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Joint Contour Nets

Hamish Carr, Member, IEEE and David Duke, Member, IEEE

Abstract—Contour Trees and Reeb Graphs are firmly embedded in scientific visualization for analysing univariate (scalar) fields. We
generalize this analysis to multivariate fields with a data structure called the Joint Contour Net that quantizes the variation of multiple
variables simultaneously. We report the first algorithm for constructing the Joint Contour Net, and demonstrate some of the properties
that make it practically useful for visualisation, including accelerating computation by exploiting a relationship with rasterisation in the

range of the function.

Index Terms—Computational topology, contour analysis, contour tree, reeb graph, reeb space, joint contour net, multivariate

1 INTRODUCTION

SIMULATIONS of physical phenomena have three major
types of data: scalar, vector and multi-variate (multi-
field). For scalar and vector data, many visualization techni-
ques exist, from colour maps and glyphs to feature recogni-
tion and display. In recent years, these tools have included
topological analysis to support visualization both analyti-
cally and algorithmically.

Research has only just begun to analyse the topological
relationships of two or more properties. We report on the
Joint Contour Net, an extension of the Reeb graph, that
expresses the relationship between subsets of the domain
with common properties. Developing this representation
depends on early notions of the contour tree as the relation-
ship between explicit contours or regions, however, rather
than working directly from Morse Theory.

2 ScALAR FIELD TOPOLOGY

For a scalar function f on a continuous d-manifold M, a level
set for isovalue h € IR is the inverse image of h:

fHh) ={zeM: f(z) = h}. (1)
In 2D, level sets are referred to as isolines, and in 3D, as isosur-
faces. Since a level set may not be fully connected, we call a sin-
gle connected component a contour. For a Morse function f,
contours have one dimension less than the original manifold:
e.g., contour lines on a topographic map have one dimension
where the surface has two.

In practice, continuous Morse functions with infinite
differentiability are intractable, and computational topol-
ogy uses piecewise-continuous functions which may or
may not be differentiable. These are usually defined on a
mesh composed of polygonal, polyhedral or polytopal
cells, where the value of f is only known at the vertices
of the mesh. Morse behaviour is assured by simulation
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of simplicity [21], simulation of differentiability [20],
and/or Discrete Morse Theory [22], which provides a
combinatorial equivalent of Morse functions, reconstruct-
ing a smooth function for the purposes of analysis.

An alternate approach to constructing a smooth func-
tion is to work with a quantized representation (i.e., dis-
cretized in the range of the function). Weber et al. [45]
relaxed the constraint of unique values, collecting isoval-
ued regions and using them for topological analysis, an
approach later extended to arbitrary dimension by Allili
et al. [1]. More recently, Duffy et al. [14] have recognized
that quantization of values in the range must also be
taken into account: we will defer this to Section 5.

One form of analysis is the Reeb graph [34], which con-
tracts contours to points, giving a graph description of
connectivity. For simple domains, this is the contour tree
[3]. Both structures are important in graphics and visuali-
zation because they capture the relationships of all con-
tours of a function. Moreover, their combinatorial
structure, based on equivalence classes between contours,
subdivides the domain into regions of common behav-
iour, an important property for analysing data. They have
been used for acceleration of isosurface algorithms [9],
volume rendering [44], comparison of surface shapes [27]
and of protein molecules [46], topological simplification
of data sets [9], and reduction of high-dimensional data
to landscape representations [23], [43].

Van Kreveld et al. [41] computed the contour tree for a
mesh of N simplices in O(N log N) time in two dimen-
sions, O(N?) in higher dimensions, by explicitly con-
structing a contour at high isovalues, then efficiently
tracking changes as the isovalue varied. Carr et al. [8]
reduced the simplicial mesh to a graph and computed
connectivity of upper and lower level sets with isovalued
sweeps and Tarjan’s Union-Find algorithm [39], then
merged the results into the contour tree. Chiang et al. [10]
applied this to a graph constructed from monotone paths
between critical points: a similar approach was used by
Carr and Snoeyink [7] to extend to arbitrary mesh types.
Pascucci and Cole-McLaughlin [32] and more recent work
has generalised to parallel algorithms [28], [29], [32],
while other work has described how to simplify the con-
tour tree and reduce its size [9].
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For the Reeb graph, Pascucci et al. [33] gave a fast
streaming algorithm editing the Reeb graph locally as
simplices are added to a two-manifold. While worst case
runtime is at least O(N?), this is rare, and the algorithm is
fast in practice. More recently, Tierney et al. [40] com-
puted the Reeb graph in O(N?) by cutting a volumetric
mesh along contours, applying the contour tree algorithm
of Carr et al. [8], then repairing the cuts to construct the
Reeb graph. Doraiswamy and Natarajan [12] have since
extended this to arbitrary dimensions and reduced the
memory overhead to O(N), thus making the algorithm
more efficient in practice. Most recently, O(N log N) time
algorithms have also been described for both contour
trees and Reeb graphs [24], [31], although earlier algo-
rithms may still outperform them in practice.

3 MULTI-VARIATE TOPOLOGICAL ANALYSIS

Although multi-variate computational topology is in its
infancy, but four approaches can be identified: Jacobi sets,
Reeb graph comparison, Reeb spaces, and range tessella-
tion. For clarity, we will use multi-field to refer to functions
of the form R? — IR, and multivariate data to refer to
computational discretizations of multi-fields, although this
distinction is not common in the literature.

Jacobi sets were described by Edelsbrunner and Harer
[17] as the systematic variation of critical points in multi-
fields. These are extracted by taking a contour with respect
to one variable, restricting another variable to that contour,
and finding the critical points of the restricted function. As
the first variable varies, the critical points sweep out paths
in the domain. Moreover, Jacobi Sets can also be defined for
time-varying data sets, and constructed in polynomial time
[18]. Jacobi Sets can be simplified with rules similar to the
contour tree [30].

