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Abstract— High-dimensional data visualization has been attracting much attention. To fully test related software and algorithms, 

researchers require a diverse pool of data with known and desired features. Test data do not always provide this, or only partially. 

Here we propose the paradigm WYDIWYGS (What You Draw Is What You Get). Its embodiment, SketchPad
ND

, is a tool that allows 

users to generate high-dimensional data in the same interface they also use for visualization. This provides for an immersive and 

direct data generation activity, and furthermore it also enables users to interactively edit and clean existing high-dimensional data 

from possible artifacts. SketchPad
ND

 offers two visualization paradigms, one based on parallel coordinates and the other based on 

a relatively new framework using an N-D polygon to navigate in high-dimensional space. The first interface allows users to draw 

arbitrary profiles of probability density functions along each dimension axis and sketch shapes for data density and connections 

between adjacent dimensions. The second interface embraces the idea of sculpting. Users can carve data at arbitrary orientations 

and refine them wherever necessary. This guarantees that the data generated is truly high-dimensional. We demonstrate our tool’s 

usefulness in real data visualization scenarios. 

Index Terms—Synthetic data generation, data editing, data acquisition and management, multivariate data, high-dimensional data, 

interaction, user interface, parallel coordinates, scatterplot, N-D navigation, multiple views

 

1 INTRODUCTION  

High-dimensional data analysis and visualization is useful in many 
applications and domains, and research on new techniques for this 
purpose has been progressing steadily. Designing new algorithm and 
software requires datasets with specific features for testing. 
However, real datasets are in limited supply and those that are 
available often – at least partially – lack the features needed for 
targeted evaluations. While synthetic datasets can be generated, this 
can be tedious and it often requires high programming skills to 
translate certain visual properties into statistical properties and vice 
versa. At the same time, data acquisition processes are never perfect 
and artifacts often arise that hamper data analysis routines such as 
clustering. Scientists require tools that allow them to edit their 
datasets but without disturbing true and important structures. Ideally 
such tools would operate in the same visual interface they already 
use to explore, analyze and reason with their data.   

Here we present SketchPadN-D, an interface for high-dimensional 
dataset generation and editing that is tightly integrated with high-
dimensional data visualization. Users need not switch back and forth 
between data manipulation and visualization tools as they are 
combined into one interface. This provides better context for later 
iterations of the data generation process and facilitates a more 
streamlined workflow. As users are able to create datasets more 
quickly, they can explore and generate a larger number of these and 
possibly more complex ones. This in turn will favor the development 
of more robust algorithms and software for high-dimensional data 
analysis and visualization. Similarly, as users are able to edit data 
and artifacts more informed and thoroughly they will be able to make 
faster progress in their data analysis efforts.   

Because most visualizations and common input peripherals are 
2D, it is desirable to directly draw napkin sketches of a dataset into a 
selected visualization and so generate the specified data. Sketch-
based interfaces are often used by novice users to create and 
manipulate data in many applications, but have never been explored 

in the domain of high-dimensional data. A recent system by 
Albuquerque et al. [1] allows users to draw 1D and 2D probability 
density functions (PDFs) or 2.5D probability distribution planes 
(PDPs) to define a dataset. But it is beyond argument that in the era 
of ‘Big Data’, we are encountering data with multivariate (ND) 
relationships that extend much beyond three intrinsic dimensions. 
Thus, we require suitable data design tools that can match this scope.  

The interface we describe is based on two visualization 
techniques, namely parallel coordinates [11] and scatterplots – 
dynamic scatterplots to be precise [16]. Interactions in these 
visualizations update the data with immediate visual feedback. This 
gives the impression of WYSIWYG (What You See Is What You 
Get) and direct manipulation in popular WIMP (Windows, Icons, 
Menus, Pointer) user interfaces. Since our system supports ND 
generation and editing tasks – activities that are similar to sculpting 
in 3D but with a 2D drawing interface – we call our paradigm 
WYDISWYG – What You Draw Is What You Get.    

The parallel coordinates plot is a well-known visualization 
paradigm and flexible for arbitrary numbers of dimensions. In our 
SketchPadN-D, while keeping the context of all dimensions in the 
same view at all times, users are able to draw a curve for the profile 
of a PDF in any dimension axis. To connect data between adjacent 
dimensions, users can sketch a bounding shape. Also, users can name 
each axis, set its minimum and maximum, and reorder it. 

In addition to parallel coordinates, our system also features a data 
carving tool for generating and editing arbitrary multivariate data 
distributions via a scatterplot interface. This tool can operate either in 
a scatterplot matrix or with an interface for arbitrary projections [16]. 
As it is difficult for users to imagine what the effect of a specific 
carving operation done from one vantage point looks like from other 
vantage points, especially when the number of dimensions is larger 
than three, we provide simultaneous views from other vantage points 
of interest that reflect these shape changes.  

Users can rely solely on one of the two tools, or alternatively start 
with one tool and use the other to further edit the current data. We 
demonstrate a number of examples that have followed this strategy. 

