DiffAni: Visualizing Dynamic Graphs with a Hybrid
of Difference Maps and Animation

Sébastien Rufiange and Michael J. McGuffin

Q1 : Which node is removed and then reinserted most often ?
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Fig. 1. Given a dynamic graph defined over a series of time slices, our DiffAni hybrid visualization displays it as a sequence of
consecutive tiles. Each tile may show one or more time slices, and there are three kinds of tiles: diff tiles (indicated with a solid border
and two time slice numbers below them, e.g., the left-most tile), animation tiles (indicated with a dashed border and two time slice
numbers below them, e.g., the tile covering time slices 2 to 3), and small multiple tiles (indicated with a solid border and a single time
slice number below them, e.g., the right-most tile). Nodes and edges are colored in red if they are being removed, or green if they are
being added, over time slices. The radial menu above is being used to convert a diff tile into two small multiple (“SM”) tiles.

Abstract—Visualization of dynamically changing networks (graphs) is a significant challenge for researchers. Previous work has
experimentally compared animation, small multiples, and other techniques, and found trade-offs between these. One potential way
to avoid such trade-offs is to combine previous techniques in a hybrid visualization. We present two taxonomies of visualizations
of dynamic graphs: one of non-hybrid techniques, and one of hybrid techniques. We also describe a prototype, called DiffAni, that
allows a graph to be visualized as a sequence of three kinds of tiles: diff tiles that show difference maps over some time interval,
animation tiles that show the evolution of the graph over some time interval, and small multiple tiles that show the graph state at an
individual time slice. This sequence of tiles is ordered by time and covers all time slices in the data. An experimental evaluation of
DiffAni shows that our hybrid approach has advantages over non-hybrid techniques in certain cases.

Index Terms—Dynamic networks, hybrid visualization, taxonomy, evolution, animation, difference map
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1 INTRODUCTION

Within the field of graph visualization [38], a significant frontier for ~ Of a graph for each moment in time (each time slice), there is a trade-
research is dealing with time-dependent graph data. Many real-world ~ ©off between optimizing the layout quality for that particular time slice,
networks change over time, including social networks, communica- ~ versus reducing the movement of nodes across time slices to improve
tion networks, migration of people between cities or countries, inter- the users’ mental map. So far, empirical evaluations (e.g., [28, 29, 1])
national trade networks, and network models of the relationships be-  have not yielded simple, clear conclusions about the effect or optimal
tween source code modules. The visualization of such dynamic graphs ~ level of mental map preservation. A second challenge is that there

is challenging for at least two reasons. First, in computing the layout ~ are several ways the time slices of a graph can be visually presented,
including small multiples, animation, and 3D representations. Here

again, there are trade-offs, for example: when compared to animation,
small multiples require more space (or they require the user to sacrifice
spatial resolution to fit all of the small time slices on a single screen),
however small multiples have the advantage that the user can compare
different time slices with fast eye movements rather than waiting for
an animation to complete or replay. In addition, as with the first chal-
Manuscript received 31 March 2013; accepted 1 August 2013; posted online lenge mentioned, previous empirical comparisons [1, 11, 42] of differ-
13 October 2013; mailed on 4 October 2013. ent representation methods have yielded mixed results. It seems likely
For information on obtaining reprints of this article, please send that the relative advantage of each visual representation depends on
e-mail to: tveg@computer.org. several factors, including the size and density of the graph, the degree
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of mental map preservation, and the task being performed by the user.
For example, if the user is interested in the total number of nodes in
a graph as it changes over time, then tracking individual node move-
ments is not necessary, and a small multiples representation may be
best. However, if the user must track the movements of a particular
node, without the benefit of highlighting, then smooth animation may
prove superior.

Previous studies seem to support this possibility, with some [1, 11]
finding that static representations are superior, and another [42] find-
ing that animation is better. A reasonable user interface, therefore,
might allow users to view a dynamic graph either as small multiples or
as an animation, or even show both in side-by-side coordinated views.
This would present other problems, however. Different subsets of the
dynamic graph data might best be visualized with different represen-
tations. Showing only one representation at a time in a single view
could require the user to frequently switch between representations,
as well as cause disorientation during switching. On the other hand,
using multiple coordinated views would consume more screen space.

We therefore propose mixing representations together in a novel
hybrid visualization of dynamic graphs. We have implemented this
idea in a prototype called DiffAni (pronounced to rhyme with Tiffany).
DiffAni displays the network as a horizontal sequence of tiles, where
each tile is either (1) a static small multiple showing a single time slice,
(2) a static difference map that is colored to show differences between
two time slices (we call these diff tiles), or (3) an animation clip that
smoothly interpolates between two time slices. These three kinds of
tiles can be intermixed, but always show time slices in their chrono-
logical order, from left to right, with the left-most tile corresponding
to the beginning of the dataset, and the right-most corresponding to
the end. Such a hybrid visualization gives the user the flexibility to
change the representation over any time interval, and has the potential
to display each temporal portion of the network with the best represen-
tation for it, without consuming the additional screen space that would
be required with a multiple coordinated views approach.

The rest of this paper presents our contributions, which are (1) a
taxonomy of non-hybrid strategies for visualizing dynamic graphs; (2)
a taxonomy of hybrid visualizations involving focal and context re-
gions; (3) our prototype DiffAni that allows users to select any consec-
utive set of time slices and change their representation, and also allows
users to scroll across multiple “diff” frames and navigate within mul-
tiple animation frames all with a single, unbroken mouse drag gesture;
and (4) the results of a controlled experiment that show that DiffAni
can sometimes yield performance superior to that with a non-hybrid
visualization.

