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Using Concrete Scales: A Practical Framework for

Effective Visual Depiction of Complex Measures

Fanny Chevalier, Romain Vuillemot, and Guia Gali
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Fig. 1. Illustrates popular representations of complex measures: (a) US Debt (Oto Godfrey, Demonocracy.info, 2011) explains the gravity
of a 115 trillion dollar debt by progressively stacking 100 dollar bills next to familiar objects like an average-sized human, sports fields,
or iconic New York city buildings [15] (b) Sugar stacks (adapted from SugarStacks.com) compares caloric counts contained in various
foods and drinks using sugar cubes [32] and (c) How much water is on Earth? (Jack Cook, Woods Hole Oceanographic Institution and

Howard Perlman, USGS, 2010) shows the volume of oceans and rivers as spheres whose sizes can be compared to that of Earth [38].

Abstract—From financial statistics to nutritional values, we are frequently exposed to quantitative information expressed in measures
of either extreme magnitudes or unfamiliar units, or both. A common practice used to comprehend such complex measures is to
relate, re-express, and compare them through visual depictions using magnitudes and units that are easier to grasp. Through this
practice, we create a new graphic composition that we refer to as a concrete scale. To the best of our knowledge, there are no design
guidelines that exist for concrete scales despite their common use in communication, educational, and decision-making settings.
We attempt to fill this void by introducing a novel framework that would serve as a practical guide for their analysis and design.
Informed by a thorough analysis of graphic compositions involving complex measures and an extensive literature review of scale
cognition mechanisms, our framework outlines the design space of various measure relations—specifically relations involving the
re-expression of complex measures to more familiar concepts—and their visual representations as graphic compositions.

Index Terms—Concrete scale, scale cognition, visual comparison, graphic composition, visual notation

1 INTRODUCTION

As a result of the recent economic crisis, “trillion” as a monetary fig-
ure has become part of our daily vocabulary. Yet for such a large
amount, how capable are we to mentally grasp its true value? To bet-
ter comprehend this quantity, a popular graphic composition of 100
dollar bills stacked next to familiar objects progressively demonstrates
the volume of money from 1 million dollars that is roughly the same
size as a briefcase, 100 million dollars that occupies a pallet filled as
tall as an average person, all the way up to 115 trillion dollars, which
corresponds to a stack of pallets rising as high as iconic New York city
skyscrapers [15] (see Figure 1a).

This process of visually relating complex measures with familiar
objects from the real world results in what we refer to as a concrete
scale. This type of representation re-expresses complex measures us-
ing magnitudes and units that are visually and kinesthetically experi-
enceable, making them easier to grasp [24]. In the previous example,
the volume of bills does not solely communicate exact monetary value
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but links the conceptually-hard-to-grasp value of 115 trillion dollars
with experienceable notions of handling 100 dollar bills. This allows
the observer to break down the scale through smaller comparisons of
how much space various amounts of money occupy relative to familiar
and tangible objects, which eventually helps in forming a more con-
crete mental model of scale for this value of money.

Concrete scales are important since they mainly rely on simple rela-
tions of complex measures to more familiar concepts, easing the cogni-
tive load when trying to comprehend accurate, numerical values on an
absolute scale. This makes concrete scales highly common and pop-
ular among educational and decision-making settings. From grasping
the scale of the solar system to balancing a country’s trillion dollar
debt, it is extremely important for concrete scales to properly facili-
tate measure relations, from absolute to relative and back, in order to
convey approximations as accurate as possible.

While there has been extensive research on how we understand or
construct mental models of scale, most studies have strictly focused
on representations along tangible dimensions such as space and time.
Other types of relations, such as conversion and re-expression, have
received very little attention from researchers, with infographics re-
ceiving even less attention despite its popularity and common use.

To address this lack of design guidelines for concrete scales, we in-
troduce a framework that examines the design space of various types of
measure relations, along with their visual representations. We achieve
this through an extensive deconstruction and analysis of numerous
graphic compositions collected online. We also provide a protocol as
a guidance to designers on how to use our framework for the creation
and evaluation of concrete scales, further illustrated with a scenario.
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Fig. 2. Examples of concrete scales illustrating (a) unitization: the mass
of Saturn amounting to 97 times the mass of Earth, (b) anchoring and
adjustment: the match serving as an anchor to adjust the sense of scale
of a tick and (c) analogies: the atom is smaller than a toy marble just as
a human head is smaller than the Earth.

2 BACKGROUND

We begin by defining specific terminologies that we will be using
throughout the paper, followed by a review of the challenges and cog-
nitive mechanisms involved in interpreting complex measures. We
then survey other related work that have tackled measure represen-
tations and visual comparisons.

2.1 Terminology

A measure is composed of a numerical value and a unit that quantita-
tively expresses a phenomenon according to a scale [28, 29]. The nu-
merical value of a measure conveys the magnitude of a phenomenon—
relative to a chosen scale—and can range from small (e.g., 1 angstrom)
to large (e.g., 100 000 kilometers). A unit refers to a type of measure-
ment ranging from the tangible (e.g., meter, dollar) to the more con-
ceptual (e.g., calories, kilowatt). Units are employed to determine the
scales which are used to quantitatively express a phenomenon. A scale
is a system of ordered marks at fixed intervals that serves as a standard
reference, linking the magnitude of a phenomenon to conventionally
defined numerical representations of size [17].

2.2 Challenges in Interpreting Complex Measures

Interpreting measures involves the construction of mental models
of scale in a process referred to in psychology as scale cognition
or scale sense—a topic that has captured the interest of many re-
searchers [13, 17, 26, 27, 33, 36, 37]. For the purposes of our frame-
work, we limit our analysis to complex measures, which can be dif-
ficult to grasp for the following reasons: 1) the magnitude transpires
beyond humanly experienceable proportions making it too mentally
demanding to conceptualize with absolute accuracy [17], and/or 2)
observers are unaccustomed to the scale due to a lack of knowledge
with the defined unit of measurement. Scales associated with such
magnitudes or units appear unfamiliar to layman observers due to their
lack of regular visual and kinesthetic experiences relative to one’s self,
necessary in building mental models of scale. For example, despite
the fact that we use money daily, it is almost impossible to conceive
money in trillions of dollars or to determine what magnitude of calo-
ries are either too much or not enough when dealing with nutritional
facts, without personal or professional expertise on the subject.

2.3 Cognitive Mechanisms

Scale cognition studies in psychology suggest that personal and pro-
fessional experiences play a critical role in the conceptualization of
scale [17, 26, 36]. For students of various schooling levels, scale cog-
nition is more notably refined as they become exposed to a broader
range of magnitudes and units through visual and kinesthetic expe-
riences (e.g., traveling across a country or looking through a micro-
scope) [36]. Jones et al. also found that experienced professionals,
from physicists to engineers, comprehend scales through direct inter-
action with phenomenons of various magnitudes [13, 36].

