
 Bing Wang, Puripant Ruchikachorn (PR), and Klaus Mueller (KM) are
with the Visual Analytics and Imaging Laboratory, Computer Science

Department, Stony Brook University, NY. Email: {wang12,

pruchikachor, mueller}@cs.sunysb.edu. KM is also with SUNY Korea,
and PR is also with Chulalongkorn Business School, Chulalongkorn

University. The two first authors contributed equally to this work.

Manuscript received 31 March 2013; accepted 1 August 2013; posted

online 13 October 2013; mailed on 4 October 2013. For information on

obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

SketchPad
N-D

: WYDIWYG Sculpting and Editing in High-

Dimensional Space

Bing Wang, Puripant Ruchikachorn, and Klaus Mueller, Senior Member, IEEE

Abstract— High-dimensional data visualization has been attracting much attention. To fully test related software and algorithms,

researchers require a diverse pool of data with known and desired features. Test data do not always provide this, or only partially.

Here we propose the paradigm WYDIWYGS (What You Draw Is What You Get). Its embodiment, SketchPad
ND

, is a tool that allows

users to generate high-dimensional data in the same interface they also use for visualization. This provides for an immersive and

direct data generation activity, and furthermore it also enables users to interactively edit and clean existing high-dimensional data

from possible artifacts. SketchPad
ND

 offers two visualization paradigms, one based on parallel coordinates and the other based on

a relatively new framework using an N-D polygon to navigate in high-dimensional space. The first interface allows users to draw

arbitrary profiles of probability density functions along each dimension axis and sketch shapes for data density and connections

between adjacent dimensions. The second interface embraces the idea of sculpting. Users can carve data at arbitrary orientations

and refine them wherever necessary. This guarantees that the data generated is truly high-dimensional. We demonstrate our tool’s

usefulness in real data visualization scenarios.

Index Terms—Synthetic data generation, data editing, data acquisition and management, multivariate data, high-dimensional data,

interaction, user interface, parallel coordinates, scatterplot, N-D navigation, multiple views

1 INTRODUCTION

High-dimensional data analysis and visualization is useful in many
applications and domains, and research on new techniques for this
purpose has been progressing steadily. Designing new algorithm and
software requires datasets with specific features for testing.
However, real datasets are in limited supply and those that are
available often – at least partially – lack the features needed for
targeted evaluations. While synthetic datasets can be generated, this
can be tedious and it often requires high programming skills to
translate certain visual properties into statistical properties and vice
versa. At the same time, data acquisition processes are never perfect
and artifacts often arise that hamper data analysis routines such as
clustering. Scientists require tools that allow them to edit their
datasets but without disturbing true and important structures. Ideally
such tools would operate in the same visual interface they already
use to explore, analyze and reason with their data.

Here we present SketchPadN-D, an interface for high-dimensional
dataset generation and editing that is tightly integrated with high-
dimensional data visualization. Users need not switch back and forth
between data manipulation and visualization tools as they are
combined into one interface. This provides better context for later
iterations of the data generation process and facilitates a more
streamlined workflow. As users are able to create datasets more
quickly, they can explore and generate a larger number of these and
possibly more complex ones. This in turn will favor the development
of more robust algorithms and software for high-dimensional data
analysis and visualization. Similarly, as users are able to edit data
and artifacts more informed and thoroughly they will be able to make
faster progress in their data analysis efforts.

Because most visualizations and common input peripherals are
2D, it is desirable to directly draw napkin sketches of a dataset into a
selected visualization and so generate the specified data. Sketch-
based interfaces are often used by novice users to create and
manipulate data in many applications, but have never been explored

in the domain of high-dimensional data. A recent system by
Albuquerque et al. [1] allows users to draw 1D and 2D probability
density functions (PDFs) or 2.5D probability distribution planes
(PDPs) to define a dataset. But it is beyond argument that in the era
of ‘Big Data’, we are encountering data with multivariate (ND)
relationships that extend much beyond three intrinsic dimensions.
Thus, we require suitable data design tools that can match this scope.

The interface we describe is based on two visualization
techniques, namely parallel coordinates [11] and scatterplots –
dynamic scatterplots to be precise [16]. Interactions in these
visualizations update the data with immediate visual feedback. This
gives the impression of WYSIWYG (What You See Is What You
Get) and direct manipulation in popular WIMP (Windows, Icons,
Menus, Pointer) user interfaces. Since our system supports ND
generation and editing tasks – activities that are similar to sculpting
in 3D but with a 2D drawing interface – we call our paradigm
WYDISWYG – What You Draw Is What You Get.

The parallel coordinates plot is a well-known visualization
paradigm and flexible for arbitrary numbers of dimensions. In our
SketchPadN-D, while keeping the context of all dimensions in the
same view at all times, users are able to draw a curve for the profile
of a PDF in any dimension axis. To connect data between adjacent
dimensions, users can sketch a bounding shape. Also, users can name
each axis, set its minimum and maximum, and reorder it.

In addition to parallel coordinates, our system also features a data
carving tool for generating and editing arbitrary multivariate data
distributions via a scatterplot interface. This tool can operate either in
a scatterplot matrix or with an interface for arbitrary projections [16].
As it is difficult for users to imagine what the effect of a specific
carving operation done from one vantage point looks like from other
vantage points, especially when the number of dimensions is larger
than three, we provide simultaneous views from other vantage points
of interest that reflect these shape changes.

Users can rely solely on one of the two tools, or alternatively start
with one tool and use the other to further edit the current data. We
demonstrate a number of examples that have followed this strategy.

