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A Model for Structure-based Comparison of
Many Categories in Small-Multiple Displays
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Abstract—Many application domains deal with multi-variate data that consist of both categorical and numerical information. Small-
multiple displays are a powerful concept for comparing such data by juxtaposition. For comparison by overlay or by explicit encoding
of computed differences, however, a specification of references is necessary. In this paper, we present a formal model for defining
semantically meaningful comparisons between many categories in a small-multiple display. Based on pivotized data that are hier-
archically partitioned by the categories assigned to the x and y axis of the display, we propose two alternatives for structure-based
comparison within this hierarchy. With an absolute reference specification, categories are compared to a fixed reference category.
With a relative reference specification, in contrast, a semantic ordering of the categories is considered when comparing them either to
the previous or subsequent category each. Both reference specifications can be defined at multiple levels of the hierarchy (including
aggregated summaries), enabling a multitude of useful comparisons. We demonstrate the general applicability of our model in several
application examples using different visualizations that compare data by overlay or explicit encoding of differences.

Index Terms—Comparative visualization, small-multiple displays, Trellis displays, categorical data.

1 INTRODUCTION

Many application domains deal with multi-variate data that consist of
both categorical and numerical information. A common analysis ap-
proach for such data is based on pivotization. The data are split by
categorical attributes before computing aggregations of numerical at-
tributes. The application of this concept in On-Line Analytical Pro-
cessing [28] (OLAP) has established the terms dimensions for cate-
gorical attributes and measures for numerical attributes. Many visual-
ization approaches for analyzing pivotized data rely on comparison
by juxtaposition in small-multiple displays [30], also called Trellis
displays [5]. Polaris [27] and the success of its commercial version
Tableau [1, 2, 19] demonstrate the usefulness of such approaches. The
display is subdivided into rows and columns by categories of dimen-
sions which can also be organized hierarchically (e.g., months within
years). Graphics then show the pivotized data for each combination
of categories. A particular advantage of this concept is that it uni-
fies a variety of possible comparisons between dimensions and mea-
sures [19, 27]. Also, it can be easily applied to common visualizations
such as scatterplots, function graphs, or geographic maps. The visual
results are easily comprehensible also for non-visualization experts.

Our work focuses on concepts for comparison of many categories
in a small-multiple display. A motivation is that comparisons by juxta-
position become increasingly ineffective in case of a large number of
categories. Users are forced to “remember” one graphic while shifting
the focus to other potentially distant plots. This is especially challeng-
ing when comparing complex graphics with many objects [3]. More-
over, precise comparisons with respect to the horizontal position are
usually limited to graphics within the same column, and precise verti-
cal comparisons require plots to share the same row.

According to Gleicher et al. [12], there are two alternatives to com-
parison by juxtaposition: 1) data can be overlaid within the same
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frame of reference using different visual styles, and 2) computed dif-
ferences between the data can be explicitly encoded. With comparison
by overlay, data can then be compared within the same coordinate sys-
tem and differences can be read-out in the data unit. Explicit encod-
ing, in contrast, enables the analyst to compare data differences more
precisely. Computed differences can be shown instead of the original
data or can be encoded in addition, for example, using color. A special
and common case of explicit encoding are percentual measures which
express the relative difference of two measures.

In contrast to juxtaposition, both comparison by overlay and ex-
plicit encoding require a specification of which graphics should be
compared to each other within the small-multiple display. Consider-
ing the hierarchical organization of the partitioning categories, there
are many options for comparing graphics in a semantically meaning-
ful way. For example, the months within a year can be compared to
the preceding month each or to a user-defined reference month. Also,
different years can be related by comparing their individual months.
In this paper, we investigate the design space of exploiting the hierar-
chical structure of small-multiple displays for flexibly defining mean-
ingful comparisons between graphics (referred to as structure-based
comparison). Specifically, we present the following contributions:

• We propose a formal model for structure-based comparison of
graphics, where the corresponding categories can be related both
within and across multiple hierarchy levels.

• We incorporate aggregated summaries of parent categories in our
model, which can be specified as references for comparison.

• We demonstrate our model through several application examples
for visual comparison by overlay and explicit encoding.

2 RELATED WORK

Comparative Visualization. Comparative visualization inves-
tigates data for similarities and differences. According to Kehrer and
Hauser [17], comparison is one of six typical tasks in the visual anal-
ysis of scientific data. In this context, the combination of interaction,
computational analysis, and appropriate visual encoding are highly
important. Examples include the comparison of different time steps,
spatial locations, variables, or data modalities. According to Verma
and Pang [32], scientific data can be compared at the image, data, or
feature level, depending on the degree of data abstraction. Gleicher
et al. [12] proposes a complementary taxonomy for information vi-
sualization. The authors distinguish three categories, which can also
be combined: 1) spatial or temporal juxtaposition, 2) superposition
(or overlay), and 3) explicit encoding of computed differences. Our
model supports the latter two alternatives for visual comparison in a
small-multiple display.
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Data are often compared by juxtaposition using coordinated mul-
tiple views with linking and brushing [4, 25]. Lex et al. [18] pro-
pose a focus+context visualization for comparing separately clustered
groups of variables of biomolecular data. Clustered records are con-
nected across multiple groups of variables using bundled curves and
ribbons. VisLink [9] draws connections between related data items
in visualizations that can be placed in 3D. Malik et al. [20] discuss a
multi-image view that supports the comparison of series of 3D scans
from the same specimen. The approach incorporates also computed
differences between the data, which is usually more precise than pure
image level comparison. Tominski et al. [29] discuss interaction con-
cepts that are inspired by real-world behavior for comparing printed
information. The user can interactively specify and rearrange parts of
the visualization via drag and drop. Similar to our model, data can then
be compared by juxtaposition, explicit encoding, or overlay. With the
latter approach, the occluded information can either shine through us-
ing alpha blending or the occluding part can be folded back and forth
using a folding interaction. Additionally, computed differences can be
encoded in color on-demand.