Our paper is outlined as follows. Section 2 provides related work 
on both dataset generation and sketch-based interfaces. Section 3 
presents an overview of our system, and Section 4 specifically 
describes our two proposed user interfaces. Section 5 presents some 
results generated with our system. The last section concludes this 
paper, lists some remaining challenges and points to future work. 
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Fig. 1. Overview of our high-dimensional dataset generation 
workflow, along with the proposed user interfaces 

 
Visualization 

 

 

 

 

 

 

Sketch/ 

Interaction 

Existing 

Dataset 

Random/ 

Default 

Dataset 

New 

Dataset 

Parallel 

Coordinates 

TouchpadN-D 

2 RELATED WORK  

One of our two user interfaces is based on parallel coordinates [11]. 
Parallel coordinates represents a point in Cartesian system 
coordinates as a polyline on parallel axes. The vertex position of a 
polyline on an axis denotes its value in the corresponding dimension. 
The other user interface is based on scatterplots and allows users to 
generate and carve data directly on the projection plane of the 
scatterplot. In addition to these two primary visualization techniques, 
other related works are grouped into two main subsections below. 

2.1 High-dimensional Dataset Generation and Editing 

Conventionally, a synthetic high-dimensional dataset is manually 
generated by running a small script specifying certain statistical 
features. Users who are not familiar with any general-purpose 
programming languages such as scientists in other fields may use a 
computing environment or language such as Matlab or R. To the best 
of our knowledge, there is no commonly used language specifically 
designed for complex high-dimensional dataset generation.  

As synthetic data is useful in many fields, there are a number of 
automatic methods for specific applications. One of these is software 
testing based on constraints [7] using genetic algorithms [15][17]. 
Another is Google Refine [25] which is a tool to edit messy data, but 
it relies on data in text form and is not visual. The user also does not 
have a global view and the tool is not WYDIWYG. Baudel [23] 
provides a visual framework to edit large datasets. However, unlike 
our tool, theirs only allows users to edit existing data, and it is not 
possible to produce a new dataset from scratch. Albuquerque et al. 
[1] recently presented a system for high-dimensional dataset 
generation. While this tool is visual and interactive, it has two major 
limitations in the sense of high-dimensional space. Firstly, it allows 
users to define only 1D and 2D PDFs or at most PDPs which are on 
2D sub-planes in 3D space. While this is certainly useful, it cannot 
capture the full gamut of realistic high-dimensional datasets which 
often have multivariate structures in subspaces of intrinsic 
dimensionality greater than three which cannot be reduced by affine 
transformations. These structures are also often not axis-aligned. We 
handle this problem by allowing users to navigate more freely in 
high-dimensional space and define distributions on any axis-aligned 
or non-axis aligned views of interest.  

Secondly, the framework by Albuquerque et al. asks users to 
define all 1D PDFs and some 2D PDFs and PDPs, but it is often the 
case that one dimension is defined more than once. To avoid 
conflicts, they simply discard all distributions on a dimension if it 
has been previously defined. This, however, will inevitably result in 
the final generated dataset not satisfying all constraints. Our 
approach tackles this problem from another angle - we let users carve 
on existing data, not trying to generate it out of nothing. With this 
approach, defining one dimension multiple times is possible since 
users perform all manipulation directly in data space with the actual 
object in sight. As such, our system suggests a different workflow 
and tighter coupling between visualization and user interface. 

Another recent work that could be useful for high-D data 
generation and editing is the iLAMP framework by Amorim et al. 
[2]. It allows users to insert new points into a 2D projection of the 
data which are then inversely mapped into high-D space. However, 
since the projections are obtained via a non-linear low-dimensional 
space embedding algorithm which only guarantees a locally linear 
mapping, the inserted points may not go exactly to their intended 
locations in high-D space. This is exemplified by a noticeable 
distortion of a drawn and inversely mapped shape when it is mapped 
back from high-D to 2D space. Therefore this interface is not 
WYDIWYG, but it was not conceived to be used for sketching 
anyhow – rather it is being used to insert seed points for optimization 
algorithms.      

Finally, a framework [3] has been recently proposed that uses a 
parallel coordinate interface for data generation. Its publication 
coincided with that of our preliminary work [19] but unlike ours, 
their interface does not operate within a sketching paradigm.    

2.2 Sketch-based Interfaces 

Sketch-based interfaces have been explored in many applications, 
especially those with large numbers of novice users. Sketch-based 
interfaces interpret gestures from common 2D input devices such as 
mouse, touch screen, and stylus or pen as application-specific 
outputs. For example, there are gestures for entering music notations 
[8], composing music [12], solving mathematical problems [13][22], 
and generating 3D molecular structures [20]. Sketch-based modeling 
is a specific application in computer graphics that converts 2D 
shapes and gestures into 3D models [21][10].  

There is some recent research on sketch-based visualization as a 
casual communication tool [4][5][6]. But the end product of these 
applications is a mock-up of a real visualization, not a dataset. For 
data manipulation, basic interactions are provided to select or brush 
data points but these are usually limited to trivial visualizations in a 
2D canvas such as a scatterplot. To the best of our knowledge there 
is no previous work on a sketch-based interface for high-dimensional 
dataset generation. 

3 OVERVIEW  

Our proposed workflow for data generation is shown in Figure 1. It 
differs from a normal visualization in that interactions change the 
data, which in turn are updated and displayed for further editing. It 
also differs from a normal data generation procedure where all data 
manipulation occurs before visualization. Our workflow and its 
concept of tying visualization with a user interface for dataset 
generation and editing is collectively called SketchPadN-D. In our 
system, users can start with an existing dataset, a random dataset or 
from scratch, and then modify this initial data object using our two 
tools. The resulting dataset can then be fed into the system again for 
further editing and processing. 