2 RELATED WORK
2.1 Visualization of Dynamic Graphs

Visualization of time-varying data, in general, is of growing concern,
as evidenced by a recent taxonomy [10]. In the specific case of graphs,
a dynamic network [8, 34] can evolve in different ways over time.
Most previous approaches for visualizing dynamic graphs can be clas-
sified according to our own taxonomy in Figure 2, which shows each
node with a changing color representing a numerical attribute. Other
kinds of network changes, such as topological changes, are of course
also possible, and will be the focus of section 3 and the later sections of
this paper. Small multiples (Figure 2.1) show snapshots side-by-side,
and can be thought of as nesting 2D layouts of the graph within an ex-
ternal time axis. The opposite approach is to nest the time axis within
the elements of a 2D layout (Figure 2.3). The graph’s time axis can
also be mapped to user time, resulting in an animation (Figure 2.2),
or to a 3rd spatial axis, resulting in a 3D visualization (Figure 2.5).
Finally, if the graph is linearized along a single axis, as with an arc
diagram [3, 39], the 2nd spatial axis can be used for time (Figure 2.4).
Variants of these approaches can also be created using adjacency ma-
trices rather than node-link diagrams.

Small multiples and animation (Figures 2.1 and 2.2) have been the
most common strategies in previous work [28, 1, 11, 42]. Examples
of nesting the time axis inside the network layout (Figure 2.3) include
[35] (which uses a node-link representation for the graph) and [41, 5]

Fig. 2. A taxonomy of strategies for visualizing dynamic graphs. Col-
ors indicate a changing numerical attribute associated with each node.
(For simplicity, the above figure shows changes in node attributes, how-
ever most of the above approaches could be adapted to instead show
changes in topology, which are the kinds of changes discussed in the
rest of this paper.) 1: small multiples. 2: animation. 3: sparklines or
other glyphs embedded within the graph’s layout. 4: the time axis is
perpendicular to an arc diagram. 5: a 3D visualization, with time along
the 3rd spatial axis.

(which use matrices). Having nodes laid out along one direction and
time along another direction (Figure 2.4) is used in [36, 16]. A variant
of this idea is used in [32, 30], where nodes are first clustered, then
clusters are laid out along one direction, and time along another, to
show the merging and splitting of clusters over time. Finally, the 3D
visualization (Figure 2.5) was used in [4, 14]. Burch et al. [6, 7]
have also proposed very original, but somewhat complicated, ways to
visualize dynamic graphs that don’t fit within Figure 2.

Note that three of the strategies (Figures 2.1, 2.2 and 2.5) can op-
tionally use some kind of color or shape coding to indicate which
nodes or edges are different in each snapshot, compared to the pre-
vious and/or next snapshots. Difference highlighting is a design di-
mension that is orthogonal to the possibilities in Figure 2, and can be
combined with small multiples, animation, or 3D. This has been called
a “difference map” [2] or “difference layer” [42], and has been shown
to be beneficial [2].

In section 3 and onward, we will use the terms “small multiple”
when no difference highlighting is used, “diff” for a static difference
map that uses coloring to highlight differences between two (not nec-
essarily consecutive) time slices, and “animation” for animations that
also use difference highlighting. Our prototype supports all three of
these representations. The reasons we will focus on these three repre-
sentations are (1) they are the most studied approaches to date, com-
pared to the others in Figure 2; (2) they are more scalable than arc
diagram (Figure 2.4) or matrix-based approaches, which both require
the height of the visualization to grow linearly with the number of
nodes; (3) matrix-based approaches make it harder to find paths [15];
(4) the chosen techniques allow all kinds of changes to a network to
be depicted, whereas the approaches in Figures 2.3, 2.4 have difficulty
showing topological changes or changes in node position; and (5) they
avoid the occlusion and navigation problems of 3D (Figure 2.5).

2.2 Comparison of Animation and Small Multiples

Previous studies of visualizations that use animation have obtained
mixed results. For example, [37] argue that animation is often mis-
used or less effective than static representations. However, there are
also examples of visualizations that were found to benefit from anima-
tion (e.g., [17, 19, 9]), though these did not involve dynamic graphs.



Three previous papers [1, 11, 42] have experimentally compared
small multiples and animations for dynamic graphs. In two of these
[1, 11], small multiples were generally found to be superior to ani-
mation in terms of time to complete tasks. However, in both studies,
when tasks required the user to examine specific nodes (e.g., “Which
node has a degree that remains constant?”’), either the nodes to exam-
ine were highlighted with unique colors across all time slices [1], or
else all nodes in the graph were displayed with a mix of colors and
shapes [11]. This makes it easier for the user to identify the node(s) of
interest in each time slice, by simply looking for the appropriate color
(or color and shape combination). A more general or realistic situ-
ation could have all nodes displayed with the same color and shape,
in which case we could expect animation to yield more benefit when
nodes are changing location from one time slice to the next. In par-
tial support of this, Zaman et al. [42] displayed nodes with the same
color and shape across time slices. In their 2nd experiment, where
nodes changed location, they found animation was superior to (static)
“difference layers”.

‘We also note that animation usually involves playback of a sequence
of images, by pressing a key or a “play” button, at a speed determined
before the animation starts. When the user, or more often the program-
mer, chooses the playback speed, there is a trade-off between how
easy the animation is to understand, and how quickly one can view
the complete sequence. We suspect that a more useful way to view an
animation is by continuously dragging the pointing device (mouse), so
that the user can continuously control the speed, and stop and reverse
at any moment to review events of interest. This kind of interaction
is often possible by dragging along a time slider widget. However,
all three studies may be biased against animation here. In [1, 11], the
time slider widget was small and therefore, by Fitts’ law [26], time
consuming to acquire with the mouse, and in [42] there was no time
slider at all. In real-world software, where users only casually view
videos, navigation options are usually limited to a play/pause button
and a small time slider. However, professional video editing software
sometimes allow users to drag anywhere within a window to navigate
within time, e.g., by using a special mouse button combination.

