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Abstract

We present an interface for exploring large design spaces as encountered in simulation-based

engineering, design of visual effects, and other tasks that require tuning parameters of

computationally-intensive simulations and visually evaluating results. The goal is to enable a style

of design with simulations that feels as-direct-as-possible so users can concentrate on creative

design tasks. The approach integrates forward design via direct manipulation of simulation inputs

(e.g., geometric properties, applied forces) in the same visual space with inverse design via

“tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA)

or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the

intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields

output from FEA and CFD simulations, and in-place interactive ensemble visualization. The

inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-

as-possible shape manipulation to support rich visual queries. The potential of this new design

approach is confirmed via two applications: medical device engineering of a vacuum-assisted

biopsy device and visual effects design using a physically based flame simulation.

Index Terms

design; simulation; direct manipulation; multi-touch

1 Introduction

Simulation (e.g., computational fluid dynamics (CFD), finite element analysis (FEA)) is

poised to play an increasingly important role in design processes within engineering,

science, entertainment, and art. Unfortunately, despite the clear importance to many

disciplines, current frameworks for working with simulations do not complement (and in

many cases inhibit) the human process of creative design. For example, in the medical

devices industry there is now consensus that simulation-based engineering will be one of the

most important keys to future innovation [5]; however, practicing engineers often need to
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adopt a completely different design process in order to work with simulation tools. The

major problems with today’s approaches to simulation-based design are twofold:

1. Simulation tools lack an ability for designers to understand, compare, and make

decisions based upon alternatives in a large design space (i.e., a set of many related

simulations).

2. Simulation tools require an often distracting focus on boundary conditions,

parameters, and other low-level details that in many cases are tangential to the

designer’s goals and may only be understood by a trained expert in computational

methods.

Today, these limitations make simulation more useful as a method for detailed validation of

a single design rather than for creative exploration of alternatives throughout the design

process.

Outside of engineering, designers in other contexts (e.g., entertainment) face many of the

same challenges in trying to appropriately fit physically based simulation into creative

processes that rely upon human input. On one end of the spectrum of design tools,

traditional paper and pencil as well as quick, sketch-inspired 3D modeling systems provide

the immediacy, expressiveness, and human engagement needed to enhance creative design.

On the other end of the spectrum, detailed simulations, often run in batch mode, provide one

or more sets of physically accurate data. There is little in between in terms of computational

tools that can facilitate creative design together with new insight from data-driven

simulation.

In this paper, we argue that these challenges can in large part be solved through new

computer graphics interfaces. Our work shares a common motivation with the early work in

Design Galleries for setting simulation parameters for computer graphics and animation [12]

and a series of recent results that focus on visualizing large sets (ensembles) of simulation

results (e.g., [3, 13, 23]).

We introduce a direct manipulation interface we call Design by Dragging. Our goal is to

enable the designer to focus entirely on the design problem, not the underlying details of

simulations, and to react naturally to visualizations of simulation results. For the medical

device engineer exploring the space of possible biopsy device designs (Figure 1), this means

that he will sometimes want to drive the exploration in a specific direction by adjusting a

geometric parameter of the device (e.g., changing the length of the tissue cutting window as

in Figure 1 left). We call this “forward design”. In addition, he will also want to react to the

visualization of simulation results; he might ask, “What causes this region of high stress, and

what would it take to move this region to another location or remove it entirely?” (Figure 1

right) We call this “inverse design” since the path it implies through the design space is

specified in terms of simulation outputs rather than inputs.

One of the defining features of the interface is that it supports direct manipulation for both

forward and inverse design strategies within the same interactive computer graphics display.

For forward design, we accomplish this through interfaces in the style of successful direct

manipulation 3D modeling tools (e.g., [25]). For inverse design, we navigate and interpolate
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within a set of pre-computed simulations, displaying the best match based on the user’s

input. To make the user interaction feel as-direct-as-possible, we introduce the idea of

directly manipulating data visualizations, such as scalar stress fields output from

simulations, in order to create a continuous descriptive visual query. The style of the direct

manipulation is reminiscent of recent shape manipulation interfaces based on dragging or

“tugging” metaphors [6, 9]. The interface is useful in a mouse-based mode, but it is also

particularly interesting when using a multi-point input device, such as a multi-touch display,

which enables the user to specify rich visual queries that include global as well as local

changes to the data.

The contributions of this paper include:

• A new accessible approach to simulation-based design for tuning parameters of

computationally-intensive simulations and visually evaluating large sets of results.

• A strategy and data structure to establish correspondences between arbitrary scalar

fields output from FEA and CFD simulations and morph between these fields.

• Algorithms for interpreting the intent of users’ drag operations relative to

parameterized models and simulation outputs.

• An in-place interactive data visualization for large sets of related simulation results.

• An extension of the core Design by Dragging interface that uses multi-touch input

in combination with an as-rigid-as-possible shape manipulation to support rich

visual queries.

• A long-term focused evaluation of the approach via an application to engineering

design of a mechanical biopsy device in collaboration with expert mechanical

engineers.

• A second, more exploratory, application to visual effects design using a physically

based flame simulation to demonstrate how the approach can work with more

irregular simulation outputs.

2 Related Work

Our work builds upon recent results in direct manipulation interfaces, simulation-based

design tools, and ensemble visualization.