Our paper is outlined as follows. Section 2 provides related work
on both dataset generation and sketch-based interfaces. Section 3
presents an overview of our system, and Section 4 specifically
describes our two proposed user interfaces. Section 5 presents some
results generated with our system. The last section concludes this
paper, lists some remaining challenges and points to future work.

mailto:mueller%7d@cs.sunysb.edu
mailto:tvcg@computer.org
Dr. Mueller
Text Box
To appear in IEEE Transactions on Visualization and Computer Graphics (2013)

Fig. 1. Overview of our high-dimensional dataset generation
workflow, along with the proposed user interfaces

Visualization

Sketch/

Interaction

Existing

Dataset

Random/

Default

Dataset

New

Dataset

Parallel

Coordinates

TouchpadN-D

2 RELATED WORK

One of our two user interfaces is based on parallel coordinates [11].
Parallel coordinates represents a point in Cartesian system
coordinates as a polyline on parallel axes. The vertex position of a
polyline on an axis denotes its value in the corresponding dimension.
The other user interface is based on scatterplots and allows users to
generate and carve data directly on the projection plane of the
scatterplot. In addition to these two primary visualization techniques,
other related works are grouped into two main subsections below.

2.1 High-dimensional Dataset Generation and Editing

Conventionally, a synthetic high-dimensional dataset is manually
generated by running a small script specifying certain statistical
features. Users who are not familiar with any general-purpose
programming languages such as scientists in other fields may use a
computing environment or language such as Matlab or R. To the best
of our knowledge, there is no commonly used language specifically
designed for complex high-dimensional dataset generation.

As synthetic data is useful in many fields, there are a number of
automatic methods for specific applications. One of these is software
testing based on constraints [7] using genetic algorithms [15][17].
Another is Google Refine [25] which is a tool to edit messy data, but
it relies on data in text form and is not visual. The user also does not
have a global view and the tool is not WYDIWYG. Baudel [23]
provides a visual framework to edit large datasets. However, unlike
our tool, theirs only allows users to edit existing data, and it is not
possible to produce a new dataset from scratch. Albuquerque et al.
[1] recently presented a system for high-dimensional dataset
generation. While this tool is visual and interactive, it has two major
limitations in the sense of high-dimensional space. Firstly, it allows
users to define only 1D and 2D PDFs or at most PDPs which are on
2D sub-planes in 3D space. While this is certainly useful, it cannot
capture the full gamut of realistic high-dimensional datasets which
often have multivariate structures in subspaces of intrinsic
dimensionality greater than three which cannot be reduced by affine
transformations. These structures are also often not axis-aligned. We
handle this problem by allowing users to navigate more freely in
high-dimensional space and define distributions on any axis-aligned
or non-axis aligned views of interest.

Secondly, the framework by Albuquerque et al. asks users to
define all 1D PDFs and some 2D PDFs and PDPs, but it is often the
case that one dimension is defined more than once. To avoid
conflicts, they simply discard all distributions on a dimension if it
has been previously defined. This, however, will inevitably result in
the final generated dataset not satisfying all constraints. Our
approach tackles this problem from another angle - we let users carve
on existing data, not trying to generate it out of nothing. With this
approach, defining one dimension multiple times is possible since
users perform all manipulation directly in data space with the actual
object in sight. As such, our system suggests a different workflow
and tighter coupling between visualization and user interface.

Another recent work that could be useful for high-D data
generation and editing is the iLAMP framework by Amorim et al.
[2]. It allows users to insert new points into a 2D projection of the
data which are then inversely mapped into high-D space. However,
since the projections are obtained via a non-linear low-dimensional
space embedding algorithm which only guarantees a locally linear
mapping, the inserted points may not go exactly to their intended
locations in high-D space. This is exemplified by a noticeable
distortion of a drawn and inversely mapped shape when it is mapped
back from high-D to 2D space. Therefore this interface is not
WYDIWYG, but it was not conceived to be used for sketching
anyhow – rather it is being used to insert seed points for optimization
algorithms.

Finally, a framework [3] has been recently proposed that uses a
parallel coordinate interface for data generation. Its publication
coincided with that of our preliminary work [19] but unlike ours,
their interface does not operate within a sketching paradigm.

2.2 Sketch-based Interfaces

Sketch-based interfaces have been explored in many applications,
especially those with large numbers of novice users. Sketch-based
interfaces interpret gestures from common 2D input devices such as
mouse, touch screen, and stylus or pen as application-specific
outputs. For example, there are gestures for entering music notations
[8], composing music [12], solving mathematical problems [13][22],
and generating 3D molecular structures [20]. Sketch-based modeling
is a specific application in computer graphics that converts 2D
shapes and gestures into 3D models [21][10].

There is some recent research on sketch-based visualization as a
casual communication tool [4][5][6]. But the end product of these
applications is a mock-up of a real visualization, not a dataset. For
data manipulation, basic interactions are provided to select or brush
data points but these are usually limited to trivial visualizations in a
2D canvas such as a scatterplot. To the best of our knowledge there
is no previous work on a sketch-based interface for high-dimensional
dataset generation.

3 OVERVIEW

Our proposed workflow for data generation is shown in Figure 1. It
differs from a normal visualization in that interactions change the
data, which in turn are updated and displayed for further editing. It
also differs from a normal data generation procedure where all data
manipulation occurs before visualization. Our workflow and its
concept of tying visualization with a user interface for dataset
generation and editing is collectively called SketchPadN-D. In our
system, users can start with an existing dataset, a random dataset or
from scratch, and then modify this initial data object using our two
tools. The resulting dataset can then be fed into the system again for
further editing and processing.

Users are free to use either of our two editing tools in succession.
The data format is shared among our editing tools and so each
iteration in the data generation process does not have to be visualized
and edited by the same technique. Even though our tools can be used
independently, we chose two visualization paradigms that
complement each other. Other paradigms with specifically designed
interactions can be easily added into the workflow.

4 USER INTERFACES

Our proposed user interfaces are tightly coupled to visualizations in
order to provide a better linkage between data visualization and data
generation. This should give an impression of natural ease of use due
to the psychological proximity of the generated dataset and its visual
representation. Many research efforts suggest ways to visualize data
but not how to create and edit them. This one-way workflow from
data to visualization has been abundantly explored in the literature
but not the other way around.