Users are free to use either of our two editing tools in succession. 
The data format is shared among our editing tools and so each 
iteration in the data generation process does not have to be visualized 
and edited by the same technique. Even though our tools can be used 
independently, we chose two visualization paradigms that 
complement each other. Other paradigms with specifically designed 
interactions can be easily added into the workflow. 

4 USER INTERFACES  

Our proposed user interfaces are tightly coupled to visualizations in 
order to provide a better linkage between data visualization and data 
generation. This should give an impression of natural ease of use due 
to the psychological proximity of the generated dataset and its visual 
representation. Many research efforts suggest ways to visualize data 
but not how to create and edit them. This one-way workflow from 
data to visualization has been abundantly explored in the literature 
but not the other way around. 



Fig. 2. The interface for high-dimensional dataset generation 
using the parallel coordinates interface. 

               (a)                      (b)                           (c) 
Fig. 3. (a) A uniformly distributed 1D dataset, (b) a PDF sketch 

curve on its axis, (c) generated data according to the resampled 

and snapped PDF while data in adjacent dimensions remain 

uniformly distributed. 
. 
interfaces 

4.1 Sketching on Parallel Coordinates  

The main user interface for this part is an extension of standard 
parallel coordinates. As shown in Figure 2, on the top left, there are 
three sliders to adjust the number of dimensions, the number of 
generated samples per cluster, and the correlation per cluster. Next to 
them, there is a group of radio buttons for two modes for sketching. 

There is also an array of color patches where users can select the 
pen color that represents each cluster. In this prototype, there is a 
limit to at most 10 clusters per dataset but this constraint is easily 
expandable to an arbitrary number of clusters as the screen real estate 
allows. When a color is selected, its corresponding number of 
samples per cluster is reflected in the slider. 

In the top right corner, there are two buttons for importing and 
exporting data in space-delimited format. A random dataset, which is 
uniformly distributed in each dimension, is loaded by default. Users 
can import any existing dataset in this format. Also, users can export 
the dataset to visualize or edit it further in any other application. One 
possible workflow is to export the dataset from a quick sketch and 
edit it in the scatterplot interface (see Section 4.2). 

From top to bottom, each axis of the parallel coordinates has two 
number boxes and one textbox for displaying and setting the 
maximum, minimum, and name of the dimension, respectively. To 
reverse the range of a dimension, users can switch its maximum and 
minimum values. Also, users can reorder dimensions by dragging a 
handle below each axis and dropping it between any pair of adjacent 
axes to move the selected dimension.  

The parallel coordinates are displayed prominently in the middle 
of the screen where users primarily interact. A uniformly distributed 
cluster of 500 samples and 7 dimensions in the range of -10.0 to 10.0 
is prepopulated. When users draw via some predefined gestures, the 
data is updated interactively in direct manipulation. The two modes 
of sketches selected by the radio buttons mentioned above are 
explained in detail in the following subsections. 

4.1.1 Probability Density Function (PDF) Sketch  

In this mode, users can freely draw an arbitrary curve along any axis 
to specify how data should distribute in the corresponding 
dimension. This curve is then interpreted as a PDF of the data in that 
dimension, with associated skewness, kurtosis, and other properties. 

Figure 3 illustrates this process. Figure 3a shows the initial 
random point distribution ready to be shaped. Next, in Figure 3b, the 
user sketches a rough curve which is resampled along its length to 
simplify later computation and smooth appearance. This curve is 

matched to the dimension whose parallel coordinate axis is the 
closest to the leftmost point. Because each dimension can have at 
most one distribution and hence one PDF, the new sketch overwrites, 
if any, the existing one. Now, to interpret the resampled sketch as a 
PDF, the line is shifted to set its leftmost point as zero and its end 
points are extended to the baseline. A function of the normalized 
distance between the leftmost baseline and each point in the 
extended curve satisfies the definitions of a continuous PDF i.e. it is 
equal or greater than zero, its limits at positive and negative infinity 
are zero (due to baseline-extended endpoints), and its overall integral 
is one (due to normalization). 

Then the continuous PDF is sampled to create a discrete 
cumulative distribution function (CDF) for data generation purposes. 
Following inverse transform sampling, a data value in a PDF-
specified dimension is generated by finding the index of a uniformly 
distributed random variable in [0, 1) from the discrete CPF. The tent 
filter is applied later to linearly interpolate discrete indices [1]. As 
these PDF sketches are independent to each other, only the data at 
their own dimensions are updated (see Figure 3c). Clusters are 
indiscriminately affected by this distribution. 

4.1.2 Data Connection Quadrilateral  

Drawing two univariate PDF curves on adjacent parallel coordinate 
axes is insufficient to concretely define the bivariate distribution of 
these two variables. Given N points there are in fact N! such 
distributions. It is effectively only the user who is to decide which of 
these many distribution shapes to choose and we provide a set of 
easy-to-use design tools for this purpose. The design elements we 
provide adhere to the common patterns often observed in parallel 
coordinates: a bowtie for negative correlations and a trapezoid for 
positive correlations.  

In our interface users can draw a quadrilateral between two 
adjacent axes to specify a data connection between the two 
corresponding dimensions at particular ranges. Each click adds a 
vertex to the quadrilateral and four clicks form a shape that can be 
simple or complex (self-intersecting). 

