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Integrating Isosurface Statistics and Histograms
Brian Duffy, Hamish Carr Member, IEEE, and Torsten Möller Member, IEEE,

Abstract —Many data sets are sampled on regular lattices in two, three or more dimensions, and recent work has shown that statistical
properties of these data sets must take into account the continuity of the underlying physical phenomena. However, the effects of
quantization on the statistics have not yet been accounted for. This paper therefore reconciles the previous papers to the underlying
mathematical theory, develops a mathematical model of quantized statistics of continuous functions, and proves convergence of
geometric approximations to continuous statistics for regular sampling lattices. In addition, the computational cost of various approaches
is considered, and recommendations made about when to use each type of statistic.

Index Terms —histograms, frequency distribution, integration, geometric statistics

✦

1 INTRODUCTION

M ANY areas of science, engineering and medicine study
continuous phenomena with scalar functions sampled

finitely in two, three or more dimensions. Even where dis-
continuous boundaries are of interest, sampling theory still
assumes that the underlying phenomena and the sampling
process involve functions that are continuous everywhere or
nearly everywhere. Moreover, many algorithms in visualiza-
tion and analysis depend heavily on computing statistics or
distributions, and these have historically been based on discrete
samples rather than the underlying phenomenon.

There are three reasons why statistics in visualization must
account for inter-sample continuity. First, histograms are often
noisy, which impedes the ability to detect features of interest,
and this is directly related to the discretization of the sampling
process. Second, visualization methods such as direct volume
rendering depend on continuity in order to integrate optical
properties. Third, multivariate data gives multi-dimensional
histograms (i.e. scatterplots) with many more bins, aggravating
the problems caused by discretization. Continued improvement
of visualization techniques therefore depends on a solid theo-
retical footing for calculating distributions from data sampled
from continuous or near-continuous functions.

In this paper, we provide this theoretical footing by showing
rigorously how histograms (including multi-dimensional his-
tograms) measure geometric properties, and how to compute
better approximations efficiently.

In practice, this starts with the recognition that statistics of
sampled continuous functions are dependent on discretization
in both domain and range. Range discretization (quantization)
means that level sets are interval volumes (Section 5), while
domain discretization (sampling) means that histograms ap-
proximate quantized interval volumes (Section 5). These ef-
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fects can be dealt with by applying Geometric Measure Theory
to integrate over the quantized interval volumes (Section 4).
The principal contributions of this paper are thus:

1) We show the importance of understanding Lebesgue
integration and Federer’s Co-Area formula in relation to
quantized data. However, while Lebesgue integration is
necessary to understand the mathematical foundations of
histograms, Riemann integration suffices for our proofs
(Section 4).

2) We introduce the necessary correction for quantized
statistics and demonstrate they are in factvolume statis-
tics computed by Riemann integration (Section 6).

3) We provide a formal proof of convergence for quantized
statistics and geometric properties based on Riemann
integration (Section 6).

We contribute further by splitting scalar field statistics into
two groups,volume statistics(Sections 5 and 6) andsurface
statistics (Section 7). We then show the difference between
these (Section 9) and summarise which statistic to use (Section
11) based on computational performance (Section 10).

We therefore start by reviewing previous work (Section
2) and the mathematical notation (Section 3) necessary for
Federer’s Co-Area formula (Section 4). Supplementary mate-
rials relating to Section 4 are in Appendix I and II. Finally,
Appendix III gives a detailed account of all data sets and
implicit functions used for evaluation throughout this work.

2 RELATED WORK

At the heart of this work is the relationship between histograms
and other distribution statistics, geometric properties of iso-
contours, considerations of algorithmic efficiency, and measure
theory. We will discuss measure theory in the next section and
review work in visualization on statistics, geometric properties,
and algorithmic efficiency in this section.

Statistical analysis of scalar fields is used in visualization
for purposes such as feature detection in large volumetric
data sets. Traditionally, statistical methods such as histograms
are used to approximate probability distributions of scalar
field data. Initially, statistical moments of distributions were
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extracted, corresponding to statistically significant features.
Other statistical moments, such as variance and standard
deviation, skewness and kurtosis proposed by Tenginakai et
al. [1], [2], have also been used to detect salient features.

Histograms are used in transfer function design [3] to assign
optical properties to isovalues. Multidimensional histograms
have been used by Kindlmann et al. [4], [5], [6] and by
Kniss et al. [7], [8] to exploit relationships between isovalues
and gradients. In a further variation, local histograms were
proposed by Lundström et al. [9] to allow users to examine
sub-regions of the volume in greater detail.

Geometric properties of isosurfaces were introduced by
Bajaj et al. [10], [11] instead of histograms in visual interfaces.

Algorithmically, Shen, Hanson & Livnat [12] used the
range of isovalues in each cell (the span) in data structures
to accelerate isosurface extraction. Similarly, Fujishiro &
Takeshima [13] extended a measure of spatial coherence from
grey-scale images in 2D to volumetric data in 3D, using the
difference between adjacent samples to measure coherence,
and one of the principal purposes of this work was to improve
the algorithmic performance of visualization techniques.

Carr et al. [14] identified the fundamental relationships
between statistics, geometry and algorithmic performance,
introduced continuity, and argued that algorithmic properties
such as active cell count could substitute for histograms.

Scheidegger et al. [15] corrected errors in detail of this work
and showed that geometric surface statistics do not measurethe
same properties as the histogram. They adjusted the geometric
surface statistics via Federer’s Co-Area formula to account for
gradient changes over the scalar field, approximating the gradi-
ent with the span of the isosurfacing cells. Although based on
geometric measure theory, this work approximated measures
with discrete computations and overlooked the existence and
contribution of cells with no span (i.e. zero gradient).

Bachthaler& Weiskopf [16] extended the continuous models
to multidimensional histograms, markedly improving scatter-
plots for meshes representing continuous phenomena.

In summary, work in this area has unified the roles of
statistics, geometry, algorithmic performance and measure
theory, but left several elements unresolved: quantization in
the range, the impact of cells with zero span or gradient, and
whether algorithmic approximations can be guaranteed to give
the same answer as the histograms. We therefore first develop
some notation and summarize the relevant mathematics.

3 DEFINITIONS & NOTATION

Since the proofs that follow use formal definitions of inte-
gration, we state the relevant terms here, referring readers to
Federer [17] or Morgan [18] for further information. We shall
stick as strictly as possible to Federer’s notation, although
there are respects in which it could be simplified.

We also note that the geometric measure theory is not
restricted to functions with one-dimensional domains and
ranges, but applies more generally to functions with arbitrary
dimensionality. We therefore start by assuming that we have
a function f : A ⊂ X = IRm → B ⊂ Y = IRn from a subsetA
in the domainX = IRm to a subsetB in the rangeY = IRn.

Range

Domain
A

B

F

IRm

IRn
IRm+ n

y

Embedding Space E = 
Y =

X =

( f − 1)E (y)

( f − 1)X (y)

Fig. 1: Here we show the relationship between the domain
X = IRm, the rangeY = IRn, and the embedding spaceE =
IRm+n. Note how the inverse imagef−1(y) can exist either as
a subset( f−1)E(y) of F ⊂ E or a subset( f−1)X(y) of A⊂ X.

For convenience, we shall assume thatA is of size 1 - more
precisely, ofm-dimensional Hausdorff measure 1 (see below).

Lipschitz Function: As defined in Federer [17], Lipschitz
functions generalize the idea of functions of limited gradient
- i.e. continuous functions. Thus, a functionf : X → Y is a
Lipschitz function from a metric spaceX to another metric
spaceY iff ∀a,b∈ A there is some finite numberK such that:

dY( f (a), f (b)) ≤ KdX(a,b) (1)

where dX and dY are the metrics forX and Y respectively.
Although this definition applies to a variety of metric spaces,
we are primarily interested in Euclidean spaces, and will
therefore assume thatdX and dY are Euclidean metrics and
that the functionf is Lipschitz.