A second approach uses the Reeb graph and contour
tree to compare scalar fields. Hilaga et al. [27] used graph
matching on Reeb graphs of different two-manifolds to
recognize shape similarities. Zhang et al. [46] extended
this to three-manifold functions, computing the contour
tree with quantized data, then graph matching to recog-
nize similar molecular shapes as expressed in the electro-
static potential field. Schneider et al. [37] took contour
trees for two properties in a simulation, simplified the
contour trees, then compared the overlap of features
defined in the contour tree. While these papers have
shown that the Reeb graph/contour tree can be used for
comparison, they merely identify similarities between
individual fields rather than giving overall structure.

A third approach starts by extending the Reeb graph to
multivariate functions. Edelsbrunner et al. [19] did so, call-
ing the result the Reeb space. We will illustrate an example of
a Reeb space in Section 4, but observe that this is tightly
linked with the mathematical analysis of singular fibers
[35]. This analysis has been completed for functions of the
form IR — IR* and R' — IR®, but has not been accompa-
nied by an algorithm for computation.

Edelsbrunner et al. [19] reported a complex and
mathematically formalised algorithm for the Reeb space,
lacking implementation details and asymptotic analysis.
Moreover, the algorithm reported only works for 4 or
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fewer variables. In contrast, our approach works on prin-
ciple for an arbitrary number of variables. More recently,
Carlsson et al. [5] generalised a related notion, persis-
tence, to higher dimensions. Their algorithm, however, is
O(m’n*) where n is the number of properties and m is the
number of cells in the input complex.

A fourth approach observed that statistics of isosurfa-
ces were closely related to histograms [6]. Further devel-
oped by inverse gradient weighting [36], the latest work
has shown that the relationship is defined by formal mod-
els of integration over interval volumes [14], typically
defined by unit intervals in the range. This approach was
used to improve scatterplot visualisations of continuous
phenomena by using graphics hardware to project tetra-
hedra into the range of a function [2]. The relevance of
this line of work is that it projects the graph of the func-
tion from an m + n-dimensional embedding space. As we
will see later, this provides a method for accelerating
computation of the Joint Contour Net.

In short, while some work has been done on multivariate
topological analysis, what is lacking is a simple, efficient
algorithm that computes usable structures. We report such
an algorithm for the Joint Contour Net or J[CN, which com-
putes an approximate representation of multi-variate topol-
ogy. Where m > n, the JCN is an approximation of the Reeb
space. For m = n, the Reeb space is identical to the manifold
of the function, but for m < n, the Reeb space is undefined.
This is of particular concern when analysing scientific data,
as it is common to compute many properties on a grid, so
that m < n.

In contrast to the Reeb space, since the JCN is based on
explicit subdivision of geometry, it can be computed even
when m < n. For such cases, however, the JCN does not
compute either the Reeb space or an approximation to it.
Instead, it computes a graph representation of a remeshed
version of the input data. We will, however, defer discus-
sion of the details of this until Section 7, and start by gen-
eralising the notion of contour contraction.

4 GENERALIZED CONTOUR CONTRACTION

It is straightforward to extend level sets to multi-variate
functions. Instead of a scalar function f : IR" — IR, we shall
consider scalar functions of the form f:R™ — IR", and
define a level set for an isovalue h € IR" to be:

FUh)={x e M CR": f(z) =h}. (2)

As before, a contour is a connected component of a level
set: one method of constructing the level set for a multi-
variate isovalue h = (h4, ..., h,) is to decompose f into sca-
lar functions fi,.. ., f,, and take the level set f; !(h;) of the
first component h; of the isovalue. As an example, we will
define a bivariate function f: A C R® — R?, where A =
[_17 1] X [_L 1] X [07 1]/ and f = (flva)/ where fl('rvyv Z) =
Vvt +y*+ 22 is a spherical distance field centred at
the origin, and fy(z,y, z) = z is linear in z. As shown in
Fig. 1, the level sets of f; are hemispheres. We take as a
second function fy(z,y, z) = z, whose level sets are planes
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Fig. 1. The variation in level sets of a bivariate function can be expressed as a two-manifold. Here, the function f; is a distance field, and the function
f2 is a height field. If we take an isosurface of f, then compute the Reeb graph of f, restricted to that surface, we get the sequence shown on the
right. If we take an isosurface of f, then compute the Reeb graph of f; restricted to that surface, we get the sequence displayed along the top. Note
that the Jacobi Set in this example is a subset of the edges of the Reeb Space projected back into the domain of f.

parallel to z = 0. Then, where the domain of the function is
a three-manifold, the level sets of f; and f, are two-mani-
folds, possibly with boundary, and the level sets of f are
one-manifolds.

Fig. 1 shows a small example of a bivariate function com-
bining a distance function as f; and a height function as f.
Isosurfaces of fi are hemispheres truncated to the domain 4,
(right). We show contours of f, on these isosurfaces, and
their contour trees. As h; varies, the Reeb graph sweeps out
the Reeb space, as shown. Equally, we can fix h; to get isosur-
faces of f5, in this case flat sheets. Plotting the contours of f;
on these sheets, we get the sequence along the top. Here, the
Reeb graph remains combinatorially consistent across all iso-
values, but the values of the critical points change, and
unsurprisingly, the Reeb space is again swept out.