As shown in Figure 4, the vertices of a quadrilateral are extended 
along their most horizontal sides to snap to the closest axes. A 
simple quadrilateral becomes a trapezoid and a complex quadrilateral 
becomes a bowtie with one pair of vertically parallel sides. The 
quadrilateral is rendered in translucent cluster color so the generated 
data are shown through.  

The vertical sides on both axes specify affected ranges of the two 
corresponding dimensions. A trapezoid and a bowtie represent a 
direct and an inverse relationship, respectively. Values in the left 
range of a trapezoid tend to match directly with the ones in the right 
range from top to bottom and values in the left range of a bowtie do 
so inversely. 

A multivariate dataset is typically developed from the leftmost to 
the rightmost dimension. Derived from the generated value for each 



 

            (a)                           (b)                          (c) 
Fig. 4. (a) Sketched input quadrilaterals (solid blue) between a 

pair of adjacent dimensions and after snapping their vertices to 

the axes (faint blue), (b) the generated data, and (c) their 

superimposition. 
. 
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Fig. 5. From left to right: generated data of the same trapezoid 
and bowtie with different correlations (greater towards the right). 

 

           (a)                      (b)                          (c) 
Fig. 6. (a) An example of an inconsistent PDF sketch and data 

connection quadrilateral, (b) the meaningful snapped version, 
and (c) their superimposition. 

data sample at a dimension and the input quadrilateral, a temporary 
distribution for the next (neighboring) dimension is created and used 
to generate values for that dimension in this sample. Based on 
rejection sampling, accepted are only values within the range of their 
temporary distributions. This step repeats through all dimensions for 
one sample. 

 As discussed earlier, in parallel coordinates, negative 
correlations are signified by bowtie shapes while positive 
correlations give rise to trapezoids. Apart from sign, another 
important parameter is correlation strength. In parallel coordinates, 
the strength of a correlation is visualized as the range in which line 
crossings occur within a quadrilateral or bowtie. A perfectly positive 
correlation would have the same ordering of lines on both adjacent 
axes while a lesser amount of correlation will have lines that cross 
within a small neighborhood. We allow users to modify the 
correlation strength within a cluster by adjusting a slider. Setting this 
slider changes the size of a small sliding window within the shape 
that determines the range of possible values in the next dimension -- 
the lower the correlation, the larger this window. The window size is 
configured as a percentage of the range of the quadrilateral on the 
corresponding axis. An example is shown in Figure 5, where the 
greater the correlation, the narrower the sliding window and the less 
the number of line crossings is for the generated data of a trapezoid. 
The same slider is also used for negative correlation signified by the 
bowtie. 

A quadrilateral affects only samples of the same color so all 
independent clusters can be generated despite their overlapped 
domains. For convenience, drawing a quadrilateral in a color that has 
zero number of samples sets it to a default number, 500 samples per 
cluster. 

4.1.3 PDF Sketch and Data Connection Quadrilateral 

Sketching PDFs and drawing quadrilaterals independently can lead 
to data inconsistencies that have no meaningful clusters as is shown 
in Figure 6a. Our interface prevents this by adding positional 
constraints to locations where neighboring dimensions already have 
existing sketches or shapes. More specifically, a PDF sketch on one 
dimension axis restricts any new quadrilaterals next to it and a 
quadrilateral on one dimension pair restricts PDF sketches on the 
two dimensions and any quadrilaterals next to both dimensions of the 
pair. 

In Figure 6, the local leftmost points in a PDF sketch create ticks 
onto the axis for a quadrilateral to snap to when its extended vertices 
are in proximity. Likewise, a quadrilateral creates four ticks from its 
extended vertices for other quadrilaterals to snap to. Finally, a PDF 
sketch drawn on an axis that has quadrilaterals will be clipped to the 
ranges of those quadrilaterals.  

4.2 Sketching on Scatterplots 

A second paradigm in high-dimensional data visualization is the 
scatterplot – a projection of all data points onto a two-dimensional 

plane that is either aligned with two of the data axes or in general 
position. Our interface is shown in Figure 7. It consists of the 
following components: 
      Scatterplot display: This window shows the projected N-D data 

and serves as the main editing canvas. The data are projected as 

points into the 2D basis formed by the projection plane axis (PPA) 

vectors. These two orthogonal N-D vectors define the x- and y-axes 

of the resulting scatterplot display. The projected data axes can be 

optionally visualized directly in the scatterplot display or in isolation 

in the data axes vector display. The vector component bar chart 

display conveys more information about the dataset. The top two 

charts show the x and y components of the current PPA vectors while 

the bottom chart shows the PCA spectrum of the data. 

N-D touchpad polygon: This is the interface by which the 
orientation of the PPA vector basis can be interactively configured, 
which in turn determines the projective view onto the data. Each 
polygon vertex represents a data dimension vector. The PPA vectors 
are determined by the positions of the red and blue points in the 
polygon’s interior using generalized barycentric interpolation [14]. 
The touchpad polygon control panel lets the user switch between 
moving the red point (PPA x-axis) or the blue point (PPA y-axis).  

Scatterplot display controls: This panel allows users to change 
the scatterplot’s point size, zoom in or out, view the points in a 2D or 
3D display, and see the moving trajectory as motion blur for better 
shape perception in motion parallax. 

Sketching controls enable users to input the number of 
dimensions, the number of points, choose to start from scratch or 
with an existing dataset, and modify the points in axis-aligned or 
non-axis aligned fashion. Brushing controls let the user switch 
between brushing and erasing mode, choose brush size, brush density 
and brush color.  