Most approaches for comparing hierarchically organized data are
based on trees [14]. Graham and Kennedy [13] propose linking and
focusing across multiple hierarchies. Nodes can be interactively se-
lected and are linked to similar nodes across the tree (highlighted in
color). The linking leads to multiple focal points that receive more
space according to a degree-of-interest value. TreeJuxtaposer [23] al-
lows structural comparison by finding corresponding nodes between
two trees. Structural differences are automatically highlighted, and
brushing helps finding similar structures in the other tree. Holten and
van Wijk [16] show two trees at opposite sides of the display. Leaf
nodes are matched to each other and connected by hierarchical edge
bundles. Bremm et al. [7] propose similarity measures for comparing
multiple trees. A matrix view gives an overview of pairwise tree simi-
larities. A tree can be selected as a reference, which is then compared
in detail to other trees. While the described approaches focus on the
comparison of tree structures, we use the hierarchical categorization
of the data to define which data portions should be compared.

Pivot Tables and Small-Multiple Displays. Pivot tables
have long been used to summarize measures with respect to a classifi-
cation given by categories. The concept of pivoting data is also impor-
tant for databases, where the predominant structured query language
(SQL) offers, for example, the “GROUP BY” clause for select state-
ments. However, SQL statements have limitations with respect to drill-
down and roll-up operations. Gray et al. [15], therefore, propose to
treat multi-variate databases as n-dimensional data cubes, which have
widely been adopted by On-Line Analytical Processing [28] (OLAP).
OLAP systems typically use aggregated summaries as a starting point
to drill down into interesting data subsets.

While most OLAP front-ends provide only selected business graph-
ics, Polaris/Tableau [19, 27] uses a formal algebra for specifying pivot
tables and their visual representation. The table algebra is based on
the grammar for describing statistical graphics by Wilkinson [33]. The
user can incrementally construct complex queries by intuitive manip-
ulations in this algebra. The layout is based on small-multiple dis-
plays [5, 30]. With respect to comparison, the current version 7 of
Tableau [1, 2] supports the computation of absolute and percentage
differences between categories. In a dialog window, the reference can
be specified either as a certain category or the previous or next element
of a dimension. The comparisons, are not formally described and only
the resulting differences can be displayed in Tableau. In contrast, we
propose a formal model which is general enough to also support com-
parison by overlay.

Robertson et al. [26] study the effectiveness of small multiples, an-
imation, and trace lines for analyzing trends in scatterplots. Their re-
sults suggest that animation is the least effective technique and small
multiples are more accurate. Daae Lampe et al. [11] compare dif-
ferences in movement data in a small-multiple display. Each view
shows the difference to the average movement for a different category.
The user can interactively drill down into subcategories. The resulting
views replace the previous ones and depict the differences to the parent
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Fig. 1. Visualization of sales data. Based on the hierarchical partitioning
of the small-multiple display, the data can be compared in many ways:
East to West, all years to 2010, each quarter to the previous one, etc.

category. In contrast, our model can simultaneously display and com-
pare multiple levels of the hierarchy and is not limited to comparison
to aggregated summaries.

3 A MODEL FOR STRUCTURE-BASED COMPARISON

This section describes our model for structure-based comparison of
graphics in a small-multiple display. Such a display represents a ma-
trix of graphics which is subdivided into rows and columns according
to the dimensions assigned to its axes (see Fig. 1 for an example). For
each axis of the matrix, the user can define a hierarchy of categories by
dimension composition. For example, categories from the dimensions
“year” and “quarter” can be combined to categories like “first quarter
of 2010” (see the x axis in Fig. 1). The graphics of the matrix (subse-
quently called cells) then show the data for the respective combination
of categories [5, 19, 27]. In order to formally define configurations of
the matrix, we build upon the table algebra by Stolte et al. [27].

Small-multiple displays inherently facilitate comparison by juxta-
position. However, comparing different cells by overlay or explicit
encoding (see the categorization of Gleicher et al. [12]) requires the
specification of a reference graph between the cells. For large ma-
trices, there is in theory a very large number of potential reference
graphs between the cells. Some of these reference graphs are seman-
tically meaningful for different tasks, others are not. Our goal is to
exploit the hierarchical organization of the matrix in order to support
a flexible definition of semantically meaningful reference graphs for
comparing cells. The subsequent sections investigate the design space
of structure-based comparison of cells in a matrix. Before formally
describing our model, we start with an illustrative example.

3.1 Illustrative Example: Sales Data Analysis

We use the Superstore sales data which comes with the Tableau Desk-
top software [1] to illustrate our model throughout this section. The
data consists of product orders by costumers which are described by
measures such as sales, profit or unit price, categorical attributes (e.g.,
product category, geographic region, or customer segment) as well as
the timestamps order and ship date. In Fig. 1, for example, the sum
of profit is shown in a matrix that is horizontally partitioned by geo-
graphic region and ship date (year and quarter), and vertically parti-
tioned by product category and product. Based on this example, typi-
cal comparative tasks an analyst may want to perform include:

T1 Compare the profit per quarter and product to the maximum profit
in the matrix (i.e., the highest bar).

T2 Compare one geographic region to the other one, i.e., East to West.
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Fig. 2. Comparison to an absolute reference: (a) Each year is compared
to 2010 on a quarterly basis (compare to sample task T3 in Sec. 3.1).
(b) The quarters within each year are compared to a specified reference
(compare to sample task T4). In the comparison by overlay, the data
from the references are depicted with a hatching texture.