Studies in psychology have also highlighted the importance of
unitization, anchor and adjustment, and analogies in scale cogni-
tion. Unitization is an improvised—yet subjective—systematization
of units where observers can break down scales, using a preferred
new unit, into more specific and relatable chunks [13]. For exam-
ple, the mass of the Earth can be used to re-express the mass of Saturn
(or any other mass too big to grasp) by the numerical value alone.

Hence, we can state that it requires 97 Earths to amount to the mass
of Jupiter (Figure 2a). In this example, the unitization process consists
of redefining the unit (i.e., Earth) based on its inherent properties (i.e.,
mass). We then designate 1 Earth as a new unit for mass, making a
more apprehensible scale for assessing measures [37]. Isotypes [23]
are also loosely based on a type of unitization where pictograms are
redefined as “tokens” to represent a given measure (e.g., one bike sym-
bol as 100 bikers, or a bulb icon as 1 kiloWatt per hour), though the
visual representations are more symbolic than basic unitization.

Anchor and adjustment uses tangible references as anchor points
from which observers can make estimations through adjustment on a
relative scale (e.g., “as far as...”, “about the size of...”, “slightly lighter
than...”). An example is shown in Figure 2b, where the match serves as
the anchor to asses the size of the tick beside it. A previous study noted
that experienced professionals who deal with various scales daily of-
ten have recourse to anchor points to relatively adjust magnitudes and
units, functioning as quick mental benchmarks in the construction of
mental models of scale [13].

Analogies rely on pairwise analogies, by comparisons of the differ-
ence in magnitudes between one pair of objects with that of another
pair of more familiar objects. In Figure 2c, atomic size is explained
by comparing its size ratio to the diameter of a marble and creating a
pairwise analogy with ratio of an average human head to that of Earth.
Analogies have been shown to help in estimating linear distances [12],
which is further substantiated in studies examining the different strate-
gies people use to represent nanoscales [19].

As discussed in the introduction, visual representations can be help-
ful in conceptualizing complex measures when the above mechanisms
alone are not enough to build accurate mental models of scale. The
next section is a review of representations using different modalities.

2.4 Representation of Complex Measures

Absolute numerical values of extreme magnitudes and unfamiliar units
may be difficult to comprehend instantly, which is problematic when
the context of their understanding calls for decision-making [20]. The
representation technique is therefore critical in communicating mea-
sures [7, 13].

Most relevant to our work is Nieman who refers to representations
that use “the real world as a canvas for data visualization” as con-
crete visualizations [24]. Concrete scales build upon concrete visu-
alizations where matter—though unseen has actual physical existence
in the world—is made visible and depicted in context of a real-world
scenario (e.g., CO2 emission visualized as a black cloud of pure gas
diffusing in a city’s streets). We extend Nieman’s concept to measures
that lack a physical counterparts, and examine scale sense in light of
psychology research, from which the identified cognitive mechanisms
can be leveraged as strategies for visual representations.

Animations such as Powers of Ten [5] or interactive graphics like
The Scale of the Universe [10] and Scale Ladders [18] use zooming ef-
fects to progressively move from nanoscopic to cosmic distances. This
continuous and progressive redefinition of the representation space—
where the order of magnitude is made clearer by the addition of fa-
miliar objects (e.g, a hair, an ant) as anchors—aids in building mental
models of scale along a continuum. As such, these tools have been
proposed for educational and scientific purposes to facilitate concep-
tualization from relative to absolute scales with accuracy.

Walking scale models have been used to provide observers with
a visceral feel for the vast scale of the universe. The Sagan Planet
Walk [30] is a walkable 1-to-5 billion scale model of the solar system
consisting of obelisks situated along a 1.18 km trail. Other works have
mapped geologic time to walkable distances along customizable and
familiar landmarks and routes on Google Earth to bridge abstract, im-
perceptible concepts of time through experienceable routes where the
accuracy of human perception is higher [14, 26].

Temporal-aural-visual feedback representation has also been ex-
plored in nanoscopic scales through the accumulation of imperceptible
elements across the diameter of a pinhead. The temporal aspect was
found to be of significant aid to the observers but experiments have



shown that without the visual modality, observers lost support for effi-
cient anchor points in the construction of mental models of scales [31].

There is no shortage of graphic composition depicting complex
measures but despite its abundance, little attention has been devoted to
the analysis of various measure relations and visual strategies within
it. To address this void, we have narrowed down our analysis to visual
representations alone, which we then deconstruct and analyze for their
efficiency as concrete scales (see Section 3).

2.5 Comparison in Information Visualization

Methods for effective comparison have been explored in visualiza-
tion literature. Prior work include the study of comparison strategies
specific to a particular data type such as tree structures [9], and flow
datasets [39]. Gleicher et al. [8] proposed a more general taxonomy
for comparison in information visualization, and identify three basic
techniques for visually comparing two datasets: juxtaposition, super-
imposition, and explicit encoding (difference or time wrap). Javed
et al. [11] introduced a design space for composite visualization
views, where juxtaposition and superimposition are common strate-
gies to Gleicher’s classification. Other view compositions include
overloading and nesting. Similar strategies are employed in concrete
scales and we include an analysis of their usage in our context.

3 DECONSTRUCTING CONCRETE SCALES

To better understand and analyze the various types of concrete scales,
we collected and deconstructed up to 300 graphic compositions1. In
this section, we discuss our procedure for data collection and the
methodologies used in our analysis. The taxonomy of measure re-
lations derived from this analysis is discussed in Section 5.

3.1 Data Collection

We collected our corpus by querying Google Images using multiple
keyword combinations (e.g., infographics, scale, the size of, equiva-
lent to, how much, as large as, what is the size of, how worthy is, etc.)
and browsing through social networking circles, image-sharing web-
sites, infographics blogs, and online newspapers such as the New York
Times and the Guardian. The data collection process was conducted
in parallel by all three authors and discontinued once a healthy con-
vergence of unique graphic compositions were accumulated. Redun-
dant representations across authors were discarded. Simple illustra-
tions (i.e., images not mapped to data), and other images pertaining to
concepts other than communicating measures of extreme magnitudes
and unfamiliar units were not retained.

The corpus resulted to a set of 300 examples from domains as varied
as Economics, Physics, Earth and Space Science, Biology, entertain-
ment, nutrition, sustainability and so forth. A strikingly vast majority
of these representations (293/300) was composed of pictorial depic-
tions using real life objects. The semiotics of these objects in the con-
text of concrete scales will be further examined in Section 4. Each
graphic composition of our collection was deconstructed and analyzed
using the framework below.