2.1 Direct Manipulation Interfaces

We employ a natural, direct manipulation user interface for modifying geometric models

included in the simulations. Our approach is inspired by Sketch [25] and other more recent

direct manipulation modeling interfaces, such as iWires [6]. Several interfaces (iWires and

others [8, 9]) include a real-time simulation and/or constraint engine to add physical realism

to direct inputs. These fit seamlessly into our framework. For inverse design, we utilize an

As-Rigid-As-Possible Shape Manipulation algorithm together with a multi-touch interface to

enable the user to specify rich visual queries more quickly and directly than can be

accomplished with a single-point input device.
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As a major focus of our work is inverse design, we are particularly interested in interfaces

that control (or feel as though they control) an inverse process. A key challenge in creating

such interfaces is balancing the goal of providing a direct, expressive interface to the user

with the goal of steering the direct manipulation toward a valid configuration. Although they

do not include simulation, some previous systems provide powerful examples of this idea. In

Accessible Animation [15], the user navigates through a space bounded by valid keyframes

either by using a control space widget (forward direction) or, in a more exciting way, by

“tugging” directly on the animation (inverse direction). During a tug (similar to our inverse

dragging), the system interprets the users intent and morphs from one valid configuration to

the next most logical choice. The new configuration may imply a change to more than one

aspect of the animation. For example, if the user tugs on the head of a character to turn the

character around on the page, this could also imply a change in the characters feet, which

may also need to turn to maintain a valid pose. A similar approach has shown promise for

navigating through a space of registered car models simply by “tugging” on line drawings of

the cars [18]. An inverse-feeling direct manipulation interface has also been used for

browsing videos [4].

When these interfaces work correctly, they can feel almost magical to the user – there is no

more direct way to query a video dataset for the time when a car drives out of a parking lot

than to simply grab the picture of the car in the video and drag it along. We believe one of

our most important contributions is achieving this sensation for users working with

simulation datasets, including FEA or CFD data used by engineers in real design problems.

2.2 Design with Simulations

Our work builds upon the motivation set forth in early work on Design Galleries, which

introduced the general approach of intelligently sampling a design space via pre-computed

simulations and then presenting the results to the user in the form of a gallery of keyframes

[12]. The simulations that best fit this approach are defined by two characteristics, which are

shared by our applications: “high computational cost” and “unquantifiable output qualities”.

Together, these imply that the simulation-based design problem cannot be solved via a

computational optimization; rather, it requires human input to the design, and likely, human

visual analysis of intermediate results.

Many-Worlds [21], a system for trajectory-based character animation, also shares a similar

motivation, but different approach and application. We target dense, continuous datasets;

thus, our preview bubbles and visualizations-via-morphing must provide much more

information than simple trajectories. Also, our goal configurations are less well defined,

often requiring a trained engineer to interpret. Other approaches to design with simulations

include refining and accelerating the simulation to the point that it can accept real-time

inputs [2], using real-time simulation to provide suggestions of valid alternatives (e.g., in

furniture design) [22], and developing simulation engines that can work toward a desired

output based upon a detailed artistic specification (e.g., 3D curves created in Maya to show

the direction a simulated flame should take) [1]. Our work differs from these examples in

that it can be combined with existing simulation packages (e.g., Abaqus, Maya) and
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provides a new level of directness for user interactions. Our intended contribution is not in

real-time simulation, but the approach could be applied to simulations that run in real time.

2.3 Ensemble Visualization

The problem of visualizing sets of simulation results is an active area of research with recent

applications to engineering design [13, 16], visual effects [3], and disaster management [17,

23]. These systems build upon a design gallery approach and provide a number of

significant enhancements to the visualization including clustering, linked views, interactive

brushing, timeline widgets, and queries by example. Many of these features could be

combined with and complement our approach; however, our goal is to explore an alternative

form of ensemble visualization with direct manipulation at its core. We argue that the

directness of the interface makes it possible to do effective ensemble visualization in-place,

that is, using essentially a single-view interaction and visualization space rather than visual

layouts based on small multiples and multiple linked views.

3 Overview, Example Problem, and Definitions

We begin by providing a more detailed description of the example design problem

introduced in Figure 1, which is used throughout the paper to explain the Design by

Dragging interface. There are two preconditions for applying Design by Dragging to a new

simulation-based design problem. We require:

1. A parameterized model that serves as input to the simulations.

2. A distance metric and morphing function that can be defined for each pair of

simulation outputs within the design space.

Example parameterized model

The medical device pictured in Figures 1 and 2 is a mechanical system for performing

biopsy surgeries. The distal end of the device has a sharp point and a tissue collection

window near the tip. There is also an inner cutting cannula that has a sharpened distal edge

that is intended to slice though tissue once vacuum pressure has pulled it through the

collection window. Two motors located inside the hand piece drive the inner cannula so that

it both rotates and translates as it moves across the collection window. The most important

geometric parameters of the device are labeled in Figure 2. In Design by Dragging, all of the

variation within the design space must be captured by the parameters specified for the

model.