T3 Compare each year’s profit to the profit of a particular year on a
quarterly basis (per product and geographic region, see Fig. 2a).

T4 Compare each quarter’s profit to a specific quarter of the same
year (per product and geographic region, see Fig. 2b).

T5 Compare each year’s profit to the following year’s profit on a quar-
terly basis (per product and geographic region, see Fig. 5a).

T6 Compare each quarter’s profit to the previous quarter in the same
year (per product and geographic region, see Fig. 5b).

T7 Compare each quarters’s profit to the average profit of the year
(per product and geographic region, see the blue bars in Fig. 9).

T8 Compare each product’s profit to the average profit of the corre-
sponding product category (per quarter, year, and geographic re-
gion, see the top row in Fig. 9).

The subsequent sections describe a formal model that is expressive
enough to specify relationships between cells in a small-multiple dis-
play in order to answer these and similar tasks. Before formally de-
scribing this model, Sec. 3.2 summarizes the table algebra [27] as the
formalism on which our model is based. Section 3.3 then discusses
basic considerations with respect to our model. Sections 3.4 to 3.6
cover three general types of comparison we have identified: absolute
references relate cells to fixed other cells within the matrix (e.g., tasks
T1 to T4, see Sec. 3.4); relative references are based on adjacencies
between categories with respect to some order (e.g., tasks T5 and T6,
see Sec. 3.5); and comparisons between hierarchy levels relate the data
at different levels of aggregation (e.g., tasks T7 and T8, see Sec. 3.6).

3.2 Table Algebra
Our reference specification in sections 3.4 and 3.5 is based on a matrix
configuration T resulting from a cross operation (×) in the table alge-
bra by Stolte et al. [27]. The operation performs the Cartesian product
of the categories of n dimensions X1, . . . ,Xn, which are assigned to the
x and y axis of the matrix and partition it into columns and rows:

T = X1 ×·· ·×Xn = {(t1, . . . , tn) | ti ∈ Xi} , (1)

where Xi = {xi,1, xi,2, . . . , xi,li} denotes a dimension with li categories.
The hierarchy of categories on the x axis in Fig. 1 is such an example
that results from a cross operation. The cells of the matrix represent
the leaf nodes in the combined hierarchy of dimensions. Each cell
is formally described by an n-tuple t = (t1, . . . , tn) which represents a
unique combination of categories of the partitioning dimensions (e.g.,
see the annotated cell in Fig. 1). In our formalism, we use these n-
tuples to unambiguously refer to the cells/graphics of the matrix.

3.3 Structure-based Comparison
The goal of our model is to facilitate the definition of meaningful refer-
ences between the categories for comparison based on the hierarchical

Furniture y-axis in Fig. 1

Bookcases

Office Supplies

Paper EnvelopesTables Appliances

Fig. 3. Products are grouped by the nesting dimension “product cate-
gory” and are compared to envelopes. In this hierarchy, however, furni-
ture cannot be compared to office supplies because the structure and
categories of the subtrees do not match.

structure of the matrix. A key idea of our model is the discrimination
between three roles of dimensions. The role of a dimension depends
on the overall structure of the small-multiple display and the intent of
the comparison, and it may change in the course of the analysis:

Comparing dimensions relate different categories of the same di-
mension to each other, that is they specify what should be com-
pared to what (e.g., the years in Fig. 2a or quarters in Fig. 2b).
Sec. 3.6 introduces intermediate aggregates as a concept that ex-
tends comparing dimensions to also enable comparisons between
hierarchy levels (see sample tasks T7 and T8).

Refining dimensions relate equivalent categories of the same dimen-
sion to each other, i.e., they subdivide the data for increasing the
level of detail of the comparison (e.g., the quarters in Fig. 2a).

Nesting dimensions are different from comparing and refining di-
mensions. They do not introduce an additional refinement of the
data, but rather provide a disjunct grouping of the subcategories
which are nested within their parent categories (compare to the
nest operation in the table algebra [27]). Such an example are the
dimensions partitioning the y axis in Fig. 1. Since the categories
and/or structure of the subtrees are different, a nesting dimension
cannot be a comparing dimension in our model (see Fig. 3).

Our model for structure-based comparison is based on the following
elementary guidelines. We have derived these guidelines in a bottom-
up manner from a larger list of tasks (including T1 to T8) in different
application fields (see Sec. 4).

G1 Scalability. The model should not impose a limit on the number
of involved dimensions or categories.

G2 Generality. The model should allow many types of visualization
per cell (e.g., bar chart, scatterplot, or geographic map).

G3 Surjectivity. Each cell of the matrix can be compared to only
one reference, but a cell can serve as reference for multiple cells.
This restriction to one-to-many relations keeps the model simple
enough to be comprehensible for a user, and it facilitates the de-
sign of visual comparisons where only two visualizations need to
be overlaid per cell (see Fig. 2, for example).

G4 Hierarchical consistency. At each level of the hierarchy, the ref-
erence graph should be consistent for all sub-categories (e.g., see
the reference graphs in Figs. 2 and 4). This makes it easier for
the user to understand which cells are related to each other and
enables a simple specification of the reference graph.

G5 Order independence. The possibilities for specifying a refer-
ence should be independent of the order of the dimensions within
the hierarchy in general, and they should be independent of the
assignment to the x and y axis of the matrix in particular. Changes
in the configuration of the matrix (e.g., swapping two dimensions)
should thus not restrict the model. An exception to this guideline
are comparisons between hierarchy levels in Sec. 3.6.