3.2 Graphical Deconstruction

Our deconstructive analysis is based on a recursive model for the de-
composition of graphic representations defined by Englehardt [40]. In
this model, a graphic composite consists of a set of graphic objects,
which occupy and are contained within a graphic space, and a set of
graphic relations, which are determined by the elements within the
graphic composite itself. Graphic objects can be deconstructed recur-
sively until its lowest level of deconstruction resulting to elementary
graphic objects. Graphic objects can be interpreted through three lev-
els of semiotic analysis: syntax, semantics, and pragmatics [16]. Syn-
tax refers to the visual attributes of the graphic objects and the roles
these objects play within the graphic composite. Semantics looks at
the relations between graphic objects and the meanings these objects

1 The corpus of concrete scales that we have collected for, and used in our

analysis is available at http://www.aviz.fr/concretescale

Fig. 3. Examples of graphic composites involving pictorial representa-
tions of real objects without notations. (a) The relative size of the orange
and sugar cube is preserved: spatial attributes can be compared. (b)
The relative size is not preserved: the orange-to-sugar cube relation is
ambiguous. (c) The orange is juxtaposed to several sugar cubes, that
may suggest that 1 orange is comparable to 5 sugar cubes. (d) Same
as (c), rearranging the cubes to make them more easily countable.

infer within the graphic composite. Pragmatics refer to the connota-
tions that are beyond the boundaries of semantic interpretation.

Semantics in particular identify the graphic object as representative
of specific information, which is typically inferred through the inter-
pretation of its relations with other graphic objects and the graphic
space [40]. Object-to-space relations refer to spatial relationships be-
tween objects and their positions within a structured space. Object-to-
object relations also include spatial relationships between objects (in
the context of spatial clustering, linking, containment or nesting, jux-
taposition, superimposition, ordering, etc.), as well as attribute-based
relations between objects (e.g., relations involving variations in size,
color, etc.). For the purposes of our framework, we have limited our
analysis to pictorial representations of objects—in opposition to vi-
sual marks in charts—and their associated object-to-space and object-
to-object spatial relations, which we particularly refer to as measure
relations (further discussed in Section 5).

In the following section, we will take a closer look at semiotics in
the context of concrete scales where pictorial representations of real
life objects can be interpreted in various ways: be it from conveying
different meanings to intentionally provoking certain emotions.

4 SEMIOTICS OF OBJECTS IN CONCRETE SCALES

Most concrete scales in our collection contain pictorial representations
of objects borrowed form real life. Figure 3 displays an orange and
sugar cubes juxtaposed in four different ways. Though all examples
contain the same objects, they can be interpreted differently based on
syntax, semantics, and pragmatics. For example, the sugar cube in Fig-
ure 3 could be seen as data-representative of a real sugar cube dimen-
sions, functioning as a spatial ruler, from which observers can assess
the real size of the orange and vice versa. Concrete scales that deal
with distances or spatial occupancy—such as volume in Figure 1a—
use pictorial representations of the object’s tangible counterpart as an-
chor points that frame the elements within the composite.

In figure 3b, the two objects’ relative sizes are not preserved: the
sugar cube is too big compared to the orange. Though the pictorial
representation could still refer to a real orange and a real sugar cube—
even if only as a symbolic representative of another concept—their
syntax is difficult to ascertain in order to associate it as a framing
element. In this case, it is difficult to decipher object-to-object and
object-to-space relations without explanatory notations or a more ex-
plicit visual composite that helps clarify the comparison logic [8, 11].

Figure 3c-d position the orange next to a collection of sugar cubes.
Based on Gestalt’s law of grouping, the sugar cubes represent a whole
since they are spatially grouped together [41] with Figure 3c displayed
more naturally than the organized stacks of Figure 3d. Due to the mul-
tiple instances of the sugar cubes, strict comparison of size and vol-
ume between the two objects is ambiguous. This reinforces a pairwise
relation of orange-to-group of sugar cubes, which can be interpreted
as an equivalence relation that possibly pertains to amount of sugar

http://www.aviz.fr/concretescale
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within an orange (i.e., “an orange is worth 5 sugar cubes”). Thus, the
sugar cube becomes the new unit of measurement through unitization
(see Section 2.3). Each cube plays the syntactic role of a “3-gram to-
ken” based on the idea that oranges contain an average of 15 grams of
sugar. While equivalency in sugar amount is an obvious interpretation,
it could also pertain to calories as a whole or other semantic meanings.

Besides syntax and semantics, pictorial representations can also
connote other symbolic meanings based on cultural or personal ex-
periences but can be intentionally chosen over other objects to capture
and provoke desired impressions from the observer [35]. In our exam-
ple regarding nutritional values, using a sugar cube as a token can be
provocative when used to express, for example, the amount of sugar
contained in sodas (Figure 1b). We could equally use an orange as a to-
ken to re-express the amount of sugar in these drinks, yet oranges are
universally perceived to be healthier than sugar. This re-expressing
of a can of soda as worth 10 sugar cubes versus 2 oranges invokes
different sentiments and reactions. While the former aims to alarm
consumers, the latter suggests a more positive message. This notion is
further discussed in pragmatics in Section 7.3.

Non-object framing elements and notations are often omitted based
on our data collection (only 56% of our examples included such marks
or text), suggesting their insignificance in assessing measures in con-
crete scales. This observation is further substantiated by a study that
found the inclusion of rulers and numbered lines does little to aid peo-
ple’s comprehension of nanoscales [18]. However, we have noted that
in some cases the syntax and semantics of pictorial representations are
not always clear, especially when an object representation can be in-
terpreted in several ways: be it from corresponding to the real object
itself, serving as a spatial ruler (anchor and adjustment), or serving as
a token with a value (unitization). This is reflected in our corpus where
cases with or without framing elements are evenly balanced.

Pictorial representations can also be interpreted with numerous
physical properties borrowed from the real object such as spatial prop-
erties (e.g., width, height, diameter, volume), non-visible properties
(e.g., weight, nutritional properties, energy power, storage capacity),
the conventionally attributed (e.g., monetary value), or even symbolic
properties based on cultural concepts or another. The variety of prop-
erties an object can possess widens their use in either anchor and ad-
justment or unitization contexts, making the assessment of measure
relations complicated. We address this in the next section by estab-
lishing a taxonomy of object types and measure relations that deal
with these issues, which we will then use as a framework for system-
atic decomposition of concrete scales.

5 A TAXONOMY OF MEASURE RELATIONS

Based on our literature review and a thorough analysis of infographics
as described above, we derived a taxonomy of object types and mea-
sure relations involved in concrete scales. For the purposes of our
conceptual framework, we also introduce a novel visual language that
we call CSML (Concrete Scale Markup Language), similar to UML to
encode these objects and relations (Figure 4).