Functions as Manifolds: For a Lipschitz function f :
A ⊂ X → B ⊂ Y, we can think of f as defining a setF =
{(x1, . . . ,xm,y1, . . . ,yn) ∈ E : (x1, . . . ,xm) ∈ A, f (x1, . . . ,xm) =
(y1, . . . ,yn)∈B}. Sincef is Lipschitz,F will be anm-manifold
embedded in them+ n-dimensional space constructed by
E = IRm× IRn, the direct sum of the spacesX = IRm and
Y = IRn. For convenience, we will refer to this space as the
embedding space Eof X andY. Wherem= 2 andn= 1, then
X = IR2 is the infinite plane shown in Figure 1,A is a region
on the plane, andf : A → B is a height function defined on
A, whereB⊂ IR is the range of height values taken on byf .
Moreover, the embedding spaceE = A×B⊂ IR2× IR1 = IR3

is a three-dimensional space in which the function defines a
terrain, andF is the terrain itself, embedded inE.

If we then projectF perpendicular toX = IRm, it projects
onto A, but if we projectF perpendicular toY = IRn, the
projection ofF must beB. For any giveny∈ B, we can then
define the inverse imagef−1(y) = {x ∈ A : f (x) = y}, i.e. a
level set in the domainA. However, we can see from the figure
that it is also meaningful to discuss the inverse image as a
subset ofF: f−1(y) = {(x,y) ∈ E : x∈ A,y∈ B, f (x) = y}. To
avoid confusion, we will usef−1

X (y) to refer to the inverse
image in A, but f−1

E (y) to refer to the inverse image in the
embedding space. Thus, while our immediate interest involves
scalar fields, the analysis also applies to multi-variate fields of
the form f : X →Y, as shown by Bachthaler & Weiskopf [16].
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Riemann Integration: In real analysis, Riemann integration
is the most commonly used form. To approximate area under
a curve, the x-axis (the domain) is divided into segments.
Rectangles are constructed on each segment to fit under (or
over) the curve, and the area approximated as the sum of the
areas of the rectangles. As the segment length approaches zero,
the sum approaches the area under the curve: from below if
rectangles are fitted under the curve, the lower bound, from
above if rectangles are fitted over the curve, the upper bound.

This approach to integration uses Euclidean cross products
between segments in the domain and range of the function
to construct measuring patches, i.e. forf : IR1 → IR1 the
corresponding patch is of dimensionIR1× IR1 = IR2, a rectan-
gle. Higher dimensional integration can be performed using
the same principles by taking rectangular segments in the
domain and range, where a rectangle is understood to mean a
Euclidean cross product of arbitrary dimensions.

For m-dimensional domains andn-dimensional ranges,m-
dimensional patches are used instead of segments, andm+n-
dimensional regions instead of rectangles. We write:

∫

A
f (x)dmx (2)

where the exponentm can be added when integrating over
more than one dimension. While sufficient for most problems,
Riemann integration breaks down for certain functions thatare
well-behaved in the range but not in the domain.

Squeeze Theorem: For a given functionf (x), convergence
is shown by trappingf (x) between upper and lower bounding
Riemann integrable functionsg(x) ≤ f (x) ≤ h(x) for all x
in an open interval containinga, except possiblyx = a. If
limx→a g(x) = limx→a h(x) = L, then the Squeeze Theorem
forces limx→a f (x) = L, and similarly for left and right limits.
We note that this is a sufficient condition for convergence of
Riemann integrals: as we are using it to prove our result, we
do not require it to be a necessary condition.

Lebesgue Measure: To remedy the flaws in Riemann
integration, Lebesgue stepped back from integrating functions,
and started with the simpler problem of measuring the size of
the setB. Instead of a limit as patch size approached zero,
Lebesgue usedBorel sets: collections of subsets ofA which
are closed under countable union or intersection. Providedthat
a Borel set covers the set of interest, the Lebesgue measure
L (A) of A replaces the concept of the limit by taking the
minimum sum of sizes of Borel sets that coversA.

Lebesgue Integration: To integrate a Lipschitz function
f (x) overA, Lebesgue integration computes the minimal sum
of sizes of the Borel elements multiplied by the value off (x)
at the centre of the Borel element. When Lebesgue integration
is explicitly intended, it is written as:

∫

A
f (x)dL

mx (3)

Lebesgue measures and integration are a key aspect of geo-
metric measure theory and are discussed in Section 4.1.

Hausdorff Measure: In general topology, sets are covered
with open balls (abstractions of circles / spheres). With a sim-
ilar definition to Lebesgue measures, the Hausdorff measure
of an objectH (A) is the sum of the sizes of the minimal

Range

Domain
A

B

F

IRm

IRn
IRm+ nEmbedding Space E = 

i
Q

( f − 1Q )E ( i)

Ai = ( f − 1Q )X( i)

Fig. 2: Here we quantize the same functionf as in Figure 1
to a function fQ. In fQ, only quantized valuesi ∈ B have non-
empty inverse images. Quantization thus replaces the manifold
F with a piecewise manifoldFQ whose pieces are the inverse
images( f−1

Q )E(i). In the domain, the corresponding inverse
images become interval regionsAi = ( f−1

Q )X(i) defined by
isocontours ati+0.5 andi−0.5 of the non-quantized function.

open-ball covering ofA. The Hausdorff measure is usually
considered the best measure of object size, as it matches
more general topological expectations. For a set of dimension
m embedded in a space of dimensionm+ n, the Hausdorff
measure is alwaysm-dimensional, as it measures the intrinsic
size of the set. Since we will end up with different spaces
in which sets can be measured, we will make explicit the
space in which we measure by writingH m

X to indicate the
m-dimensional Hausdorff measure in the spaceX.

Hausdorff Integration: We can also integrate with respect
to Hausdorff measures. The process is similar to Lebesgue
integration, using open balls instead of boxes, and is written:

∫

A
f (x)dH

m
X x (4)

where the subscript indicates the space in which we measure.
Besicovich Covering Theorem: To link the Hausdorff

measure to the Lebesgue measure, the Besicovich covering
theorem states that measures based on patch shapes other than
open balls converge provided that there is a constant ratio
between the patch size and open balls.

Jacobian: A generalized version of gradient, the Jacobian
is the corrective factor that relates elements of regions ofthe
domain of a function to images of the function. Forf : IRm→
IRn, differentiable atx, the Jacobian is based on them× n
differential matrixD f of the partial derivatives of each of the
n output variables with respect to them input variables.

The k-dimensional Jacobian off , written Jk f (x), is the
maximum k-dimensional volume of the image underD f of
a unit k-dimensional cube as described by Morgan [18]. If
rankD f(x)≤ k, then(Jk f (x))2 is the sum of the squares of the
determinants of thek× k submatrices ofD f as per Morgan1.

Conveniently, wheren = 1 (i.e. f is a scalar field), the
Jacobian matrix is simply anm×1 vector, and the Jacobian is
the magnitude of the gradient off , i.e. J1 f (x) = ‖∇ f (x)‖. If
m= n= 1, f is a curve embedded in two dimensions, and the

1. This definition of the Jacobian comes straight from Morgan[18] 3.6,
who uses a point differentiable ata rather thanx. We usex for consistency.
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slope of the tangent line is the Jacobian. For arbitrarym and
n, the Jacobian measures distortion from the domainA to the
manifoldF . For clarity, Appendix I shows a worked example.

Sampling (Discretization in the Domain): We assume
that the continuous functionf : A → B has been sampled at
a discrete set ofN distinct pointsPN on a regular lattice.
Since a regular lattice is defined by a set ofm independent
vectors~v j ∈ X = IRm, j = 1. . .m, each sample pointp can be
written as the weighted sum of integer multiples of the vectors,
p= ∑m

j=1wj~v j : wj ∈ ZZ. The setPN of sampling points is then
all distinct sample pointspi in the domainA:

PN = {p=
m

∑
j=1

wj~v j : wj ∈ ZZ, p∈ A} (5)

whereN is determined by the number of points on the lattice
within the domain A. As we will see in Section 5.3, a set of
patches covering the domain is induced by the Voronoi cells
of the sampling points inPN. As N increases, these patches
can then be used for Riemann integration.