Configuration

We can visualize the device geometric parameters along with additional simulation input

parameters, such as the location and magnitude of a load applied to the cannula, using a

wheel plot (Figure 2 right). Each spoke of the wheel corresponds to a single parameter, with

the minimum value at the center and the maximum at the extent. The red polyline that passes

through each spoke indicates a unique configuration – a value has been set for each of the

design parameters in the model. In our examples, these values are always scalar, and we

normalize them based on the min and max for each parameter so that the values always
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range from 0 to 1. With this strategy, a configuration can be stored simply as an n-

dimensional vector of scalar values, where n is the number of parameters in the model.

Distance between configurations

Since each configuration can be stored as a vector, a convenient metric for the distance

between two configurations is simply an Euclidean distance. By default, each parameter is

weighted equally in the distance calculation, but it is possible to change the weighting using

the interface described in Section 6. Thus, given any two configurations, A and B, each

stored as an n-dimensional vector, the distance between the configurations is computed as

(1)

where the weight of the i-th parameter in the model, wi, defaults to 1.

Design space

The design space is the space of all possible configurations. Consider running a FEA or

multi-physics simulation to evaluate the utility of a particular configuration. This would

provide data for just one of an infinite number of possible configurations. What designers

would like to do is intelligently fill in this large space, discovering through this process

cross-interactions between the parameters as well as how the parameters impact outputs.

System overview

Figure 3 provides an overview of the system. After inputting a parameterized model, the

next step in Design by Dragging (diagrammed in boxes (b) and (c)) is to pre-compute a large

number of simulations to sample the design space for a variety of different configurations.

The information required to perform a visual morph between each pair of simulation outputs

is also pre-computed at this stage. Boxes (d) and (e) represent the real-time, interactive loop

that enables both forward and inverse direct manipulation with the design. This real-time

interaction is our main contribution and is described next in Sections 4–6.

4 Direct Manipulation of Simulation Inputs (Forward Direction)

The first form of direct manipulation supported by Design by Dragging is forward design.

This enables users to drive the design in a new direction by clicking and dragging in an

appropriate location on the parameterized model to specify alternative values for simulation

input parameters. To enable this interaction, the system must be able to interpret the intent of

users’ drag operations, and this requires a mapping from features of the parameterized

model to simulation input parameters. Features can be defined differently depending upon

the application. We find it is useful to think about a feature as a face, edge, cutout, or other

geometric property of a model. For input parameters that do not have a natural direct

mapping to the model geometry, it is often possible to introduce a proxy geometry, for

example, a red arrow is used to indicate the location and direction of a load applied to the

geometry during simulation.
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Figure 4 shows the mapping from features to simulation input parameters for the biopsy

device example. Each feature is associated with one or more simulation input parameters

that can be manipulated interactively. To discover the user’s intent, the system first

identifies the feature upon which the user has clicked using raycasting. Then, once the user’s

cursor movement exceeds a threshold (e.g., 10 pixels) away from the initial click, the

parameter to manipulate is set by finding the closest match between the user’s motion vector

and the ideal motion vectors associated with each parameter as illustrated in Figure 4. For

example, after clicking on the outer cannula of the biopsy device, the user might drag along

the direction of the axis of the cylinder to lengthen or shorten it, implying a change in the

“outer cannula length”, or he might drag perpendicular to this axis to imply a change in the

“outer cannula outer radius”. Once the input parameter is identified the display begins to

update continuously in response to the dragging motion, as illustrated in Figure 1a–b and the

accompanying video. The current implementation supports a variety of geometric

manipulations (e.g., changing a length, radius, scale, or offset) for features in the model. The

features are currently identified manually for each new design problem.

Internally, the system always maintains a notion of a “starting configuration”, which is the

configuration that is displayed at the beginning of a user interaction. After the parameter that

the user is dragging has been identified, the system then calculates a “target configuration”,

which is the closest configuration (based on the Euclidian distance metric mentioned above)

for which the value of the parameter being dragged matches the direction of the user’s

movement. For example, if the value of the outer cannula length parameter is 80mm in the

starting configuration and the user drags in the direction that implies increasing this length,

the system will identify the closest configuration with a outer parameter length that is

greater than 80mm and mark this as the target. Let’s assume it finds a configuration with

length 82mm. The display will update as the user drags to morph between the starting

configuration and the target configuration, so when the user’s cursor position indicates a

length of 81mm, the visualization will display a morph that is 50% of the way between the

starting configuration and the target configuration. It is important to note that this

interpolated visualization involves not just an interpolation of the parameter that is being

actively modified but also all other parameters (both simulation inputs and outputs). When

the user’s cursor finally reaches the position of the target configuration, then this becomes

the new “starting” configuration and drag operations can continue from this point, even

without releasing the mouse button.

In some extreme cases, it is possible that the user’s input might imply a large change to the

geometry of the model. To account for this, we employ a proxy model for these direct

manipulations. The proxy model is integrated into the callout window that displays a

zoomed-in view of the visualization (Figure 1). This proxy model includes a notion of

“settling” – when the user completes an interaction, the proxy model gradually morphs into

the current working model to rectify any changes.

In the mouse-based implementation, all of these forward manipulations are controlled using

mouse click and drag events within the zoomed-in view of the results, and inverse

manipulations (described next) are controlled via right mouse clicks. Unicam-style camera
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manipulations [25] are controlled using clicks and drags with either button within the main

visualization window.