Fig. 2. The interface for high-dimensional dataset generation
using the parallel coordinates interface.

 (a) (b) (c)
Fig. 3. (a) A uniformly distributed 1D dataset, (b) a PDF sketch

curve on its axis, (c) generated data according to the resampled

and snapped PDF while data in adjacent dimensions remain

uniformly distributed.
.
interfaces

4.1 Sketching on Parallel Coordinates

The main user interface for this part is an extension of standard
parallel coordinates. As shown in Figure 2, on the top left, there are
three sliders to adjust the number of dimensions, the number of
generated samples per cluster, and the correlation per cluster. Next to
them, there is a group of radio buttons for two modes for sketching.

There is also an array of color patches where users can select the
pen color that represents each cluster. In this prototype, there is a
limit to at most 10 clusters per dataset but this constraint is easily
expandable to an arbitrary number of clusters as the screen real estate
allows. When a color is selected, its corresponding number of
samples per cluster is reflected in the slider.

In the top right corner, there are two buttons for importing and
exporting data in space-delimited format. A random dataset, which is
uniformly distributed in each dimension, is loaded by default. Users
can import any existing dataset in this format. Also, users can export
the dataset to visualize or edit it further in any other application. One
possible workflow is to export the dataset from a quick sketch and
edit it in the scatterplot interface (see Section 4.2).

From top to bottom, each axis of the parallel coordinates has two
number boxes and one textbox for displaying and setting the
maximum, minimum, and name of the dimension, respectively. To
reverse the range of a dimension, users can switch its maximum and
minimum values. Also, users can reorder dimensions by dragging a
handle below each axis and dropping it between any pair of adjacent
axes to move the selected dimension.

The parallel coordinates are displayed prominently in the middle
of the screen where users primarily interact. A uniformly distributed
cluster of 500 samples and 7 dimensions in the range of -10.0 to 10.0
is prepopulated. When users draw via some predefined gestures, the
data is updated interactively in direct manipulation. The two modes
of sketches selected by the radio buttons mentioned above are
explained in detail in the following subsections.

4.1.1 Probability Density Function (PDF) Sketch

In this mode, users can freely draw an arbitrary curve along any axis
to specify how data should distribute in the corresponding
dimension. This curve is then interpreted as a PDF of the data in that
dimension, with associated skewness, kurtosis, and other properties.

Figure 3 illustrates this process. Figure 3a shows the initial
random point distribution ready to be shaped. Next, in Figure 3b, the
user sketches a rough curve which is resampled along its length to
simplify later computation and smooth appearance. This curve is

matched to the dimension whose parallel coordinate axis is the
closest to the leftmost point. Because each dimension can have at
most one distribution and hence one PDF, the new sketch overwrites,
if any, the existing one. Now, to interpret the resampled sketch as a
PDF, the line is shifted to set its leftmost point as zero and its end
points are extended to the baseline. A function of the normalized
distance between the leftmost baseline and each point in the
extended curve satisfies the definitions of a continuous PDF i.e. it is
equal or greater than zero, its limits at positive and negative infinity
are zero (due to baseline-extended endpoints), and its overall integral
is one (due to normalization).

Then the continuous PDF is sampled to create a discrete
cumulative distribution function (CDF) for data generation purposes.
Following inverse transform sampling, a data value in a PDF-
specified dimension is generated by finding the index of a uniformly
distributed random variable in [0, 1) from the discrete CPF. The tent
filter is applied later to linearly interpolate discrete indices [1]. As
these PDF sketches are independent to each other, only the data at
their own dimensions are updated (see Figure 3c). Clusters are
indiscriminately affected by this distribution.

4.1.2 Data Connection Quadrilateral

Drawing two univariate PDF curves on adjacent parallel coordinate
axes is insufficient to concretely define the bivariate distribution of
these two variables. Given N points there are in fact N! such
distributions. It is effectively only the user who is to decide which of
these many distribution shapes to choose and we provide a set of
easy-to-use design tools for this purpose. The design elements we
provide adhere to the common patterns often observed in parallel
coordinates: a bowtie for negative correlations and a trapezoid for
positive correlations.

In our interface users can draw a quadrilateral between two
adjacent axes to specify a data connection between the two
corresponding dimensions at particular ranges. Each click adds a
vertex to the quadrilateral and four clicks form a shape that can be
simple or complex (self-intersecting).

As shown in Figure 4, the vertices of a quadrilateral are extended
along their most horizontal sides to snap to the closest axes. A
simple quadrilateral becomes a trapezoid and a complex quadrilateral
becomes a bowtie with one pair of vertically parallel sides. The
quadrilateral is rendered in translucent cluster color so the generated
data are shown through.

The vertical sides on both axes specify affected ranges of the two
corresponding dimensions. A trapezoid and a bowtie represent a
direct and an inverse relationship, respectively. Values in the left
range of a trapezoid tend to match directly with the ones in the right
range from top to bottom and values in the left range of a bowtie do
so inversely.

A multivariate dataset is typically developed from the leftmost to
the rightmost dimension. Derived from the generated value for each

 (a) (b) (c)
Fig. 4. (a) Sketched input quadrilaterals (solid blue) between a

pair of adjacent dimensions and after snapping their vertices to

the axes (faint blue), (b) the generated data, and (c) their

superimposition.
.
interfaces

Fig. 5. From left to right: generated data of the same trapezoid
and bowtie with different correlations (greater towards the right).

 (a) (b) (c)
Fig. 6. (a) An example of an inconsistent PDF sketch and data

connection quadrilateral, (b) the meaningful snapped version,
and (c) their superimposition.

data sample at a dimension and the input quadrilateral, a temporary
distribution for the next (neighboring) dimension is created and used
to generate values for that dimension in this sample. Based on
rejection sampling, accepted are only values within the range of their
temporary distributions. This step repeats through all dimensions for
one sample.