The experimental evaluation we present later in this paper is de-
signed with realistic, expert use in mind. Therefore, in our work, nodes
are not highlighted in a way that eases their identification across time
slices, temporal navigation in animation is always done by dragging,
and it can be performed almost anywhere in the main view.

2.3 Hybrid Visualizations

Previous work have explored the possibility of combining techniques
to visualize a network at one moment in time [21, 33]. A paper [18]
also explored the usefulness of hybrids in the context of dynamic net-
works by nesting representations inside a different one. For instance,
the structure of a graph is first depicted with a node-link diagram, and
then other parts of the network are shown using different representa-
tions (e.g., complexity plot, matrix). However, this technique cannot
be used to split a timeline into several parts, to try to benefit from
using varying representations at different times in an evolving graph.
Another work [20] performed a user study to compare different node
duplication techniques that could be used with the NodeTrix hybrid
[21] to improve the understanding of social networks, but did not in-
volve dynamic graphs.

There are different ways to combine representations in information
visualization in general, and these possibilities were discussed in [24].
While their classification is not focused on network visualizations, our
work includes a juxtaposition mechanism, which is similarly used in
multiple coordinated views (e.g., [31, 12, 40, 42]). In contrast, the kind
of hybrid approach we propose can reduce the need to switch between
several views (e.g., difference view, animated view) by merging them
and allows splitting a history into smaller parts. Multiple coordinated
views can show several representations at once, but do not allow the
more flexible and interactive mixing of visualizations as hybrids, and
consume more screen space or make each representation smaller.

3 TAXONOMY OF HYBRID VISUALIZATIONS WITH FOCAL AND
CONTEXT REGIONS

A graph can evolve over time and different visual techniques can be
used to show these changes (such as small multiples, diff and anima-
tion). An interesting direction of research (also mentioned in [1]) is to
explore how these approaches can be mixed together. Imagine that we
can interactively select different representations for each transition of
a dynamic graph, depending on which one might be more appropriate
in some context. Are the new combinations beneficial, and in which
cases? We use a taxonomy (shown in Figure 3) to organize possible
combinations of visualization techniques for dynamic graphs.
Taxonomies can help explore the design space of potentially useful
combinations and can be constructed in different ways. A first step
is to verify which techniques might be worth combining together. For
example, node-link representations can help follow paths and are more

Context
Small Multiples Diff Animation
8 Q @ o
s % 333 (c) @ > ®© 0
é QP %9 %\0 & o » bﬁ o@ o 9:’
5 | : L e A
,f ?@3 gp %o o Qb
55 @ @0 @ 0
2 el — s T a0 Tas
1 5
c (C] (B
| 2%03.505° | & 3, O So
£ 0 o o0 o)
5 2':34 T 5 5 2 e ' 5 ! 5

Fig. 3. A taxonomy of different hybrid visualizations of the same dynamic graph. The context is the visualization technique used for surrounding
time slices. Other time slices (i.e., the local focuses) can also be visualized using different techniques. The cells along the diagonal show “pure”
(non-hybrid) techniques, whereas other cells show possible hybrids. Dashed lines are used to illustrate that some of the changes can be animated.



familiar to users than matrices. However, matrices can be more scal-
able, even for dense networks. Since they are complementary in some
ways, combining them may be useful (as shown in TreeMatrix [33]
and NodeTrix [21]). Elastic Hierarchies [43] also aims to combine
advantages of node-link diagrams and treemaps for visualizing trees.
Similar reasoning lead us to combine visualizations to help understand
dynamic graphs, since animation should help tracking moving nodes,
whereas diff could enable quick identification of topological changes.
We focused on investigating combinations that seemed more useful in
practice (i.e., where the possible advantages of the combination were
more clear).

In the taxonomy, we illustrate how different visualization tech-
niques for dynamic graphs (i.e., small multiples, diff and animation)
can be mixed in various ways. A small multiple represents a single
“photo” of a dynamic network, taken at a specific moment in time. A
difference map allow to highlight the changes between two small mul-
tiples, by combining them. Animations gradually interpolates changes
made to a network, e.g., by moving and fading elements in and out.
The combinations of these visualizations are expressed in terms of Fo-
cus+Context (as in [43, 33]) based on the idea that a main technique
(the context) is used for a graph, but for some reason (e.g., possibly to
optimize the screen space or better see movements), the user wants to
use a different representation for a subgraph (the focus).

The timelines of a dynamic graph are shown in each cell of the
taxonomy, along with possible visualizations for specific time steps
and transitions. An evolving graph can thus be split in various ways
and a different visual technique can be used for a region in “focus”.
For instance, in the middle column of the top row of the taxonomy,
diffs are generally used to represent the dynamic graph, except at time
step 3, where a small multiple is used instead. The opposite cell (in
the left-most column of the middle row) illustrates another possible
combination, i.e., insertion of a diff to highlight the changes between
time steps 3 and 4, among several small multiples.

Another case (in the right-most column of the middle row) shows
how a diff could be used instead of an animation in the middle tran-
sition of an evolving network. This could be useful if, for example,
nodes do not move a lot for some period of time, and thus using an an-
imation might not be the best approach in this case. In our prototype
implementation, the user can interactively swap visualizations accord-
ing to his/her own preferences (or heuristics), and for any time slices.
Thus, it covers all the possibilities illustrated in our taxonomy, as well
as similar ones, e.g., using two different focuses (diff and animation)
in a context of small multiples.