5 Direct Manipulation of Simulation Results (Inverse Direction)

The second method of direct manipulation design in Design by Dragging is to tug directly

on the visualization of simulation results to navigate within the design space. As introduced

in Related Work, this aspect of the interface is inspired by systems that exhibit an almost

magical sense of direct manipulation. We introduce a similar style of as-direct-as-possible

interaction, but using direct user manipulations on top of data visualizations.

5.1 Transitioning Between Configurations

Our goal is to smoothly transition from one valid configuration to the next most logical

choice as the user interactively drags his cursor on top of the data visualization to “tug” it in

a new direction. The strategy we introduce is to compare the motion of the user’s cursor on

top of the data visualization to the visual motion the visualization would undergo if it were

to morph from the current configuration to another configuration. As the user drags the

cursor, the algorithm repeatedly calculates the closest match between the user’s motion and

motion implied by the visual morph needed to reach possible target configurations. The best

target is identified, and the visualization updates in real time as the user continues to drag.

The key to enabling this interface is knowing the transition from each simulation output to

the others. In both of our example applications, the simulation outputs are 2D scalar fields

(in the case of the biopsy device the 2D field is wrapped around the cannula of the device).

If we think of the 2D scalar fields as grayscale images, then what is needed is an image

warp, as commonly used in morphs for movies, games, and other computer graphics

applications.

Given two images A and B, an image warp can be thought of as a function fA→B that maps

each 2D pixel location p in an original image to a new location p′ in a second image, such

that the transition between image A and B looks as smooth and natural as possible. We can

write this as

(2)

Note that image warping algorithms compute f at every pixel location in the image. Thus, f

tells us where every pixel in image A will move during a smooth visual transition from A to

B.

Figure 5 diagrams the algorithm for using image warps to transition between configurations.

Moving from left to right within the figure, in (a), the user has just clicked on a point of

interest within the 3D visualization. From (a) to (b), the location of the cursor has been

projected from the 3D geometry into to same 2D image space where the scalar field warps

have been computed. The image space pixel that is closest to cursor’s position is then

identified and labeled p. This is the cursor’s pixel position at the start of the drag operation.

At (c), the database of pre-computed image warps is used to evaluate the warping function at
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pixel p for every possible target configuration. In other words, given the current starting

configuration, A, the function fA→B(p) is evaluated for all possible target configurations B1,

B2, B3, … within the design space. At (d), notice that this results in a set of new pixel

locations , … that describe how the pixel under the user’s cursor would move

according to each possible image warp. Continuing with the user interaction, at (e), the user

has begun to drag the cursor, and the cursor’s movement vector (shown in green) is

projected into the image space. The best possible target configuration (highlighted in

yellow) is identified using a formula that compares the green cursor movement vector to the

red vectors shown in (d). Finally, at (f), notice that as the user continues to drag the cursor

toward the target p′, the visualization updates so that when the cursor has reached the target

p′, the data display has morphed to display the data for the target configuration.

There are some important aspects of the formula used at stage (f) in Figure 5. In addition to

picking a target configuration for which p′ is in line with the cursor’s motion vector, it is

also important to give preference to target configurations that are close to (in the local

neighborhood of) the starting configuration. To make sure this is the case, the target

configuration is selected by finding the configuration for which the dot product of the two

vectors pictured in Figure 5 is greatest and the “distance” (calculated using Equation 1)

between the starting configuration and the possible target configuration is smallest. Each of

the two considerations is weighted equally.

The algorithm is also tuned experimentally to include some hysteresis. During a drag

operation, once a target configuration has been identified using the strategy above, the user

must make a definitive move toward another configuration in order to snap the interface

away from the current target and orient toward a new target.

The result of this strategy is an interface with immediate feedback. The user can drag toward

one target, see via the morph what this would do to the simulation outputs, then, if he

wishes, change his mind, back up, and drag in another direction. As in forward dragging,

once the cursor comes within a reasonable radius of the target, the target configuration

becomes the new starting configuration and the algorithm proceeds fluidly. When using a

mouse the button does not need to be released and re-clicked to continue dragging from this

new starting point, so from the user’s standpoint, the transition is seamless.

5.2 Single Cursor Manipulations

When interacting using a mouse or single touch, Design by Dragging makes use of a

technique we call Preview Bubbles to provide a view of many possible design alternatives

before beginning to drag. The benefit of these previews is that they provide an immediate

visual suggestion of possible dragging operations, something that can encourage exploration

of the design space and, perhaps, suggest new alternatives to the designer. The bubbles are

only displayed in the callout window so that an uncluttered visualization of the output field

is always visible in the main display area.

The preview bubbles fade into view immediately after the initial cursor down event to

provide an in-place visualization of how the output scalar field would change if the user

dragged in the direction of the bubble and released the cursor at the its center. The algorithm
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first identifies possible target configurations as described above, then ranks them based upon

the Euclidian distance metric, with the closest target configurations first. Preview bubbles

are then placed on the screen in the order of the ranked list. For each target configuration, a

bubble is placed at the screen space projection of its p′ point as long as the bubble would not

overlap with any bubbles that have already been placed. The specific number and size of the

bubbles is adjustable via a parameter that we have set empirically for our applications.