Quantization (Discretization in the Range): In addition
to quantizing in the domain by means of sampling, machine
representations of data quantize in the range: even floating
point values are quantized at the level of machine epsilon. For
a scalar field f : X → IR, the effect of this is to divide the
domain into a set of disjoint regions with distinct values. In
2D, where a scalar field can be represented as a terrain in 3D,
quantization results in a new functionfQ that takes the form of
a set of terraces, as shown in Figure 2. Where quantization is
combined with sampling, these terraces then get approximated
by sets of prismatic columns perpendicular to the domain.

Level Set Measure: Given any function f , the level set
measureπf measures the size of the level set for each given
value y∈ Y. For any value ofy, πf (y) is thus the Hausdorff
measure of the inverse imagef−1(y).

πf (y) = H
m−n( f−1(y)) (6)

Histogram: For a discrete set of quantized samples, the
histogram is the proportion of the samples with a given value.
The histogram samples are at the centers of Voronoi cells. We
assume that the total volume of the domain is 1 and the size
of a Voronoi cellK is size(K) = 1/N (see the discussion of
boundary conditions below), as there areN rectilinear Voronoi
cells in each lattice, one for each sample. We therefore define
the histogram overN samples to be:

HN(i) = ∑
f (p)=i,p∈PN

size(K) (7)

Voronoi Cells: As previously shown [14], histograms com-
puted for a sampling involve the Voronoi cells of the samples.
For each pointp∈ PN, its Voronoi cell is the set of points that
are closer top than to any other sample:

Vor(p) = {q∈ A : d(q, p)< d(q, p′)∀p′ ∈ PN \ {p}} (8)

Figure 3 shows samples on a square lattice in two dimensions
as dots, and their Voronoi cells as squares. Since a regular
lattice uses integer-weighted sums of the basis vectors, all
Voronoi cells except those at the boundaries will be home-
omorphic and have the same Hausdorff measure. It is then

easy to see that Nearest Neighbour interpolation reconstructs
f by assigning the valuef (p) to each pointq∈Vor(p).

Delaunay Cells: Our approximations using geometric prop-
erties are not calculated with the Voronoi cells. Instead,
as in Marching Cubes and related algorithms, we calculate
geometric properties using the Delaunay cellsDel(PN) of the
point setPN. Formally, the Delaunay complexDel(PN) is the
set of cells which satisfies the condition that no point inPN

is in the interior of any closed ball circumscribing any cellin
Del(PN). A point setPN in X = IRm is said to be degenerate
if there is any set ofm+ 2 or more points fromPN on the
boundary of any closed ball that contains no other vertices.If
the point set is not degenerate, then all cells inDel(PN) must
be simplices (triangles in 2D, tetrahedra in 3D).

Where PN is degenerate, however, cells may be arbitrary
convex polyhedra. For Cartesian sampling lattices, the Delau-
nay cells arem-cubes with sample points as vertices: i.e. the
Delaunay cellsare the cells used by marching algorithms.

Boundary Conditions: Voronoi cells at the boundary of the
domain may not actually be homeomorphic. We avoid this by
offsetting the samples by half a lattice unit, i.e. by assuming
that a point sample occurs at the centre of the pixel rather than
the corner. The Delaunay cells of these samples are then non-
uniform, as half- and quarter- pixels occur at the boundary.
To keep our computations consistent, we therefore make the
simplifying assumption that the function is periodic across all
boundaries, resulting inN Delaunay cells of size 1/N each.

4 FEDERER’S CO-AREA FORMULA

We now turn to one of the major results in geometric measure
theory - Federer’s Co-Area Formula [17]. However, the use of
this work in computational statistics and visualization has var-
ied significantly in notation, making the relationship between
published papers unclear. Moreover, there is a significant flaw
in how this theorem has been applied. We therefore develop
the required results directly from Federer’s Co-Area Formula,
and use Appendix II to reconcile the notation in previous work.

4.1 Lebesgue Measures in Domain and Range

As stated above, Lebesgue integration is often used to integrate
over the range of a function rather than the domain. This can
be used in several ways, but the simplest is that any integralis
merely the Hausdorff measure of a particular set. For example,
for f (x) : IR→ IR, we can measure the area

∫ b
a f (x)dx between

the curve and thex-axis, or we can measure the size ofF: the
arclength of a segment off plotted in two dimensions.

For the purposes of this paper, we are primarily interested
in the measure ofF - but as we will see shortly, Lebesgue
integration can readily be extended to other integrals. To see
how various measures relate, we return to Figure 1.

Since f is a manifoldF in the embedding spaceE, it is
natural to measureA, B, or F, and to ask how these measures
are related. To get the measure ofA, we take:

H
m

X (A) =
∫

A
1dL

mx (9)
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For the measure ofF , we start with Federer’s Area Formula
3.2.3 [17], where for a Lipschitzian functionf : IRm → IRm+n

with m≤ n and anL m measurable setA:
∫

A
Jm f (x)dL

mx=
∫

IRn
N( f |A,y)dH

my (10)

Morgan [18] points out that iff is a smooth embedding,
then the right hand side of Equation 10 is the Hausdorff
measure off (A), i.e. the left-hand side of Equation 9. Before
proceeding, we observe that Federer usesf , g, m and n to
refer to different things here and in the Co-Area formula.
We therefore regularize the notation by defining a mapping
function g : IRm → IRm+n : g(x) = (x1, . . . ,xm, f1(x), . . . , fn(x))
which parameterizes the manifoldF from the regionA in the
domain. Sinceg is Lipschitzian withm≤ m+n, it satisfies
the requirements for Equation 10, and we can compute the
Hausdorff measure ofF :

H
m

E (F) =

∫

A
Jmg(x)dL

mx (11)

using the JacobianJmg(x) to correct for the projection. We
give a small example in Appendix I to clarify the notation
and the relationship between the Area and Co-Area Formulas.

It is also possible to compute measures off−1(y) in A or in
E: sincey is fixed, f−1

E is restricted to a subspace ofE parallel
to the domainX, as shown in Figure 1. The Hausdorff measure
of f−1(y) must then be identical inX andE:

πf (y) = H
m−n

X (( f−1)X(y))

= H
m−n

E (( f−1)E(y))

=

∫

( f−1)E(y)∩F
1dH

m−n
E x (12)

4.2 Federer’s Co-Area Formula

For cases where Riemann integration breaks down, integration
can often be done over the rangeY = IRn rather than the
domainX = IRm. If f is invertible, this is trivial, but if not, a
different approach is instead needed.

In general,f is non-invertible:f−1(y) is a set of dimension
m−n rather than a point. However,f−1(y) can be measured
for eachy, and the Co-Area formula integrates overy ∈ Y
rather than overx∈ X. Thus, for a givenL m measurable set
A in the domain of a Lipschitz functionf : X = IRm→Y = IRn

wherem> n, Federer’s Co-Area formula (3.2.11) states that:
∫

A
Jn f (x)dL

mx=
∫

B
H

m−n(A∩ f−1(y))dL
ny (13)

Adding subscripts to show the integrating space, we get:
∫

A
Jn f (x)dL

mx=
∫

B
H

m−n
A (A∩ ( f−1)A(y))dL

ny (14)

In other words, we can integrate over the projection ofF
into the domainX = IRm or the projection ofF into the range
Y = IRn. In either case, the integration computes the measure
of patches in the projection, then multiplies those measures
by a perpendicular measure estimating spatial distortion.For
Riemann integration, the patches are a set of disjoint patches
that sum up to eitherA or B, while Lebesgue integration takes
the minimum sum over all Borel covers of eitherA or B.