 As discussed earlier, in parallel coordinates, negative
correlations are signified by bowtie shapes while positive
correlations give rise to trapezoids. Apart from sign, another
important parameter is correlation strength. In parallel coordinates,
the strength of a correlation is visualized as the range in which line
crossings occur within a quadrilateral or bowtie. A perfectly positive
correlation would have the same ordering of lines on both adjacent
axes while a lesser amount of correlation will have lines that cross
within a small neighborhood. We allow users to modify the
correlation strength within a cluster by adjusting a slider. Setting this
slider changes the size of a small sliding window within the shape
that determines the range of possible values in the next dimension --
the lower the correlation, the larger this window. The window size is
configured as a percentage of the range of the quadrilateral on the
corresponding axis. An example is shown in Figure 5, where the
greater the correlation, the narrower the sliding window and the less
the number of line crossings is for the generated data of a trapezoid.
The same slider is also used for negative correlation signified by the
bowtie.

A quadrilateral affects only samples of the same color so all
independent clusters can be generated despite their overlapped
domains. For convenience, drawing a quadrilateral in a color that has
zero number of samples sets it to a default number, 500 samples per
cluster.

4.1.3 PDF Sketch and Data Connection Quadrilateral

Sketching PDFs and drawing quadrilaterals independently can lead
to data inconsistencies that have no meaningful clusters as is shown
in Figure 6a. Our interface prevents this by adding positional
constraints to locations where neighboring dimensions already have
existing sketches or shapes. More specifically, a PDF sketch on one
dimension axis restricts any new quadrilaterals next to it and a
quadrilateral on one dimension pair restricts PDF sketches on the
two dimensions and any quadrilaterals next to both dimensions of the
pair.

In Figure 6, the local leftmost points in a PDF sketch create ticks
onto the axis for a quadrilateral to snap to when its extended vertices
are in proximity. Likewise, a quadrilateral creates four ticks from its
extended vertices for other quadrilaterals to snap to. Finally, a PDF
sketch drawn on an axis that has quadrilaterals will be clipped to the
ranges of those quadrilaterals.

4.2 Sketching on Scatterplots

A second paradigm in high-dimensional data visualization is the
scatterplot – a projection of all data points onto a two-dimensional

plane that is either aligned with two of the data axes or in general
position. Our interface is shown in Figure 7. It consists of the
following components:
 Scatterplot display: This window shows the projected N-D data

and serves as the main editing canvas. The data are projected as

points into the 2D basis formed by the projection plane axis (PPA)

vectors. These two orthogonal N-D vectors define the x- and y-axes

of the resulting scatterplot display. The projected data axes can be

optionally visualized directly in the scatterplot display or in isolation

in the data axes vector display. The vector component bar chart

display conveys more information about the dataset. The top two

charts show the x and y components of the current PPA vectors while

the bottom chart shows the PCA spectrum of the data.

N-D touchpad polygon: This is the interface by which the
orientation of the PPA vector basis can be interactively configured,
which in turn determines the projective view onto the data. Each
polygon vertex represents a data dimension vector. The PPA vectors
are determined by the positions of the red and blue points in the
polygon’s interior using generalized barycentric interpolation [14].
The touchpad polygon control panel lets the user switch between
moving the red point (PPA x-axis) or the blue point (PPA y-axis).

Scatterplot display controls: This panel allows users to change
the scatterplot’s point size, zoom in or out, view the points in a 2D or
3D display, and see the moving trajectory as motion blur for better
shape perception in motion parallax.

Sketching controls enable users to input the number of
dimensions, the number of points, choose to start from scratch or
with an existing dataset, and modify the points in axis-aligned or
non-axis aligned fashion. Brushing controls let the user switch
between brushing and erasing mode, choose brush size, brush density
and brush color.

Scatterplot matrix (SPLOM) window: This is a separate
window that is used when editing the distributions in axis-aligned
mode (see Section 4.2.1).

Scatterplot views window: This is another separate window that
is used when editing the distributions in non-axis aligned mode (see
Section 4.2.2)

Fig.7. Scatterplot sketching interface

Scatterplot Matrix Window

Scatterplot View Window

Scatterplot Display

Data axes vector display

Vector component bar chart display

Touchpad Polygon control panel

Scatterplot display controls

Brushing Controls

Sketching Controls

N-D touchpad Polygon

Fig. 8. Scatterplot based data generation algorithm

Point Generation

 Distribution painting in 2D

 Sketch shape, center line, and distribution profile

 System computes probability map

 Distribution backprojection

 System generates N-D points according to probability map

 (fully randomized in dimensions perpendicular to view plane)

Repeat as desired (allow multi-view painting)

Point Sculpting

 Distribution carving

 Manually erase unwanted points from other projection planes

 (this can delete points in other views in undesired locations)

 Update probability maps on these projection planes

 Distribution repair

 Manually replenish points erased in undesired locations

 (use probability maps constructed earlier to guide the process)

Repeat as desired

Distribution designer: Users design an initial distribution using
this window (see Figure 9 and explanatory text in Section 4.2.1, Step
1).

Readers interested in the scatterplot display and how it is

interactively controlled using the N-D touchpad polygon are referred

to [16].
The design process begins with the user drawing an initial 2D

distribution shape using the distribution designer. This 2D
distribution is conceptually due to a collection of N-D points
projecting into this shape. Initially these points would be randomly
distributed in the other N-2 dimensions. Now we can pick another
scatterplot projection and carve the 2D projected point cloud into one
that we like to see from this orientation, under the constraint of the
first drawing. We can repeat this for other projections and so on.
This carving is essentially a subtraction of points from the current N-
D distribution. However, a fundamental problem related to the nature
of high-dimensional space is that the carving may subtract points in
undesired locations in other projections. Therefore we need to
replenish the N-D distribution every once in a while to satisfy all
prior constraints, i.e. the shapes drawn and carved so far. Our
proposed algorithm is presented in Figure 8. We will demonstrate
this algorithm first for the axis-aligned case and then for the non-axis
aligned case. When interacting, users can switch among these modes
at will.