As with the Reeb graph, any contour of f contracts to
a point on the Reeb Space. And, since Jacobi Sets track
the evolution of critical points of one property with

respect to level sets of another, it then follows that the
Jacobi Sets in this representation are a subset of the edges
of the Reeb Space. To be precise, the critical points of f;
or f, trace out the internal edges of the Reeb Space, but
not necessarily all of the edges at the extreme values of
the domain. In Fig. 3, for example, computing the Jacobi
set by analysing critical points of f, on isosurfaces of f;
extracts all non-manifold edges of the Reeb space, but
doing so by analysing critical points of f; on isosurfaces
of f, does not extract the edges at minimum and maxi-
mum values of f5. This occurs because the formal defini-
tion of Reeb space assumes a manifold without
boundary, where our example has boundaries. Moreover,
the Jacobi Set is usually shown in the domain of f, rather
than in the Reeb Space.

This process of contracting contours to points has a
drawback. Each time we fix an isovalue, we reduce the
dimensionality of the graph of the function M by one.
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Fig. 2. Contour trees & JCN, where f: R? — IR?. Note how the JCN
retessellates the manifold based on properties of the range rather than
of the domain.

Thus, for m <n, our level sets will in general have
dimension zero (points) or be empty, and the Reeb space
will be the original manifold .

5 FRAGMENTS AND SLABS

Following Hilaga et al. [27], we use connected compo-
nents of interval regions instead of contours. As observed
by Dulffy et al. [14], these are of full dimension, allowing
intersection without dimension loss.

In Fig. 2, we show a simple two-dimensional exam-
ple. Here, instead of contour lines, we consider quan-
tised contours: note how the dashed lines divide the
mesh into regions of uniform connectivity. For clarity,
we will use fragment to refer to such a region in a single
cell, but slab to refer to such a region with respect to the
entire mesh.

Since fragments are adjacent across cell boundaries,
we collect them across cells to compute the contour tree,
as shown on the sides of Fig. 3. For quantized data on a
simplicial mesh, the resulting tree is identical to the con-
tour tree for a suitable choice of quantization.

For multi-variate data, we intersect slabs, as in Fig. 3. We
define a Joint Level Set at isovalue h € Z" as:

f4h) ={z € M : round(f(x)) = h}. (3)

For simplicial meshes, Joint Level Sets are not always
connected, so we define a slab to be a single connected
component of a Joint Level Set, in the same way that a
contour is a single connected component of a level set.

In practice, we assume f is piecewise linear over a sim-
plicial mesh. The slabs in each simplex are convex
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polytopes of full dimension - polygons in 2D, polyhedra
in 3D. Combining the Joint Slabs of all simplices gives a
slab decomposition of the entire domain, where adjacent
slabs may or may not share the same discrete isovalue(s).

6 JOINT CONTOUR NETS

After extracting fragments for each simplex, each slab in
the entire mesh is a union of connected fragments in dif-
ferent simplices. By computing fragment connectivity, we
can therefore identify the slabs.

Since fragments are adjacent between cells, the Joint
Contour Graph G is their dual graph. Here, nodes repre-
sent fragments and edges represent adjacencies. We then
see that slabs are equivalent to connected components of
isovalued nodes in the Joint Contour Graph.

We now perform a final reduction to find the con-
nected components of each Joint Level Set, applying
Tarjan’s union-find [39] to edges of the Joint Contour
Graph between isovalued nodes. This contracts compo-
nents as identified by Reeb [34], and results in the Joint
Contour Net or JCN, an abstraction which captures the
systematic variation of all properties simultaneously.

Expressed in pseudo-code, the JCN algorithm consists of
four phases: division of the domain into fragments, con-
struction of the Joint Contour Graph G, union-find to find
slabs (i.e., nodes in the JCN .J), and a final phase to identify
the edges of J. In practice, Phases I and II can be combined,
as can Phases III and IV.

In Phase I, we start off with the mesh M, = M. At each
iteration of Steps 4-8, mesh M;_; has each cell divided with
respect to property f;, generating a new subdivided mesh
M; at each stage. When complete, M, then holds the Joint
Contour Slabs as defined above.

Phase II then constructs G from the fragment adjacencies.
In practice, this will actually be computed during Phase I as
part of the mesh data structure.

Phase III then applies Union-Find to identify the nodes of
J. Initially, each representative in the Union-Find corre-
sponds to a fragment-i.e., a node of G. As each fragment K,
is processed, each neighbour K; is examined. If
fi(K,) = fi(K) for all 4, then the fragments have identical
values, and an edge (a, b) is added to the Union-Find struc-
ture. When complete, the connected components of U repre-
sent the nodes of J.

Finally, Phase IV strips out connected components of U
to be used as nodes in J, then iterates through all cells
K,, K. For each pair of cells K,, K; that are which share
a common m — 1 dimensional face but do not share all
isovalues, K, cannot be in the same component of U as
K3, so an edge is added between their representatives in
J (if already present, this operation has null effect). When
complete, the JCN J has been constructed.

6.1 Algorithmic Analysis

To analyse this algorithm, we observe that it is dependent
on the number N of simplices in the input mesh, the
number Q; of levels of quantization for each function f;,
the number r of functions defined, and the number d of
input dimensions.