Although it might seem that this equation computes the
Hausdorff measure ofF, the JacobianJn f (x) used in this
equation is not the same as that used in Equation 11. We
provide a small example in Appendix I to clarify this issue.

Moreover, Equation 14 is primarily about measuring a
region, rather than integrating a function over that region. This
task of integration is done by introducing a new function in
Federer’s Theorem 3.2.12. In this, we take anyL m integrable
IR valued functiong : X = IRm→ IR (whereIR is the extended
realsIR∪{−∞}∪{∞}). Then,

∫

A
g(x)Jn f (x)dL

mx=
∫

B

∫

f−1(y)
g(x)dH

m−nxdL
ny (15)

and, with subscripts indicating the integrating space:
∫

A
g(x)Jn f (x)dL

mx=
∫

B

∫

( f−1)E(y)
g(x)dH

m−n
E xdL

ny (16)

This implies several things about the use of Federer’s Co-
Area formula for scalar and multivariate fields and applica-
tions. We defer this discussion to Appendix II, along with
the relationship between Riemann and Lebesgue integration
and reconciliation of Federer’s notation with that used in
the related work. At this stage, we can make the following
observations:

1) Although Lebesgue integration is more general than
Riemann integration, many practical problems are solved
with Riemann integration for the sake of simplicity.

2) Lebesgue integration was introduced in part to deal with
functions that were well-behaved in the range but not
in the domain. In the case of functions quantized for
machine computation, we actually have functions that
are well-behaved in the domain but not in the range.

3) Although Federer’s Co-Area Formula uses Lebesgue-
integrable functions, all of our data sets in practice are
sampled at finitely many locations - our reconstructed
function is therefore always Riemann-integrable.

4) For the geometric approximations of distributions intro-
duced by Carr et al. [14], convergence is easier to prove
with the mechanics of Riemann integration.

For the above reasons we will prove convergence using
Riemann integration rather than Lebesgue integration.

5 CONVERGENCE OF HISTOGRAMS

Having understood the Co-Area Formula, we turn our attention
to the histogram, and in particular, to demonstrating that the
histograms of a quantized function represent volume statistics.
Specifically, histograms fundamentally represent the measure
of an interval volume defined by quantization.

5.1 Quantization and Interval Volumes

We consider a quantized functionfQ. In machine arithmetic,
we sample with a fixed number of bits - usually 8, 12, 16 or
32. For simplicity, we assume a functionfQ that is quantized
to integer values, as shown in Figure 2. Here, all function
values in the range[i−0.5, i+0.5) are rounded off toi, with
the result that the function displays a distinct series of steps,
bounded (in the domain) by the isocontours at isovaluesi−0.5
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and i + 0.5. The inverse image of any integeri ∈ B is then
the regionAi = fQ−1

X (i) ⊂ A in the domain that is bounded
by these two isocontours. It then follows for scalar fields in
three dimensions (m= 3,n= 1) that these regions are interval
volumes, as described by Guo [19] and Fujishiro et al. [20].

5.2 Measuring the Interval Volumes

We now observe thatf−1
Q (y) is an interval volume of dimen-

sion m iff y∈ B is an integeri, and of dimension 0 otherwise.
It then follows that Equation 6 cannot be applied to compute
an (m−n)-dimensional Hausdorff measure forπfQ, and that
fQ is discontinuous and thus not Lipschitz.

However, we can remedy this problem if we observe that
eachAi is a bounded subset of the domainX, and that f is
(still) a Lipschitz function. Applying Equation 15 toAi , we
can computeπfQ in terms of f as follows:

πfQ(i) = H
m(Ai)

=
∫

Ai

1dL
mx

=

∫

Y

∫

( f−1)E(y)∩Ai

1
‖∇ f‖dH

m−n
E xdL

ny

=

∫ i+0.5

i−0.5

∫

( f−1)E(y)

1
‖∇ f‖dH

m−n
E xdL

ny (17)

Interestingly, in this form, the Jacobian is retained, and it
becomes clear why the formulation in Scheidegger et al. [15]
performs as desired: the Jacobian term is required for the
Lebesgue integration, which is performed over an interval of
size 1. Similarly, Bachthaler & Weiskopf’s mass density [16]
formulation already includes the Jacobian in their definition
of σ(ξ ). We note that they render to an image, thus implicitly
quantizing the result to bins of fixed sizeδy. In effect,
therefore, their model performs a Riemann sum with regions
of sizeδy, and produces the same result as the histogram.

Moreover, a corollary of this is that the sum ofπfQ over all
integeri ∈Y must be the total volume of the domainA:

Vol(A) = ∑
i∈Y

πfQ(i) (18)

Before covering the implications of this, we first show that the
histogram converges toπfQ as sampling resolution increases.

5.3 Histogram Convergence

We take our definition of the histogramHN, and assume that
the samples are on a square lattice as in Figure 3. From Section
3, we know that the Voronoi cells in a regular square lattice
are all of Hausdorff measuresize(K) = 1/N. We claim the
limit of the histogramHN tends toπfQ asN tends to infinity:

lim
N→∞

HN(i) = πfQ(i) (19)

We have assumed in Section 3 thatf is Riemann integrable.
We therefore measure the size of the region bounded by the
two contours ati+0.5 andi−0.5 using Riemann integration
over the Voronoi cells of the samples, as shown in Figure 3.
As the patch size approaches zero, the area computed will
then converge to the correct answer in the limit. In general,

j-0.5

j+0.5

j

Upper Bound Lower Bound Histogram Interval Volume

Fig. 3: The Voronoi cells of sample points can be used to
prove convergence of the histogramHN to πfQ asN → ∞.

the patches need not be of uniform size, but our proofs assume
a regular lattice, so all patches will be of uniformsize(K).

To demonstrate that the histogram converges to the measure
of the interval region, we define an upper boundUN(i) and a
lower boundLN(i) which are known to converge correctly by
the Squeeze Theorem, and show that the histogramHN(i) is
trapped between these bounds. For our lower boundLN(i), we
count the set of Voronoi cells strictly contained in the interval
region, as shown by green squares in Figure 3, and multiply
by size(K). As LN(i) is contained inside the interval region
it must converge because the interval region converges.LN(i)
is analogous to the lower Riemann sum of a 1D function.
Similarly, for our upper boundUN(i), we choose the set of
Voronoi cells intersecting the interval region, as shown asblue
squares in Figure 3. AsUN(i) is the total cover of the interval
region it must also converge.UN(i) is analogous to the upper
Riemann sum of a 1D function. By Riemann integration, these
bounds converge asN increases andsize(K) decreases:

lim
N→∞

LN(i) = πfQ(i) = lim
N→∞

UN(i) (20)

Now, as shown by red circles in Figure 3, the histogram
counts all samples whose values quantize toi, i.e. all samples
in the interval regionAi . We claim thatHN(i)≥ LN(i) for all
N. First, every Voronoi cell in Figure 3 which is counted for
LN(i) is entirely contained inAi , and therefore the sample that
defines it must be inAi , i.e. the sample quantizes toi. It then
follows that the samples corresponding to these Voronoi cells
are a subset of the samples counted by the histogram, and the
inequality holds. By a similar argument,HN(i)≤UN(i), i.e.:

LN(i)≤ HN(i)≤UN(i) (21)

Then, as the Voronoi cellsize(K) approaches zero, the his-
togram is trapped between two converging sequences, and
must also converge toπfQ(i), as in Equation 19.

6 GEOMETRIC VOLUME STATISTICS

Having proven that the histogram converges to the Hausdorff
measure of interval volumes, we next wish to prove that
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(a) 32 × 32 (b) 128 × 128

Fig. 4: In (a) and (b), a spherical distance field was sampled and quantized to the range [0-20]. Cells containing isocontour
j = 11 are marked in green. Cells marked red are homogeneous cells, introduced by quantization, where all values equalj.

geometric approximations of volume statistics converge tothe
same result. However, in constructing the proof, it becomes
apparent that the formulas reported by Carr et al. [14] and
Scheidegger et al. [15] need correction, as they do not handle
all of the consequences of quantization correctly.