4.2.1 Interactions with Axis-aligned Scatterplots

Axis-aligned interactions make use of the SPLOM window for high-

D space visualization. While this does allow for the generation (and

editing) of distributions of any dimensionality, it requires them to be

axis-aligned -- the non-axis aligned interface discussed in Section

4.2.2 removes this constraint. As outlined in Figure 8, the point

generation stage consists of two operations: distribution painting and

backprojection. The sculpting supports two operations as well:

distribution carving and repair. Editing operations use the same

framework – just now a distribution already exists and does not have

to be initialized. Editing an existing dataset is a good idea even when

data generation is the goal – one does not have to start from scratch.

We now describe each of these four operations in turn, using Figure

10 as a running example.

Step 1: Distribution Painting. This activity occurs in the
distribution designer window (see Figure 9). The user first selects the
desired axis-aligned view by placing the two PPA vector points in
the N-D touchpad polygon onto the respective vertices. He then uses
the sketching brush to draw the boundary of the distribution (Figure
9a) and then the centerline (Figure 9b). The center line is where the
densest points should appear while the boundary constrains the range
of the points. Next he uses the distribution profile designer to define
the profile of the distribution (Figure 9c). This fills the drawn shape
with a point distribution which looks fairly regular. The user now has
the option to paint additional points to make this distribution look
more natural, i.e., less regular using a paint brush. The density of
these drawn points can be controlled using a slider (Figure 9d).
Alternatively, points can also be removed using a fuzzy eraser,
which strength is also configured by the density slider. The resulting
2D distribution is then converted into a probability map that governs
how N-D points will project onto this projection plane. To ensure a

Fig. 9. Scatterplot sketching process. (a) Draw the boundary of
the distribution. (b) Draw the center of the distribution. (c) Draw
the profile of the distribution and the backprojected points. (d) Use
the density bar to control the brush density and add more points.

Distribution designer

Profile editor

Density slider

(a)

(b)

(c)

(d)

sufficiently smooth probability map, we could optionally filter this
density map with a 2D Gaussian function before backprojection.
Figure 10a shows our running example in the SPLOM window – we
sketched the shapes and centerlines of four clusters.

Step 2: Distribution Backprojection. Once the probability map
has been constructed, the system uses it to generate P N-D points
where P can be specified by the user. For the axis-aligned case, since
all other projection planes at this initial configuration have a
projection probability map with uniform distribution we can
randomize the coordinates of all other N-2 dimensions. The result of
this step is a set of P N-D data points with all coordinates defined.
Figure 10b shows the result of this step for a 4-D scatterplot matrix
[9], composed of dimensions x1, x2, x3, and x4. Since the painting
occurred in the x1-x2 plane (which is now fully defined), the x3-x4
projection has still a random point distribution. All other projections
are partially defined since they either include dimension x1 or x2.

Different distributions drawn in step 1 can be treated as different
clusters and colored differently, as shown in the scatterplot matrix
window of Figure 10b. The coloring clearly distinguishes between
each drawn distribution and lets the user quickly see the points
belonging to each (sub-) cluster. For distributions that may be too
complicated to define at once or span more than one view, it helps to
decompose them into simpler distributions and use the color coding
as a guide to work on them one by one. For example, the final cluster
shown in Figure 10i (using four views in the scatterplot display)
spans the entire 4D space but is composed of four different-colored
sub-clusters each spanning just one dimension.

To create even more complex clusters the user may repeat the
first two steps as often as desired by placing the PPA vector points
on other vertices in the N-D touchpad polygon to select another view
and paint on it. In this operation, all previously generated points are
shown as inactive background labeled in gray color (Figure 12b).
This multi-view painting mechanism allows users to define highly
multivariate clusters. We found that these two levels of
decompositions can help greatly in comprehending the N-D
sculpting task.

This point generation procedure just described provides us with a
set of initial points to further work on – especially in those views that
have at least one dimension not part of the painting process. Users
can now sculpt on those dimensions to finish the data generation
task.

Step 3: Distribution Carving. Figure 10c visualizes the carving
effects on all projections simultaneously in the scatterplot matrix
window. In this figure the carving occurred for cluster 1 (black) in
the x1-x3 plane – all other three clusters are inactive now and are
shown in gray. The user carves the points in the desired locations

directly in the scatterplot display. The carving tool can also work as a
fuzzy eraser such that every swipe only removes a random subset of
the covered N-D points. Similar to the brush used in the data
generation step, users can choose from three different eraser sizes. A
large eraser allows quick point removal while a small eraser refines
details. At every eraser location the algorithm picks a random set of
points that project into a small box around it – the size of this box
can be user specified – and these points will be removed from the
location’s current list of N-D points. Following, the updated
distribution is stored in this projection’s probability map. However,
note that removing points from this projection’s list will also remove
these points from any other projections in the scatterplot matrix and
update (scale down) their respective probability maps. This can lead
to undesired effects and so the final (repair) step is required.

Step 4: Distribution Replenishing/Repair. As just mentioned,
erasing/carving points in one view may delete points in other views
in undesired places, and so we will have to bring these points back.
Further, the repeated erasing of points will deplete the N-D
distribution in general. Figure 10c shows an example of this effect –
the distribution of cluster 1 in the x1-x2 plane is much weaker than in
Figure 10b. We can repair/replenish the N-D distribution in two
ways: (1) automatically by comparing the original projection
probability maps with the current projections, and (2) user-driven by
allowing the user to paint the missing points back on. The latter
facility can also be used for general editing. In either mode, we need
to make sure that we add points only in desired places. Given the
current projection location subject to repair, we randomize the
coordinates of the dimensions whose distributions have not been
defined yet. For the other dimensions (excluding the two forming
the current projection) – those for which the distributions have
already been defined -- we compute their joint probability map and
from it generate their coordinates. Figure 10d shows an example
where we observe that the distribution of cluster 1 has gained back
the strength it had in Figure 10b.