5.1 Object Types

We have previously seen that objects contained in concrete scales can
be of various natures and play various roles as they are involved in
measure relations with other objects. When involved in a measure
relation, an object refers to a single measure along one of its inher-
ent properties for assessment (base) or as a reference (target). In our
framework, we call a base object any entry object for which measure

is to be assessed. Note that concrete scales can contain more than one
base object at the same time.

We refer to particular types of objects that are fillable as containers.
A container can embed other objects within its borrowed physical con-
straints, such as a plastic bottle filled with liquid or gas. A container’s
capacity (i.e., volume) can be graduated to enable partial filling (like a
measuring cup) or possess translucence to reveal content (e.g., a glass).
A container can be filled with different objects, thus inheriting differ-
ent properties. For example, the same glass can present nutritional
values based on whether it is filled with milk or orange juice. We also
consider virtual space-filling areas and volumes as containers as they
enable the grouping of objects into a single entity.

An object can be an anchor, when it serves as a benchmark to give a
sense of magnitude. The anchor status is conveyed in CSML by adding
a modifier icon to objects (see Figure 4).

Objects involved in concrete scales typically are representative of a
tangible counterpart with proper spatial properties. In the context of
concrete scales, these properties can be absolute with respect to the
specific instance of the object, and therefore accurate (e.g., the Eiffel
Tower is 320m high) or more vaguely defined (e.g., the average height
of a person varies depending on culture or personal experience).

5.2 Measure Relations

Analogical to Engelhardt’s recursive model for graphic decomposi-
tion, we introduce measure relations, which are object-to-object re-
lations involving comparisons, containment, and unitization of objects
with regard to their measurable properties on a scale.

5.2.1 Comparison

Measure relations at the elementary level compare the magnitudes of
shared property between objects. For instance, $10 and $100 bills
share spatial and monetary properties. These pairwise comparisons
result to a conclusion of equality, inferiority, or superiority. Our frame-
work encompasses two types of comparisons: exact and approxi-
mate. Exact relations concern cases where magnitudes of objects can
be accurately compared along a property (e.g., a $100 bill is 10 times
superior than a $10 bill in terms of monetary value). However, such re-
lations may not be conducive to exact comparisons when, for instance,
the magnitudes are vaguely defined (e.g, the height of an average per-
son). These phenomenons would fall under approximate relations.

Comparisons are by far the most prevalent relations that we found
in our corpus (83% of the examples integrated at least one such re-
lation), equally involving objects of which inherent dimensions can
be extracted (e.g., iconic buildings, standardized objects and products
such as coins, electronic devices, or deck of playing cards) and ob-
jects which dimensions are less certain (e.g., an elephant, a human,
or a pencil). Comparison relations in CSML are represented with line
connectors: plain when an exact comparison is possible, and a dashed
line when the comparison is only approximate.

5.2.2 Containment

When objects are placed within a container, both objects become
linked by a containment relation. Containers are common in concrete
scales especially because they allow several objects into a single entity,
which can facilitate comparison. In particular, we note that concrete
visualizations, as defined by Nieman, primarily rely on the use of con-
tainers to portray otherwise impalpable volumes [24]. Additionally,
there is a natural progression to using containers in the visual repre-
sentation of small particle scales, like sugar grains or liquid, which are
usually contained in the physical world in order to hold the matter in
place. Other typical examples of containers include household items
like spoons or cups—objects of which we are most familiar with.

About 8% of our data examples included containment relations,
with more than half (15/26) involving loose matter filling physical ob-
jects like dishes or virtual geometrical shapes. Other containment re-
lations include nested views, where a scaled version is nested inside a
larger view, creating a composite visualization [11]. We discuss these
further in Section 5.3.2. Containment relations in CSML are repre-
sented by connector lines ending with a diamond.
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5.2.3 Unitization

Unitization, previously discussed in Section 2.3, consists of redefining
an object as a new unit of measurement for assessing the magnitude
of other objects in terms of this new unit. It results in relations of the
form “A accounts for n instances of B”, where B is the new unit. The
process of unitization therefore generates a set of n objects B that, as
a group, can be involved in turn in containment and comparison re-
lations. Hence, not only does the process of unitization allow for the
proportional assessment of A and B, but it also creates a new instantia-
tion of the object A in the form of a collection of another object that is
potentially a better candidate for accurate assessment of magnitudes.

Unitization assists in computing the ratio between the object and
the chosen unit. In the case the ratio cannot be expressed by an inte-
ger, a remainder (corresponding to a fraction) must be added to reach
the balance. When possible, the remainder can be expressed in terms
of sub-portions of the unit. The remainder can also be recursively
unitized using a novel, finer-grained unit along the dimension. For
example, an orange can either be re-expressed as two and a half ap-
ples, according to its nutritional values or two apples, and one apricot.
Figure 5 shows these two relations in CSML visual notation.

About 16% of our corpus included unitization relations, all of which
re-expresses non-visible units such as weight, calories, or time, using
typical objects that are usually associated with these dimensions (e.g.,
an elephant is well known to be heavy).

Our framework considers unitization in a broader sense than previ-
ous work has done when examining object-to-object relations [19]. We
formalize unitization as a recursive process for further breaking down
remainders into other types of units. Though the unitization with re-
mainder is a valid strategy conceptually, we only encountered a few
examples in our database. We hypothesize that the reasons may lie in
the complexity introduced by a larger variety of displayed objects used
in the relation (e.g., how to form the accurate groups of objects for the
comparison?), and an overall preference for round numbers.

5.3 Strategies for Concrete Scales

We build upon studies that have previously examined strategies that
people undertake to represent nanoscopic objects [19]. We generalize
and extend this list beyond space to encompass dimensions that are not
directly visible (e.g., weight, nutritional value) along with convention-
ally attributed properties (e.g., monetary value).

Not surprisingly, the most common strategies employed by concrete
scales 2 that we have identified in our analysis are visual transcriptions
of the cognitive mechanisms as discussed earlier in Section 2.3, which
are anchor and adjustment (through direct comparison) (83%), uniti-
zation (16%), and analogy (4%). Anchor and adjustment and unitiza-
tion involve a single measure relation between objects, as depicted in
Figure 6. In contrast, analogies involve a combination of such rela-
tions. In both cases, objects are displayed either in juxtaposition (the
most popular, accounting for 82% of the relations) or superimposition,
each of which being prevalent layout strategies for comparison in vi-
sualization [8]. Another strategy typical to representing cosmic and
nanoscopic scales is the zooming inwards and outwards effect (2%
of our corpus) [19], all depicted using a nested view, where a scaled
version of a partial view is embedded in the larger picture [11].

Here, we discuss analogy, zoom, and a few other strategies that
combine measure relations using CSML visual notation (see Figure 6).

2Note that the same representation can make use of several strategies.
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Fig. 6. Examples of popular strategies for concrete scales.