Figure 6 shows an example of the interface, including the visual feedback during the drag

operation. Notice that the target bubble enlarges and then gradually fades from the view as

the user’s cursor moves toward it and the underlying visualization morphs into a complete

display of the target configuration. When the cursor reaches a position within a small

threshold of the center of a bubble, the display snaps to the new target configuration, and the

interface is restarted with a new set of preview bubbles. One interesting aspect of the

interface is that since the radius of the bubbles is constant in screen space coordinates, the

user can adjust the number of bubbles to display by zooming in or out, as shown in the

accompanying video.

5.3 Multi-Cursor Manipulations

Multi-cursor (i.e., multi-touch) manipulations are most useful for global adjustments to the

simulation outputs. Multiple cursors provide a richer input stream that enables more

complex manipulations of the output space. Since these manipulations operate over a larger

area, it is important to have specific feedback on how the control mesh that covers this area

is moves, and this is the key visual feedback shown to the user within the interface. Preview

bubbles are not used in this case; they would be confusing here because a separate set of

preview bubbles would be needed for each cursor.

The manipulation begins with an initial touch and release on the scalar field visualization

displayed in the callout window. The scalar value at this location is used to extract an iso-

contour from the scalar field. The inside of the largest connected component of the contour

is then triangulated to create a control mesh, as shown in Figure 7. This mesh is manipulated

via natural multi-touch interactions using the as-rigid-as-possible shape manipulation

algorithm [7, 9], which uses a real-time optimization to intuitively preserve the shape of the

mesh given the deformation constraints implied by each of the control points at the user’s

fingers. As usual, during the manipulation, the system continuously updates and displays an

interpolated result.

During multi-touch manipulations the target configuration is selected using the same

strategy of comparing the cursor’s movement during the drag operation to the image warps.

The difference is that rather than a single cursor with a single motion vector, each vertex of

the control mesh is treated as a virtual cursor. So, if there are 100 vertices in the control

mesh, fA→B will be evaluated 100 times for each candidate target configuration B and these

values will be compared to the 100 motion vectors that describe how each vertex of the

control mesh moved when the the as-rigid-as-possible algorithm was applied.

The result of this strategy is that with a few fingers the user can specify a much more

sophisticated change in the shape of the scalar field than can be done with a single mouse
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cursor. This change is propagated intuitively beyond the reach of the fingers because the as-

rigid-as-possible algorithm makes the control mesh deform in an intuitive manner. Since the

target configuration is selected based on the motion of the entire control mesh, this process

can take into account even global changes to the scalar field. This gives the user a powerful

way to quickly navigate the design space.

6 Additional Widgets for Guiding the Interface

Figure 8 shows an additional widget that can be used to guide the interface. Following

Bruckner and Möller [3], we visualize the simulation parameter space as a wheel, with one

spoke per parameter. Beyond this, we add an interactive visualization of the local

neighborhood of the design space – when the user first begins a dragging operation, a set of

black polylines are displayed to indicate the closest neighboring configurations.

Transparency is applied to make the closest configurations stand out and those that are

farther away fade to the background. Likewise, the history of the design space exploration is

also visualized using transparent polylines; this time in red. Small dots along the axes are

placed at every value for which a sample exists in the design space, and tick marks are used

for parameters that take only discrete rather than continuous values, for example, wire that

comes in only certain gauges.

The weights applied to each design parameter can be changed using a tab widget at the end

of each spoke. Each tab has three quick states that set the values for wi used in Equation 1.

The states are: pinned (the weight is infinite, so the parameter will not vary during any

interaction), normal weighting (the parameter is weighted 1, equal to all others), and free

(the parameter has zero weight; it might vary dramatically even in results that are considered

close to each other). Alternatively, a small slider at the end of each tab can be activated via a

double-click, and a weight between 0.0 and 1.0 can be assigned using the slider. In practice,

non-uniform weights are used most often in the quickset mode to limit the design space for

constrained exploration; for example, by pinning the parameters for the load applied to

biopsy device, the designer can explore the subset of design possibilities that have been

simulated for a specific loading condition.

As shown in the accompanying video, two widgets in this style are displayed in the

interface, one for input parameters and one for output parameters. Just as for inputs, the

designer can pin any scalar valued output parameter (e.g., total power consumed) to limit

exploration to a subset of the design space.

7 Morphing Between Simulation Outputs

The final important capability required to create the Design by Dragging interface is a

mechanism for morphing between simulation outputs. As mentioned earlier, a 2D image

morph is the right choice for our examples. Recall from Figure 3 that these morphs are

calculated during a pre-computation step. A variety of algorithms could be used for this

purpose, and application-specific algorithms are possible, for example, a warping algorithm

has been developed to work specifically with imagery of fire [27]. Our implementation uses

a single algorithm for both of the applications. Since the simulation outputs for both

applications can be represented as 2D scalar fields, we encode the scalar fields as grayscale

Coffey et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2014 August 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



images and use the elastix framework to perform a non-rigid warping on these images [10,

11].