G6 Compactness. The references between the categories of a com-
paring dimension should be compact, i.e., they should be de-
scribed by at most one target category per comparing dimension
and—in case of ordinal data—the order of the categories. This
facilitates the specification of a reference graph for the user.

We consider especially guidelines G3 and G4 as a useful compromise
between being able to cover every possible reference graph between
cells in a matrix and keeping the model simple and usable. The subse-
quent sections describe a formalism for defining structure-based com-
parisons which adhere to these guidelines.
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Fig. 4. Absolute reference specification for visual comparison. The ma-
trix/hierarchy results from a cross operation of the partitioning dimen-
sions A= {a1,a2} and B= {b1,b2,b3} on the x axis as well as C = {c1,c2}
on the y axis. (a) Category b2 within the comparing dimension B is de-
fined as reference. (b) The reference definition is further refined on the
y axis. (c) A reference is specified within both dimensions on the x axis.
(d) Categories on both x and y axis define a reference.

3.4 Absolute Reference Specification

With an absolute reference specification, cells can be compared to
a fixed reference at different levels of the hierarchy as illustrated in
Fig. 2. For a matrix configuration T that is defined by n partitioning
dimensions X1, . . . ,Xn, such a reference can be expressed by an n-tuple
r = (r1, . . . ,rn). Here, ri can either be undefined (denoted as ∅) or
one category of a dimension Xi ∈ T which then becomes a compar-
ing dimension X̃i. In Fig. 2b, for example, the third quarter (Q3) has
been defined in the reference tuple r = (∅,∅,Q3,∅,∅), and the cor-
responding dimension “ship date [quarter]” thus becomes a comparing
dimension. For each matrix cell described by an n-tuple t (Eq. 1), we
can obtain the n-tuple describing the related absolute reference cell as

Rabs(t,r) = (x1, . . . ,xn) with xi =

{
ti if ri =∅

ri if ri ∈ X̃i

Our definition specifies exactly one reference per cell. The reference is
thereby identical to t in the dimensions where r is undefined (refining
and nesting dimensions) and equals the defined category for compar-
ing dimensions (e.g., Q3 in Fig. 2b). Accordingly, the cells that are
identical to r in all the comparing dimensions are references.

Figure 4 illustrates the reference graph between cells using an abso-
lute reference specification. The matrix is partitioned by dimensions A,
B and C, and the cells represent the leaf nodes in the combined hi-
erarchy of categories. Colored arrows illustrate when categories are
related to a reference category within a comparing dimension. Gray
arrows illustrate when categories refer to themselves, but within an-
other subtree (refining dimension). In Fig. 4a, the dimension B on the
x axis of the matrix is a comparing dimension, i.e., r = (∅,b2,∅).
Such a relation, for example, would compare the quarters within each
year to a specific reference quarter (see Fig. 2b and task T4). We de-
fine B(t) to be the category of the dimension B for a cell described by t.
The reference cells in Fig. 4a are highlighted and satisfy the predicate
B(t) = b2, i.e., all cells where the category of dimension B is b2. Since
the reference tuple is undefined for A (refining dimension), the cells
with a blue background are compared to a different column than those
shown with a purple background (see colored arrows). In Fig. 4b, the
reference definition is extended on the y axis, i.e., r = (∅,b2,c1). All
cells are thus compared to the reference with B(t) = b2 and C(t) = c1.

(a) (b)
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Fig. 5. Comparison to a relative reference. (a) Each year is compared
to the next year on a quarterly basis (see sample task T5 in Sec. 3.1).
(b) Each quarter within a year is compared to the previous one (see
sample task T6). Differences are encoded in color.

In Fig. 4c, both dimensions on the x axis are comparing dimensions,
i.e., r = (a2,b2,∅). The cells in each row of the matrix are then com-
pared to references, where A(t) = a2, B(t) = b2, and C(t) remains un-
changed. Such a comparison, for example, could compare each month
to a specific month of a specific year. If all categories in r are defined,
all cells would be compared to a single reference cell in the matrix
(T1, not illustrated here). In Fig. 4d, the reference is (a1,∅,c2). The
cells are thus compared to references, where A(t) = a1, C(t) = c2, and
B(t) remains the same. For example, each quarter of a year could be
compared to the same quarter in a reference year (see Fig. 2a and T3).

An absolute reference specification is independent for each dimen-
sion, i.e., the reference categories defined at different levels of the hi-
erarchy do not affect each other (compare to guideline G5 in Sec. 3.3).
They only influence comparing dimensions where all other categories
are compared to the specified reference. Changing the order of the di-
mensions on an axis only affects the location of the graphics, but not
the comparison.

While the focus of this paper is not on interaction, the compact rep-
resentation of the reference tuple (see guideline G6) suggests concepts
for an interactive specification of structure-based comparisons. The
user can click on the category labels on the x and y axis of the ma-
trix to toggle the state of the category in the reference tuple, possibly
replacing a previous reference category for the same dimension.

3.5 Relative Reference Specification

With a relative reference specification, cells are compared to a mov-
ing reference instead of a fixed one. The comparing dimension can
be defined at different levels of the hierarchy as illustrated in Fig. 5.
Each category is then compared to the preceding or following cate-
gory within the comparing dimension. Such a comparison implies that
the categories involved in defining a relative reference have a logi-
cal ordering. This ordering is inherently given for ordinal dimensions
or can be defined by ranking categories according to a user-specified
measure, for example. We first describe the simple case, where the
reference is defined at only one hierarchy level. A reference definition
for composite categories is then discussed in Sec. 3.5.2.

