. converge tort, as in Equation 25 and the result follows.



6.3 Weighted Area Convergence thickness of the interval region, and multiplying by an estie

As discussed in the previous work [14], [15], it is also pblesi of t_he other dimensions of the interval region: in_this case a
to approximate the distribution function by taking the aofa €Stimate of the length of the contour. It is not immediately
the isosurface for each cell and multiplying it by the ineer<clear that this approximated region will lie enurely insithe
gradient magnitude or cell span. In effect, this replaces tfell and our convergence proof must adapt to this.
isosurface with a thin shell of non-uniform thickness, that AS the resolution gets finer, all cell dimensions get smaller
measures the volume (i.e. region size) of this shell. for a mesh witiN cells inm dimensions, there will b®(NY™)

This approximation also needs to be adjusted to inclu@disions in each dimension, and the linear dimension oheac
homogeneous cells, and proven to converge to Equation £¢!l will scale with (sizeK))!*/™. Moreover, for a given case
As it is based on the size of the interval regiénsurrounding 1" @ marching cells table, since a contour fragmeritis- 1)-

the contour at isovalug we useCy(i): dimensional, its measure will scale with~* = (sizgK))"= .
And finally, the thickness estimated using the inverse gradi
Cn(i) = > ci(K) (27)  must also scale with the cell, i.e. with= (sizgK))*/m,
KeDel(Ry) We can now ask what the maximum region size added
0, ANK=0 to Cn(i) per cell is. We simplify by considering only two-
sizgK) ANK £0, dimensional square lattices, and observe that marchirgregu
spar(K) = 0 approximate a contour with line segments, and generate at
2Ki-05) ¢ most two such segments. Now, each segment lies inside a
==7— spaK) ANK#0, square of side, which in turn lies inside a circumscribing
a(K) = i = maxK) (28)  circle of diameter/2-t. Each of the line segments therefore
Z(K,i+05) ¢ ANK £0 has length at mosy/2-t: since there may be at most two such
2 spar(K) ’ line segmentsZ(K,i —0.5) < 2y/2-t. Moreover,spanK) > 1,
i = min(K) so the three lower cases of Equation 28 can contribute at most
ZKI=09)+2(K+05) s Otherwise 22t xt/1=2v/2-t> =2/2(sizdK)) to the computation.

Since for each celK intersected by the interval region, we

. dd at most 2 of its area taDy, we can choose a constant
Here,_Z(K7x) is the Hausdorff measure of the contour 0E> 2/2 so that % and %Y force convergence aBy. Note
fat |§ovalutlaxm|n cell K, approxmated. by marchlng. Ce"S'that this proof relies on a looser convergence tban even
t = (sizgK))"'™ is a term that approximates the thICknesﬁmugh it attempts to be more accurate. We will see later that

of the cell with its linear dimension. The effect oiltr_us 'Sthis is actually matched by looser empirical convergence.
to compute an approximation of the portion K fQ ().

gggr:nti(lléagéogu?,t:(:)L\{vever, the sum of these terms is n9t GEOMETRIC SURFACE STATISTICS
As with Dy (i) the proof utilizes the squeeze principle, baselid the previous sections, we showed that the histogram con-
on the recognition that we are computing region size. Howev¥erges to the Hausdorff measure of interval volumes - i&t th
rather than treating the inverse gradient magnitude term a¥ is a volume statisticWe also showed that the formulas in
fraction of the cell, we now treat it as the thickness of alshebcheidegger et al. [15] converge to the same property once
We again use homogeneous cellsdinfor the lower bound they have been corrected for the presence of homogeneous

Z(i). We then define an upper bound for some conskant cells. We can now ask: if the statistics computed by Carr et
al. [14] are not volume statistics, what are they?