Scheidegger et al. [15] approximated contour size by inverse
gradient weighting either the area of triangulated isosurfaces
or the number of active cells for any given isovalue, then
approximated gradient magnitude with the span of the cell.
While the result converged empirically, there is a subtle effect
that is evident in particular for active cell count statistics.

We observe that contours are typically extracted using
marching algorithms that divide the space into a mesh whose
vertices are sample points, then extracted separately in each
cell of the mesh. Carr et al. [14] showed that for a regular
lattice of sample points, the appropriate mesh is the Delaunay
complex of the samples, instead of the Voronoi complex.

For a given isovaluei, the values at a cell’s vertices are
compared toi and classified asblack if their value is> i, white
if ≤ i. A surface is constructed in the cell iff some vertices are
black and others white. Now consider a cubic Delaunay cellK,
all of whose vertices have isovalueh. For all isovalues< h, all
vertices are classified black, so no contour is drawn, while for
isovalues> h, all vertices are classified white, and no contour
is drawn. Under trilinear interpolation, however, every point
x in the cell has function valuef (x) = h. Correspondingly,
the inverse imagef−1(h) = K is a volume, not a surface. In
practice, this is avoided by classifying vertices as white if they
are≤ i, so no surface at all is extracted.

We refer to cells whose vertices share an isovalue as
homogeneous cells. Since the span of such a cell is zero, using
it to approximate inverse gradient magnitude would cause an
exception. But contouring algorithms treat homogeneous cells
as inactive for all isovalues, so no surface is extracted, and

TABLE 1: Empirical results from the 94 8-bit and 23 12-bit
data sets used by Carr et al. [14] show a large percentage of
zero spans. For the 12-bit data sets, with more quantization
levels, the proportion of zero spans unsurprisingly decreases.

Type All Medical Measured Synthetic
8-bit 31.40% 25.70% 44.10% 25.20%
12-bit 8.98% 5.57% 14.72% 4.63%

no statistic exists to be inverse gradient-weighted. As a result,
Carr et al. [14] and Scheidegger et al. [15] do not process
homogeneous cells, and therefore do not include them in the
overall statistics - contrary to Equation 18.

6.1 Evidence of Homogeneous Cells

The existence of homogeneous cells may seem a quibble. In
quantized data, however, they are surprisingly common, and
affect the accuracy of geometric statistics. Before proceeding,
we therefore confirm their existence in implicit functions and
in real-world data. A more detailed account of these data sets
can be found in Appendix III. We illustrate this in Figure 4,
using a circular distance field over the domainIR2 constrained
to the sampling windowx= [−1,+1] and y= [−1,+1]. The
results of this are shown in Figure 4 for the range[0,20]. As
cell size decreases, a smaller proportion intersects the contour
at isovalue j = 11 (shown in green), and homogeneous cells
appear between active cells, as shown in red.

Once we have shown that this effect occurs for simple
analytical functions, it is natural to ask whether homogeneous
cells exist in real data sets. To consider this, we took the same
94 8-bit and 23 12-bit data sets used by Carr et al. [14] and
computed the number of homogeneous cells in each. Table 1
reports our results - as we can see, even for scanned data sets, it
is not uncommon to have 25−30% of the cells homogeneous.
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In practice, floating point data is re-quantized to lower
precision to compute histograms of scalar fields. For this
reason we restrict ourselves to the typical quantization levels 8,
10 or 12 bit. We note that for floating point data homogeneous
cells will occur with much lower frequency.

1 2 3 4 5

1.5 2.5 3.5 4.5

A
2

A
3

A
4

A
5

A
1

Fig. 5: Interval regionsAi intersecting a single cellK. The
isovalue range in the cell is from 1.0 to 5.0, and we accordingly
divide it into slabs for whichf rounds off to integer values.
Given linear interpolation, the slabsA1 and A5 are then half
the width of the remaining slabs, as half of the ranges that
round off to 1 and 5 are outside the cell.

We also observe that the volumetric coherence introduced
by Fujishiro & Takeshima [13] relates to the homogeneous
cells. These cells have zero span, and must necessarily have
the same isovalue at all of the vertices. Since this implies that
there are samples at isovaluei adjacent to other samples at
isovaluei, homogeneous cells occur along the main diagonal
of the co-occurence matrixPδ , but are excluded from the
volumetric coherenceVCM by a term(i− i). Since low values
of VCM are taken to mean highly coherent volumes which
can be rendered efficiently, the connection between statistics,
geometry and algorithmic performance can again be seen.

6.2 The Histogram & Geometric Statistics

We now know that histograms approximate measures of inter-
val volumes, and previous computations based on continuous
formulas combined with discrete extraction using Marching
Cubes do not correctly account for the entire domain. We
will see in Section 9 the practical implications of this. First,
however, we modify the formulas explicitly to account for the
entire domain, and prove convergence to the correct result.

We observe that an interval regionAi includes isovalues in
the range[i−0.5, i+0.5). From Section 3, we assume that the
Delaunay cells wrap around, and thatsize(K) =Vol(A)/N.

The span of a cellK is span(K) =max(K)−min(K), andK
intersectsspan(K)+1 interval regionsAi , as shown in Figure
5, wherespan(K) = 5−1= 4, but there are 5 interval regions
A1, . . . ,A5 intersecting the cell. Of these,A1 covers isovalues
in the range[1.0,1.5) – i.e. the range is half as great as forA2,
so we giveA1 andA5 (i.e. Amin andAmax) half as much size as
the remaining regions. This is precise for linear interpolation,
but not for other interpolants.

j-0.5

j+0.5

j

Upper Bound Lower Bound Cell Inter. Interval Volume

Fig. 6: For our approximationsDN(i) andCN(i), the Delaunay
cells of the sample points are used to prove convergence to
πfQ asN → ∞.

This leads to the following approximation ofπfQ:

DN(i) = ∑
K∈Del(PN)

size(K)di(K) (22)

di(K) =































0, Ai
⋂

K = /0

1, Ai
⋂

K 6= /0,span(K) = 0
1

2span(K) , Ai
⋂

K 6= /0, i = min(K)
1

2span(K) , Ai
⋂

K 6= /0, i = max(K)
1

span(K) , otherwise

(23)

whereDel(PN) is the Delaunay complex ofPN and min(K)
and max(K) are the extremal values of the cell.

In this formulation, Delaunay cells entirely outside the
interval region Ai contribute 0, those entirely inside (i.e.
homogeneous cells) contribute 1, and other cells contribute
a proportion of the cell based on 1/span(K) as shown in
Figure 5. We note that the result of this is that each cellK
is guaranteed to contribute 1 to the overall computation, thus
preserving the measure ofA as the sum of the measures ofAi :

Vol(A) = ∑
i∈Y

DN(i) (24)

as required by Equation 18. We claim that the limit ofDN

must tend toπfQ asN tends to infinity:

lim
N→∞

DN(i) = πfQ(i) (25)

Figure 6 shows the proof: note the parallel with the proof
for the histogram, except here the integration patches are
Delaunay cells instead of Voronoi cells. Delaunay cells wholly
in the interval regionAi , i.e. with span zero, form the lower
boundLN(i) of the squeeze, while the cells that intersect the
interval regionAi form the upper boundUN(i). DN is then
trapped betweenLN andUN as shown in Figure 6 by shading
the fraction of the cell attributed toDN(i) by Equation 23.

LN(i)≤ DN(i)≤ UN(i) (26)

Applying the squeeze principle again it follows thatDN must
converge toπfQ as in Equation 25 and the result follows.
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6.3 Weighted Area Convergence

As discussed in the previous work [14], [15], it is also possible
to approximate the distribution function by taking the areaof
the isosurface for each cell and multiplying it by the inverse
gradient magnitude or cell span. In effect, this replaces the
isosurface with a thin shell of non-uniform thickness, that
measures the volume (i.e. region size) of this shell.