3.5.1 Reference specification on one hierarchy level

In principle, there are three possible cases for a relative comparison
of cells. Defining a global direction of comparison, categories can ei-
ther be compared to the 1) previous or 2) subsequent category within
a comparing dimension as shown in Fig. 5. As a third alternative,
cells can be compared based on a specified reference category. This
provides additional flexibility by intermixing the comparison direction
within a subtree as illustrated in Fig. 6. Additionally, the latter case can
express the first two cases as well and can be defined analogous to an
absolute reference definition. Consequently, we define a relative com-
parison by an n-tuple r = (r1, . . . ,rn), where ri can either be undefined
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Fig. 6. Depending on the location of the defined reference category, categories are compared relatively to the previous or next category. (a) Relative
comparison within each subtree. (b) Relative comparison of entire subtrees. (c) Relative comparison for composite categories.

for any refining or nesting dimension, or it can represent a category of
an ordinal dimension X̂i ∈ T which then becomes a comparing dimen-
sion. For each matrix cell described by an n-tuple t, we can obtain the
relative reference as Rrel(t,r) = (x1, . . . ,xn) with

xi =

⎧⎪⎨
⎪⎩

decrement(ti) if (ri ∈ X̂i)∧ (ri < ti)
increment(ti) if (ri ∈ X̂i)∧ (ri > ti)
ti otherwise.

(2)

In case ri is defined, both ri and ti stem from the same ordinal dimen-
sion X̂i and can thus be compared. If ri is less than ti, we decrement ti
to the previous element in X̂i. If ri is greater than ti, we increment ti.

In Fig. 6a, for example, r = (∅,Q2) and the ordinal dimension
“quarter” is thus a comparing dimension (compare to Fig. 5b and
task T6). Cells with a quarter before Q2 are compared to the sub-
sequent cell each, and cells after Q2 to the preceding one (see arrows).
With such a comparison, for example, one can check time-dependent
data for continuity around a peak. In Fig. 6b, the reference tuple is
(2011,∅) and the years are either incremented or decremented as il-
lustrated with arrows (compare also to Fig. 5a and task T5). Since
the tuple is undefined for the refining dimension “quarter,” each cell is
compared to a reference where the quarters remain unchanged.

3.5.2 Reference specification for composite categories

In some cases, inferring an order for a relative reference specification
involves the composition of multiple dimensions. For a meaningful
comparison, however, the comparing dimensions need to have a se-
mantical ordering, i.e., the categories of one dimension must be se-
mantically embedded within the categories of another one. A typical
example is time where hours are embedded within days, days within
months, months within years, etc. It should be noted that this or-
dering is independent of the ordering of the dimensions in the ma-
trix/hierarchy (compare to guideline G5 in Sec. 3.3).

The main idea of a reference specification for composite categories
is to define the references between the categories of the comparing di-
mension with the lowest rank (e.g., quarters that are embedded within
years). The comparison direction for each cell is then determined in a
top-down manner as illustrated in Fig. 6c. For example, this enables
to compare the last quarter of a year to the first quarter of the next
year. Specifically, we adapt Eq. 2 to work on the tuples r and t as a
whole instead of considering each dimension independently. Note that
only the categories of ordinal comparing dimensions X̂i are compared
and possibly modified—the categories of the other dimensions remain
unchanged:

Rrel(t,r) =

⎧⎪⎨
⎪⎩

decrement(t) if r < t
increment(t) if r > t
t otherwise.

(3)

We first compare the categories of the comparing dimension with the
highest rank (e.g., years in Fig. 6c). In case the corresponding cate-
gories of r and t are equal, the categories of the next-ranked comparing
dimension are compared, and so on. When t is incremented or decre-
mented as a result, we start with the category of the comparing dimen-
sion with the lowest rank (quarters in Fig. 6c). In case we are at the
boundary between two subtrees (first or last element in the embedded
dimension), we jump to the neighboring category in the subtree of the
decremented or incremented category of the next-ranked comparing
dimension (illustrated by black arrows in Fig. 6c). For example, the
last quarter of the year 2010 refers to the first quarter of 2011.

Figure 7 illustrates a setup with three partitioning dimensions on
the x axis. In Fig. 7a, the middle and inner dimension are compar-
ing dimensions, i.e., r = (∅,b1,c2). Dimension B is highest ranked,
and cells are principally compared based on the corresponding cate-

c2
b2

c1 c3 c1 c3c2 c2
b2

c1 c3 c1 c3c2

a1 a2
b1 b1

c2

a2

c1 c3 c1 c3 c2c2 c1 c3 c1 c3c2

b2

a1
b1 b2b1

a2

c1 c3 c1 c3 c2c1 c3 c1 c3c2

a1
b1 b2b1
c2 c2

b2

(a)

(b)

(c)

Fig. 7. Various configurations of a relative comparison for composite
categories within a hierarchy.

gories. Accordingly, all cells with category B(t) = b2 are compared
to the preceding composite category of dimensions B and C. For cells
with B(t) = b1 also the categories of the next-ranked dimension C are
considered. Fig. 7b shows a similar comparison, however, the com-
paring dimensions are not adjacent, i.e., r = (a1,∅,c2). The cate-
gories of dimensions A and C form composite categories, which are
intersected by the categories of dimension B which acts as a refining
dimension. Cells with category a2 are then compared to the previ-
ous composite category, where the categories of B remain unchanged.
At the boundary between the subtrees, the cell a2b1c1 is compared to
a1b1c3, and a2b2c1 is compared to a1b2c3 (indicated with black ar-
rows). In Fig. 7c, the categories of the comparing dimension A and B
form a combined hierarchy with r = (a1,b2,∅), and the categories of
the refining dimension C remain unchanged (see gray arrows).