Scatterplot matrix (SPLOM) window: This is a separate 
window that is used when editing the distributions in axis-aligned 
mode (see Section 4.2.1).  

Scatterplot views window: This is another separate window that 
is used when editing the distributions in non-axis aligned mode (see 
Section 4.2.2)  



Fig.7. Scatterplot sketching interface 
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Fig. 8. Scatterplot based data generation algorithm 

Point Generation 

 Distribution painting in 2D 

 Sketch shape, center line, and distribution profile 

 System computes probability map 

 Distribution backprojection 

 System generates N-D points according to probability map 

 (fully randomized in dimensions perpendicular to view plane) 

Repeat as desired (allow multi-view painting) 

Point Sculpting 

 Distribution carving 

 Manually erase unwanted points from other projection planes 

 (this can delete points in other views in undesired locations) 

 Update probability maps on these projection planes 

 Distribution repair 

 Manually replenish points erased in undesired locations 

 (use probability maps constructed earlier to guide the process) 

Repeat as desired 

 

Distribution designer: Users design an initial distribution using 
this window (see Figure 9 and explanatory text in Section 4.2.1, Step 
1). 

Readers interested in the scatterplot display and how it is 

interactively controlled using the N-D touchpad polygon are referred 

to [16].  
The design process begins with the user drawing an initial 2D 

distribution shape using the distribution designer. This 2D 
distribution is conceptually due to a collection of N-D points 
projecting into this shape. Initially these points would be randomly 
distributed in the other N-2 dimensions. Now we can pick another 
scatterplot projection and carve the 2D projected point cloud into one 
that we like to see from this orientation, under the constraint of the 
first drawing. We can repeat this for other projections and so on. 
This carving is essentially a subtraction of points from the current N-
D distribution. However, a fundamental problem related to the nature 
of high-dimensional space is that the carving may subtract points in 
undesired locations in other projections. Therefore we need to 
replenish the N-D distribution every once in a while to satisfy all 
prior constraints, i.e. the shapes drawn and carved so far. Our 
proposed algorithm is presented in Figure 8. We will demonstrate 
this algorithm first for the axis-aligned case and then for the non-axis 
aligned case. When interacting, users can switch among these modes 
at will. 

4.2.1 Interactions with Axis-aligned Scatterplots 

Axis-aligned interactions make use of the SPLOM window for high-

D space visualization. While this does allow for the generation (and 

editing) of distributions of any dimensionality, it requires them to be 

axis-aligned -- the non-axis aligned interface discussed in Section 

4.2.2 removes this constraint. As outlined in Figure 8, the point 

generation stage consists of two operations: distribution painting and 

backprojection. The sculpting supports two operations as well: 

distribution carving and repair. Editing operations use the same 

framework – just now a distribution already exists and does not have 

to be initialized. Editing an existing dataset is a good idea even when 

data generation is the goal – one does not have to start from scratch. 

We now describe each of these four operations in turn, using Figure 

10 as a running example.   

Step 1: Distribution Painting. This activity occurs in the 
distribution designer window (see Figure 9). The user first selects the 
desired axis-aligned view by placing the two PPA vector points in 
the N-D touchpad polygon onto the respective vertices. He then uses 
the sketching brush to draw the boundary of the distribution (Figure 
9a) and then the centerline (Figure 9b). The center line is where the 
densest points should appear while the boundary constrains the range 
of the points. Next he uses the distribution profile designer to define 
the profile of the distribution (Figure 9c). This fills the drawn shape 
with a point distribution which looks fairly regular. The user now has 
the option to paint additional points to make this distribution look 
more natural, i.e., less regular using a paint brush. The density of 
these drawn points can be controlled using a slider (Figure 9d).  
Alternatively, points can also be removed using a fuzzy eraser, 
which strength is also configured by the density slider. The resulting 
2D distribution is then converted into a probability map that governs 
how N-D points will project onto this projection plane. To ensure a 



 

Fig. 9. Scatterplot sketching process. (a) Draw the boundary of 
the distribution. (b) Draw the center of the distribution. (c) Draw 
the profile of the distribution and the backprojected points. (d) Use 
the density bar to control the brush density and add more points. 
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sufficiently smooth probability map, we could optionally filter this 
density map with a 2D Gaussian function before backprojection. 
Figure 10a shows our running example in the SPLOM window – we 
sketched the shapes and centerlines of four clusters.  

Step 2: Distribution Backprojection. Once the probability map 
has been constructed, the system uses it to generate P N-D points 
where P can be specified by the user. For the axis-aligned case, since 
all other projection planes at this initial configuration have a 
projection probability map with uniform distribution we can 
randomize the coordinates of all other N-2 dimensions. The result of 
this step is a set of P N-D data points with all coordinates defined. 
Figure 10b shows the result of this step for a 4-D scatterplot matrix 
[9], composed of dimensions x1, x2, x3, and x4. Since the painting 
occurred in the x1-x2 plane (which is now fully defined), the x3-x4 
projection has still a random point distribution. All other projections 
are partially defined since they either include dimension x1 or x2.  