1104

Algorithm 1 Algorithm for Computing JCN

Require: For simplicial mesh M with functions
fi,..., fn sampled to integer values at vertices of
M, compute Joint Contour Net J

1: PHASE I: CREATE FRAGMENTS
2: Set Mg =M

3: fori=1ton do

4. for all Cells K € M;_1 do

5; Initialize subdivided mesh M; + 0
6: for j = min(f;|x) to maz(f;|x) do
7: Add fragment K () f~*([j — 0.5, +0.5]) to M;
8: end for
9: end for
10: end for
Ensure: M,, holds the fragments F; of f
11:

12 PHASE II: COMPUTE JOINT GRAPH G

13: for every fragment F; in M,, do

14:  for every fragment F; adjacent to F; do

15: Connect F, Fy in G

16:  end for

17: end for

Ensure: G is the dual graph of the fragments

18:

19: PHASE III: COMPUTE NODES OF JCN J

20: Let Ny = Size(M,,) be the number of fragments in
M,

21: for a =1 to Ny do

22:  Initialize Union-Find: U(a) = a

23: end for

24: for a =1 to Ny do

25.  for all cells K}, € M, adjacent to K, do

26: if fz(Ka) = fl(Kb)Vl < i <n then

27: Union(U, a,b): Add e = (a,b) to U
28: end if

29:  end for

30: end for

Ensure: The representatives of U are the slabs
31:

32: PHASE IV: COMPUTE EDGES OF JCN J
33 for a =1 to Ny do

3¢ If U(a) = a, add a as node to J

35 end for

36: for all edges (K, K,) € G do

37.  if fi(K,) # fi(Kp) for any 1 < ¢ <n then
38: Add edge (U(a),U(b)) to J

39:  end if

40: end for

Ensure: J now holds the Joint Contour Net

In Phase I, the loops over d and over the cells are func-
tionally independent, so we assume each cell K € M is sub-
divided d times. The analysis then depends on the number
of cells produced by intersecting @, ..., Qq fragments. Bar-
ycentric interpolation of f on the simplicial mesh means
that each set of fragments has parallel cuts: an easy upper
bound on the number of fragments is k = [, Q;, although
finer analysis might be found in the extensive literature on
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ham-sandwich cuts [16]. Accordingly, an upper bound on
the computation time for Phase I is O(rNy) time, where
N; = O(kN). Here, the factor of r is because each cell is
r-dimensional, so insertion of new cells is assumed to take
O(r) time.

Phase II iterates over every fragment in the mesh, then
over every adjacent fragment. Assuming that retrieving
each pair of adjacent fragments takes O(1) time, as does
storing them in the graph G, then this phase takes
O(N, + Ny) time, where N, is the number of edges in G, i.
e., the number of adjacencies between fragments.

While graph connectivity means that N, may be O(N?), a
tighter bound exists. As we will see in Section 7, each frag-
ment is the projection of a hypercube in the range onto the
graph of the function—i.e.,, a form of rasterisation. Thus,
each fragment is a convex distorted hypercube, possibly
intersecting faces of the simplex.

Now, a hypercube of dimension r has 2r faces, and
each side of the simplex can only add one face by trun-
cation. Thus, each fragment can have at most 2r +d+1
faces, each of which contributes at most one edge to G.
Thus, N. = O((2r + d)Ny), which is dimension-dependent
but not quadratic in the number of fragments.

Phase III performs a Union-Find to identify slabs (nodes
in the JCN J). Here, each adjacency is considered twice, but
comparing n fields means that the cost will be O(r) each
time, for an overall cost of O(rN,). However, once the com-
parison is complete, at most N. edges will be added to the
union-find structure, giving an overall cost for this phase of
O(rN, + Nea(N,)), where a(z) is the slow-growing inverse
Ackermann function [39].

Phase IV iterates through the Union-Find U in at most
Nya(Ny) time to extract the vertices of J, then iterates
through the adjacencies. Each comparison may take O(r)
time, giving at most O(rN,) time. Adding edges to J how-
ever is assumed to take O(1) time, for an additional time of
O(N,), which can be subsumed. Phase IV therefore takes
O(Nyja(Ny) + rN,) time in total.

Adding the costs, we get O(Ny) + O(N. + Ny) + O(rN.+
Nea(N.)) + O(Nya(Ny) +rN,). Since N. = O((2r + d)Ny),
we can collapse this and get O(rN, + Noa(N.)).

While this is polynomial, the upper bound is very loose:
the algorithm is primarily sensitive to k, the product of the
number @; of quantization levels of the properties. Recent
work [13] has shown that up to 95 percent of cells have only
one quantization level, and most cells only have a few quan-
tization levels. As a result, the worst-case behaviour is likely
to occur only in a small number of cells, and can probably
be bounded by examining the Jacobian of the function [14].

7 PROPERTIES

The JCN has a number of interesting properties that are
likely to be useful for multi-variate analysis. Some of
these properties are essentially theoretical and or algorith-
mic, while others are practical and related to known visu-
alization tasks.

7.1 Theoretical Properties

It should be clear from the discussion in previous sections
that the JCN and the Reeb Space are effective
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Fig. 3. The Joint Function is divided into fragments by intersecting fragments for each individual function. The Joint Contour Graph G is then con-
structed as the dual graph of the fragments. Finally, the JCN .J is constructed by contracting adjacent nodes in G with matching values. Note that the
same contraction can be used to compute individual contour trees either from the JCN or directly from the individual contour graphs.
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Domain Tessellation
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Fig. 4. A function g : IR — IR’ that defines a helix. At left, Gr(g) is shown as a space curve, once with segments coloured by uniform tessellation of the
domain (top), once coloured by uniform tessellation of the range (below). At right, Gr(g) shown by projection into the range: the same coloured seg-
ments now become fragments with respect to the range, even though multiple components may project to the same range cell. As a result, computa-
tion of the JCN is equivalent to rasterising Gr(g) with respect to pixels in the range (as with Continuous Scatterplots [2]. Note that the segments are

of zero thickness, but are exaggerated for the purposes of illustration.

generalisations of the Reeb Graph and the Contour Tree
and closely related to the analysis of singular fibers.
Thus, the JCN can be viewed as part of the iterative pro-
cess by which we explore the relationship between formal
analysis, algorithmic development, and practical compu-
tations. Since the implications are broad, we list some of
the issues we have identified, along with sketches of
potential developments.