(i) = (i) + k(i (i) — (i) (29)  The statistics in question were active cell counts, triang|
counts and isosurface area as approximated using Marching
Cubes. While the latter two are logically related to the aka
and (i) converge to Equation 17. We therefore conclud®” |sosurface,. a_nd the data plotted .by Carr et al. clearlysho
convergence, it is less clear why active cell counts corevég

that 2% (i) will also converge to Equation 17 for any fixéd .
We use this conservative upper bound to simplify the prooft.he same result, and the discovery of the role of homogeneous

As before, it is easy to see thafy (i) counts exactly those cells should make us suspicious of any demonstration not
{ounded on the underlying measure theory.

homogeneous cells captured by the second branch of Equatio .
9 b y N U\/e shall therefore demonstrate that all three statistiesrar

28, and it follows that#y(i) < Cn(i). Now, to construct our - . .
K/ . : factsurface statistics measures of particular (iso-)surfaces. In
upper boundz (i), we start by observing thd@ (i) counted . . : . .
the size not only of the homogeneous cells, but also Sona]%dmon to this we must address the relationship of gedmetr
fraction of the size of all cells on the boundary. Note thés[urface statistics to isosurface complexity measures.
this fraction was an approximation of the portion of the cell )
covered by the interval region, and was computed by assumifrd Active Cell Counts
that all interval regions intersecting the cell were thesaime. Active cell counts are the easiest to compute, but the hardes
In the presentinstance, instead of arbitrarily dividing tlell  to link logically to surface area. Paradoxically, howeubey
into regions of equal size, we wish to approximate the size afe also the easiest for which to prove convergence. We start

the region by taking the inverse gradient as an estimateeof thith the Lebesgue integral: the lower bound of the size of the

We know that, in general, for any fixdgl f and f +g converge
iff f and f 4 kg converge. Since we have shown th (i)



Average Cell Count Growth Rate 10

Borel sets covering the region. For the Hausdorff meashee, t 1 = closed surface
Borel sets are spheres in the full dimension of the embeddin 095 M
space, rather than the intrinsic dimension of the regiomsTh £ oo :‘,ﬁ?jﬁQem
the Hausdorff measure of an isosurface (a surface) is cadput - oss peaks
with a Borel set composed of spheres (volumes). g 08 *z::‘cpm'obb
Moreover, the Besicovich Covering Theorem allows the = ;5 - six peaks
use of any other primitive of full dimension, albeit with 07 o+ ohnere
slower convergence. Here, we observe that, as the resoistio 0654

increased, the active cells at different resolutions forBoeel 012345678 0910111213141516171819

cover composed afi-cubes. The result then follows. standard deviation

Fig. 7: Plot of noise level versus cell count for eleven iropli

7.2 Triangle Counts functions described in Appendix Ill. For implicit functien
With this in hand, we now consider triangle counts. Empiriroiseless volumes have average complexity clog@(te®®’),
cally, Carr et al. [14] showed that these converge to the samed noise moves the complexity towards @E\) asymptote.
result as the active cell count, once normalized. Since,Carr
TheuRl and Moller [21] showed that each cell has a reasgnablsualization literature the terisosurface complexityas been
reliable average number of triangles, this is hardly ssipg. used to describe the latter. Isosurface complexity is a@unc

Proving that triangle counts converge, however, is not.easy visualization applications, such as isosurface exact
Each active cell will have between one and six trianglesgisiiMarching Cubes [25], [26]), when processing large data. set
the standard Marching Cubes cases. This was used in Sectiom this section we discuss how isosurface complexity relate
6.3 as part of the convergence proof for weighted isosurfagestatistics of scalar fields and review recent results) ihe
area. That proof, however, related to volume statistics f@bduce a simple method for computing isosurface complexit
which the homogeneous cells dominate at higher resolutiobased on growth rates with respect to sampling frequency.
Thus, the contribution of the boundary cells (i.e. activésce
at i +0.5) becomes progressively smaller, and the squeeg

principle can be used to establish convergence. In the cas o ) )
of triangle counts, the homogeneous cells are not involsed, Isosurface complexity is linked to integration and measwufe

looseness in approximation at the boundary is problematicSurface properties. Measuring complexity adds an addition