The user’s dragging movement could trigger a transition from a starting configuration to any

of the other sampled configurations in the design space. So, by default the algorithm

computes warps between every pair of configurations. If we view each configuration as a

node in a graph and the edges as warps, then this would imply a fully connected graph. To

reduce the amount of computation required, some of our examples use a random regular

graph rather than a fully-connected graph. The random regular graph is ideal for this purpose

because it ensures that each node is connected via a bounded max path length, and this

property scales well even with low degree graphs. By computing warps only along the edges

of this graph it is possible to reach every node, with the caveat that multiple warps may need

to be composed together to do so.

8 Application to Medical Device Engineering

The research described here has been performed collaboratively with a team of mechanical

engineers who focus on medical device development. The senior mechanical engineer on

our team has more than 40 years experience in mechanical engineering, and has consulted

for more than 50 companies on mechanical and product design. The specific biopsy device

application described here is a real problem from his past experience; thus, we are confident

that it is accurately representative of the types of design problems that engineers struggle to

address using today’s current design tools. The interface and application have been

iteratively evaluated by these engineers in regular weekly design meetings for more than 2

years. In this section, we report on results and evaluative feedback from this work. Our goal

has not necessarily been to create a radically improved design for this specific device but

rather to demonstrate using a familiar problem the potential to design in a way that is

fundamentally different than current approaches.

Balancing the tradeoffs inherent to designing the mechanical biopsy device is challenging.

The problem cannot be solved via a strict optimization routine, and the design space is too

large to sample exhaustively. In our specific examples, simulation is used to explore

scenarios where a load is applied perpendicular to the main axis of the device. This is an

important case to consider because during a breast biopsy operation a doctor may apply such

a load by pushing the device against the ribcage in order to insert the device into difficult-to-

reach regions. If the load is too great, the cutting action or another aspect of the design may

fail. On the other hand, if the cannulas and/or motors are strengthened, the device may

become too obtrusive, leading to a more invasive procedure, a device that is difficult for the

surgeon to balance in his hand, or other problems. Our goal is to enable medical device

designers to gain a better understanding of these tradeoffs and make better, more informed

design decisions.

8.1 Application-Specific Extensions

Several extensions to the core Design by Dragging interface can be seen in this application.

In addition to geometric input parameters, users can also set input parameters that are

defined as a function. The motor load profile and tissue properties are two examples. Each
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of these is associated with a proxy geometry in the model (the motor casing or a sphere

shape drawn within the cutting window for tissue). When the cursor hovers over these an

interactive X–Y plot is displayed, and the user can change the load profile or tissue property

curves simply by clicking on and dragging each curve (see accompanying video).

Another extension evident in this application is wrapping the FEA output field around the

3D geometry of the device. During the warp calculations, the scalar field for these examples

is mirrored and tiled on both sides of the dimension that is wrapped around the cylinder to

create a larger image so that the warps are computed smoothly across the edges of the

original scalar field. The image is then cropped down to the original size before texture

mapping it onto the cylinder for visualization. During drag operations, drags that cross the

texture boundary are identified and handled as a special case.

8.2 Data and Results

Two datasets were generated for this application; both relate to analyzing the stresses on the

outer cannula during the loading condition mentioned above. Dataset 1 is an approximate set

of solutions for normal stress calculated simply using a beam equation that does not account

for the cutting window. Dataset 2 is a set of FEA solutions based on the actual cannula

geometry computed using a tetrahedral meshing and the von Mises stress field output from

the Dassault Systèmes Abaqus solver. These data are of sufficient resolution/precision to

perform detailed design analysis. Both datasets contain results for a random sampling of

valid configurations based on the following input parameters for the outer cannula: inner

radius, outer radius, length, cutting window position, and cutting window length. Some

additional statistics describing the datasets are presented in Table 1. In creating these

datasets, there is an obvious tradeoff between the pre-computation time required and the size

of the dataset, including completeness of the graph data structure used. In both cases, we

decided we were willing to wait about 1 day to compute the data, so we used this as a

general guideline for setting the number of configurations to sample and the degree of the

regular random graph. Each set of warps took roughly 24 hours to compute on a Linux

machine with 24 cores.

One reason for working with the first dataset based on simple beam equations is that the

scalar fields that it produces have simple patterns that are easily understood; thus, we have

been able to use this data to verify that the inverse dragging interface works as intended.

This dataset is pictured in Figure 6. Notice that in part (a) of this figure, the user has clicked

right on a contour edge between the yellow and green regions of the scalar field. As he

begins to drag and the preview bubbles appear, he can see a number of possibilities for

where he could “drag this edge” in order to arrive at a new configuration with a different

scalar field.

Another reason for working with these two datasets that was suggested by our engineering

colleagues is that this situation closely matches the design process that engineers follow.

Designers often work by beginning with a broad exploration of a design space and then

narrow in to explore the most promising areas in more detail. Since approximate solutions,

such as beam equations, can often be computed in real time, Design by Dragging could be

easily extended to begin with a first phase of real time exploration of a densely sampled
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design space using approximate solutions. Then, once some areas of interest have been

identified, these could be examined in more detail using more refined and more

computationally expensive simulations.

Overall, the accompanying video provides the best documentation of the success of the

application. The interface enables designers to fluidly navigate through the design space,

exploring a variety of “what if” scenarios as a natural consequence of viewing data

visualizations.