3.6 Comparison between Hierarchy Levels

Many tasks require comparing subcategories to the parent category.
An example would be comparing the average profit per quarter to the
average profit of the entire year (see sample task T7 in Sec. 3.1). In
general, comparisons between hierarchy levels require the aggregation
of an intermediate node of the hierarchy. We thus refer to such aggre-
gates as intermediate aggregates (IAs), which are represented as addi-
tional nodes in the hierarchy (see Fig. 8). By preserving the structure
of the subtrees when computing IAs, we can apply our model to refer-
ences between hierarchy levels in a natural way. Conceptually, the IAs
can be considered as additional nodes of the hierarchy. They can thus
be referred to by a reference tuple like any other node even though the
subset of the data represented by IAs is by definition not disjunctive
to the other nodes of the respective level of the subtree representing
actual categories.

b1 b2 IA(B,a1)

a1 a2

B

A
dims.

b1 b2

root

(a) (b)

IA(B,a2) IA(B)

IA(A)

b1 b2

a1 a2

B

A
dims.

b1 b2

root

(c)
IA(A)

IA(B,b1) IA(B,b2)

IA(B,b1) IA(B,b2)

Fig. 8. Calculating intermediate aggregates (IAs) within the hierarchy.
(a) IAs are computed for dimension B with respect to each category of
dimension A. (b) Each category of dimension B is summarized by an IA
(purple). Additionally, IA(B) represents the total summary. (c) Only the
categories of dimension B are summarized.
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Fig. 9. Example with intermediate aggregates. For each year, IAs sum-
marize the data of the corresponding quarters (i.e., average per year).
Additional IAs summarize the data for each row and column.

We denote such intermediate aggregates as IA(Xi,x j), where Xi rep-
resents the dimension in the hierarchy that is aggregated, and x j rep-
resents an optional filter category from a dimension Xj . In Fig. 8a,
for example, IAs are computed for the inner dimension B with respect
to the parent categories. The resulting node IA(B,a1) summarizes the
data of the subtree of a1, and IA(B,a2) summarizes the subtree of a2
(illustrated with black lines above the nodes). In Fig. 8b, the node
IA(A) is added to the hierarchy, which summarizes the data of the
entire tree. In order to comply with our model for structure-based
comparison, additional IAs are added for dimension B such that each
subtree has the same number of nodes. In this context, IA(B,b1) sum-
marizes the data for category b1, and IA(B,b2) summarizes the data
for b2 (see the purple bold lines below the nodes). The node IA(B)
has the same value as IA(A) (total summary) and aggregates the data
of IA(B,a1) and IA(B,a2). In Fig. 8c, only the intermediate aggre-
gates for each category in B are computed. In general, the decision to
summarize the categories of a hierarchy level by adding an IA-node is
independent from other hierarchy levels. That is, IAs can be computed
for single levels, multiple levels, or all levels. Fig. 9 shows an example
setup with intermediate aggregates.

4 APPLICATION EXAMPLES

In this section, we present examples for the versatile applicability of
our model in different scenarios. The examples are based on real-
world data and tasks in different application domains, and involve a
visual comparison by overlay and explicit encoding (compare to Glei-
cher et al. [12]). These types of comparison benefit from our model,
since they both require an explicit definition of references.

4.1 Parameter Space Analysis
The first application example addresses the analysis of the parameter
space of a complex system. This example is based on real data and
a real task in the automotive industry. The application background is
the development process of car designs by means of 1D-CFD multi-
run simulations as described in previous work [6, 21, 24]. Specifically,
the data represents a study of a car engine where four parameters have
been varied, which can be grouped into two types. Operating parame-
ters describe conditions varying during the operation. In this example,
this includes “Engine Speed” (abbreviated as speed) measured in ro-
tations per minute (rpm) and the “Load Signal” (abbreviated as load)
corresponding to the percentage at which the gas pedal is pressed. As
all combinations of values may potentially occur during operation, it is
essential for the analysis to overview the entire 2D space of these pa-
rameters. In contrast, design parameters represent choices of the engi-
neer. In this example, this includes “Intake Valve Closing Shift” (abbr.
IVCS) measuring a specific timing in milliseconds (ms) and different
configurations of the engine as a categorical parameter. Continuous
parameters have been discretized individually and each combination
of values has been simulated (also known as full-factorial design). In
this example, relevant simulation outputs comprise scalar values mea-
suring torque in Newton meters (Nm) which is to be maximized and
trapped fuel in kilograms (kg) which is to be minimized.
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Fig. 10. Parameter space analysis of a car engine simulation. Differ-
ences of torque with respect to the combination of design parameters
with maximal values (red rectangle) are encoded in color.

The first step of the analysis aims at identifying parameter combi-
nations that maximize torque (compare to task T1 in Sec. 3.1). Fig. 10
shows a visual representation of the four-dimensional parameter space.
The design parameters define the outer subdivision of the layout, while
the operating parameters define the inner subdivision, enabling a co-
herent representation of their 2D domain. Visualizing torque using
bar charts shows maximal values for configuration A and IVCS = -30
with speed set to 2000. However, the domain of design parameters
has to be considered in its entirety as reasoned above. Our model thus
helps to relate all combinations of design parameters to all other points
of the design space, i.e., r = (-30,∅,A,∅). While the bars represent
the actual values as context, color explicitly encodes the differences in
torque to the reference. We use a diverging color map to distinguish
positive and negative differences [8]. This visualization shows that for
IVCS = -30, torque is nearly identical for configuration B for speed =
2000 while larger speeds generate less torque in configuration B. For
speed = 1000, however, configuration B is superior. The engineer thus
has to decide whether to optimize the engine for low or high values
of speed. Other values of IVCS generate considerably less torque for
speed ≤ 4000, but all of them exceed IVCS = -30 at speed = 6000.