In practice, therefore, we do not recommend using triangféimension to the integration, i.e. over the sampling resmiu
counts for statistical purposes, as they are not proven %the volume. Therefore we identify three distinct taskatth

converge, do not empirically converge any faster than actil'Volve measuring or integrating isosurfaces.
cell counts, and are more expensive to compute. The first task estimatesgorithmic costfor rendering based

on the geometric surface statistics in Section 7, i.e. aadl a
) triangle counts, and should be treated as such. While this

7.3 Isosurface Area Computation formed the original motivation of Carr et al. [14], in retpest
Finally, surface statistics can be approximated by expligiendering cost is better predicted by the maximum number of
isosurface extraction and computation of each trianglegs.a triangles rather than the average as it represents the vasst
Empirically, these converge to the same result as actiie ciglr asymptotic analysis. We return to this in Section 8.3.
counts, which we have just proven to converge to the Haus-The second task computesammary statistifor a data set,
dorff area of the isosurface. However, like triangle countand is a volume statistic. For this, Scheidegger et al. [E5] a
proving convergence is difficult for the same reasons - whitaodified in Section 6 are correct. For measuring algorithmic
upper and lower bounds for each cell can be constructede theemplexity, however, the gradient is not required.
loose bounds are not guaranteed to converge. The final task, computingractal complexity of noisy

Thus, while isosurface area computation seems ideal, tii@a [23], computes complexity from fractal box span dimen-
lack of a formal proof of correct convergence should be kepions of a 2-manifold in a 3-space. This measures the imntrins
in mind. Moreover, the additional computational cost meam®mplexity or dimensionality of the function, and is thenef
that active cell counts should be preferred in practice. different from the previous two tasks.

1 Relation to Summary Statistics

8 ISOSURFACE COMPLEXITY 8.2 Related Results

In the previous section we reviewed geometric surfacesstatiVhile introducing a new isosurface extraction techniqeh |
tics. Recently, surface statistics have been used to mess®& Koyamada [22] made a passing observation that isosurfaces
isosurface complexitywhich has two meanings. The firstbeing planar, should have a growth rate@ﬁN%) and pro-
meaning is topological complexity, such as genus, shapmsed triangle counts to approximate isosurface lsizearr et
smoothness and curvature of isosurfaces as described by &arj14] measured isosurface growth empirically as a fuomcti
Gelder & Wilhelms [24]. The second meaning is algorithmiof N, by counting triangles in ninety data sets and fitting a
complexity, the rate of growth of the size of the isosurfadeast squares line to the data. The slope of the line was used
k as a function of the lattice sizB. More recently in the to estimate a growth rate @(N°%2).



TABLE 2: A summary of isosurface complexity measures to date
11

Year  Paper Approximation(k) | Al Medical Measured  Synthetic | Implicit Functions
1994  Itoh & Koyamada [22]  Triangle Count O(NOF7) - - - -

2006 Carr et al. [14] Triangle Count O(N°82)  O(NL9%)  O(N®%)  O(NO8Y) -

2008  Scheidegger et al. [15]  Weighted Isosurface Arep O(N®%)  @(NO70)  @(N087)  @(NO82) O(NO6E7)
2010 Khoury & Wenger [23]  Fractal Dimensions & Cells ©(N®7%)  @(N%76)  @(N®75)  @(NO73) -

2012  Duffy et al. Down-sampled Triangles | ©(N%76)  @(N®77)  O(NO7%)  QO(NO77) O(NO67

2012  Duffy et al. Down-sampled Cells O(NO™y  O(NO7T1)  O(NO70)  o(NOT) O(NO55)

Scheidegger et al. [15] then argued that average isosurfaate. We also note that computing the average isosurface
complexity should account for the gradient and introducegtowth rate for a given data set has very little meaning for
the Co-Area formula. They used gradient weighted isosarfatwo reasons. Firstly, average isosurface growth does flette
area to estimat&, which yielded a growth rate d®(N%%6). how the user interacts with the isosurface extraction étyor
Scheidegger et al. [15] also showed that for clean implicind may not represent a statistically significant featurthén
functions the growth rate is approximataB(N%), but that data. Secondly, averaging implies integrating over thgeaof
noise increases this. We know from Section 6 that gradidhe data set and may compute the growth rate of an isosurface
weighting gives us volume statistics: they are thereforteamo that does not exist when dealing with quantized data.
appropriate measure of algorithmic complexity. We therefore compute the average worst and best case