Different distributions drawn in step 1 can be treated as different 
clusters and colored differently, as shown in the scatterplot matrix 
window of Figure 10b. The coloring clearly distinguishes between 
each drawn distribution and lets the user quickly see the points 
belonging to each (sub-) cluster. For distributions that may be too 
complicated to define at once or span more than one view, it helps to 
decompose them into simpler distributions and use the color coding 
as a guide to work on them one by one. For example, the final cluster 
shown in Figure 10i (using four views in the scatterplot display) 
spans the entire 4D space but is composed of four different-colored 
sub-clusters each spanning just one dimension.  

To create even more complex clusters the user may repeat the 
first two steps as often as desired by placing the PPA vector points 
on other vertices in the N-D touchpad polygon to select another view 
and paint on it. In this operation, all previously generated points are 
shown as inactive background labeled in gray color (Figure 12b). 
This multi-view painting mechanism allows users to define highly 
multivariate clusters. We found that these two levels of 
decompositions can help greatly in comprehending the N-D 
sculpting task.   

This point generation procedure just described provides us with a 
set of initial points to further work on – especially in those views that 
have at least one dimension not part of the painting process. Users 
can now sculpt on those dimensions to finish the data generation 
task.   

Step 3: Distribution Carving. Figure 10c visualizes the carving 
effects on all projections simultaneously in the scatterplot matrix 
window. In this figure the carving occurred for cluster 1 (black) in 
the x1-x3 plane – all other three clusters are inactive now and are 
shown in gray. The user carves the points in the desired locations 

directly in the scatterplot display. The carving tool can also work as a 
fuzzy eraser such that every swipe only removes a random subset of 
the covered N-D points. Similar to the brush used in the data 
generation step, users can choose from three different eraser sizes. A 
large eraser allows quick point removal while a small eraser refines 
details. At every eraser location the algorithm picks a random set of 
points that project into a small box around it – the size of this box 
can be user specified – and these points will be removed from the 
location’s current list of N-D points. Following, the updated 
distribution is stored in this projection’s probability map. However, 
note that removing points from this projection’s list will also remove 
these points from any other projections in the scatterplot matrix and 
update (scale down) their respective probability maps. This can lead 
to undesired effects and so the final (repair) step is required.  

Step 4: Distribution Replenishing/Repair. As just mentioned, 
erasing/carving points in one view may delete points in other views 
in undesired places, and so we will have to bring these points back. 
Further, the repeated erasing of points will deplete the N-D 
distribution in general. Figure 10c shows an example of this effect – 
the distribution of cluster 1 in the x1-x2 plane is much weaker than in 
Figure 10b. We can repair/replenish the N-D distribution in two 
ways: (1) automatically by comparing the original projection 
probability maps with the current projections, and (2) user-driven by 
allowing the user to paint the missing points back on. The latter 
facility can also be used for general editing. In either mode, we need 
to make sure that we add points only in desired places. Given the 
current projection location subject to repair, we randomize the 
coordinates of the dimensions whose distributions have not been 
defined yet.  For the other dimensions (excluding the two forming 
the current projection) – those for which the distributions have 
already been defined -- we compute their joint probability map and 
from it generate their coordinates. Figure 10d shows an example 
where we observe that the distribution of cluster 1 has gained back 
the strength it had in Figure 10b.  

Step 5 and on: Repeat. The user can pick any projection and 
update its probability map by carving or replenishing. This will 
activate the procedures described in detail in the previous steps. 
Figure 10 e-h show a few more such operations for our 
demonstration dataset. The result is visualized in Figure 10i using 
four non-axis aligned scatterplot projections. The generated data 
resembles a 4D snake-like structure which could not be constructed 
with existing tools that operate in 2.5D space.  

4.2.2 Interactions with Non-axis Aligned Scatterplots 

Non-axis aligned scatterplots provide additional freedom in cluster 

design but they require a more sophisticated navigation interface. A 

non-axis aligned view is selected by placing the PPA vector points 

inside the N-D touchpad polygon (see Figure 11a). We now describe 

the five data operations in turn.  

Step 1: Distribution Painting: This is similar to the axis-aligned 

case, just now the selected view is non-axis aligned.   

Step 2: Distribution Backprojection: This process is 

significantly more complicated than in the axis-aligned case. We first 

build a new coordinate system spanning the same data space using 

the Gram-Schmidt orthonormalization process. It takes N linearly 

independent vectors and produces N orthonormal vectors spanning 

the same N-D space. Let <  ,   > denote the inner product of two 

vectors    and    , ||y|| denotes the length of vector y. Let the 

projection of vector    onto vector   be        (  )    
       

       
. 

Gram-Schmidt starts with N linearly independent N-D vectors 

{             } and performs the following calculations: 

       ,                                                                ‖    ‖ 
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Fig. 10. An illustrative example of the scatterplot based data generation algorithm using axis-aligned views in the SPLOM window (panel 
(i) shows four views in the scatterplot window)  
 

(a)  Paint on x1-x2 (c) Cluster1, carve on x1-x3, less 
points exist now 

(d) Cluster 1, repair on x1-x2, 
points gain density back in un-
carved places 

 

(b) Initial points 

(e) Cluster 1, sculpting finished, 
only spans the first dimension 

(f) Cluster 2, sculpting finished, 
only spans the second dimension 

(g) Cluster 3, sculpting finished, 
only spans the third dimension 

(h) Cluster 4, sculpting finished, 
only spans the fourth dimension (i)  result points, 4D snake shape 
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The resulting vector set {            } is the orthonormal set. In 

our case, we randomly generate (N-2) N-D vectors – we keep the two 

user selected vectors in order to preserve the shape the user painted. 