4 PROTOTYPE

A video overview of our DiffAni prototype is available online!. Three
kinds of tiles are supported: small multiple tiles (with no difference
highlighting), diff tiles highlighting differences between two (not nec-
essarily consecutive) time slices, and animation tiles (that also use
difference highlighting). In difference highlighting, nodes and edges
are shown in red or green if they are removed or added, respectively,
across time slices. Currently, topological changes are the only kinds of
changes visualized by the prototype. In addition, when the user place
the mouse cursor over a node in a tile, the edges incident on that node,
as well as the node’s neighbors, are highlighted.

The user may use the mouse to zoom and pan over the sequence
of tiles. The user can also drag sideways to navigate in time within
animation tiles. Inside such a tile, the positions of nodes are interpo-
lated based on the current position in time, and nodes and edges that
appear or disappear are gradually faded in or out. We decided to use
this scrubbing technique instead of having a “Play” button available
to view animations with a fixed speed. Playback with a fixed speed
is sometimes slower than necessary, causing the user to waste time,
and at other times can be too fast, requiring the user to rewind the an-
imation. On the other hand, forcing the user to scrub manually means
the user will always be navigating through time as fast as they can (or
want), slowing down when they want or need to.

"http://ref.rufiange.com/diffani2013

The “unified dragging” technique that we implemented (shown in
Figure 4) uses the same sideways drag to pan and to navigate in time.
This simplifies the input required from the user, obviating the need
to switch between mouse buttons and/or between slider widgets. No
matter what kind of tiles are in the sequence, navigation through time
is always done the same way, and does not require first pointing at a
small target with the mouse cursor (an action that could require signif-
icant time [26]).

All of the combinations depicted in our taxonomy (Figure 3)
are supported, and the mix of representations may be interactively
changed by the user. As shown in Figures 1 and 5, the user may flu-
idly draw a stroke with their mouse to select one or several time slices
(similar to drawing part of a lasso gesture), and then intersect their
own ink trail (creating a pig-tail, inspired by Scriboli [22]), popping
up a menu allowing the selected tiles to be converted to a different
representation. This quick gesture allows the user to create any mix
of the three visual representations (i.e., small multiples, diff or ani-
mation). Whenever the user interactively changes the representation
of time slices, an animated transition illustrates the conversion of tiles
(this animated transition is not to be confused with the animation of
the graph shown within an animation tile).

The design choices we made for the real experiment (e.g., the “uni-
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Fig. 4. lllustration of the unified dragging mechanism implemented in
our prototype. The blue dashed line indicates the current time (t) of
a dynamic graph (also shown using four small multiples at the bottom).
When a user drags the mouse inside small multiple and diff tiles (e.g., A,
B), the sequence of tiles moves in the same direction as the dragging.
Animation tiles (e.g., C, D) do not move in space to allow the user to
travel in time instead. A: ¢~ 1. All the elements inside the tiles are at
their initial positions. B: 7~ 2. The animation tile remains unchanged,
but the sequence of tiles has moved to the left. C:r~2.5. The time
cursor is between two time slices inside the animation tile, and thus the
positions and the transparency of the nodes are interpolated. D: ¢ ~ 3.
At the end of an animation tile, the nodes are at their final locations.
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Fig. 5. Interactively converting three small multiple tiles into a single animation tile. Initially (top of figure), we have a diff tile followed by three small
multiple tiles followed by a diff tile. A: Dragging the mouse to select a contiguous set of tiles covering time slices 3-5. B: When the user intersects
their own ink trail, a “pig-tail” is detected and a radial menu pops up, allowing the user to change the representation of the selected tiles. C: The
previously selected small multiples are compressed into a single animation tile (this conversion is shown with a smoothly animated transition).

fied dragging” technique) were based in part by the feedback we re-
ceived in our pilot study.

5 TASK-ORIENTED STUDY

There are at least three theoretical sources of differences in perfor-
mance that we can expect for the diff and animation techniques. First,
with the diff technique, the user can compare two consecutive tiles
with rapid eye movements, and even understand these two consecu-
tive time slices by looking at the color highlighting within a single tile,
whereas doing the same with the animation technique requires drag-
ging with the mouse. Second, displaying N consecutive time slices
with the animation technique is done with a single tile that is always
visible, whereas the diff technique results in N — 1 tiles that do not,
generally, fit within the window, therefore requiring the user to per-
form some dragging to scroll through the tiles. Third, if there is sig-
nificant movement of nodes from one time slice to the next, the diff
technique could make it difficult to identify corresponding node posi-
tions in consecutive tiles, whereas the animation might make this clear
by virtue of smoothly interpolating node positions. These three differ-
ences favor diff in the first case, and animation in the other two cases.

We cannot predict with certainty the net effect of these differences.

However, we propose three hypotheses. First, we suspect that diff’s
advantage from fast eye movements will be strongest when there is lit-
tle or no movement of nodes. Second, the relative performance of an-
imation with respect to diff should improve when there is more move-
ment of nodes. This second hypothesis is more speculative than the
first, since performance with animation could also plausibly degrade,
due to the user having to drag more slowly with faster moving nodes to
monitor their individual changes. Finally, given the theoretical trade-
offs between diff and animation, we suspect that the hybrid mixture of
them in DiffAni can sometimes result in better performance than with
either of the non-hybrid techniques.
Our hypotheses are thus as follows :

e H1: with greater movement of nodes across time slices, the per-
formance of diff degrades.

e H2: with greater movement of nodes across time slices, the per-
formance of animation with respect to diff improves.

e H3: the DiffAni hybrid visualization lead to better performance
than with non-hybrid (“pure”) diff or animation.