Khoury & Wenger [23] estimated a growth rate®{N%’®)  growth rates from a population of 60 data sets, a subset of the
by measuring the fractal dimensions of isosurfaces usilig cé7 data sets in Appendix Ill. Data sets with a dimension less
intersections to approximake They count active cells becausghan 64 samples were excluded to maintain sufficient sample
the cell counts are independent of the specific approximatidensity when down-sampling, i.e. a data set ¥Z&%6x 32
methods used in isosurface reconstruction. Furthermbeg, t would be excluded. In practice, the average worst case for
showed the fractal dimension of an isosurface is propaatiordown-sampled cells is estimated @N%87) for all real data
to the topological noise in the data. They measured topodgisets, ©(N°89) for medical, ©(N°8°) for measured@(N°&3)
noise for an isosurface by computing the number of connectied synthetic and(N®’®) for implicit functions. The average
components and dividing by the edge intersections to corré@est case for down-sampled cells is estimate®@%42) for
for the dependency on isosurface area. all data sets®(N%4%) for medical, ©(N%4?) for measured,

O(N%4Y) for synthetic andd(N°23) for implicit functions.
8.3 Asymptotic Analysis Approach

In this section we introduce a new method for measuring COMPARISON WITH PREVIOUS METHODS

isosurface complexity based on a multi-scale approach.4&k Un previous sections, we established that histograms amet ot
multiple down-sampled versions of sixty data sets to computolume statistics provably converge to the interval volume
the growth ofk as a function ofN: a method suggested butmeasure, that active cell counts converge to isosurface, are
not implemented by Khoury & Wenger [23]. As the latticeand that other surface statistics empirically convergests i
density increases, we measure the active cell and triangleface area. It remains to test whether adding homogeneous
counts at each resolution. The growth rate for each isostirfaells to the computation makes any significant difference.
is then found from the slope of a log-log least squares line,We start with the Marschner-Lobb [27] dataset at® 41
and shown in Table 2 and Figure 7. As we see in Table &solution. We compared the histogram with the statistics
these approximations are similar to the prediction by Itoh gported by Carr et al. [14], by Scheidegger et al. [15], and
Koyamada [22]. From the variation in results, we see that tfee updated volume statistics in Equation 22 and Equation 27
approximation chosen for isosurface reconstruction &ffdee  For clarity, volume statistics based on cell intersectians
computed growth rate, as predicted by Khoury & Wenger [233hown on the left of Figure 10, while those based on weighted

In addition to this we compute average cell count compleisosurface areas are shown on the right.
ity for eleven implicit functions and add synthetic Gaussia In these figures we see that, as previously reported, his-
noise in Figure 7. This verifies the result of Scheidegger &igrams give poor approximations of interval volume meesur
al. [15] for implicit functions. Noiseless volumes have eage at low resolutions, and that volume statistics give smaothe
complexity of approximately®@(N®®7). Adding noise to the estimates. Misleadingly, the active cell count reportedCayr
volume moves the complexity towards ti@&N) asymptote. et al. [14], shown in blue, appears to give the same distobut
The list of data sets used can be found in Appendix Ill.  as the other statistics, presumably because the gradidiné¢ in

In practice, average complexity does not have a clear medtarschner-Lobb signal is fairly uniform. Moreover, altlgbu
ing. Instead, implicit functions tend to have smooth irdeds there are minor differences between the results of the flarmu
between regions in the data, so their complexity measuees egported by Scheidegger et al. [15] and Equation 22 and
not representative of real data. For real data, peaks rapiirg Equation 27, there is little to choose between them in practi
significant features tend to be distributed asymmetrioaith At higher resolution, in Figure 9, we see that the histogram
large standard deviations. Thus, while implicit functigige a has converged to the same result as the other volume stsitisti
lower bound, and an upper bound®fN) is provable, Khoury but that the simple count of intersected cells has converged
& Wenger [23] showed that the expectation is intermediate a different result. We also see that, at the margins of the
between these bounds and fractal in nature. distribution, Equation 22 and Equation 27 converge shghtl