We also make sure that those vectors are linearly independent. 

Following we apply the Gram-Schmidt process on the N vectors. We 

treat the new orthonormal vectors as general unit base vectors and 

generate data using the same procedure as used in the axis-aligned 

case. Since the projection (painting) plane is not axis aligned, the 

generated point coordinates are described in the rotated space. We 

can calculate their true data axis-aligned coordinates by multiplying 

them by the rotation matrix formed by the orthogonal basis vectors 

described above. 

Step 3: Distribution Carving: As with the SPLOM in the axis-

aligned case, we require a set of simultaneous views to enable users 

gain a more comprehensive understanding of the effect of the current 

carving. In the non-axis aligned case discussed here these views can 



 

                (a)                                         (b)                            (c)                                                                      (d) 
Fig.11. Non-axis aligned carving. (a) Top: the composition of the touchpad polygon. Bottom: the weighting of each dimension for the x and y 
PPAs. (b)(c) Carve and erase on one non-axis-aligned plane. (d) Select another plane to carve another shape. Note that the carved shapes 
can only be seen on those two selected views. 
 

be arbitrarily chosen by the user and typically hold views on certain 

structures the user would like to maintain. Then, any carving 

interaction in one view is immediately updated in all other views. 

Undesired effects can be undone by pressing an undo button and 

similar to an actual drawing process done on paper, we also provide 

a tool for erasing any unsatisfying mistakes. 

Step 4: Distribution Replenishing/Repair: This is more 

problematic than for the axis-aligned case in which projections were 

mutually orthogonal. In the non-axis aligned case, unless two 

projections are proven to be orthogonal to each other, any view 

selected will partially overlap with another. Hence, when carving out 

points in one view, this effect cannot be repaired in another view 

using the above method. Our current solution is to allow the user to 

repair by bringing all points back, even if they have been carved out 

in the first view.  

    Step 5 and on: Repeat. This is similar to the axis-aligned case. 

4.2.3 Application Example for Non-axis Aligned 
Scatterplots 

Figure 11 demonstrates an example using an initial 5D Gaussian 

distribution. Our result dataset displays two characters ‘N’ and ‘D’ 

on the projection plane of which the x-axis is close to the first and 

second dimensions while the y-axis is close to the fourth and fifth 

dimensions. Figure 11a shows the configuration of our polygonal 

touchpad. We move the red point close to the first and second 

dimensions and the blue point close to the fourth and fifth 

dimensions. The two bar charts below show the different dimension 

interpolation weights for the x and y-axis. We can clearly see that the 

first and second dimensions dominate the composition of the x-axis 

while the fourth and fifth dimensions have the largest value for y-

axis. Figure 11b shows the two multivariate scatterplots of the data 

on the previously selected projection plane, before and after carving. 

The top scatterplot shows a point cloud while the bottom displays the 

two characters after carving. This pattern can be observed only on 

this plane and it may not show any meaningful patterns on any other 

plane. Figure 11c is a case in which the eraser comes in handy. The 

top scatterplot shows that a part in the ‘N’ is accidentally brushed 

away. Note the hollow portion on the left part of ‘N’. Like in any 

painting tool, we can change to ‘erasing’ mode and use the eraser to 

bring those points back as shown in the bottom scatterplot. With the 

help of the brush and eraser users can create any pattern on any 

projection plane.  

Next, the user may want to carve the existing set of characters 
such that they are also visible from another projection orientation. 
Carving on another projection plane may compromise the previous 
patterns so the user needs to be more careful. As is shown in Figure 
11d, the user navigates to the second plane using the touchpad, adds 
this projection to the row of multiple views and starts carving. He 

can easily monitor the changes on the previous projection (the fifth) 
and make sure the ongoing carving does not adversely affect the 
overall shape of the data there. 

We note that changing the carving plane can extend the intrinsic 

dimensionality of the resulting dataset to the number of dimension of 

the touchpad polygon. Our present example has a 5D polygon but 

there are no limits on how many vertices such a polygon can have. 

We note, however, that the ordering of the vertices is important with 

respect to the subspace of the data that can be reached [16]. We may 

initialize or reconfigure this vertex ordering using the parallel 

coordinate interface, but our navigation polygon also allows users to 

interchange, add, or remove vertices directly. Likewise, when a 

SPLOM is used and the dimensionality of the data grows high, the 

user may choose the dimensions composing the SPLOM using a 

selection interface.  

4.2.4  Active and Inactive Points 

The navigation polygon and the multiple views help users to easily 

carve data globally but not locally. Because of the high-dimensional 

space, a subset of data is cluttered with other data once the plane 

changes. Our interface also supports the concept of active and 

inactive points to provide the user complete control over selecting an 

active subset of data points for editing. Users can assign different 

point sets to clusters and control their status (active/non-active) via a 

check-box interface. In this case only the active points can be 

manipulated via the brushing/eraser tools. For example, all points 

marked in light gray in Figure 10 are currently inactive and will be 

insensitive to any brush manipulation.   