This approximation also needs to be adjusted to include
homogeneous cells, and proven to converge to Equation 17.
As it is based on the size of the interval regionAi surrounding
the contour at isovaluei, we useCN(i):

CN(i) = ∑
K∈Del(PN)

ci(K) (27)

ci(K) =



































































0, Ai
⋂

K = /0

size(K) Ai
⋂

K 6= /0,

span(K) = 0
Z(K,i−0.5)

2
t

span(K)
Ai

⋂

K 6= /0,

i = max(K)
Z(K,i+0.5)

2
t

span(K) Ai
⋂

K 6= /0,

i = min(K)
Z(K,i−0.5)+Z(K,i+0.5)

2
t

span(K)
otherwise

(28)

Here, Z(K,x) is the Hausdorff measure of the contour of
f at isovaluex in cell K, approximated by marching cells.
t = (size(K))1/m is a term that approximates the thickness
of the cell with its linear dimension. The effect of this is
to compute an approximation of the portion ofK

⋂

f−1
Q (i).

Unlike Equation 23, however, the sum of these terms is not
guaranteed to sum to 1.

As with DN(i) the proof utilizes the squeeze principle, based
on the recognition that we are computing region size. However,
rather than treating the inverse gradient magnitude term asa
fraction of the cell, we now treat it as the thickness of a shell.

We again use homogeneous cells inAi for the lower bound
LN(i). We then define an upper bound for some constantk:

U
k

N (i) = LN(i)+ k(UN(i)−LN(i)) (29)

We know that, in general, for any fixedk, f and f +g converge
iff f and f + kg converge. Since we have shown thatUN(i)
and LN(i) converge to Equation 17. We therefore conclude
that U k

N(i) will also converge to Equation 17 for any fixedk.
We use this conservative upper bound to simplify the proof.

As before, it is easy to see thatLN(i) counts exactly those
homogeneous cells captured by the second branch of Equation
28, and it follows thatLN(i) ≤CN(i). Now, to construct our
upper boundU k

N (i), we start by observing thatDN(i) counted
the size not only of the homogeneous cells, but also some
fraction of the size of all cells on the boundary. Note that
this fraction was an approximation of the portion of the cell
covered by the interval region, and was computed by assuming
that all interval regions intersecting the cell were the same size.

In the present instance, instead of arbitrarily dividing the cell
into regions of equal size, we wish to approximate the size of
the region by taking the inverse gradient as an estimate of the

thickness of the interval region, and multiplying by an estimate
of the other dimensions of the interval region: in this case an
estimate of the length of the contour. It is not immediately
clear that this approximated region will lie entirely inside the
cell, and our convergence proof must adapt to this.

As the resolution gets finer, all cell dimensions get smaller:
for a mesh withN cells inmdimensions, there will beΘ(N1/m)
divisions in each dimension, and the linear dimension of each
cell will scale with(size(K))(1/m). Moreover, for a given case
in a marching cells table, since a contour fragment is(m−1)-
dimensional, its measure will scale withtm−1 = (size(K))

m−1
m .

And finally, the thickness estimated using the inverse gradient
must also scale with the cell, i.e. witht = (size(K))(1/m).

We can now ask what the maximum region size added
to CN(i) per cell is. We simplify by considering only two-
dimensional square lattices, and observe that marching squares
approximate a contour with line segments, and generate at
most two such segments. Now, each segment lies inside a
square of sidet, which in turn lies inside a circumscribing
circle of diameter

√
2 · t. Each of the line segments therefore

has length at most
√

2· t: since there may be at most two such
line segments,Z(K, i−0.5)≤ 2

√
2· t. Moreover,span(K)≥ 1,

so the three lower cases of Equation 28 can contribute at most
2
√

2· t × t/1= 2
√

2· t2 = 2
√

2(size(K)) to the computation.
Since for each cellK intersected by the interval region, we

add at most 2
√

2 of its area toDN, we can choose a constant
k> 2

√
2 so thatLN andU k

N force convergence ofCN. Note
that this proof relies on a looser convergence thanDN, even
though it attempts to be more accurate. We will see later that
this is actually matched by looser empirical convergence.

7 GEOMETRIC SURFACE STATISTICS

In the previous sections, we showed that the histogram con-
verges to the Hausdorff measure of interval volumes - i.e. that
it is a volume statistic. We also showed that the formulas in
Scheidegger et al. [15] converge to the same property once
they have been corrected for the presence of homogeneous
cells. We can now ask: if the statistics computed by Carr et
al. [14] are not volume statistics, what are they?

The statistics in question were active cell counts, triangle
counts and isosurface area as approximated using Marching
Cubes. While the latter two are logically related to the areaof
an isosurface, and the data plotted by Carr et al. clearly show
convergence, it is less clear why active cell counts converge to
the same result, and the discovery of the role of homogeneous
cells should make us suspicious of any demonstration not
founded on the underlying measure theory.

We shall therefore demonstrate that all three statistics are in
factsurface statistics- measures of particular (iso-)surfaces. In
addition to this we must address the relationship of geometric
surface statistics to isosurface complexity measures.

7.1 Active Cell Counts

Active cell counts are the easiest to compute, but the hardest
to link logically to surface area. Paradoxically, however,they
are also the easiest for which to prove convergence. We start
with the Lebesgue integral: the lower bound of the size of the
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Borel sets covering the region. For the Hausdorff measure, the
Borel sets are spheres in the full dimension of the embedding
space, rather than the intrinsic dimension of the region. Thus,
the Hausdorff measure of an isosurface (a surface) is computed
with a Borel set composed of spheres (volumes).

Moreover, the Besicovich Covering Theorem allows the
use of any other primitive of full dimension, albeit with
slower convergence. Here, we observe that, as the resolution is
increased, the active cells at different resolutions form aBorel
cover composed ofm-cubes. The result then follows.

7.2 Triangle Counts

With this in hand, we now consider triangle counts. Empiri-
cally, Carr et al. [14] showed that these converge to the same
result as the active cell count, once normalized. Since Carr,
Theußl and Möller [21] showed that each cell has a reasonably
reliable average number of triangles, this is hardly surprising.

Proving that triangle counts converge, however, is not easy.
Each active cell will have between one and six triangles using
the standard Marching Cubes cases. This was used in Section
6.3 as part of the convergence proof for weighted isosurface
area. That proof, however, related to volume statistics for
which the homogeneous cells dominate at higher resolutions.
Thus, the contribution of the boundary cells (i.e. active cells
at i ± 0.5) becomes progressively smaller, and the squeeze
principle can be used to establish convergence. In the case
of triangle counts, the homogeneous cells are not involved,so
looseness in approximation at the boundary is problematic.

In practice, therefore, we do not recommend using triangle
counts for statistical purposes, as they are not proven to
converge, do not empirically converge any faster than active
cell counts, and are more expensive to compute.

7.3 Isosurface Area Computation

Finally, surface statistics can be approximated by explicit
isosurface extraction and computation of each triangle’s area.
Empirically, these converge to the same result as active cell
counts, which we have just proven to converge to the Haus-
dorff area of the isosurface. However, like triangle counts,
proving convergence is difficult for the same reasons - while
upper and lower bounds for each cell can be constructed, these
loose bounds are not guaranteed to converge.

Thus, while isosurface area computation seems ideal, the
lack of a formal proof of correct convergence should be kept
in mind. Moreover, the additional computational cost means
that active cell counts should be preferred in practice.