Reeb Graph/Contour Trees. Good generalisations can often
be reflected back to the original example to develop further
insights. Since the JCN generalizes Reeb Graph computa-
tions, new algorithms may be expected, although the work
of Hilaga et al. [27] can now be recognized as essentially the
same computation..

Pascucci et al. showed a sort-based (¢ log (¢)) bound on
contour tree computation [42]. However, quantization in
the form of the radix sort escapes the general O(t log (t))
bound on sorting. Since the JCN algorithm exploits quanti-
zation, so this lower bound does not apply.

A less obvious point is that most existing Contour Tree
and Reeb graph algorithms rely on a global sort order of the
vertices, and that this global property hampers parallel
computation. Our algorithm processes each simplex inde-
pendently in Stage I: as a form of rasterisation, fragment cre-
ation can be parallelized. While further work is needed to
produce an efficient implementation, the absence of any
global ordering means that the new algorithm can be
expected to parallelize relatively easily. The mapping from
discrete fragments onto JCN nodes should replace the
global sorting step of existing algorithms with a radix sort,
which is easy to parallelize.

Re-meshing. As identified by an anonymous reviewer, the
effect of the fragment and slab computation is to retessellate
the function with respect to range properties instead of
domain properties. To see this, consider the bottom row of
Fig. 2, in which the left hand image shows the original mesh
with each cell broken up into fragments, and the middle
image shows the slabs. Since these slabs fill the space, they

constitute a remeshing of the domain. Moreover, one can
project them onto the graph Gr(f) of the function and
observe that each slab constitutes an identifiable fragment
of Gr(f).

However, since this small example is R? — R?, Gr(f) is
embedded in IR', which is difficult to illustrate. We instead
show a simplified example in Fig. 4 of a function
g: R— R* e, a space curve in IR?, in this instance a helix,
ie, g(x) = (y = cosx,z = sinx). Since our fragments and
slabs are defined by taking intervals in the ranges of y, z, the
effect of this is to retessellate the graph into the coloured
segments shown (note that they have no thickness except
for the purposes of illustration).

Given this retessellation, we can now see that as the num-
ber of slabs increases, the tessellation will converge to the
original space, with each coloured region in general repre-
senting a slab composed of one or more fragments. And,
since the JCN is the dual edge graph of these slabs, conver-
gence to the connectivity of the Reeb Space then follows,
although true convergence requires handling higher-order
faces as well.

Relationship to Reeb Space. In Section 4, we observed that
m >n, m =mnand m < nneed to be treated separately. For
m > n, the Reeb Space, the JCN and the singular fiber analy-
sis are well defined, and the JCN is an approximation of the
connectivity of the Reeb space.

For m = n, joint contours or fibers (i.e., inverse images of
values in the range) will in general be of dimension 0 - i.e,,
finite collections of individual points, and the Reeb space is
identical to the graph of the function. For the same reason,
singular fiber analysis does not handle this case at present.
The JCN, however, can still be computed, as it is explicitly
based on geometric subdivision.

For m < n, no Reeb space is defined, but the JCN can
still be computed, as shown in Fig. 4. Since the JCN
remeshes Gr(f), and varying mesh representations is of
practical value, we expect that geometric [9] information
can be captured and analysed this way.
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For example, in the JCN, the density (resolution) of
the tessellation will be related to the rapidity with which
the quantization changes—i.e., to the Jacobian of f. We
note that high gradients in volumetric data lead to alias-
ing problems, and observe that, in previous work, alias-
ing was resolved by exploiting continuity [14]. As a
result, we may be able to look at local correlation of vari-
ables by examining the density in the domain of the
slabs. Second, there may be graph algorithms which use
properties of the JCN to identify boundaries that do not
map to isovalued boundaries or Joint Contours. And
third, the slab density and the related graph representa-
tion may still be useful even for cases where m < n, and
the Reeb Space is equivalent to the original domain.

7.2 Practical Properties

In addition to theoretical relationships, another set of prop-
erties can be identified, all related either to practical proper-
ties of the Reeb Graph/Contour Tree, or to potential
visualization tasks:

Representation of Multi-Variate Contours. Each uni-variate
or multi-variate contour corresponds to a connected set in
the JCN. This follows directly from the characterization of
the slabs as equivalence classes of contours used in the
proof above.

Extraction of Contours. Either uni-variate or multi-vari-
ate slabs can be extracted using the JCN. Again, from
the characterization of the slabs as equivalence classes of
contours, this follows provided that we store a single
fragment as a representative of each slab (i.e., node in
the JCN). Extracting a contour can then be done with
depth-first or breadth-first search through the cells of the
mesh, following to adjacent fragments. Alternately, since
the fragment adjacency is encoded in the Joint Contour
Graph, a simple flood-fill can be used to extract all rele-
vant fragments.

Contours and Features. Uni-variate contours cut the
domain into pieces, thus defining features: moreover, the
nesting relationship induced by this property is one of
the definitions of the Contour Tree [3]. Most multi-variate
contours, however, do not cut the domain into pieces.
However, and perhaps more interestingly, not all algo-
rithms use contours. Instead, methods such as level sets
use alternate formulations to construct boundary surfaces
that separate an inside from an outside, or otherwise seg-
ment the domain into features.

Given any such boundary that cuts the domain into
pieces, let B be the set of slabs through which the boundary
passes. Since B is a superset of the boundary, removing it
will also disconnect the domain. Since each slab corre-
sponds to a JCN node, removing the nodes corresponding
to B must also disconnect the JCN.