5.3.1 ANALOGY: Simultaneous Pairwise Comparison

As described by Ma [19], “Analogies convey size relationships by
comparing the size difference between a pair of objects, the target,
and another pair of more familiar objects: the base.” Analogy is
one of the cognitive mechanisms that contribute to our construction
of scale representations (see Section 2.3). Hence, it is not surprising
that we find them in concrete scales, though not that often (about 4%
of our corpus use analogies). Using our framework, an analogy con-
sists of two pairwise comparisons, which can be exact or approximate.
In this situation, comparison relations are constrained in a sense that
the dimension and the magnitude have to be the same. In other words,
analogies build on equivalences between two pairs.

5.3.2 ZOOM: Progressive Adjustment and Containment

When the magnitude is too large to both see details on a relative scale
while having an overview of the absolute scale, a zoom effect is often
used. When the tools are dynamic, the zoom effect is executed through
animation [5]. On paper representations of nanoscopic and cosmic
scales, the zoom effect is represented as side-by-side views where one
view is a magnified portion of the other. This magnified portion can
be of a zoomed in or zoomed out section, which is made even explicit
by outlining and linking the two views graphically.

The zoom effect is therefore similar to a comparison relation where
the magnification factor enables scale understanding. The zoom can
also function as a container relation where the zoomed in part of the
object is part of larger zoomed out object (i.e., nested views [11]).
Hence, in addition to depicting magnitude relationships, a zoom effect
also exhibits pairwise containment relationships between the graphic
composite’s objects.

5.3.3 LOCK: One Element or Measure to Compare them All

Lock strategies provide another interesting approach to concrete
scales. The general idea builds on locking the possible relation of an
object to a specific type as a constraint. Constraining of only the rela-
tion (“equals to”) allows for the exploration of equivalent conversions
along dimensions. Locking on a dimension and magnitude (e.g., a
comparison relation on the form of “is equal to, on a caloric scale”) al-
lows for exploration by facets, yielding to a collection of objects which
all share the same properties. We found the lock strategy is as popular
as the zoom one in our corpus, with 4% of the collection (14 images).

5.3.4 SMALL MULTIPLES: Build a Collection

Juxtaposing multiples of small elementary objects aid in establishing
a concrete scale through the use of a singular measure relation. Uniti-
zation is the most common practice of this strategy (11 out of the 28
cases), of which the sugar cubes in Figure 1b is an example.

Many other strategies can be built by combining various measure
relations. For the purpose of our framework, we have only reviewed
what we have found to be most popular during our analysis. As far as
our experience goes, all strategies can be deconstructed in terms of ob-
jects and measure relations as introduced in our framework and in the
following section, we will review an example of such deconstructions
on a series of graphic compositions that we have collected. Then, we
provide guidelines on how the framework can be applied in a design
process for the creation and analysis of concrete scales.



6 DECONSTRUCTION OF CONCRETE SCALES

We thoroughly investigate seven graphic compositions—that span
across the previously introduced taxonomy—based on the concrete
scale’s objects, relations and strategies. In the following, we outline
each infographic’s visual design and application domain, accompanied
by its CSML diagram depicting the composition’s conversion logic.

6.1 Scale of the Universe
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Fig. 7. Sequence from Powers of Ten (EamesTM, 2010) zooming from
human (center) to cosmic scale (right) and nanoscale (left) [5].

Powers of Ten [5] shows the relative scale of the Universe by con-
necting magnitudes of nanoscopic to cosmic distances, through a pro-
gressive zooming effect (Figure 7). It is considered the flagship ex-
ample for concrete scale after its completion in 1968 as a TV program
for educational purposes. The animation begins with a camera zoom-
ing out from a real-life scene—a picnic scenery at 100 meter)—in a
constant speed rate of one power of ten unit per 10 seconds. Once the
observable universe is within the field of view at 1024 meters away
from the picnic scene, it starts zooming back inwards towards the pic-
nic scenery concluding at a nanoscopic scales where quarks in a car-
bon atom’s proton are visible at 10−16 meters. The smooth transitions
between levels give the observers an overall sense of the scale as a con-
tinuum: there is no leap from one measure to another—only graphical
marks that note the field of view of the camera at every power of ten.
The result of the decomposition using CSML is depicted in Figure 8.
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Fig. 8. Schema CSML decomposing Powers of Ten animation (Figure 7).

Powers of Ten’s journey begins at a familiar level by establish-
ing the initial scale in a picnic scenery among people, a magnitude
of scale that we experience everyday. It then connects the anchor to
space (object-to-space) as the origin of a vertical axis ruler that will
be explored in both directions through progressive zooming. During
this axis exploration, graphical marks are added at every power of ten
units for object-to-object connections to the anchor. The zooming
animation reinforces the object-to-object connections, with a physical
time duration of 10 seconds between each objects. Powers of Ten is a
typical example of the ZOOM strategy introduced in section 5.3.2.

Powers of Ten is a dynamic adaptation of Boeke’s essay Cos-
mic View published in 1957 [4]. Several other films have also used
the same idea and techniques, including Cosmic Zoom produced by
the National Film Board of Canada (1968) [34] and Cosmic Voyage

(1996), which was nominated for the Best Documentary Short Sub-
ject Academy Award [21]. An interactive application (called Cosmic
Eye) has also recently been released [25]. All of these demonstrate the
great amount of attention Boeke’s concrete scale has received from
researchers and the public.

6.2 How Much Water and Air?
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Fig. 9. All the water and all the air (top, A. Nieman, 2010) compares the
volume of air and water with that of Earth [24]. All the water on Europa
(bottom, K. Hand, J. Cook, H. Perlman, 2012) features the volume of water
on Earth and Jupiter’s moon Europa [22].

Figure 9 depicts illustrations of the volume of water and air on
Earth and Jupiter’s moon Europa—represented as spheres resting on
the ground of the globe and the moon Europa. All the water on Earth,
including oceans, fresh water and clouds (1.4 billion km3) would fit
in a sphere measuring 1,390 km across. The sphere containing all
the air on the atmosphere measures 1,999 km across. The volume of
water on Europa is estimated 2 times as much as the volume of the
Earth oceans [22], corresponding to a 1,750 km wide sphere—lying
on Europa’s ground, in juxtaposition to the Earth and its water sphere.
While the graphics uses both Earth and Europa as a background, the
only Earth serves as an anchor for object-to-object volume compari-
son, since it is unlikely that Europa is familiar enough to laymen.

As we can see on the CSML diagrams of the two concrete scales,
both representations build on containment relations into spheres to
make it possible to manipulate volumes (water and air) in compari-
son to the original form of the Earth and the moon Europa.

Nieman suggests that “it is not just the familiarity with the globe
that provides a sense of scale; it is also the observer’s experience of
travel” [24]. Since different people have different experiences, he pro-
posed three versions of All the water for different audiences, where the
sphere is respectively centered on Europe, North America and Asia.