To test these hypotheses, we generated three datasets. All three
datasets contain a mix of transitions involving either no movement or



much movement, as illustrated in Figure 6. In the first dataset (A: low
movement), the nodes do not move between time slices 1 and 3, then
do move in the next two transitions, then cease moving. The second
dataset (B: high movement) has a longer lasting stage of movement in
the middle. The third dataset (C: phased) alternates between move-
ment and stabilization. The datasets were generated by adding and
removing random numbers of nodes and edges at each time slice us-
ing the parameters in Table 1.

Table 1. Parameters used in the generation of the three datasets.
Columns indicate average initial number of nodes and edges, average
number of nodes added and removed in each transition, and average
number of edges added and removed in each transition, respectively.

N(z=0) E(=0) AN+ AN- AE+ AE-

Low 401 340 39 17 53 60
High 389 3.1 41 19 44 6l
Phased 37.9 338 36 18 43 59

In normal usage, DiffAni allows users to select intervals of time
and change the representation of a part of the dynamic network to
small multiples, diff or animation. However, in our study, users were
forced to visualize the network in one of three conditions : a “diff”
condition which used only diff tiles, an “animation” condition which
displayed the entire network in a single animation tile, and a “hybrid”
condition which displayed low movement transitions with a diff tile
and high movement transitions with an animation tile. Users could not
interactively change the representation of any tiles in the experiment.

1 2 3 4 5 6 7 C

A. Low movement

1 2 3 4 5 6 7 L

B. High movement

. 1.,

1 2 3 4 5 6 7

C. Phased movement

Fig. 6. Schematic representation of the degree of movement of nodes
in the three datasets used in our evaluation.

The nodes in the datasets were positioned using a force-directed
layout [13], computed for each time step of the dynamic graph. Differ-
ences in topology between the time slices naturally led to movements
of nodes across time slices. Also, node positions were kept fixed for
certain time steps, depending on the dataset (i.e., the transitions with a
low degree of movement in Figure 6).

As shown in our taxonomy (Figure 3), a single diff tile can display
the differences between two consecutive time slices or between two
non-consecutive time slices. In the latter case, this serves to summa-
rize several time slices in a single tile. However, in our experiment,
the tasks required the user to examine every time slice and not just
compare the first and last time slices. Therefore, the diff tiles always
showed consecutive time slices. So, in the “diff” condition, there was
a total of six diff tiles to show the seven time slices. In the “animation”
condition, there was always a single animation tile, and in the “hybrid”
condition, the number of tiles depended on the dataset. In particular,
the hybrid representation had five tiles with low movement (four diffs
and one animation), three tiles with high movement (two diffs and one
animation), and six tiles with phased movement (three diffs and three
animations).

Contrary to small multiples, diff can visualize changes between
time steps, by combining two static representations and highlighting

the differences. To place the nodes with the diff technique, we com-
puted the averages of the starting and ending node positions for each
transition of the evolving network. Another possible approach is to
display several copies of the same nodes at once (e.g., [42]), but it can
also make it more difficult to track individual nodes and consume more
screen space.

We took inspiration from the set of questions used by Archambault
et al. [1], and developed the following set of questions :

e ql: find which node is removed then reinserted most often over
time.

e (2: find the node with the highest average degree over all time
slices.

e 3: find the node whose degree never decreases.

e 4: find the path (chain of nodes) that is never disconnected in
any time slice.

Comparing these tasks to Lee at al.’s taxonomy [25], ql is con-
cerned with the appearance/disappearance of nodes over time, and
cannot be classified in Lee at al’s taxonomy which was not designed
with dynamic graphs in mind. However, we find that q2 and g3 are
Topology/Adjacency tasks, and g4 is a Topology/Connectivity task.
Our set of questions is also comparable to that used by [1], which
included one Adjacency task, one Connectivity task, and two tasks fo-
cusing on the appearance/disappearance of graph elements. All ques-
tions were multiple-choice with four candidate answers. To make
these questions more difficult, additional nodes and edges were ran-
domly inserted and removed over time. In addition, participants could
not simply look at the last time slice to determine the answers. For in-
stance, in task q4, paths were randomly disconnected then reconnected
later on.

5.1 Experimental design

In the user study, to verify our research hypotheses (H1,H2,H3), we
asked participants to perform four tasks using three different inter-
faces. Our motivation was to explore possible compromises in using
the techniques, depending notably on node movements. In particular,
we wanted to check whether our hybrid approach could benefit from
using both animation (e.g., to track moving nodes) and diff techniques
(e.g., the scrolling in time is unnecessary if nodes are stable).

The twelve participants (2 female and 10 male) were students in
computer science, and the presented hybrid approach was new to them.
We generated datasets to test all the conditions and tasks, and also
made sure there was only one possible answer for each question and
that it wasn’t too difficult but still realistic, by adding a random level
of noise. In the experiment, users first performed warmup trials for
each technique (excluded from our final results) where they answered
two questions about a 4th dataset that contained phased movements.

At the start of each trial, an instance of one of the questions was dis-
played in the main window, allowing the user to take the time to read
and understand the question before pressing a “start” button. Next,
the network data was displayed. In the first time slice of the network,
the four candidate nodes (or pairs) were highlighted. However, these
candidates were not highlighted in any other time slice, contrary to [1].

The user could navigate by dragging until they determined the an-
swer to the question, and entered the answer using radio buttons. If
the first attempt by the user was wrong, they could retry up to two ad-
ditional times, for a maximum of three attempts for each trial. Trials
with three unsuccessful attempts were counted as errors. Users were
instructed to complete trials as quickly as possible, without errors.

In the final experiment, we used a within-subjects design with a
total of

3 techniques (diff, animation, hybrid)

x 3 datasets (low movement, high movement, phased movement)
x 4 questions

x 12 users

=432 trials in total.