8.3 Domain Expert Evaluation

Since medical device engineers have been integral in the development and evaluation of the

tool, we are confident that this approach not only matches the mindset they bring to this

design problem but also fills a gap in current tools for working with simulations. The

immediacy and directness is fundamentally different than approaches available in

commercial and research tools, which do not include direct manipulation, inverse design,

and morphs between simulation results.

Specifically, the engineering team members report: “The current practice for this type of

problem shies away from using computational tools as they are not efficiently connected [for

example, CAD design, simulation, and visualization often require separate software

packages] and there is not a way to optimize one or more parameters in the FEA model

while at the same time optimizing geometry or material selection parameters... Although

there is some inverse functionality beginning to creep into software tools for mechanical

design, this approach leapfrogs that. To be able to do inverse [design] for materials,

geometry, and FEA is just a huge breakthrough. On top of that you can visualize it.”

A specific point of comparison is with the tools available in current commercial packages

for organizing parameter studies. The engineering team members report, “An example of

such a tool is iSight (used in the medical device industry because it drives Abaqus). iSight

provides quantitative analysis tools and a FEA execution engine. Although the quantitative

analysis tools do help gain information for making design decisions, the number of

parameters optimized is usually limited to about three. Further, the user still has to go back

to the post-processing module of the original FEA package to view the simulation results

one by one.”

To our knowledge, no existing tools support Design-by-Dragging’s style of in-place

ensemble visualization, where the user can view many results from within the design space

simply by dragging in different directions. Further, none support user interactions on top of

visualizations of simulation output fields to do either forward or inverse design. Each of

these has been evaluated by the collaborating engineers as not just a useful feature but as

providing a major breakthrough in the way that they can approach medical device design.

Several aspects of the interface (e.g., integrating 3D modeling with data visualization,

depicting design history, presenting many simulation results in the same display) are a direct

result of feedback from the domain experts. In terms of criticism of the tool, the current

limitation is evaluated as being that the designer cannot make a drastic change in the
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geometry of a device unless this can be captured by the design parameters. Thus, using

mechanical engineering terminology, the system is most useful for the “detail” design phase

rather than the “conceptual” design phase. We believe that it may be possible in the future to

couple Design by Dragging with a quick, sketch-based 3D modeling interface and that this

could facilitate use for conceptual design as well.

9 Application to Visual Effects

The second application that we explore is design of visual effects. This application does not

include the same level of long-term collaborative development and evaluation. Thus, we

view it as a secondary, more exploratory application that provides an initial data point for

how Design by Dragging might be applied to additional simulation-based design problems

outside of engineering. We picked a motivating example of a visual effects artist designing a

physically-realistic flame animation to include in a movie or game for two reasons. First,

there is prior work in the visualization community on design with pre-computed flame

simulations [3]. Second, the scalar fields that result from our flame simulations tend to be

much more irregular (less “structured”) than those calculated in the biopsy device FEA

simulations; thus, they provide a challenging case to verify the reliability of the dragging

operations.

9.1 Data and Results

Two fire simulations were generated using Autodesk Maya’s fluid animator with input

parameters including: velocity noise, viscosity, temperature emission, fluid emission, and

density emission. Dataset 1 is a set of solutions generated using a point-based flame emitter,

as pictured in Figure 7. Dataset 2 contains solutions for a ring of fire (Figure 9). Again, the

warps for each dataset were computed in roughly 24 hours on a 24-core Linux machine.

Figure 9 and the accompanying video demonstrate how inverse design is used to explore the

flame datasets. Artists can search for a flame of a specific height or with wisps of a

particular shape fanning out of the ring.

9.2 Observations and Testing

Because this application is targeted toward artists, it nicely illustrates what we believe is one

of most powerful aspects of the approach. Although an artist may not have an intuition for

the impact of a simulation input parameter with a name such as “density emission”, she is

likely to have a strong intuition for how the shape of a flame should change in order to

produce a desired effect. We have observed that the preview bubbles are particularly

effective in this regard. In Figure 9, for example, notice that the previews sometimes identify

potential target configurations that are significantly different (e.g., have a much higher

density of fire) than the starting configuration. As shown in the video, users can rapidly

explore these different alternatives by dragging toward and away from the various previews.

Another aspect of the interface that is particularly well suited to this application is the multi-

touch inverse design strategy. We believe the reason for this is that there is much more

global change captured in the flame simulation datasets, and the multi-touch interface
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enables the user to more easily indicate major high-level changes to the output in addition to

tweaking the output within a local region.

One useful insight from our iterative design and testing relates to the best way to implement

the multi-touch technique using the as-rigid-as-possible shape manipulation algorithm. In

early implementations, we applied as-rigid-as-possible shape manipulation to the entire

scalar field by using a regular grid over the entire image as a control mesh. To the user, this

feels like manipulating a rubber sheet. The current strategy creates a much more compelling

and expressive interface by first extracting an iso-curve in the region of interest indicated by

the user and then using the shape defined by this curve as the control mesh.

10 Future Work

From our work with practicing medical device engineers, we understand the value of

integrating new interfaces like this one into the current workflows utilized by engineers. To

this end, we have already developed a real-time, one-way connection between the Design by

Dragging software and the Solidworks CAD software that can be used to keep a CAD model

in sync with the current state of the Design by Dragging interface. (This is shown briefly in

the accompanying video.) In the future, we believe it will also be possible to create a

connection in the other direction – given an arbitrary CAD model as a starting point,

existing algorithms (e.g., [6, 14]) may provide an excellent starting point for automatically

identifying the key geometric parameters that can be adjusted within the model, then this

parameterization could be input to Design by Dragging, replacing the manual process used

now for box (a) in Figure 3.