8 ISOSURFACE COMPLEXITY

In the previous section we reviewed geometric surface statis-
tics. Recently, surface statistics have been used to measures
isosurface complexity, which has two meanings. The first
meaning is topological complexity, such as genus, shape,
smoothness and curvature of isosurfaces as described by van
Gelder & Wilhelms [24]. The second meaning is algorithmic
complexity, the rate of growth of the size of the isosurface
k as a function of the lattice sizeN. More recently in the
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Fig. 7: Plot of noise level versus cell count for eleven implicit
functions described in Appendix III. For implicit functions,
noiseless volumes have average complexity close toΘ(N0.67),
and noise moves the complexity towards theΘ(N) asymptote.

visualization literature the termisosurface complexityhas been
used to describe the latter. Isosurface complexity is a concern
in visualization applications, such as isosurface extraction
(Marching Cubes [25], [26]), when processing large data sets.

In this section we discuss how isosurface complexity relates
to statistics of scalar fields and review recent results, then in-
troduce a simple method for computing isosurface complexity
based on growth rates with respect to sampling frequency.

8.1 Relation to Summary Statistics

Isosurface complexity is linked to integration and measures of
surface properties. Measuring complexity adds an additional
dimension to the integration, i.e. over the sampling resolution
of the volume. Therefore we identify three distinct tasks that
involve measuring or integrating isosurfaces.

The first task estimatesalgorithmic costfor rendering based
on the geometric surface statistics in Section 7, i.e. cell and
triangle counts, and should be treated as such. While this
formed the original motivation of Carr et al. [14], in retrospect
rendering cost is better predicted by the maximum number of
triangles rather than the average as it represents the worstcase
for asymptotic analysis. We return to this in Section 8.3.

The second task computes asummary statisticfor a data set,
and is a volume statistic. For this, Scheidegger et al. [15] as
modified in Section 6 are correct. For measuring algorithmic
complexity, however, the gradient is not required.

The final task, computingfractal complexity of noisy
data [23], computes complexity from fractal box span dimen-
sions of a 2-manifold in a 3-space. This measures the intrinsic
complexity or dimensionality of the function, and is therefore
different from the previous two tasks.

8.2 Related Results

While introducing a new isosurface extraction technique, Itoh
& Koyamada [22] made a passing observation that isosurfaces,
being planar, should have a growth rate ofΘ(N

2
3 ) and pro-

posed triangle counts to approximate isosurface sizek. Carr et
al. [14] measured isosurface growth empirically as a function
of N, by counting triangles in ninety data sets and fitting a
least squares line to the data. The slope of the line was used
to estimate a growth rate ofΘ(N0.82).
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TABLE 2: A summary of isosurface complexity measures to date.

Year Paper Approximation(k) All Medical Measured Synthetic Implicit Functions
1994 Itoh & Koyamada [22] Triangle Count Θ(N0.67) - - - -
2006 Carr et al. [14] Triangle Count Θ(N0.82) Θ(N1.05) Θ(N0.54) Θ(N0.80) -
2008 Scheidegger et al. [15] Weighted Isosurface Area Θ(N0.96) Θ(N0.70) Θ(N0.87) Θ(N0.82) Θ(N0.67)
2010 Khoury & Wenger [23] Fractal Dimensions & Cells Θ(N0.75) Θ(N0.76) Θ(N0.75) Θ(N0.73) -
2012 Duffy et al. Down-sampled Triangles Θ(N0.76) Θ(N0.77) Θ(N0.75) Θ(N0.77) Θ(N0.67)
2012 Duffy et al. Down-sampled Cells Θ(N0.71) Θ(N0.71) Θ(N0.70) Θ(N0.71) Θ(N0.65)

Scheidegger et al. [15] then argued that average isosurface
complexity should account for the gradient and introduced
the Co-Area formula. They used gradient weighted isosurface
area to estimatek, which yielded a growth rate ofΘ(N0.96).
Scheidegger et al. [15] also showed that for clean implicit
functions the growth rate is approximatelyΘ(N

2
3 ), but that

noise increases this. We know from Section 6 that gradient
weighting gives us volume statistics: they are therefore not an
appropriate measure of algorithmic complexity.

Khoury & Wenger [23] estimated a growth rate ofΘ(N0.75)
by measuring the fractal dimensions of isosurfaces using cell
intersections to approximatek. They count active cells because
the cell counts are independent of the specific approximation
methods used in isosurface reconstruction. Furthermore, they
showed the fractal dimension of an isosurface is proportional
to the topological noise in the data. They measured topological
noise for an isosurface by computing the number of connected
components and dividing by the edge intersections to correct
for the dependency on isosurface area.

8.3 Asymptotic Analysis Approach

In this section we introduce a new method for measuring
isosurface complexity based on a multi-scale approach. We use
multiple down-sampled versions of sixty data sets to compute
the growth ofk as a function ofN: a method suggested but
not implemented by Khoury & Wenger [23]. As the lattice
density increases, we measure the active cell and triangle
counts at each resolution. The growth rate for each isosurface
is then found from the slope of a log-log least squares line,
and shown in Table 2 and Figure 7. As we see in Table 2,
these approximations are similar to the prediction by Itoh &
Koyamada [22]. From the variation in results, we see that the
approximation chosen for isosurface reconstruction affects the
computed growth rate, as predicted by Khoury & Wenger [23].

In addition to this we compute average cell count complex-
ity for eleven implicit functions and add synthetic Gaussian
noise in Figure 7. This verifies the result of Scheidegger et
al. [15] for implicit functions. Noiseless volumes have average
complexity of approximatelyΘ(N0.67). Adding noise to the
volume moves the complexity towards theΘ(N) asymptote.
The list of data sets used can be found in Appendix III.

In practice, average complexity does not have a clear mean-
ing. Instead, implicit functions tend to have smooth interfaces
between regions in the data, so their complexity measures are
not representative of real data. For real data, peaks representing
significant features tend to be distributed asymmetricallywith
large standard deviations. Thus, while implicit functionsgive a
lower bound, and an upper bound ofO(N) is provable, Khoury
& Wenger [23] showed that the expectation is intermediate
between these bounds and fractal in nature.

In Section 8.1 we noted that worst case performance should
be used to predictalgorithmic cost. For isosurface extraction
this means taking the isosurface with the maximum growth

rate. We also note that computing the average isosurface
growth rate for a given data set has very little meaning for
two reasons. Firstly, average isosurface growth does not reflect
how the user interacts with the isosurface extraction algorithm
and may not represent a statistically significant feature inthe
data. Secondly, averaging implies integrating over the range of
the data set and may compute the growth rate of an isosurface
that does not exist when dealing with quantized data.

We therefore compute the average worst and best case
growth rates from a population of 60 data sets, a subset of the
77 data sets in Appendix III. Data sets with a dimension less
than 64 samples were excluded to maintain sufficient sample
density when down-sampling, i.e. a data set 128× 256× 32
would be excluded. In practice, the average worst case for
down-sampled cells is estimated atΘ(N0.87) for all real data
sets,Θ(N0.89) for medical,Θ(N0.89) for measured,Θ(N0.83)
for synthetic andΘ(N0.76) for implicit functions. The average
best case for down-sampled cells is estimated atΘ(N0.42) for
all data setsΘ(N0.44) for medical, Θ(N0.42) for measured,
Θ(N0.41) for synthetic andΘ(N0.23) for implicit functions.

9 COMPARISON WITH PREVIOUS METHODS

In previous sections, we established that histograms and other
volume statistics provably converge to the interval volume
measure, that active cell counts converge to isosurface area,
and that other surface statistics empirically converge to iso-
surface area. It remains to test whether adding homogeneous
cells to the computation makes any significant difference.

We start with the Marschner-Lobb [27] dataset at 413

resolution. We compared the histogram with the statistics
reported by Carr et al. [14], by Scheidegger et al. [15], and
the updated volume statistics in Equation 22 and Equation 27.
For clarity, volume statistics based on cell intersectionsare
shown on the left of Figure 10, while those based on weighted
isosurface areas are shown on the right.