The order of presentation of techniques was counterbalanced with
a Latin-square design, and the ordering of datasets and questions was



random for each participant. We controlled node movements in the
datasets, based on our assumption that movement can play a role in
deciding whether diff or animation should be used to visualize parts
of dynamic networks. To test the effect of node movements in the ex-
periment, node positions were sometimes kept fixed for specific time
slices, causing non-optimal layouts (as illustrated in Figure 5 in time
slices 3 and 6-7).

We ensured that the difficulty and complexity of the tasks were rea-
sonable by doing a pilot study, that was performed prior to the final
experiment. The pilot study included eight participants, and motivated
certain changes in the prototype. For instance, in a previous version,
the user used a traditional scrollbar widget to navigate in time within
animation tiles (as in [1]). Also, animations between consecutive time
slices were displayed in three stages, to first show disappearing nodes
and edges, then movements of nodes, then appearances of nodes and
edges, following the staged animation approach of [27]. Both of these
design choices seemed to penalize performance with animation. Fur-
thermore, users seemed to be confused with using a scrollbar to nav-
igate in animation tiles, while being able to drag anywhere to scroll
through diff tiles. In the staged animations, some participants had dif-
ficulties distinguishing between the different slicings that were used in
the timeline, i.e., slices to separate time steps, and also slices for each
stage of an animation (placed between two time steps). Therefore,
for the full study, we adopted the unified approach in Figure 4, where
dragging anywhere serves to navigate both kinds of tiles. Our pilot
study also tested a condition where all time slices were shown with
small multiple tiles (without coloring of differences). However, since
these small multiples were clearly inferior to the other techniques, they
were excluded from the final experiment.

6 RESULTS

In this section, we present the results of our experiment. The total time
and error rates are shown in Tables 2 and 3. Shapiro-Francia tests on
total times revealed them to not be normally distributed, hence Fried-
man tests were used to check for significant differences between visu-
alization techniques for the different tasks and movement conditions.
Over all movement types, the hybrid was found to be (weakly) statis-
tically better than diff (p < 0.10). Examining only the average times,
hybrid has the best total times in two of the movement conditions (in-
dicated in bold in Table 2).

Table 2. Average duration of task trials for each technique (in seconds),
and grouped by movement type. These include the time spent on 2nd
and 3rd attempts when the user’s 1st attempt was wrong.

‘ Low High Phased

Diff | 135 140 128
Animation 117 147 106
Hybrid | 104 123 128

We also checked whether some visualization techniques were
harder (i.e., required more attempts) depending on the movement con-
dition. Table 3 shows that the error rates (after 3 attempts) were below
5% in almost all cases, indicating that users were able to complete the
tasks.

Table 3. Average number of attempts per trial (for all tasks). In paren-
theses are error rates, where a trial is considered an error if the user’s
3rd and last attempt is still wrong.

| Low High Phased

Diff | 1.13 (0.0%) 109 (6.4%)  1.00 (0.0%)
Animation | 1.11 (2.1%) 1.15(0.0%) 1.09 (2.1%)
Hybrid | 1.09 2.1%) 1.11 (2.1%) 1.15(0.0%)

The participants made fewer attempts on average with the hybrid
in the low movement condition, while the number of attempts was
lower with diff in the other cases. However, with high movement, diff
yielded a higher error rate than the other techniques. As for phased
movement, diff resulted in no mistakes. Also, no significant differ-
ences were found (p > 0.10). These results indicate that the tech-
niques were not very different from each other, in terms of number
of attempts. Moreover, these results suggest that the hybrid approach
was not more difficult to use than the non-hybrid techniques, although
it required skills in both visualizations. Table 4 shows the total times
broken down by task.

Table 4. Results for all interfaces, tasks and movements (times are
in seconds). Within each task and movement combination, the min-
imum time is shown in bold (or two numbers are in bold, if they are
not significantly different from each other). Two stars indicate the bold
number(s) is (are) significantly (p < 5%) smaller than the non-bold num-
ber(s), whereas one star indicates weak significance (p < 10%).

Low movement | Task 1 Task2 Task3 Task4
Diff | 132 251 45% 109
Animation | 107 219* 54 86
Hybrid | 120 160* 55 80
High movement | Task I Task2 Task3 Task4
Diff | 123 253 63 120*
Animation | 162 232 68 126
Hybrid | 134* 206 49* 100*
Phased movement | Task 1 Task2 Task3 Task4
Diff | 100 256 34% 121
Animation | 96* 198* 53 76
Hybrid | 143 207** 58 104

Regarding hypothesis H1, examining the averages, diff performed
worse in the high movement condition than the low movement con-
dition in three of the four tasks, indicating that collecting more data
might confirm H1.

Concerning H2, when we compare low movement and high move-
ment, we find the change in time for animation is always worse than
the change in time for diff (i.e., the performance of animation de-
creases more than diff with higher movement). This contradicts H2.
This may be because users had to drag very slowly in the high move-
ment condition to be able to track node movements. Figure 7 shows
the fraction of time spent dragging in each condition. As can be seen,
the percentage of time spent dragging is higher with animation, com-
pared to diff, in every condition.

H3 was partially confirmed : in the low movement condition, the
hybrid was (weakly) significantly faster than diff for task 2 (p < 0.10),
and it also had the lowest average for task 4. In the high movement
condition, the hybrid was (weakly) significantly faster than animation
for tasks 1, 3 and 4, and it was the best technique in terms of average
time for three of the four tasks. With phased movement, DiffAni was
significantly better than diff for task 2 (p < 0.05).

Comparing diff and animation in the low and high movement con-
ditions, we find that diff seems less sensitive to movement, whereas
performance with animation changes more between movement condi-
tions. Interestingly, Purchase and Samra [28] found that user perfor-
mance with animation varied non-linearly with the degree of preser-
vation of mental map (which varies, roughly speaking, inversely with
the degree of motion of nodes across time steps). These two results
indicate that performance with animation varies in a complicated way,
making it difficult for designers to choose a prescribed representation.