Step 5 and on: Repeat. The user can pick any projection and
update its probability map by carving or replenishing. This will
activate the procedures described in detail in the previous steps.
Figure 10 e-h show a few more such operations for our
demonstration dataset. The result is visualized in Figure 10i using
four non-axis aligned scatterplot projections. The generated data
resembles a 4D snake-like structure which could not be constructed
with existing tools that operate in 2.5D space.

4.2.2 Interactions with Non-axis Aligned Scatterplots

Non-axis aligned scatterplots provide additional freedom in cluster

design but they require a more sophisticated navigation interface. A

non-axis aligned view is selected by placing the PPA vector points

inside the N-D touchpad polygon (see Figure 11a). We now describe

the five data operations in turn.

Step 1: Distribution Painting: This is similar to the axis-aligned

case, just now the selected view is non-axis aligned.

Step 2: Distribution Backprojection: This process is

significantly more complicated than in the axis-aligned case. We first

build a new coordinate system spanning the same data space using

the Gram-Schmidt orthonormalization process. It takes N linearly

independent vectors and produces N orthonormal vectors spanning

the same N-D space. Let < , > denote the inner product of two

vectors and , ||y|| denotes the length of vector y. Let the

projection of vector onto vector be ()

.

Gram-Schmidt starts with N linearly independent N-D vectors

{ } and performs the following calculations:

 , ‖ ‖

 (), ‖ ‖

 () () , ‖ ‖

Fig. 10. An illustrative example of the scatterplot based data generation algorithm using axis-aligned views in the SPLOM window (panel
(i) shows four views in the scatterplot window)

(a) Paint on x1-x2 (c) Cluster1, carve on x1-x3, less
points exist now

(d) Cluster 1, repair on x1-x2,
points gain density back in un-
carved places

(b) Initial points

(e) Cluster 1, sculpting finished,
only spans the first dimension

(f) Cluster 2, sculpting finished,
only spans the second dimension

(g) Cluster 3, sculpting finished,
only spans the third dimension

(h) Cluster 4, sculpting finished,
only spans the fourth dimension (i) result points, 4D snake shape

Points gain

density back

Points

removed

 ∑ ()

 ‖ ‖

The resulting vector set { } is the orthonormal set. In

our case, we randomly generate (N-2) N-D vectors – we keep the two

user selected vectors in order to preserve the shape the user painted.

We also make sure that those vectors are linearly independent.

Following we apply the Gram-Schmidt process on the N vectors. We

treat the new orthonormal vectors as general unit base vectors and

generate data using the same procedure as used in the axis-aligned

case. Since the projection (painting) plane is not axis aligned, the

generated point coordinates are described in the rotated space. We

can calculate their true data axis-aligned coordinates by multiplying

them by the rotation matrix formed by the orthogonal basis vectors

described above.

Step 3: Distribution Carving: As with the SPLOM in the axis-

aligned case, we require a set of simultaneous views to enable users

gain a more comprehensive understanding of the effect of the current

carving. In the non-axis aligned case discussed here these views can

 (a) (b) (c) (d)
Fig.11. Non-axis aligned carving. (a) Top: the composition of the touchpad polygon. Bottom: the weighting of each dimension for the x and y
PPAs. (b)(c) Carve and erase on one non-axis-aligned plane. (d) Select another plane to carve another shape. Note that the carved shapes
can only be seen on those two selected views.

be arbitrarily chosen by the user and typically hold views on certain

structures the user would like to maintain. Then, any carving

interaction in one view is immediately updated in all other views.

Undesired effects can be undone by pressing an undo button and

similar to an actual drawing process done on paper, we also provide

a tool for erasing any unsatisfying mistakes.

Step 4: Distribution Replenishing/Repair: This is more

problematic than for the axis-aligned case in which projections were

mutually orthogonal. In the non-axis aligned case, unless two

projections are proven to be orthogonal to each other, any view

selected will partially overlap with another. Hence, when carving out

points in one view, this effect cannot be repaired in another view

using the above method. Our current solution is to allow the user to

repair by bringing all points back, even if they have been carved out

in the first view.

 Step 5 and on: Repeat. This is similar to the axis-aligned case.

4.2.3 Application Example for Non-axis Aligned
Scatterplots

Figure 11 demonstrates an example using an initial 5D Gaussian

distribution. Our result dataset displays two characters ‘N’ and ‘D’

on the projection plane of which the x-axis is close to the first and

second dimensions while the y-axis is close to the fourth and fifth

dimensions. Figure 11a shows the configuration of our polygonal

touchpad. We move the red point close to the first and second

dimensions and the blue point close to the fourth and fifth

dimensions. The two bar charts below show the different dimension

interpolation weights for the x and y-axis. We can clearly see that the

first and second dimensions dominate the composition of the x-axis

while the fourth and fifth dimensions have the largest value for y-

axis. Figure 11b shows the two multivariate scatterplots of the data

on the previously selected projection plane, before and after carving.

The top scatterplot shows a point cloud while the bottom displays the

two characters after carving. This pattern can be observed only on

this plane and it may not show any meaningful patterns on any other

plane. Figure 11c is a case in which the eraser comes in handy. The

top scatterplot shows that a part in the ‘N’ is accidentally brushed

away. Note the hollow portion on the left part of ‘N’. Like in any

painting tool, we can change to ‘erasing’ mode and use the eraser to

bring those points back as shown in the bottom scatterplot. With the

help of the brush and eraser users can create any pattern on any

projection plane.