6.3 Sugar Scales

Nutrition facts often require extra effort to decipher amounts and units
that are not always easy to relate to with one’s needs. As such, they are
good candidates for concrete scales. Figure 10 depicts three alternative
designs using sugar (cubes and grains) as the reference scale.

Figure 10a is a close-up version of the tables of Figure 1b, where
calories are re-expressed using sugar cubes as the unit in a UNITIZA-
TION relation. Sugar cubes are organized into stacks acting as virtual
containers. Each food and drink declines by different quantities ac-
cording to its container or its typical portion size, which are then con-
verted into 15-calorie sugar cube stacks of, e.g., 9 cubes and 3/4 for
a 35cl can of soda (139 calories). Figure 10a shows the conversion
steps for sodas with the mechanism remaining identical to other cells
of Figure 1b. The comparison holds between an object-to-object re-
lationship between the different sugar stack containers. Since conver-
sions from calories to sugar cubes does not always result in a rounded
number, broken pieces of sugar cube show the remainders.

Figure 10b presents an alternative by filling a container with a con-
tinuous volume of sugar grains instead of discrete sugar cubes.This
conveys the nutritional value of drinks through the filling of plastic
bags (containers) with sugar grains for the object-to-object relations
within the bags. Since the bags all have the same capacity, the vol-
ume of sugar can be visually compared across and relative to the drink
packages. The CSML diagram for sugar grains is roughly similar to the
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Fig. 10. Examples of concrete scales that use sugar as a representative scale for measurement. (a) Sugar stacks (see Figure 1b) use sugar cubes
as a unit, while (b) Rethink your drink (adapted from anonymous [6]) employs plastic bags as containers for sugar grains to re-express the amount
of calories in foods. (c) Is sugar toxic? (Kenji Aoki, 2011) is another example of containment relations, where garden utensils are filled with sugar
grains to facilitate the estimation of one’s average consumption of sugar in different time spans ranging from 1 day to a lifetime.

one with sugar cubes. To formalize repetitive use of the same relations,
CSML also proposes a factorized notation (bottom diagram).

Figure 10c shows the average consumption of sugar across various
time spans by filling containers with the corresponding volume of
sugar grains. Since the volume grows exponentially, extra containers
are added using objects from the same family (e.g., gardening utensils)
that are large enough to be filled with the ever-increasing volume of
sugar. The CSML diagram differs from the previous example since
the containers cannot be accurately compared to each other due to the
objects’ varying volumes and shapes.

6.4 US Debt
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Fig. 11. CSML diagram of the US Debt example of Figure 1a.

US Debt [15] is a series of CGI data graphics that displays various
amounts of money, ranging from 100 dollars to the 115 trillion dollar
US debt using successive piles of $100 bills (see Figure 1a).

Figure 11 depicts the CSML conversion diagram following an AN-
CHOR and ADJUSTMENT scheme, with the initial landmark being the
$100 bill quickly transforming into a $10,000 wad. In-between mea-
sures are then added for adjustment (alternatively with a factor of 10
or 100), either to reach a specific intermediate or final amount (e.g.,
rounded values like 1 million dollar), or to be converted into a specific
object (e.g., a human-sized pallet of bills to serve as a comprehen-
sive landmark). This is visible in the diagram with the 1 trillion dollar
threshold (corresponding to a field of pallets) further emphasized as
it appears twice with no adjustment in-between. This inconsistency
is aimed at giving observers a break and to visually adjust the spatial
area in order to fully grasp the spatial occupancy of such a value as the
view changes and new anchors are introduced (e.g., human, aircraft).

The same author has produced other similar graphics for European
countries’ debts, this time using local landmarks (i.e., 100 e bills) and
anchors (i.e., the Eiffel Tower). Other representations of debts have
been introduced, such as US debt as a journey [1], where each mile
corresponds to a $5.8 million increase in debt, allowing to estimate
how far various US administrations have ’traveled’ across the country.

6.5 Discussion and limitations

We explored seven case studies using our taxonomy and the CSML

notation. From the systematic dissection of our corpus emerged a
perception of concrete scales as an iterative relation-to-relation ap-
proach, forcing a closer inspection of individual objects and relations,
and hence the underlying mechanisms. We leverage this methodology
as a basis for the creation and evaluation of concrete scales, which can
serve as a tool for more informed design practices in this domain. The
next section outlines practical guidelines for this methodology.

Despite the variety of application domains, we found that our
framework is suited for the deconstruction of a wide range of visual
compositions. However, we also found some limitations to our frame-
work, especially when the objects involved in Unitization are
used to convey non-visible measures that are difficult to decipher at
first inspection (e.g., planet weight in Figure 2a). In such cases, ad-
ditional indications are often necessary (e.g., the physical scale in the
background) to make it explicit what property to use for comparison.
Using SMALL MULTIPLES is one approach to overcome this potential
ambiguity (e.g., Figure 1b), but this strategy does not fully address the
problem. These difficult cases aim at expressing a non-visible measure
using a physical object—whose relative size may or may not reflect
reality—which potentially leads to misinterpretation. This category
of concrete scales falls into the category of isotypes [23], which are
special cases that continue to challenge our current framework.

7 CONSTRUCTION AND ANALYSIS

Based on our extensive review of graphical compositions and previ-
ous experience as designers, we propose a series of guidelines that we
hope can help in assessing the robustness of concrete scales. These
guidelines are organized in a question and answer format that design-
ers can use as a tool for both the evaluation and creation of graphic
composites through an iterative relation-to-relation approach. Addi-
tionally, we outline possible challenges and difficulties, of which we
do not always have a definite and optimal solution for. Regardless, we
still provide discussion and viable directions for a workaround.

7.1 Proceeding by blocks

When given a measure to assess, two strategies can be employed: a
bottom-up approach where we can progressively build CSML relations
(or blocks) on top of a measure until the object represents an experi-
enceable measure; or a top-down approach beginning with a familiar
object involved in relations, and deducing from this until we can link
the object with the measure to assess. We propose a series of ques-
tions that will attempt to assist designers in making informed choices
at the local level of a block while ensuring the coherence of the con-
crete scale as a whole. The following introduces a general bottom-up
process where the analysis and construction begins with the complex
measure to assess. The top-down approach follows a similar but in-
verted process. We will then illustrate the process with an example.



Q1. What makes the measure difficult to assess? We argue that
the primary goal of an effective concrete scale ultimately consists of
the re-expression of complex measures using physical objects, whose
visual properties can be used to estimate the quantity of how much
space these would occupy in the physical world. A measure is complex
because of either:

Unfamiliar unit. In essence, the first step is to re-express an unfa-
miliar unit in terms of spatial magnitude assessment through a unitiza-
tion CSML block. See (Q2).