Analyzing the data by task, we notice that tasks 1 and 2 took more
time than tasks 3 and 4. This is not surprising, since users could some-
times complete tasks 3 and 4 before examining all the candidate an-
swers (e.g., in task 3, if a user noticed that a node’s degree never de-
creased, he/she could try to immediately answer the question without
examining the other candidates). Tasks 1 and 2, however, required
that all the candidates be examined before answering. Furthermore,
between tasks 1 and 2, task 2 required a more complicated mental cal-
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Fig. 7. Distribution of the time spent performing tasks using the visual-
ization techniques, depending on the degree of movement (times are in
seconds). The orange-colored bars indicate the participants were drag-
ging in space (e.g., diff) or in time (e.g., animation), while the blue bars
show the non-dragging time.

culation, and not surprisingly took the most time. Comparing tasks 3
and 4, task 3 was simpler and took less time than task 4 (which re-
quired examining entire paths of nodes).

In the first task (ql), animation was the fastest approach in the low
movement condition, possibly because it facilitated the tracking of re-
moved nodes (in Figure 7, the non-dragging time is lower). However,
the performance of animation decreased with high movement. We sus-
pect this is due to the fact that animation may not be the best technique
to track new nodes, and even more so with increased movement, since
they can appear anywhere. In this case, it may be faster to simply look
for highlighted differences rather than scrolling in time with anima-
tion. Probably because of this more complicated trade-off, the hybrid
approach performed average.

In the second task (q2), the hybrid visualization was the fastest tech-
nique with low and high movement. Looking at Figure 7, we can see
it achieved significant gains in terms of non-dragging time (shown in
blue). We suspect the unified dragging might have facilitated the track-
ing of nodes across representations. Since an animation is only used
when there is movement, it is easier to track the nodes over time. Also,
in such a hybrid representation, the starting and ending steps of a ani-
mated transition matches the previous and next node positions shown
with a difference map (as shown in Figure 4).

In the third task (q3), participants were faster using diff, except in
the high movement condition. Scrolling in time with animation may
have been generally less effective for this task, compared with finding
highlighted changes. We suspect that, since the degrees of some nodes
were increasing over time, it might have made them a bit easier to
locate. However, the tracking of nodes across time slices was probably
more difficult with diff, especially with high movement. The hybrid
approach, which used animation only sparingly and also integrated the
unified dragging technique, performed better in this case.

In the last task (q4), the hybrid approach was generally faster, al-
though it was slower than animation in the phased movement condi-
tion, possibly because of the mental effort required to switch represen-

tations very often. In this case, participants commented that animation
generally helped them track nodes and chains of nodes across time
slices. These results suggests that participants preferred animation to
track nodes, but the usage of diff was also beneficial when nodes did
not move much.

Examining average times for hybrid, within each task and across
all movement conditions, we noticed that phased movement always
yields the worst performance. For example, within task 1, hybrid took
143 seconds on average with phased movement, vs. 120 and 134 sec-
onds in the other movement conditions. This indicates that the phased
movement condition resulted in too many changes in the hybrid visu-
alization; this is also corroborated by user feedback.

6.1 User feedback

In our user study, participants experimented with several approaches.
In addition to collecting quantitative data (e.g., number of attempts,
task durations, error rates), we also used five-point scales to evaluate
their impressions.

The participants generally felt comfortable using the visualization
techniques. In particular, animation and diff were rated as very easy
to use (4.1 and 4.0, respectively), while the hybrid, perhaps because
of the surprising interface and multiple representations, was evaluated
at 3.6. However, it is interesting that participants also rated the hybrid
as the most useful approach to perform tasks (4.3 vs. 3.9 for diff, and
4.0 for animation). We believe this correlates with other feedback we
received that animation clearly helped track nodes efficiently, but only
if used sparingly (as with the hybrid).

Several participants preferred our hybrid approach, arguing that
tracking nodes was easier and that the use of animation was very
useful and generally faster (P4,P5,P8,P9,P11-P13). Users further ex-
plained that they liked that the hybrid only uses an animation if a node
actually moves over time (P4,P8,P11). However, some participants
also said the performance of the hybrid decreased with alternating
phases, mostly because they had to adapt to changing representations
(P5,P8,P9). A few users felt that animation was not always the best
technique, because they had to scroll in time too much (P7,P12), al-
though another (P2) argued it was better to scroll in time in one big
tile than across several tiles (sometimes causing a loss of context).

Participants also had suggestions for improvements, such as reduc-
ing cluttering (P1,P2,P6,P12) or highlighting nodes in several time
slices (P4,P6,P9). They also believe that it could be useful to display
tooltips showing, e.g., the number of neighbors of a node (P7,P9) or
allow selecting nodes from a drop-down list (P4,P5,P9).

6.2 Applications

In this paper, we have shown that a hybrid technique can potentially
help analyzing dynamic networks, but there are also practical uses of
these combinations. In fact, to fully use hybrid approaches such as
ours, one has first to construct a hybrid representation of the data and
then analyze the resulting visualization. We focused on the latter case
in our study. However, since users could benefit from mixing tech-
niques (i.e., diff and animation) in some cases in our experiment, we
propose a heuristic to construct hybrid representations of dynamic net-
works (illustrated in Figure 8).

First, a metric to evaluate the degree of node movements has to be
computed for each transition (e.g., the average distance between time
steps). Second, if there is no or little movement in a transition, diff
can be used. Otherwise, animation was generally found to be more
suitable. Also, if the same visual techniques are used for several con-
secutives transitions, they should be merged together, to avoid frequent
switching in representations. Since small multiples performed signifi-
cantly worse in our pilot study, it was not used in the real experiment.
We therefore suggest that it should be only used for a small number of
time slices, and also when the differences in transitions does not really
matter.