Inversely, since each node in the JCN represents a slab in
space, and the edges of the JCN represent face-adjacencies
of the slabs, a connected set NV of nodes in the JCN repre-
sents a contiguous region of the domain. And, if N is a cut
set for the JCN, each cut component will correspond to a
disjoint region of the domain—hence, cut sets in the JCN
induce cuts in the domain that separate potential features. It
then follows that graph properties such as minimal cut sets
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in the JCN are likely to reveal interesting boundary phe-
nomena in the multifield f.

Representation of Sub-Nets. For any subset of the variables
fi, the JCN for those variables can be computed by repeating
Phases III & IV, using the JCN for all variables as the input
graph, and collapsing nodes that match on the chosen sub-
set of variables. Thus, partial relationships between varia-
bles can be found directly from the JCN. In particular, the
Reeb Graph and Contour Tree for any variable can be
extracted directly from J.

Quantization Simplifies. Varying the level of quantization
simplifies the Joint Contour Graph. This is a direct conse-
quence of the construction being a form of retessellation of
the graph of the function. Simplified versions of the JCN
then follow, as they are constructed from a simplified Joint
Contour Graph in the first place.

Moreover, if coarse quantization levels use a subset of
the boundaries at the finest level, adaptive refinement can
be used to compute the Joint Contour Graph. In short, the
quantization need not be uniform in the range, and it
should even be possible to vary it according to topologi-
cal properties of a coarsely computed version.

Also, topological simplification can be driven by suitable
geometric measures [9], topological simplification can be
driven by geometric information, as with the Contour Tree
and much of the existing literature on remeshing. We also
note that this idea—of varying the level of simplification,
was prefigured by Hilaga et al. [27] and Zhang et al. [46] in
their computations of coarser versions of the Reeb Graph
and Contour Tree.

We show the effects of varying levels of quantization
in Fig. 5 using a synthetic two-field data set. One field
has constant values along each row, decreasing from top
to bottom. The second field approximates a radial dis-
tance function, with the origin at the center of the mesh.
As expected, the combined fields exhibits a four-fold
symmetry; the figure shows that the JCN captures this
feature even at quite coarse resolutions.

This ability of the JCN to discriminate features at coarse
levels has already been exploited to analyse data arising in
a specific domain problem, identifying the point of
“scission” within simulations of heavy nuclei [15], derived
from density functional theory (DFT). Fig. 6 uses four JCNs
to show the joint topological structure of proton and neu-
tron density fields for fermium. These JCNs were computed
from volumetric density data in turn derived from two sites
along a trajectory in the high-dimensional space underlying
DFT. The data are 8-bit samples; the top row was con-
structed using a slab width of 32, the lower row a slab width
of 16. Rectangles highlight the position of a significant com-
binatorial event, the point at which a nucleus split into mul-
tiple (in this case two) fragments.

Graph Layout. We have deliberately not considered the
design and implementation of graph layout specific to
the JCN. Any such layout algorithm needs to begin with
an understanding of the graph aesthetics, that is, the
mapping between layout and relevant information
encoded within the JCN, and how these might interact
with more generic criteria from graph perception and
comprehension. Having identified the JCN as an abstrac-
tion for multifield topology, further work will be needed



1108 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

. -.*..
o L "
g & ]
= «n. -
E] *.o ]
o " T"
] *g' L]
= 1 e
; T Yy :f
) ¥ N
;) ¥ >
N ¢ ¥
=] ' t
= . ‘
< L
P
=
(=] .
&
U
(= " :_v
. o /
n  d )
NP
—ea "
10 S
@ | o
«P
* »
* »
-
-
* |
-
0 SN\
- =
‘ :
20

Resolution of Slabs in Distance Field:

Fig. 5. Effects of quantization. The bivariate function f : IR* — IR? shown in Fig. 1 was sampled onto a tetrahedral mesh, and the JCN was computed
with slab intervals of 20, 10 and 4 with respect to both properties. Note that as the slab interval decreases, the JCN converges to the manifold struc-
ture of Fig. 1, as predicted. Graph layout is still an issue, as appropriate aesthetics are as yet unclear. Here and elsewhere unless otherwise stated,
force-directed layout has been used (vtkForceDirectedLayoutFilter). Each layout uses the same random seed for initial positioning of vertices, but
final results are sensitive to graph structure and there is no guarantee of layout consistency between structurally similar graphs.
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Fig. 6. Joint contour nets of nuclear density data used to locate the scission (nucleus fragmentation) point along a trajectory in a higher-dimensional
space defined by density functional theory. JCN’s in the left column are pre-scission, those in the right are post-scission. Identification of combinato-
rial change in the JCN structure is marked by boxes. The top row is computed at slab width 16, the second row at slab width 8. Although the bottom-
left figure shows some branching in the structure, the scission point is marked by the appearance of extended linear branches, a hypothesis sup-
ported by blind calibration experiments carried out by our physics collaborators [15].

to map out structural properties of the network that break the cycle by using force-directed layout in the first
should be highlighted in its external representation. instance, on the grounds that there has been success in
There is clearly a “chicken and egg” problem here; we using the algorithms to highlight structural symmetry
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Fig. 7. Fields U and V (horizontal vector components) from time Step 11 of the Limited Area Meso-Scale Prediction System (LAMPS) data set [26]. In
this example JCN nodes on the right are positioned in a 3D space at the barycenter of the corresponding slabs on the left. The circular structure in the
JCN appears to correspond to rotational movement in the simulation: we expect to explore this further in future work.

and other regularities in both local and global network
structure. As recent work on layout of Contour Trees
demonstrates [25], it can take signficant time and effort
between identifying important abstractions, and having
effective algorithms for their representation.