In Section 8.1 we noted that worst case performance shobletter than the statistics from Scheidegger et al. [15].
be used to predicalgorithmic cost For isosurface extraction One might conclude that there is no point to improving the
this means taking the isosurface with the maximum growttomputation, but this is not true, as can be seen in Figure 10,
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Fig. 8: Comparison of volume statistics for 441 x 41 resolution sampling of the Marschner-Lobb test signalirAprevious
work, it is apparent that volume statistics of low-resautidata are of better quality than histograms.

Cell Intersection Statistics for Marschner Lobb 256 Data Set Isosurface Area Statistics for Marscher Lobb 256 Data Set
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Fig. 9: Comparison of volume statistics for 258&@56 x 256 resolution sampling of the Marschner-Lobb test sigAalhigh
resolutions, the histogram has converged reasonably amdl,no advantage is seen from the use of volume statistiasorMi
differences are visible when homogeneous cells are add#tetoomputations.

Cell Intersection Statistics for Monkey MRI T1 Data Set Isosurface Area Statistics for Monkey MRI T1 Data Set
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Fig. 10: Comparison of volume statistics for Monkey-MRI-@lata. Here, the data is of very uneven quality, and the ugdate
computation with homogeneous cells shows a marked impreaemompared to previous work. Moreover, the difference
between surface statistics (blue) and volume statisticernes apparent.

an MRI scan of a monkey. Again, the simple count of intethe uneven quantization of the underlying data, resulting i
sected cells is clearly a different result from either tgstan sequence of cusps rather than the smoother line that results
or volume statistic. Since we have already concluded abdvem counting homogeneous cells as well.

that this is actually a surface statistic, this poses noctiffy. For high-resolution data sets, then, histograms are suffi-
But, when we compare the cell intersection statistics, vée Sgiently high quality that no other volume statistics are mer
that the computation in Scheidegger et al. [15] struggleb Witeq. However, at lower resolutions, or for data with hidden
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sampling issues, geometric statistics are more reliable. 22 converge to the measure of the interval volume. Cell in-
tersection counts and isosurface area approximationscgav
instead to the Hausdorff measure of the isosurface area.

We have seen, however, that some statistics give smoother
As well as the relative quality of these approaches, we cegsults than others, especially at low resolution, andsbate
also consider the computational cost. Due to the simpliity statistics are cheaper to compute than others. Given these o
the computation, we would expect histograms to be cheapessttvations, we can now make the following recommendations:
We would also expect weighted cell counts to be cheapery) For high-resolution volume statistics, histograms give
than weighted isosurface area, as there is no need to extract gyfficiently high-quality results most of the time that
and measure triangles. The updated volume computations of  thejr speed advantage dictates their use.

Equation 22 and Equation 27 should be slightly more expen-2) For low-resolution volume statistics, interval voluneic
sive than the weighted cell counts and weighted isosurface  counts should be used, as they balance quality and
area from Scheidegger et al. [15], since a small amount of  gpeed better than either histograms or interval volume

additional computation is required. _ _ approximations. Equation 22 should be used instead of
In Figure 11 (Ieft)_, we show the computation cost in seconds  the formula reported by Scheidegger et al [15].

of the volume statistics for the same data sets as used bg) For surface statistics, cell intersection counts shdeid

Carr et al. [14], plotted against the.data size. As eXpeCte.d, used, as they are Cheap and converge rap|d|y

the performance advantage of the histograms shows up quite

clearly, with the two weighted cell intersection compudat

next, and the two weighted isosurface area computations lds2 CONCLUSIONS & FUTURE WORK

And, also as expected, the corrections introduced in Eguati ) ) o

22 and Equation 27 add little or no additional cost. We have shown that previous papers on geometric statistics
Similarly, Figure 11 (right) shows the comparative computé)f contmupus functions can be reconciled t_o the underlying

tion cost in seconds of the surface statistics originalporéed mathematical model of Federers Geometric Meas_ur_e The-

by Carr et al. [14], with histograms plotted for comparisonqry' We have also shown that histograms are statistics that