Next, the user may want to carve the existing set of characters
such that they are also visible from another projection orientation.
Carving on another projection plane may compromise the previous
patterns so the user needs to be more careful. As is shown in Figure
11d, the user navigates to the second plane using the touchpad, adds
this projection to the row of multiple views and starts carving. He

can easily monitor the changes on the previous projection (the fifth)
and make sure the ongoing carving does not adversely affect the
overall shape of the data there.

We note that changing the carving plane can extend the intrinsic

dimensionality of the resulting dataset to the number of dimension of

the touchpad polygon. Our present example has a 5D polygon but

there are no limits on how many vertices such a polygon can have.

We note, however, that the ordering of the vertices is important with

respect to the subspace of the data that can be reached [16]. We may

initialize or reconfigure this vertex ordering using the parallel

coordinate interface, but our navigation polygon also allows users to

interchange, add, or remove vertices directly. Likewise, when a

SPLOM is used and the dimensionality of the data grows high, the

user may choose the dimensions composing the SPLOM using a

selection interface.

4.2.4 Active and Inactive Points

The navigation polygon and the multiple views help users to easily

carve data globally but not locally. Because of the high-dimensional

space, a subset of data is cluttered with other data once the plane

changes. Our interface also supports the concept of active and

inactive points to provide the user complete control over selecting an

active subset of data points for editing. Users can assign different

point sets to clusters and control their status (active/non-active) via a

check-box interface. In this case only the active points can be

manipulated via the brushing/eraser tools. For example, all points

marked in light gray in Figure 10 are currently inactive and will be

insensitive to any brush manipulation.

4.2.5 Dataset Generation for Clustering Algorithm Testing

As mentioned, one of the most common problems when testing

algorithms is the lack of a dataset that challenges a specific aspect of

the algorithm. Let us take standard k-means which works well on

linearly separable clusters, but how will it work on linearly non-

separable clusters? To get insight we need a higher-D dataset that has

these conditions. Now the challenge is where to get a high-D dataset

with multiple clusters that are not linearly separable, even in 4D. We

can quickly use our interface to generate such a 4D dataset

We aim to create a dataset with two such clusters spanning the

entire 4D space – one of these has an ‘L’ shaped structure on the x1-

x2 plane while the other has the same structure on the x2-x3 plane.

This guarantees the linear non-separability we strive for. Similar to

Figure 10, we decompose the two 4D clusters into four sub-clusters

for ease of manipulation. The generation process of the first cluster is

exactly the same as in Figure 10. For the second cluster, we initially

paint on the x2-x3 plane, and also go through the sculpting procedure

to make sure each sub-cluster only span one dimension. Figure 12a,

b show the initially painted distributions, while Figure 12c, d show

 (a) (b)
Fig. 13. Editing an existing data set. (a) Red points are outliers
(b) Outliers removed

 (a) (b) (c) (d) (e)
Fig.12. Testing dataset generation. (a) Paint on x1-x2 (b) Paint on x3-x4 (c) (d) Generated data, clustered using standard k-means. Red and
black are two clusters. (e) Generated data on parallel coordinates,

 (a) (b)
Fig. 14. Two results by two different users from the user study

the two clusters as scatterplots. Figure 12b shows those points

generated from the first distribution painting as background gray

points.

We then performed standard k-means clustering on the generated

dataset, and we obtained two clusters colored red and black (Figure

12c, d). From the parallel coordinate’s view of this dataset (Figure

12e) we observe that the standard k-means clustering mainly

operated on the 4th dimension and that the resulting two clusters are

not accurate. We now know that a more sophisticated clustering

algorithm, such as a kernel method, must be used.

4.2.6 Existing Data Editing

Our proposed system also allows users to modify an existing data set

for better algorithm testing and data analysis purposes.

One of the most encountered problems in data analysis is the

existence of outliers. Outliers may impair the ability to discover

underling patterns or finding meaningful trends. One may use outlier

detection algorithms to remove them, but different algorithms are

based on different definitions (density based or distance based) of

outliers and may not fit into a particular need. Hence, to be able to

visually detect outliers and subsequently remove these outliers would

be more suitable in the general case.

Let us take the housing data set [24] as an instance. A user might

want to determine the relationship between the ‘average number of

rooms per dwelling’ and the ‘% lower status of the population’. After

plotting the data against these two attributes (Figure 13a), we see that

most of the points are concentrated on the main cluster but outliers

(Figure 13a, red points) exist. This makes further analysis hard, and

simply including all the points in the analysis would introduce errors.

Some methods might be able to adjust to the shape of the data, but

they often bring the risk of over fitting. Pre-processing the data to

remove unwanted points would be very useful. The user could

employ general outlier detection algorithms but since this is a high-D

data set, the importance of these two attributes might be reduced. In

addition, these algorithms often require a pre-setting of some

parameters or thresholds which can lead to erroneous results. Our

system would come in handy here. The user could navigate to the

desired view and visually detect outliers according to their own

understanding and need, brushing away unwanted points (Figure

13b). Using the remaining points for further analysis would then

yield more robust results.

5 IMPLEMENTATION AND USER STUDY

We implemented the parallel coordinates interface in Processing
[18], an environment and programming language based on Java.
Dataset generation with up to 10 clusters and 1000 samples per
cluster runs at interactive speed on a 2.4 GHz Intel Core i5 computer
with 4 GB of RAM. The user interface for the TouchpadN-D has been
implemented in C# and runs on a 2.8 GHz Intel Core i7 computer
with 12GB of RAM.

We have also conducted an informal user study to test our
interfaces. Eight first-time users were given a brief demonstration of
all features of the first user interface, a five-minute tutorial under our
guidance, and a task to generate a 6D dataset of 1000 samples. None
of the users had prior knowledge about parallel coordinates. One user
had generated multivariate datasets before and commented that our
user interface could be useful. The feedbacks were generally
positive. Some users had difficulty understanding the effect of PDF
sketches so they used data connection quadrilaterals instead. The
results are not exactly the same but visually similar as shown in
Figure 14. Since users could not undo the drawn PDF profiles and
data connection quadrilaterals, they reset the sketchpad a few times.
On average, users reset 1.5 times and finished the task in 2 minute
and 32 seconds of the last attempt.