Summary. In short, many properties of the Contour Tree
that have been applied for visualization have direct equiva-
lents in the JCN, and we can predict that this will allow the
development of topological tools for multifield visualiza-
tion. As an example of the use of the JCN to analyse multi-
variate data, Fig. 6 shows illustrations from an application
paper [15] applying JCN analysis for nuclear fission simula-
tions. Fig. 7 shows the JCN for a vector field from the meso-
scale atmospheric simulation [26]: the relationship between
the JCN (operating on arbitrary collections of scalar fields),
and tools for the topological analysis of ‘multifields” repre-
senting vector and tensor quantities, is an interesting but
open question.

8 IMPLEMENTATION: BASE ALGORITHM

The JCN algorithm has been implemented as a filter for the
visualization toolkit (VTK) [38]. As proof-of-concept, our
initial implementation favours brute-force simplicity and
generality over performance. The filter takes as input an
unstructured grid, which is assumed to contain simplicial
cells (either all triangles, or all tetrahedra), and generates
three outputs:

1. the Joint Contour Net, as an undirected graph
2. (optionally) each individual fragment, as a polygonal
mesh

3. (optionally) each contour slab, as a polygonal mesh

Data set processing goes through three phases. In the
first, simplicial cells are converted into fragments.
Internally we maintain a queue of (partially fragmented)
polytopes (polygons or polyhedra, depending on
dimensionality). We iterate over cells, initialising the

fragment queue to the cell itself. Then for each scalar field
and threshold, we run through the fragment queue, cutting
each polytope against the current field threshold, and
requeuing the resulting fragments. Once a polytope cannot
be clipped further, it is placed in the output. Second, the
dual graph of fragments is computed using tables from the
first phase that record information about shared fragment
edges/faces. The dual graph is then simplified by collapsing
adjacent nodes with the same combination of field values.
Last, Joint Contour Slab boundaries are computed by iterat-
ing over fragment facets (edges or faces) and discarding
those internal to a slab.

Testing has been carried out on both synthetic data sets
(allowing for verification of the JCN implementation), and
on the real fermium and plutonium data sets referred to in
the application paper [15]. In the case of single-field data
(e.g., the nucleon data set), the JCN analysis shows that the
JCN reduces to a tree, as expected. As a baseline for future
work, Tables 1 and 2 set out the results of runtime tests. The
former reports data set sizes, while the latter gives perfor-
mance measurements: the width (granularity) of each slab
across each data dimension; the total number of fragments
generated; the number of slabs; and the size of the resulting
contour net.

Table 2 shows that the relationship between data set
size, slab granularity and performance indicators is not
straightforward. Doubling the granularity does not auto-
matically double the runtime, but depends on the under-
lying field. For fermium, the trials reported involve

TABLE 1
Data Set Statistics
Dataset Spatial Dimensions Simplices Field Widths
simple 3 x3 8 9x9
sphereBox 11 x 6 x 11 2,500 [0,6] x [-4,71]
nucleon 41 x 41 x 41 320,000 256
fermium 19 x 19 x 19 29,160 256 x 256 x 256
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TABLE 2
Runtime Statistics
dataset Slab widths Runtime Fragments Slabs Edges
simple (1,1) 0.20s 73 46 71
simple (0.2,0.2) 0.23s 945 810 1,515
sphereBox (4,4) 0.48s 9,068 68 97
sphereBox (2,2) 0.70s 15,900 199 318
sphereBox 2,1) 0.71s 15,900 329 576
sphereBox (1,2) 1.00s 27,300 400 647
sphereBox (1,1) 1.10s 27,300 650 1,145
nucleon 32 8.42s 405,556 48 47
nucleon 16 11.80s 505,932 64 63
nucleon 8 17.84s 703,557 103 102
fermium sc25  (32,32) 1.60s 53,448 16 15
fermium sc25  (16,16) 2.66s 83,744 103 307
fermium sc25 (8,8) 5.32s 144,576 547 1,063
fermium sc25 (4,4) 11.44s 264,320 1,749 3,501
fermium sc25 (2,2) 28.43s 531,552 8,810 18,189
fermium sc25  (1,1) 79.00s 1,103,632 38,351 85,064
fermium ael0 (32,32,32) 1.94s 59,928 14 13
fermium ael0 (16,16,16) 3.66s 97,728 195 373
fermium ael0 (8,8,8) 7.60s 172,424 852 1,808
fermium ael0 (4,4,4) 18.48s 325,296 5,934 13,596
fermium ael0 (2,2,2) 25.86s 681,240 31,711 81,341
fermium ael0 (1,1,1) 183,80s 1,494,731 194,109 599,581
LAMPS 9 U,V (10,10) 5.96s 197,197 241 409
LAMPS 9 U,V (20,20) 3.75s 142,891 82 117
LAMPS 9 PTH (10,100,4) 25.6s 237,168 387 823
LAMPS 9 P,T,H (20,200,8) 15.9s 158,501 83 145

All timings were performed on a 2 GHz MacBook Air with 8 GB memory,
running OSX 10.7.5, and using VTK 5.10 configured as a release build:
times are substantially lower than previously reported[15], which used a
debug build. Fermium timings in this table use site 25 of the sCF trajec-
tory, and proton and neutron density fields (see [15] for details). To
broaden the results, a further set of timings has been included from a dif-
ferent trajectory from the same data set, site aEF. This uses a third,
derived, field (total density) that was not required for the study reported
in [15]. LAMPS timings are for time step 9 of the data set.

doubling the resolution of three fields, so in the worst
case we might expect an eight-fold increase in runtime
and output size. Other than in the transition to (1,1,1),
runtime growth is closer to a factor of 2, while changes
in JCN node and edge size vary by around 5. These
figures should be treated with caution, since our imple-
mentation was proof-of-concept rather than production-
oriented. For example, it explicitly constructs and dis-
cards large volumes of fragment geometry.