In these figures we see that, as previously reported, his-
tograms give poor approximations of interval volume measures
at low resolutions, and that volume statistics give smoother
estimates. Misleadingly, the active cell count reported byCarr
et al. [14], shown in blue, appears to give the same distribution
as the other statistics, presumably because the gradient inthe
Marschner-Lobb signal is fairly uniform. Moreover, although
there are minor differences between the results of the formula
reported by Scheidegger et al. [15] and Equation 22 and
Equation 27, there is little to choose between them in practice.

At higher resolution, in Figure 9, we see that the histogram
has converged to the same result as the other volume statistics,
but that the simple count of intersected cells has converged
to a different result. We also see that, at the margins of the
distribution, Equation 22 and Equation 27 converge slightly
better than the statistics from Scheidegger et al. [15].

One might conclude that there is no point to improving the
computation, but this is not true, as can be seen in Figure 10,
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Fig. 8: Comparison of volume statistics for 41×41×41 resolution sampling of the Marschner-Lobb test signal. As in previous
work, it is apparent that volume statistics of low-resolution data are of better quality than histograms.
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Fig. 9: Comparison of volume statistics for 256×256×256 resolution sampling of the Marschner-Lobb test signal.At high
resolutions, the histogram has converged reasonably well,and no advantage is seen from the use of volume statistics. Minor
differences are visible when homogeneous cells are added tothe computations.
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Fig. 10: Comparison of volume statistics for Monkey-MRI-T1data. Here, the data is of very uneven quality, and the updated
computation with homogeneous cells shows a marked improvement compared to previous work. Moreover, the difference
between surface statistics (blue) and volume statistics becomes apparent.

an MRI scan of a monkey. Again, the simple count of inter-
sected cells is clearly a different result from either histogram
or volume statistic. Since we have already concluded above
that this is actually a surface statistic, this poses no difficulty.
But, when we compare the cell intersection statistics, we see
that the computation in Scheidegger et al. [15] struggles with

the uneven quantization of the underlying data, resulting in a
sequence of cusps rather than the smoother line that results
from counting homogeneous cells as well.

For high-resolution data sets, then, histograms are suffi-
ciently high quality that no other volume statistics are mer-
ited. However, at lower resolutions, or for data with hidden
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sampling issues, geometric statistics are more reliable.

10 COMPUTATIONAL PERFORMANCE

As well as the relative quality of these approaches, we can
also consider the computational cost. Due to the simplicityof
the computation, we would expect histograms to be cheapest.
We would also expect weighted cell counts to be cheaper
than weighted isosurface area, as there is no need to extract
and measure triangles. The updated volume computations of
Equation 22 and Equation 27 should be slightly more expen-
sive than the weighted cell counts and weighted isosurface
area from Scheidegger et al. [15], since a small amount of
additional computation is required.

In Figure 11 (left), we show the computation cost in seconds
of the volume statistics for the same data sets as used by
Carr et al. [14], plotted against the data size. As expected,
the performance advantage of the histograms shows up quite
clearly, with the two weighted cell intersection computations
next, and the two weighted isosurface area computations last.
And, also as expected, the corrections introduced in Equation
22 and Equation 27 add little or no additional cost.

Similarly, Figure 11 (right) shows the comparative computa-
tion cost in seconds of the surface statistics originally reported
by Carr et al. [14], with histograms plotted for comparison.
Again, while histograms are clearly cheapest to compute
(although not computing the same property), cell intersection
counts are much cheaper than isosurface area computations.

TABLE 3: Computational costs of volume and surface statis-
tics. Histograms are cheapest by at least an order of magnitude,
followed by cell counting, followed by area approximations,
again by an order of magnitude. As expected, the corrections
introduced in Equation 22 and Equation 27 increase the cost
by only a small amount.

Slope
Paper Volume Statistics s / Msample
- Histogram 0.0242
Scheidegger et al. [15] Weighted Cell Intersection 0.5626
Duffy et al. Equation 23 Interval Volume Cell Count 0.5921
Scheidegger et al. [15] Weighted Isosurface Area 6.8053
Duffy et al. Equation 28 Interval Volume Approximation 8.1168

Surface Statistics
Carr et al. [14] Cell Intersection 0.5349
Carr et al. [14] Isosurface Area 6.8387

Since these computations are all performed one voxel or one
grid cube at a time, we expect them to scale linearly with the
data size, and within broad terms they do. We therefore plotted
least squares fitted lines for each statistic, and report summary
statistics in Table 3. We can see from these statistics that
histograms are cheaper by one and a half orders of magnitude
than all intersection cell computations, which in turn are an
order of magnitude cheaper than isosurface area computations.

11 ASSESSMENT

We have now seen that the statistics reported in previous work
converge to one of two fundamental properties. Histograms
and the corrected weighted cell intersection counts of Equation

22 converge to the measure of the interval volume. Cell in-
tersection counts and isosurface area approximations converge
instead to the Hausdorff measure of the isosurface area.

We have seen, however, that some statistics give smoother
results than others, especially at low resolution, and thatsome
statistics are cheaper to compute than others. Given these ob-
servations, we can now make the following recommendations:

1) For high-resolution volume statistics, histograms give
sufficiently high-quality results most of the time that
their speed advantage dictates their use.

2) For low-resolution volume statistics, interval volume cell
counts should be used, as they balance quality and
speed better than either histograms or interval volume
approximations. Equation 22 should be used instead of
the formula reported by Scheidegger et al [15].

3) For surface statistics, cell intersection counts shouldbe
used, as they are cheap and converge rapidly.

12 CONCLUSIONS & FUTURE WORK

We have shown that previous papers on geometric statistics
of continuous functions can be reconciled to the underlying
mathematical model of Federer’s Geometric Measure The-
ory. We have also shown that histograms are statistics that
approximate the volumetric measure of the interval volume
defined by the quantization of data in the range, and that
the same property can also be computed by approximations
based either on counting cells intersecting the interval volume,
or computations measuring the interval volume extracted by
Marching Cubes. We have further shown that computing
these approximations correctly requires accounting for homo-
geneous cells - cells all of whose vertex isovalues are identical.

We have also confirmed that the level set measureπf (y) of a
function f is the Hausdorff measure off−1(y) in the domain,
and that this can be approximated either by isosurface area
extraction and mensuration or simply by counting active cells.

Finally, we have shown that the choice of which statistic
to compute can be driven by assessing the tradeoff between
computational cost and quality of result.

Some future directions arise from this. First, none of the
computations herein are restricted to volumetric data or tothe
Cartesian lattice: the proofs generalise to higher dimensions
in both domain and range and to non-Cartesian lattices.
Federer’s Area and Co-Area formulas for Lipschitzian maps of
functions only work form-dimensional measures over subsets
of n-dimensional Euclidean space, i.e.m≤ n. Bachthaler &
Weiskopf explicitly dealt withm= n, and we would like to
extend this work tom> n and to irregularly sampled data.

We would like to consider the impact of geometric measure
theory on other geometric properties such as higher-order
moments and sphericity. Since these involve second and higher
derivatives, we expect that the homogeneous cells will be
increasingly important. In broad terms, we predict that where
these properties are being used to underpin transfer function
design, adjustments will be needed to base them on the interval
regions rather than local properties of isosurfaces, but the
details of this will take considerable effort to work out.
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Fig. 11: Performance Characteristics of volume and surfacestatistics. As predicted, histograms are cheapest to compute,
followed by cell counted statistics, followed by triangle-area computations.

We intend to explore the use of these statistics to assess
relative convergence properties of different sampling lattices.
We note that, logically, if inverse gradient-weighted cellcounts
approximate interval volumes as do histograms, that gradient-
weighted histograms ought to approximate isosurface area
computations, potentially at cheaper cost than cell counts.

Furthermore, the identification of the gradient relationship
between the two types of statistics (re)-raises an interesting
question: if histograms relate to inverse-gradient weighted
statistics, are surface statistics such as active cell counts a
better statistic for detecting high-gradient boundaries in data?
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