For a more detailed investigation of configuration A at IVCS = -30,
the second step concerns an analysis of both torque and trapped fuel
using scatterplots (see Fig. 11). The view layout is similar as before,
but different values of speed are now represented by color. This in-
creases the spatial resolution of the x axis representing trapped fuel.
Defining references in the same way as in the first step supports a
comparison by overlay which directly visualizes the trade-off between
the two objectives. The current data are depicted as filled dots and
the reference data as circles which are connected by a line (compare to
Turkay et al. [31] and Robertson et al. [26]). This shows similar yet not
identical gradients of the trade-off across the parameter space. Com-
paring the configurations A and B at IVCS = -30, the lower values of
torque for configuration B at high speeds are not equally compensated
by reductions of trapped fuel.

The third step analyzes the sensitivity of torque regarding variations
of IVCS (see Fig. 12). Based on the same layout as Fig. 10, our model
is now used to specify relative references with r =(-30,∅,∅,∅). Each
value of IVCS is thus related to the respectively smaller one (compare
to task T5 in Sec. 3.1). Directly representing the difference in torque
by the height of the bars mimics the first derivative of torque with re-
spect to IVCS. This shows gradients more clearly than Fig. 10 while
color is used to represent the absolute values in this case. The visual-
ization directly shows that torque is decreasing sharply for increasing
IVCS for speed = 1000. For speed = 6000, however, torque is increas-
ing before also starting to decrease for IVCS = 30.
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Fig. 11. Comparison by overlay to the same reference as in Fig. 10.
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Fig. 12. Relative comparison to study the sensitivity with respect to
variations in “Intake Valve Closing Shift.” Color encodes torque and the
bar height represents the respective difference in torque.

Concluding, this example shows an application of small multi-
ple displays to support the analysis of a multi-dimensional parame-
ter space using dimension composition. In this context, our model is
generally useful to relate arbitrary subspaces of the parameter space
as well as to define derivatives using relative references. As another
option, comparisons between hierarchy levels could be helpful to em-
phasize the local effect of single parameters in the context of the others
by subtracting the average of the intermediate aggregate.

4.2 Analysis of Natural Gas Consumption

This example deals with the effect of temporal categories such as
months, hours, and days of the week on the average consumption of
natural gas of a large European city. The data comprises hourly mea-
surements for approximately five years (42,869 data samples). The
background of this data is the statistical modeling of natural gas con-
sumption as a regression model for prediction and sensitivity analy-
sis [22]. In this context, the structural effects of time are important
for feature selection and feature transformation (e.g., for identifying
good splits of regression trees). While statistical modeling is beyond
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Fig. 13. Analysis of the natural gas consumption in a large city. (a) IAs
show the total consumption per weekday (color). (b) Percentage of total
consumption per weekday over hour of day. (c) Hierarchy of categories
with “hour of day” as a comparing dimension.

the scope of this paper, we now analyze variations in the consumption
of natural gas with respect to hour of the day and day of the week.

The first goal is to identify peaks of consumption throughout the
day and to compare them by their occurrence in time and distinctness
for different weekdays. In order to account for seasonal effects, the
matrix in Fig. 13 is vertically partitioned by meteorological seasons.
Fig. 13a shows the total consumption per weekday (color), which is
computed as intermediate aggregates (IAs), and Fig. 13b shows the
corresponding relative consumption over the course of the day (com-
pare to sample task T7 in Sec. 3.1). The relative consumption is shown
per hour in percentage of the total consumption per weekday, e.g.,
100 · consumption[Fall, Sat, 12:00]

total consumption[Fall, Sat] . As illustrated in Fig.13c, the reference
for comparison is (∅,∅, IA), where “hour of day” is a comparing di-
mension. We can see that workdays have a higher total consumption
than weekends (Fig. 13a) and the morning peak in consumption is later
for weekends (Fig. 13b). With respect to seasonal differences, for ex-
ample, Sundays have a peak around 11:00 in summer and around 9:00
in winter. In summer, moreover, the morning peak is similarly high for
workdays and weekends, but lower for weekends in the other seasons.

The second goal is to quantify the hourly effect of different week-
days on the consumption of natural gas. This task is related to esti-
mating the error a regression model could have by not distinguishing
between weekdays. Fig. 14a shows the average consumption per hour
as an intermediate aggregate for each season (compare to sample task
T8 in Sec. 3.1). The deviation from this graph per hour and weekday
is shown in Fig. 14b, e.g., average consumption[Fall, Sat, 12:00] −
average consumption[Fall, 12:00]. As illustrated in Fig. 14c, “week-
day” is a comparing dimension where r =(∅, IA,∅). Especially in the
morning (around 7:00), we can see large differences in consumption
between workdays and weekends. Compared to other seasons, daily
variations are relatively small in summer. Moreover, Friday evenings
have a similar consumption like weekends (indicated by ellipses), and
Sunday evenings (after 22:00) are comparable to workdays.
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Fig. 14. (a) Intermediate aggregates show the average consumption of
natural gas per season over the course of the day. (b) Difference from
the average consumption per hour. (c) Hierarchy of categories where
“weekday” is a comparing dimension.

In this example, our model is useful to study percentual measures
and to relate data across different levels of the hierarchy (including
intermediate aggregates). This enables the analyst to flexibly define
comparisons to investigate variations in the consumption of natural
gas with respect to different seasons, weekdays, and hours of the day.

4.3 Differences in Movement Data
As an example in the context of scientific data, this section describes
an analysis of records of vessel movements around the coast of Nor-
way. The data stems from an Automatic Identification System (AIS)
which is used by the Norwegian Coastal Administration (NCA) to
track and monitor vessels. The visualizations are based on Kernel
Density Estimates (KDE) and are generated in a system as described
by Daae Lampe et al. [11, 10]. Here, individual movement trajectories
are convoluted with a line kernel instead of a point spread function.