Again, while histograms are clearly cheapest to comp proximate the volumetric measure of the interval volume

(although not computing the same property), cell inteisact d€fined by the quan'uzatllon tc))f data in tgeb range, and that

counts are much cheaper than isosurface area computatioﬂ%‘? same property can aiso be compl_Jte Y approximations

ased either on counting cells intersecting the intervalme,

TABLE 3: Computational costs of volume and surface statiQf computations measuring the interval volume extracted by

tics. Histograms are cheapest by at least an order of magnitfarching Cubes. We have further shown that computing

followed by cell counting, followed by area approximatipndN€Se approximations correctly requires accounting fonéo

again by an order of magnitude. As expected, the correctigigheous cells - cells all of whose vertex isovalues are iciint

introduced in Equation 22 and Equation 27 increase the costVe have also confirmed that the level set measti(g) of a

10 COMPUTATIONAL PERFORMANCE

. . 1 . .
by only a small amount. function f is the Hausdorff measure df (y)in the domain,
sope  @nd that this can be approximated either by isosurface area
Paper Volume Statistics s / Msample extraction and mensuration or simply by counting activéscel
- Histogram 0.0242 ; ; ; ot
Scheidegger et al. [15]  Weighted Cell Intersection o626 Finally, we have shpwn that the cr_mlce of which statistic
Duffy et al. Equation 23 Interval Volume Cell Count 0.5920 compute can be driven by assessing the tradeoff between
Scheidegger et al. [15] Weighted Isosurface Area 6.806®mputational cost and quality of result.
Duffy et al. Equation 28 Interval Volume Approximation 868 some future directions arise from this. First, none of the
Surface Statistics computations herein are restricted to volumetric data dh¢o
Carr et al. [14] Cell Intersection 0.5349Cartesian lattice: the proofs generalise to higher dinuerssi
Carr et al. [14] Isosurface Area 6.8387i

n both domain and range and to non-Cartesian lattices.

Since these computations are all performed one voxel or oRederer's Area and Co-Area formulas for Lipschitzian maps o
grid cube at a time, we expect them to scale linearly with ttifanctions only work form-dimensional measures over subsets
data size, and within broad terms they do. We thereforegaottof n-dimensional Euclidean space, im.< n. Bachthaler &
least squares fitted lines for each statistic, and reportrsanyn  Weiskopf explicitly dealt withm=n, and we would like to
statistics in Table 3. We can see from these statistics thtend this work tan > n and to irregularly sampled data.
histograms are cheaper by one and a half orders of magnitudgve would like to consider the impact of geometric measure
than all intersection cell computations, which in turn are aheory on other geometric properties such as higher-order
order of magnitude cheaper than isosurface area compmeatignoments and sphericity. Since these involve second an@high
derivatives, we expect that the homogeneous cells will be
increasingly important. In broad terms, we predict that rehe
11 ASSESSMENT these properties are being used to underpin transfer mcti
We have now seen that the statistics reported in previouk walesign, adjustments will be needed to base them on the @lterv
converge to one of two fundamental properties. Histogramsgions rather than local properties of isosurfaces, bat th
and the corrected weighted cell intersection counts of Egua details of this will take considerable effort to work out.
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tics. As predicted, histograms are cheapest to ctanpu

followed by cell counted statistics, followed by triangleea computations.

We intend to explore the use of these statistics to ass¢sg
relative convergence properties of different samplingides.
We note that, logically, if inverse gradient-weighted @ellints
approximate interval volumes as do histograms, that gnadie
weighted histograms ought to approximate isosurface aféd
computations, potentially at cheaper cost than cell counts

Furthermore, the identification of the gradient relatidpsh[13]
between the two types of statistics (re)-raises an integpst
question: if histograms relate to inverse-gradient weight
statistics, are surface statistics such as active cell tsoan
better statistic for detecting high-gradient boundanedata? [15!

(11]

[14]
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