Extreme magnitude. Anchor and adjustment, analogies and unitiza-
tion are all suitable mechanisms that allow for a comparative assess-
ment. We further follow up on this question in (Q4).

Q2. Is it a good unit? The difficulty of unitization lies in the search
for an appropriate object to represent the unfamiliar unit (e.g., a tea-
spoon of oil is a better representative for calories than an egg, which
is better known for its protein content). Objects with universally at-
tributed values (e.g., a coin and its monetary value) are ideal candi-
dates when they exist. Finding appropriate objects that will be able to
stand on their own without further explanation is equally challenging
for complex units, such as derived units like frequency and decibels.
Certain situations are even more troublesome when the correct inter-
pretation of the object depends on multiple factors like culture and the
viewer’s personal experiences. While in some cases the use of small
multiples partially addresses this problem, the criteria for what makes
a good unit in the unitization process remains open. Hence, we rec-
ommend designers to conduct surveys with some viewers to assess the
robustness of their choices. Moving on to (Q3).

Q3. Can/shall the physical property be used? Once the object for
unitization is determined, the next step is to convey the quantity that
amounts to the initial measure. To this end, a possible strategy is to
switch to the physical space and provide tools to help estimate the
spatial occupancy of the collection of tokens (e.g., Figure 1a), either
by using containers (see (Q6)), or by solving the problem of extreme
magnitude (see (Q4)). In certain cases, using the object’s physical
property may not be appropriate, especially when none of the inherent
properties of the physical object is borrowed (i.e., isotypes). In such
cases, our experience suggests the use of framing marks or text to
disambiguate the measure involved in the comparison.

Q4. Which technique to use? Previous works have provided in-
sights on the preferred techniques in the representation of spatial re-
lations [19] with anchor and adjustment being the most popular, fol-
lowed by analogies—a trend also reflected in our collection.

Anchor and adjustment. The first step is to identify a more familiar
object that will serve as the anchor in a comparison relation. See (Q5).

Analogies. Like anchor and adjustment, analogies also rely on
comparison relations though in this case, three additional objects are
needed to form two pairs involved in comparison relations. The first
pair should relate the object of extreme magnitude to a familiar object.
The second par, serving as the reference for the analogy, must involve
familiar objects whose relative magnitude is comprehended well by
the viewer. The difficulty here lies in the search for objects with re-
lational constraints in order to depict a meaningful analogy. While
analogies provide a good sense of proportional reasoning, it falls short
in conveying absolute scales by failing to contextualize the two anal-
ogous pairs along an absolute continuum. This further clarifies why
anchor and adjustment is the overall preferred approach.

Unitization. Unitization can also be used to convey a measure of
extreme magnitude by breaking it down into more relatable chunks by
using a preferred unit. As the accumulation of objects used as a unit
increases, these objects must be kept organized into a coherent volume
to remain easily countable, or enclosed into containers (see (Q6)).

Q5. What anchor(s) to use? We identified several concerns that play
a role in the choice of anchors. We break them down as follows:

Q5-a. In what spatial dimension(s)? Spatial measures can be one,
two or three-dimensional. The anchor should first be considered for
its familiar and unambiguous properties along the relevant dimensions

of the measure to be assessed (i.e., height, surface, volume). Several
anchors can also be used to complement one another, for instance, the
area of a soccer field and the height of an iconic tower can be combined
to eventually amount to a volume (e.g., Figure 1a). As a rule of thumb,
the combination of anchors, whose measurements are most familiar,
should take prominence over a single object that is less familiar or
with an irregular shape. Basic geometrical shapes also make good
candidates for manipulating volumes (e.g., the spheres in Figure 9).

Q5-b. In what magnitude? As the distance between two magnitudes
increases, the accuracy of our estimations diminish [27]. This suggests
that a good anchor should be familiar enough to have close spatial
properties to that of another object in order to retain precision. This
would also ensure that both objects will fit within the same real estate
to prevent visual unbalance.

Q5-c. Is the anchor of an extreme magnitude itself? Anchor and
adjustment lessens our grasp of absolute scale by limiting our com-
prehension along a relative scale [36]. While relative comparison is
important (Q5-b), it is equally significant to provide tools for contex-
tualizing such measures on an absolute scale. On this note, closest
anchors to human size will be the most comprehensive, yet may still
be too removed from humanly experienceable phenomena. Additional
landmarks must be used to establish a continuum between human-size
representations and the closest, yet still extreme, anchor. Hence, the
process is to iterate on (Q5), using the latest anchor as the measure to
be repeatedly assessed. (Q5-d) touches on coherence of a complete set
of anchors while (Q5-e) addresses precision and readability.

Q5-d. Is the set of anchors familiar and coherent? When more than
one anchor is involved in the representation, a good variety and consis-
tency should be used. This is especially true when addressing broader
audiences where discrepancies between anchors have been found to
cause confusion [19]. The target audience and cultural differences
should also be kept in mind when choosing anchors.

Q5-e. Is the concrete scale readable? Working with absolute scale
eventually requires a change in the representation’s zoom factor, par-
ticularly when distant landmarks are no longer legible. A proven tech-
nique to overcome this problem—while ensuring comprehension in
both relative and absolute scales—is to use a zoom technique [5, 19] to
adjust the representation space to the necessary magnitude. In concrete
scales, this is typically achieved through nested views [11], where a
new view of a different scale is displayed within the context of the
previous one. Visual marks can indicate the scale relationship or de-
signers can choose to present a progressive narrative using several im-
ages, each of which presents a different scale (e.g., Figure 1a).

Using larger sets of anchors at both the relative and absolute scale
has other merits over using a single anchor or analogy. Progressive
techniques help diminish fragmentation in scale cognition—an issue
that becomes more apparent when classifying objects on an absolute
scale with a lack of experience of in-between phenomena [17, 36]. As
a guideline, we suggest adding as many anchors as necessary to ensure
a continuum between familiar measures and those of extreme magni-
tudes. The more observers are exposed to potentially new anchors,
the higher the odds of enriching their own repertoire. This increases
the chance of recognizability (Q5-d) since many anchor points are not
necessarily universally identifiable and accurately measurable.

Q6. When and what containers to use? Containers can be useful
in adjusting units, especially when several instances of the same object
are used to equal a measure (see e.g., the gradation from a single bill,
to a wad, to a pallet of bills in Figure 1a). The guidelines for choosing
a container are similar to those for choosing an anchor (Q5-c): if a con-
tainer is too small (or too large) to convey a certain quantity, it can be
grouped into a larger container (or broken into smaller ones) to adjust
to the scale of the comparison relation. The same rules of continuity
and consistency for anchors (Q5-d) also applies for containers.