Our first step of the analysis is to identify peaks and study changes
in traffic with respect to different time periods of the day (compare to
sample task T7 in Sec. 3.1). The average movements are computed
as an intermediate aggregate and selected as an absolute reference

(Fig. 15 to the right). The other graphics show the per-pixel differ-
ences to the average for different time spans (compare to difference
views [11]). We can see that most traffic is between 6:00 and 18:00
(dark red color). There is generally less traffic compared to the average
for certain routes between 18:00 and 6:00 (blue color). Between mid-
night and 6:00, moreover, there is more traffic between Skudeneshavn
and Kvitsøy (red arrow) compared to the other time intervals.

For a more detailed analysis, our second step studies the effects of
different weekdays on the traffic. In Fig. 16, the average traffic per
time span is computed as an intermediate aggregate (top row), which
is defined as an absolute reference. Each column then depicts the dif-
ference to the respective average for different weekdays using a di-
verging color map (compare to task T8 in Sec. 3.1). Between 0:00 on
Saturday and 6:00 on Sunday, for example, there is less traffic between
Stavanger and Tau (see purple arrows). On Sunday between 0:00 and
6:00 as well as 12:00 and 18:00, there are less ships leaving south-
wards from Stavanger (green arrows). We also see some routes with
higher traffic (dark red colors), for example, on Thursday and Friday
between 12:00 and 18:00.

In this example, we apply our model to study differences in traffic
across different levels of aggregation. We can investigate traffic pat-
terns with respect to different time periods of the day as well as days
of the week.

5 DISCUSSION AND FUTURE WORK

A key advantage of our model is that it enables a multitude of useful
comparisons of hierarchically structured categorical data within small-
multiple displays. Using a generic formalism, categories can be com-
pared to an absolute or relative reference, both within and across sub-
trees. In consistence with the guidelines in Sec. 3.3, the model scales
for many dimensions and it does not impose any limit on the number
of involved categories (G1). Moreover, our model is independent of
the underlying type of visualization (G2) as well as the order of the
dimensions (G5) in the small-multiple display. Being able to express a
large set of tasks, we consider guidelines G3 and G4 as a useful com-
promise between (too much) flexibility and (too restrictive) simplifi-
cation. As an important goal for practical reasons, the model enables
a simple specification of complex reference graphs based on a single
tuple (G6). In addition to business intelligence, Sec. 4 has shown the
applicability to comparison tasks in very diverse application domains.

We demonstrated the applicability in a comparison by overlay,
through an explicit encoding of differences, and through defining per-
centual measures. As discussed in the visualization literature [12, 29],
these options successfully overcome shortcomings of comparison by
juxtaposition. In particular, these options significantly increase the
precision of comparisons especially for cells which are not vertically
or horizontally aligned as well as for large matrices in general, where
comparing two cells may even require scrolling. Besides visual com-
parison, a simple and comprehensive specification of percentual mea-
sures is a benefit by itself for many applications.

As a practical consideration, our model specifies a reference graph
between cells regardless of the actual availability of data, i.e., also for
non-existing combinations of categories. Applications of the model
will typically need to deal with such cases. In our experience, appro-
priate strategies depend on the task, the visualization, and potentially

STAVANGERSTAVANGER

KOPENVIKKOPENVIK

SANDNESSANDNES

Average

Kvitsøy

SkudeneshavnSkudeneshavn SkudeneshavnSkudeneshavn

STAVANGERSTAVANGER

Fig. 15. Analysis of vessel movement data. Different time spans are compared to the average traffic (image courtesy of O. Daae Lampe).
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Fig. 16. Comparison of movement data for different time spans (horizon-
tal) and weekdays (vertical). The top row shows the average traffic per
time span as an intermediate aggregate which is defined as an absolute
reference. The columns then show the difference to the respective av-
erage traffic for different weekdays (image courtesy of O. Daae Lampe).

involved types of aggregation. For example, assuming a value of zero
might be possible for measures like the sum while visually indicating
the absence of reference data might be necessary in other cases.

The focus of this paper is on the formal definition and application-
oriented discussion of our model for structure-based comparison.
However, implementations of the model will also need to deal with
other aspects including an interactive specification and the selection of
an appropriate visual encoding for a given task. Concerning the spec-
ification, the compact definition based on a single tuple (see guide-
line G6) makes using standard controls of graphical user interfaces
straightforward. An alternative—and presumably more intuitive—
option involves marking categories or combinations of categories di-
rectly within the small-multiple display (e.g., by clicking on category
labels or cells). Therefore, an evaluation of different possibilities to
specify the reference tuple provides an important aspect for future
work. Additionally, we want to enable a task-based specification of
a reference such as comparison to the minimum or maximum value
within each subtree. Other issues for future work include a study
of different approaches for visually indicating the references between

cells in a general and scalable way. We also want to design and eval-
uate further visualizations for comparison by overlay such as function
graphs.

6 CONCLUSIONS

This paper proposes a formal model for structure-based comparison
of cells within a hierarchically organized small-multiple display. The
model enables the definition of a multitude of practically relevant types
of reference graphs while being based on a simple and compact formal
specification. Categories can be compared absolutely to a fixed refer-
ence or relatively with respect to a semantical order of the categories.
References can be defined within and across subtrees and also support
comparisons between hierarchy levels based on intermediate aggre-
gates. We have demonstrated the general applicability of our model in
the context of business data as well as for analyzing simulation data,
time series data, and movement data, involving different types of visu-
alizations and comparisons. We therefore believe that our model will
be of high practical relevance to support a comparative visual analysis
in many applications domains.
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