We are also excited to extend this work to problems that involve 3D and 4D simulations.

The core concepts in the interface should extend seamlessly to volume datasets; the 2D

image morphing routine would simply need to be replaced with a 3D version. The existing

interface could be directly applied to volume data visualized using slicing planes. Beyond

this simple extension, the more interesting research would likely come from refining the

user interface to take advantage of 3D input. During inverse design in 3D, we envision that

designers might simply reach out with two hands to grab and reorient a streamline from a

3D flow dataset. In fact, we have already created a preliminary 3D implementation of this,

which replaces the multi-touch input device with input from two handheld 3D trackers in

virtual reality. One reason why we have specifically chosen to work with the as-rigid-as-

possible algorithm is that it can extend to reshaping 3D curves and meshes [19, 26]. So, as

suggested here, a natural extension of the work would be to reshape 3D flow lines or 3D iso-

surfaces extracted from simulation results.

Finally, there are two modules with the framework outlined in Figure 3 that could be pulled

be out of our current implementation and replaced with alternatives. The first is the sampling

strategy used when pre-computing simulation results. To begin, we have tended to utilize a

simple random sampling strategy to populate the design space, but it is clear that a variety of

more intelligent strategies could be used, likely with great benefit to the designer. Since

several existing algorithms may be directly applicable for this [12, 20, 24], we have not yet

made it a focus of our research. Extending beyond current sampling algorithms, there is also
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a valuable future research opportunity in making use of the design history recorded by the

interactive tool to intelligently spawn new simulations in real time as indicated by box (f) in

Figure 3.

11 Conclusion

Design by Dragging introduces a new approach for as-direct-as-possible design with

simulations. The system demonstrates how new interface algorithms for both single and

multi-cursor environments can be integrated with data visualizations and how user input can

be interpreted relative to data to support intelligent inverse queries. In addition to providing

new capabilities for design, the tool also provides a new form of in-place interactive

ensemble visualization. The examples provided demonstrate the applicability to both

engineering design and less constrained artistic design, both supported through a method of

calculating correspondences and morphs in a result space of hundreds of 2D scalar fields

output from simulations. Perhaps the most important qualitative contribution of the work is

the almost “magical” feeling the interface can provide of directly manipulating data, even

reshaping it with one’s hands, during inverse design. Because this makes design with

simulations so much more accessible to users of varied backgrounds, we believe Design by

Dragging has the potential to be applied broadly to many design problems and perhaps open

up new application areas for creative design with data-intensive simulations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
In Design by Dragging, designers navigate through a space of hundreds of simulation

outputs using direct manipulation interfaces on top of data visualizations. In this example,

medical device engineers refine the design of a mechanical biopsy device with two

concentric cylinders (cannulas) that slide against each other to cut tissue. In forward design

(left), drag operations change the value of simulation inputs, such as the length of the cutting

window. In inverse design (right), drag operations directly change the simulation outputs.

Users bend and reshape stress fields and the system responds continuously, displaying

morphs between the pre-computed simulation results.

Coffey et al. Page 19

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2014 August 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Left: A parameterized model that is used as input to Design by Dragging. Right: The design

space implied by the parameters with a single device configuration highlighted in red.
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Fig. 3.
Design by Dragging pipeline.
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Fig. 4.
Each model has a set of logical features that users can select to manipulate input parameters.

Since several parameters might be associated with a single feature, the direction of the

dragging motion is used to select the specific parameter to modify (indicated above for a

click on the outer cannula).
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Fig. 5.
The interactive algorithm for transitioning from one configuration to the next as the user

drags a cursor consists of a series of steps. The 3D cursor position is first projected into the

2D image space of the simulation scalar output fields. Then, the user’s cursor movement is

compared to the visual change that would occur in the data visualization during a morph

from the starting configuration to each possible target configuration. When the best match is

identified, the visualization itself is drawn as a morph controlled interactively by the user’s

cursor.
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Fig. 6.
Inverse design using a single point manipulation: (a) the user begins by clicking on a point

of interest, (b) preview bubbles are displayed, (c) the user drags toward an interesting

preview, (d) the new simulation result morphs into place, and (e) a new set of preview

bubbles is generated.
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Fig. 7.
Left: In multi-touch inverse design, a control mesh is generated interactively when the user

selects an iso-contour of the simulation data. Right: The mesh is reshaped based on

simultaneous input from multiple fingers to create a detailed inverse query into the result

space. This example comes from the flame simulation described in Section 9.
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Fig. 8.
A parameter space wheel widget enables designers to guide the interface by pinning or

weighting parameters.
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Fig. 9.
Inverse design of a flame effect. (a) Preview bubbles around an in initial click show that the

flame shape can be dragged to transform into a more vibrant flame. (b) As the user drags,

the new flame expands and morphs into place. (c–d) Clicking and dragging at a different

location on top of this new flame allows the user to further refine the shape of the flame.
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