4.2.5 Dataset Generation for Clustering Algorithm Testing 

As mentioned, one of the most common problems when testing 

algorithms is the lack of a dataset that challenges a specific aspect of 

the algorithm. Let us take standard k-means which works well on 

linearly separable clusters, but how will it work on linearly non-

separable clusters? To get insight we need a higher-D dataset that has 

these conditions. Now the challenge is where to get a high-D dataset 

with multiple clusters that are not linearly separable, even in 4D. We 

can quickly use our interface to generate such a 4D dataset  

We aim to create a dataset with two such clusters spanning the 

entire 4D space – one of these has an ‘L’ shaped structure on the x1-

x2 plane while the other has the same structure on the x2-x3 plane. 

This guarantees the linear non-separability we strive for. Similar to 

Figure 10, we decompose the two 4D clusters into four sub-clusters 

for ease of manipulation. The generation process of the first cluster is 

exactly the same as in Figure 10. For the second cluster, we initially 

paint on the x2-x3 plane, and also go through the sculpting procedure 

to make sure each sub-cluster only span one dimension. Figure 12a, 

b show the initially painted distributions, while Figure 12c, d show 



               (a)                                      (b) 
Fig. 13. Editing an existing data set. (a) Red points are outliers 
(b) Outliers removed 

 

      (a)                                        (b)                                      (c)                           (d)                                                      (e) 
Fig.12. Testing dataset generation. (a) Paint on x1-x2 (b) Paint on x3-x4 (c) (d) Generated data, clustered using standard k-means. Red and 
black are two clusters. (e) Generated data on parallel coordinates,  

                    (a)                                          (b) 
Fig. 14. Two results by two different users from the user study 
 

 

the two clusters as scatterplots. Figure 12b shows those points 

generated from the first distribution painting as background gray 

points.  

We then performed standard k-means clustering on the generated 

dataset, and we obtained two clusters colored red and black (Figure 

12c, d). From the parallel coordinate’s view of this dataset (Figure 

12e) we observe that the standard k-means clustering mainly 

operated on the 4th dimension and that the resulting two clusters are 

not accurate. We now know that a more sophisticated clustering 

algorithm, such as a kernel method, must be used.   

4.2.6 Existing Data Editing 

Our proposed system also allows users to modify an existing data set 

for better algorithm testing and data analysis purposes.  

One of the most encountered problems in data analysis is the 

existence of outliers. Outliers may impair the ability to discover 

underling patterns or finding meaningful trends. One may use outlier 

detection algorithms to remove them, but different algorithms are 

based on different definitions (density based or distance based) of 

outliers and may not fit into a particular need. Hence, to be able to 

visually detect outliers and subsequently remove these outliers would 

be more suitable in the general case. 

Let us take the housing data set [24] as an instance. A user might 

want to determine the relationship between the ‘average number of 

rooms per dwelling’ and the ‘% lower status of the population’. After 

plotting the data against these two attributes (Figure 13a), we see that 

most of the points are concentrated on the main cluster but outliers 

(Figure 13a, red points) exist. This makes further analysis hard, and 

simply including all the points in the analysis would introduce errors. 

Some methods might be able to adjust to the shape of the data, but 

they often bring the risk of over fitting.  Pre-processing the data to 

remove unwanted points would be very useful. The user could 

employ general outlier detection algorithms but since this is a high-D 

data set, the importance of these two attributes might be reduced. In 

addition, these algorithms often require a pre-setting of some 

parameters or thresholds which can lead to erroneous results. Our 

system would come in handy here. The user could navigate to the 

desired view and visually detect outliers according to their own 

understanding and need, brushing away unwanted points (Figure 

13b). Using the remaining points for further analysis would then 

yield more robust results. 

5 IMPLEMENTATION AND USER STUDY 

We implemented the parallel coordinates interface in Processing 
[18], an environment and programming language based on Java. 
Dataset generation with up to 10 clusters and 1000 samples per 
cluster runs at interactive speed on a 2.4 GHz Intel Core i5 computer 
with 4 GB of RAM. The user interface for the TouchpadN-D has been 
implemented in C# and runs on a 2.8 GHz Intel Core i7 computer 
with 12GB of RAM. 

We have also conducted an informal user study to test our 
interfaces. Eight first-time users were given a brief demonstration of 
all features of the first user interface, a five-minute tutorial under our 
guidance, and a task to generate a 6D dataset of 1000 samples. None 
of the users had prior knowledge about parallel coordinates. One user 
had generated multivariate datasets before and commented that our 
user interface could be useful. The feedbacks were generally 
positive. Some users had difficulty understanding the effect of PDF 
sketches so they used data connection quadrilaterals instead. The 
results are not exactly the same but visually similar as shown in 
Figure 14. Since users could not undo the drawn PDF profiles and 
data connection quadrilaterals, they reset the sketchpad a few times. 
On average, users reset 1.5 times and finished the task in 2 minute 
and 32 seconds of the last attempt. 

6 CONCLUSIONS AND FUTURE WORK  

We believe that our SketchPadN-D can be applied to other 
visualizations in general. The two designs we proposed both have 
their strengths and weaknesses. Parallel coordinates show a better 
overview of the data and the sketching tool is quite easy to interact 
with. The scatterplot interface, on the other hand, provides a better 
sense for a structure’s distribution but the navigation with the 
polygon is a bit more abstract. Since our input devices and 
visualizations all use 2D paradigms, the sketch-based user interfaces 
are easy to use even for novice users who can casually draw a napkin 
sketch to specify visual properties of a dataset. Still, we would like to 
add curve-drawing or line-drawing widgets to facilitate the 
sketching, as well as better support for categorical data.  
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