In the spirit of previous work on hybrid visualizations (e.g., [21,
33]), a more suitable representation can be flexibly used for different
parts of a dynamic network using our approach. For instance, in soft-
ware engineering, refactorings can cause more instabilities (e.g., new
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Fig. 8. A method to construct potential hybrids using our prototype. In
this case, appropriate visualizations are chosen based on the degree of
movement of nodes in the evolving network.

modules are added, moved or new connections are made) at the begin-
ning of a project, and also once in a while in the software change his-
tory when the design is reworked [23]. However, bug fixes might not
induce a lot of changes in terms of connectivities. Thus, the presented
hybrid technique could help a software engineer understand how a de-
sign evolves over time, by using appropriate visualizations for differ-
ent periods of time. As a software is usually developed over many
years, this could allow engineers to browse large software histories
faster.

There are also other possible applications of our hybrid approach
that will be explored in future work. For instance, in a cell phone
network, there are less movements at night, and depending on the time
of the day, an appropriate visualization could be used. Also, in social
networks, some connections do not change a lot while others can be
more unstable (e.g., childhood friends vs. part time employees).

6.3 Limitations

We made choices in designing our experiment and prototype that we
discuss in this subsection. We implemented a Fruchterman-Reingold
algorithm [13] in our prototype, rather than possibly more complex
strategies with unclear outcomes [28]. Also, more advanced layout
algorithms are not always included in compatible software libraries or
require expert knowledge. In our experiment, because of our choice
of layout algorithm, we could not reproduce the exact same effects
of mental map preservation which have been used in certain previous
studies (e.g., [28, 29]), however we could indirectly vary mental map
preservation, by varying the topology of the graph (i.e., adding and
removing nodes and edges), which caused movement of nodes.

Our hybrid method relies on generic visualizations that can be used
for any network. Also, the dynamic graphs in our datasets were ran-
domized and had roughly between 35 and 70 nodes over seven time
slices, similarly to previous studies (e.g., [1, 2]). However, user stud-
ies will be required to explore the possible effect of network density or
the number of time slices on the performance of participants for more
tasks and application domains.

In our experiment, the tasks chosen for the evaluation are based on
existing taxonomies (e.g., [25]), but do not cover higher level changes
(e.g., clustering, overview) nor attribute changes. We did not allow the
highlighting of nodes over several time slices in our user study, to fo-
cus on comparing the visualization techniques themselves. Also, some
tasks do not benefit from highlighting (e.g., finding a node, among
many possibilities, that evolve according to some pattern).

We suspect a few uncontrollable factors could have contributed to
reduce the statistical power of our results in addition to the small sam-
ple size. For instance, to use the hybrid fully, users needed to master
two techniques, although some did not like or were less efficient with
animation (while others liked it more than diff). To be fair, we let the
participants practice the same amount of time using each technique,
although users may have their own preferences and skills.

We used a fixed hybrid representation and did not allow the user to
interactively construct hybrids in the experiment to limit the variabil-
ity of our results (as done similarly in e.g., [1]). We focused on find-
ing benefits on combining representations, and thus mixed typical and

simple non-hybrid visualizations (e.g., diff, animation). However, the
combination with other unexplored techniques (e.g., sparklines) could
be beneficial. Also, the comparison of hybrid representations with
other non-hybrids (such as multiple coordinated views [31]) should be
explored in the future.

7 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a hybrid visualization of dynamic graphs that al-
lows the visual representation of the data to be varied across time.
Multiple consecutive time slices in the data can be collapsed into a
single tile displaying either an animation or a static difference map,
enabling the user to choose trade-offs between space and time for dif-
ferent portions of the data.

We also proposed a taxonomy of visualizations of dynamic graphs
(Figure 2) and a taxonomy of hybrid visualizations (Figure 3). Our
prototype implementation allows users to flexibly explore these com-
binations.

Our experimental evaluation showed that the performance of dif-
ferent visualization techniques does not vary in a simple way, but
that nevertheless the hybrid visualization can outperform other tech-
niques in certain conditions, indicating that hybrids can result in a bet-
ter trade-off than non-hybrid alternatives. We therefore recommend
that hybrid visualizations allow users to interactively control the mix-
ture of representations used for the data.

The user study differed from previous work in two ways that make it
relevant for real-world expert use scenarios: first, the candidate nodes
for tasks were not highlighted across all time slices, and second, navi-
gation in time and space was performed with the same kind of mouse
dragging (Figure 4) rather than requiring the user to use a small slider
widget or play animations with a fixed speed.

One issue that could be investigated in future work is the reason
why animation performed more poorly than expected, contradicting
our hypothesis H2. We suspect that users may have been hindered
by having to drag slowly during animations to be able to understand
rapid node movements (and because of the added noise in the datasets).
Future prototypes may improve performance by displaying “smeared
out trails” or motion blur effects to make the movements of nodes
clearer in fewer frames, and/or non-linearly vary the mouse cursor gain
according to the speed of movements, to make it easier for the user to
quickly understand transitions between time slices.

Another interesting research direction concerns the construction of
hybrids. Although we presented a heuristic to design hybrids for dy-
namic networks, there is a need for more guidelines to determine how
visualizations should be mixed in some context. Users that tried a
few iterations of our prototype were generally faster with the hybrid,
and thus it could be useful to study the learning curves of users to
understand how to better exploit hybrid visualizations. Also, the inter-
active process of assembling hybrids itself could lead to discovering
insights. Furthermore, alternative hybrid representations should be ex-
plored and evaluated to study, for instance, the effect of using different
layout algorithms and interaction techniques.
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