9 RASTER ACCELERATION

As noted above, the effect of the JCN is to tessellate the
function manifold with respect to the range of the func-
tion rather than the domain. Moreover, since the slabs
are defined by intervals in each univariate channel in
the range, the effect is to project a regular grid in the
range onto the function manifold, with each Joint Con-
tour Slab corresponding to a Euclidean box in the
range, as shown in Fig. 8. For a function f:R* — IR?,
these boxes are pixels, and the relationship to Bach-
thaler & Weiskopf’'s work on continuous scatterplots [2]
becomes apparent.

Since the neighbourhood relationships of pixels are
easily described, this simplifies the computation of the
JCN by transforming it to a well understood rasterisation
problem. For two dimensions, this immediately gives an
effective method of computing the JCN without explic-
itly extracting geometric slabs. This gives a full order of
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Fig. 8. Rasterising the JCN. Each slab (left) corresponds to a Euclidean
box (pixel) in the range (right), transforming this into a rasterisation prob-
lem. Each pixel rasterised corresponds to a fragment.

magnitude speed up compared with the naive algorithm,
at a slight cost in accuracy because rasterisation algo-
rithms do not necessarily rasterise every pixel intersected
by the primitive. However, since the JCN is already an
approximate computation, this is an acceptable cost in
some circumstances, and does give the basis for further
acceleration once efficient and accurate rasterisation algo-
rithms are available in arbitrary dimensions.

Fig. 9 shows that rasterization preserves important
topological features. These figures, based on the applica-
tion in physics illustrated in Fig. 6 [15], show the scission
point of a fermium nucleus, at which a single nucleus
breaks into two fragments. Within each figure the top row
shows the images generated using explicit geometric con-
struction of JCN slabs, for three different levels of quanti-
zation (slab widths 16, 8, and 4). The bottom row shows
the rasterised approximation, with major features clearly
carrying over, but some artifacts in the form of isolated
nodes. We have not included a qualitative comparison of
the LAMPS data, as for this JCN the appropriate layout
positions nodes at the barycenter of the corresponding
geometric slab [15], and the raster implementation does
not generate this data.

Data set statistics and timing information are shown in
Table 3, using the system configuration described in Table 2.
For the nucleon data (which consists of a single scalar field),
we note that the geometric and raster implementations
return the same (tree) structure, and that the performance
gain from the raster implementation improves substantially
as finer levels of quantization.

10 CONCLUSIONS AND FUTURE WORK

We have shown that the contour tree can be extended to
multi-variate fields, opening up possibilities for topologi-
cal analysis and visualization. In the future, we will refine
algorithms for computing the JCN, methods of simplifica-
tion and secondary analysis of the JCN, and methods for
visualizing the underlying multi-variate data. We expect
that many of the techniques that work for the contour
tree and Reeb graph will then extend to the JCN. It has
also become clear that while the JCN itself captures topo-
logical and geometric structures of the graph of the func-
tion, extracting and storing a fully meshed complex [4]
will be useful for some problems, but that for other prob-
lems, such as parameter space analysis, construction from
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Fig. 9. Comparison between explicit geometric construction of JCN, and rasterization for two different methods of inter-cell linking, both before (site
25) and after scission (site 26) in fermium sCF data set [15]. Differences in the graph structure, particularly at slabwidth 4, are a result of the approxi-
mation in rasterization (visible by comparing graphs at high slabwidth), and compounded by sensitivity of force directed layout to graph structure.

TABLE 3
Runtime Statistics for Rasterization, for a Subset of the 2D Range Data Sets from 2
Explicit Geometry Rasterization
Dataset Quantization | nr-frags | nr-nodes | nr-edges | time | nr-frags | nr-nodes | nr-edges | time | Speedup
Fermium sc25 16,16 83,744 163 307 | 275 104,619 157 280 | 0.59 47
Fermium sc25 8,8 144,576 547 1,063 5.32 142,451 268 497 1.01 53
Fermium sc25 44 264,320 1,749 3,501 | 11.44 266,817 917 1,769 | 2.16 5.3
Fermium sc25 2,2 531,552 8,810 18,189 | 28.43 547,360 2,755 5536 | 6.61 4.3
Fermium sc25 1,1 1,103,632 38,351 85,064 | 79.00 | 1,193,128 9,042 18,216 | 24.72 32
LAMPS 9 (U,V) | 10, 10 197,197 241 490 5.96 163,428 310 444 1.54 3.8
Nucleon 32 405,556 48 47 8.35 402,104 48 47 1.62 52
Nucleon 16 505,932 64 63 | 11.33 500,831 64 63 | 1.72 6.6
Nucleon 8 703,557 103 102 | 17.61 774,496 103 102 1.94 9.1
Nucleon 4 1,095,526 166 165 | 29.80 | 1,091,981 166 165 | 2.44 12.2

Statistics for explicit geometry have been copied over for ease of comparison. Rasterization results for lower-dimensional (1D) data sets are also

shown. Speedup was computed by taking the ratio of the times stated.

graph structures such as the Gabriel graph [11] will be
more fruitful.

We also intend to study the relationship between the JCN
and Jacobi Sets, and consider whether there is an equivalent
to the Morse-Smale Complex. While the current work has

used existing two-dimensional rasterisation methods,
future work will necessarily extend to higher-dimensional
rasterisation, which will be applicable not only to the JCN,
but also to many other multi-variate analysis and
visualisation techniques.
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