This set of questions informs the design and analysis of concrete
scales in terms of which technique and objects can be chosen. Sec-
tion 7.4 illustrates how to use the aforementioned block-to-block pro-
cess in a scenario. Two additional aspects in the design process are
discussed in the following section.



7.2 Layout Considerations

We have observed that traditional methods for comparison and com-
posite views apply to concrete scales. In particular, juxtaposition
seems to be preferred for pairwise comparisons of volumes, or com-
parison along a single dimension, while superimposition best suits
comparison of surfaces [8]. Nested views [11], also relevant to con-
crete scales, should be used for containment and zoom relations.

We know from Gestalt that comparison is facilitated when objects
are grouped and organized in coherent shapes. With unitization, there
is a potential that many instances of the same object used as a unit
may have to be depicted. Visually arranging these objects by aligning
or stacking them in an organized manner allows for a better distinction
of the different groups to be considered in a comparison relation (e.g.,
Figure 3d). More importantly, the methodized layout also makes it
easier to count how many objects compose the groups. Note that the
way objects occupy space will have a potentially significant impact
on their numerosity [2]—a bias that may be leveraged to impress the
observer but may substantially impair the accuracy of the scale.

7.3 Pragmatics

Bias in perception could be intentionally leveraged to make a stronger
point on certain facts. Its apparent power in capturing people’s atten-
tion and memorability can help communicate the gravity of otherwise
impalpable phenomena and how it impacts their lives. The choice of
objects in particular for anchor and adjustment or unitization can be
subjectively chosen, especially when the intent is, for example, make
the magnitude of a phenomenon appear even larger than it truly is
to alarm the public. Even though we strongly recommend against
the abuse of such practice—as it could impair an observer’s sense of
scale—designers can exploit such tools for purposes involving memo-
rability, familiarity, impressionability and engagement [3, 35] e.g., to
sensitize the public of certain issues.

7.4 Scenario

We illustrate the use of our framework in a simple scenario. Lisa, a
graphic designer working for the Keeper newspaper, has been asked
to provide a visual representation that contrasts the US debt with the
average yearly salary of an American in reaction to a major increase
in income taxes. She identifies that she should start with a unitization
(Q1), and finds that the debt represents about 1 year of work in av-
erage salary for roughly 3,000 people. With the measure of the unit
constrained, she needs a physical counterpart to represent this value
(Q2). She faces a problem of isotypes, since a yearly salary does not
translate into an existing object. For the lack of a more direct physi-
cal counterpart, she decides to use a human (worker) to represent the
average yearly salary.

The next question pertains to physical space (Q3). To cope with the
large number of people, she has a choice between packing people in
an organized space (Q4), or putting them into containers, such as a bus
or an aircraft (Q6). Using buses that fit 60 people, she calculates that
she would require 50 vehicles to fit all the workers. As she consid-
ers the pragmatic aspects, she decides that using containers drastically
reduces the number of objects for the final relation. She prefers to
keep people as a unit, which she believes will be more impressive and
comprehensible than using a container, of which the capacity can be
misinterpreted depending on the reader’s experience.

Lisa tries to address a problem of extreme magnitude (Q4), as she
needs to convey spatial occupancy of 3,000 individuals. She finds out
that the average height of a human is 5’10 (1.70m). Stacking all of the
workers amounts to 5,100 km high, which she knows to be approx-
imately the altitude of Kilimanjaro. While thinking of juxtaposing
a human stack next to the mountain, she identifies two major flaws.
First, despite its stature as an iconic figure, it is unlikely that readers
will be aware of the altitude of Kilimanjaro. Second, it is uncommon
to think of a crowd of human beings in stacks, but rather in terms of
land surface they occupy. She discards the stack idea and explores how
large a surface the crowd would occupy if organized on a grid using
1m2 tile per person: this results to a 50m x 60m area. She then looks
for a good anchor to use as a landmark to help assess this surface (Q5).

As she considers other breaking news to appear in the next issue
of the newspaper, she finds out that a popular football player reacted
negatively to the government’s decision on the tax increase and hence
using a football field would thus make a perfect anchor candidate for
a compelling narrative. She finds out that her crowd fits within half of
the field: an easy to grasp concept. Now, Lisa has her full sequence
of relations, consisting of re-expressing the debt in terms of years of
work with a human as a visual unit, organized in a football field, an
easily relatable structured space.

8 DISCUSSION AND RESEARCH AGENDA

This analysis of design practices and strategies for concrete scales
raises many empirical questions including the effectiveness and effi-
ciency at accurately depicting complex measures and how they affect
an observer’s construction of accurate mental models of scales in the
long run. Our work examines design-related questions regarding the
choice and adequacy of techniques, anchors and containers, and we
provide tools to guide designers in making informed decisions in their
design processes. We believe that there is no general answer to what
makes an optimal concrete scale, since many factors come into play.
As illustrated in our scenario, the topic itself, the message to convey,
the context, the audience, pragmatic aspects and constraints may play
a role in the final design. However, we have opened up questions that
would help shed light on scale cognition and communication, which
we propose as the next steps in the research agenda in this area.

How do people conceive and communicate complex measures? De-
spite the large size of our corpus, it was difficult to ascertain highly-
specific trends and practices from the material due to the variety in the
themes and measures. More studies, like that of Ma [19], should ex-
amine what people mentally conceive or draw when asked to represent
a given complex measure. Such studies would provide great insights
on how to push empirical research further on using specific strategies
or practices under controlled conditions.

What defines familiarity? The notion of familiarity is tightly linked
with our ability to construct mental models of scale through cognitive
mechanisms like anchor and adjustment or unitization. Yet, what de-
fines familiarity to observers and how designers can select the right
objects remains unclear. Even when we are familiar with an object,
the question whether we can accurately recall its absolute dimensions
is far from being certain. This would provide an interesting avenue
to investigate, especially when our memory and accuracy of various
anchors seem to be distorted from reality in the first place.

Empirical comparison. From this work also emerged the need
for empirical evaluations that examine the multiple effects of vari-
ous strategies, conversions, sets of anchors, containers and units on
scale cognition. Questions such as “what makes a good set of anchor
points?”, “at which magnitude granularity should we add anchors?”,
could be answered with further exploration of this question.

9 CONCLUSION

This paper is the first attempt at examining the design space of con-
crete scales through a deconstruction and analysis of a large corpus
depicting measures of extreme magnitudes and unfamiliar units. In-
formed by our extensive literature review and in-depth visual analy-
sis, which encompasses scale cognition mechanisms in psychology,
we outline the different types of measure relations and representation
strategies that are commonly used. We also demonstrate our frame-
work through several case studies. Lastly, we contribute design rec-
ommendations and pinpoint potential pitfalls that we hope will serve
as reference tools for designers and researchers alike, and propose di-
rections for further research in this area.
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