6 CONCLUSIONS AND FUTURE WORK

We believe that our SketchPadN-D can be applied to other
visualizations in general. The two designs we proposed both have
their strengths and weaknesses. Parallel coordinates show a better
overview of the data and the sketching tool is quite easy to interact
with. The scatterplot interface, on the other hand, provides a better
sense for a structure’s distribution but the navigation with the
polygon is a bit more abstract. Since our input devices and
visualizations all use 2D paradigms, the sketch-based user interfaces
are easy to use even for novice users who can casually draw a napkin
sketch to specify visual properties of a dataset. Still, we would like to
add curve-drawing or line-drawing widgets to facilitate the
sketching, as well as better support for categorical data.

ACKNOWLEDGEMENTS

This work was partly supported by NSF grant IIS-1117132, by the

Ministry of Korea Knowledge Economy, Chulalongkorn University,

and Fulbright International Science & Technology Awards.

REFERENCES

[1] G. Albuquerque, T. Löwe, and M. Magnor, “Synthetic generation of

high-dimensional datasets,” IEEE Trans on Visualization and Computer

Graphics, 17(12):2317-24,2011.

[2] E. Amorim, E. Brazil, J. Daniels, P. Joia, L. Nonato, M. Sousa,

“iLAMP: Exploring high-dimensional spacing through backward

multidimensional projection,” IEEE VAST, pp. 53-62, 2012.

[3] S. Bremm, T. von Landesberger, M. Heß, D. Fellner, “PCDC - On the

Highway to Data - A Tool for the Fast Generation of Large Synthetic

Data Sets,” EuroVis Workshop on Visual Analytics, pp. 7-11, 2012.

[4] J. Browne, B. Lee, S. Carpendale, and N. Riche, “Data Analysis on

Interactive Whiteboards through Sketch-based Interaction,” ACM Proc

on Interactive Tabletops and Surfaces, pp. 13-16, 2011.

[5] W. Chao, “NapkinVis: Rapid Pen-Centric Authoring of Improvisational

Visualizations,” IEEE Infovis, poster session, 2010.

[6] W. Chao, “Poster : Rapid Pen-Centric Authoring of Improvisational

Visualizations with NapkinVis,” Computing Systems, 16(6), 2010.

[7] R. DeMillo and A. Offutt, “Constraint-Based Automatic Test Data

Generation,” IEEE Trans on Software Engineering, 17(9):900-910,

1997.

[8] A. Forsberg, M. Dieterich, and R. Zeleznik, “The Music Notepad,” Proc

of UIST, ACM SIGGRAPH, pp.203-210, 1998.

[9] J. Hartigan, "Printer graphics for clustering," Journal of Statistical

Computation and Simulation, 4(3):187-213, 1975.

[10] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketching Interface

for 3D Freeform Design,” ACM SIGGRAPH, pp. 409-416, 1999.

[11] A. Inselberg, “The plane with parallel coordinates,” The Visual

Computer, 1(4): 69-91, 1985.

[12] K. Jennings, “Hyperscore : A Graphical Sketchpad for Novice

Composers,” IEEE Computer Graphics and Applications, 24(1):50-54,

2004.

[13] J. LaViola and R. Zeleznik, “MathPad2: A system for the creation and

exploration of mathematical sketches,” ACM Trans on Graphics,

23(3):432-440, 2004.

[14] M. Meyer, H. Lee, A. Barr, M. Desbrun, “Generalized barycentric

coordinateson irregular polygons”, Graphics Tools, 7(1):13-22, 2002.

[15] C. Michael, G. McGraw, M. Schatz, R. Walton, R. Res, and V. Sterling,

“Genetic Algorithms for Dynamic Test Data Generation,” Automated

Software Engineering, pp. 307-308, 1997.

[16] J. Nam, K. Mueller, "TripAdvisorN-D: A Tourism-Inspired High-

Dimensional Space Exploration Framework with Overview and Detail,"

IEEE Trans on Visualization and Computer Graphics, 19(2):291-305,

2013.

[17] R. Pargas, M. Harrold, and R. Peck, “Test-Data Generation Using

Genetic Algorithms,” Software Testing, Verification and Reliability, pp.

41-48, 1999.

[18] C. Reas and B. Fry, “Processing: a learning environment for creating

interactive Web graphics,” Proc of the SIGGRAPH conference on Web

graphics, pp. 1, 2003.

[19] P. Ruchikachorn, B. Wang, K. Mueller, "SketchPad N-D: An Interface

for High-Dimensional Dataset Generation and Editing," IEEE

Visualization, poster session, 2012.

[20] D. Tenneson and S. Becker, “ChemPad: Generating 3D Molecules

From 2D Sketches,” ACM SIGGRAPH, poster, pp. 11, 2005.

[21] R. Zeleznik, K. Herndon, and J. F. Hughes, “SKETCH: An Interface for

Sketching 3D Scenes,” Proc of SIGGRAPH, pp. 163-170, 1996.

[22] R. Zeleznik, T. Miller, and C. Li, “MathPaper: Mathematical sketching

with fluid support for interactive computation,” Smart Graphics, pp. 1-

12, 2008.

[23] T. Baudel, “From information visualization to direct manipulation:

extending a generic visualization framework for the interactive editing

of large datasets,” Proc of the ACM symposium on User interface

software and technology, pp 67-76, 2006.

[24] http://archive.ics.uci.edu/ml/datasets/Housing

[25] https://code.google.com/p/google-refine/

http://archive.ics.uci.edu/ml/datasets/Housing
https://code.google.com/p/google-refine/

