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Abstract—The Monte Carlo method has proved to be very powerful to cope with global illumination problems but it remains costly in
terms of sampling operations. In various applications, previous work has shown that Bayesian Monte Carlo can significantly outperform
importance sampling Monte Carlo thanks to a more effective use of the prior knowledge and of the information brought by the samples
set. These good results have been confirmed in the context of global illumination but strictly limited to the perfect diffuse case. Our
main goal in this paper is to propose a more general Bayesian Monte Carlo solution that allows dealing with non-diffuse BRDFs thanks
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1 Introduction

In global illumination rendering, the main issue lies in
the computation of multi-dimensional integrals involving
intensive ray-traced sampling. Although the Monte Carlo
method has proved to be very powerful when coping
with this problem, it remains costly in terms of sampling
operations. As the computational cost of sampling is very
high compared to the sheer quadrature cost, we can ask
ourselves if Monte Carlo methods make an efficient use
of information brought by the samples. This question has
been raised by O’Hagan which led him to propose the
“Bayes-Hermite quadrature” [1], a new form of quadrature
which is referred to as “Bayesian Monte Carlo” (BMC) by
other authors. While keeping the fundamental property of
data dimension independence of Monte Carlo methods, it
considerably broadens the set of theoretical tools that can
be used to exploit the information produced by sampling.
In particular, BMC uses the information regarding the
samples location, which is ignored in the classic Monte
Carlo method (CMC). Moreover, BMC offers much more
flexibility in the exploitation of the prior knowledge com-
pared to CMC which mainly relies on sampling strategies.
However, all these advantages are obtained at the expense
of the quadrature complexity and additional preprocessing.
Brouillat et al. [2] have proposed efficient solutions that
make the overhead of computing the BMC quadrature
negligible compared to CMC. Moreover, their results show
that BMC can significantly outperform CMC methods, even
when including the preprocessing step. Nevertheless, their
work only considers diffuse reflections and their strategy
for efficiently computing the quadrature coefficients does

not apply to non-diffuse BRDFs. A direct application of the
method to view dependent BRDFs would require massive
precomputations of multidimensional tables so as to allow
an acceptable rendering time. The prior model construction
strategy presented in Brouillat et al. [2] would also be
inappropriate to the sharpness features of glossy BRDFs.
It would require performing a learning phase for each
BRDF present in the scene, which would represent a high
computational cost. Furthermore, the proposed samples
set optimization method is not suited to the highly non-
uniform samples distributions needed to efficiently compute
glossy reflections. Applied to glossy BRDFs, their method
converges towards local minima which are very far from
the optimal solution.

In this paper we propose a new theoretical framework
that includes a novel method of quadrature computation
based on spherical Gaussian functions that can be general-
ized to a broad class of BRDFs (any BRDF which can be
approximated by a sum of one or more spherical Gaussian
functions) and potentially to other rendering applications.
We account for the BRDF sharpness by using a new
computation method for the prior mean function and by
introducing a new factor in the method of Brouillat et al. [2]
for constructing optimized samples set. Lastly, we propose
a fast hyperparameters evaluation method that avoids the
learning step.

In the following, after a presentation of related work,
we introduce the theoretical aspects of BMC. Then we
present the application of BMC to the illumination integral
and develop our theoretical framework. It is followed by
a description of the full rendering algorithm and a pre-
sentation of comparative results. Then, we suggest various
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(RMSE = 0.039, time = 2m18s) (RMSE = 0.026, time = 2m20s)
(a) Reference (b) LDIS (c) BMC

Fig. 1. Indirect radiance component for the Room scene rendered with low discrepancy Monte Carlo Importance
Sampling (LDIS, (b)) and BMC (c). The shown images have been multiplied by a factor of 4. The RMSE and the time
are computed by considering only the glossy component. 16 ray samples per visible point were used for the materials
with a glossy BRDF (teapot, tea cup and fruit-dish), while 64 samples were used for the diffuse BRDFs.

research directions in a discussion section. We conclude by
summarizing what was learned from our implementation
and mention new perspectives of application of BMC.

2 Related work

The fundamental difference between BMC and CMC lies
in the use of a prior stochastic model of the function f (x)
to be integrated. Note that in the Bayesian framework the
argument x is considered deterministic, as opposed to CMC
methods. Therefore, the randomness is not introduced by
random sampling as in CMC but by the uncertainty (in a
Bayesian sense) we put on the function to be integrated
before any samples are drawn. Several approaches have
been proposed in the literature regarding how to model
this uncertainty. Our approach is based on the Bayes-
Hermite quadrature of O’Hagan [1] which uses a Gaussian
process (GP) for the prior model. We have found this
method more appropriate for the computation of global
illumination integrals because it easily leads to closed-form
solutions. Rasmussen and Ghahramani [3] have shown that
GP-based BMC can significantly outperform Monte Carlo
importance sampling (MCIS). Several applications of the
Bayes-Hermite quadrature have then been proposed in the
literature and among them, the work of Pfingsten et al. [4] is
particularly interesting in the way they derive a closed-form
solution. However, it is not suited to the particularities of
spherical functions we are faced with in global illumination
problems. Brouillat et al. [2] have proposed solutions in
the context of final gathering for photon mapping and have
clearly shown the benefit of BMC over MCIS. However,
this method can only deal with diffuse reflections. The main
goal of this paper is thus to propose a BMC framework

which can efficiently deal with the problems raised by
glossy reflections.

x Point in RD

p(x) Analytically known function
f (x) Unknown function interpreted as a random quantity

and modeled through a Gaussian Process (GP)
f̄ (x) Mean function E[ f (x)]
F̄ Vector of mean function values

k(x, x′) General non-stationary covariance function
k(x − x′) Stationary covariance function
k′(x − x) Stationary correlation function

k(x) Vector of covariance values between a position x
and a set of sample locations x1, . . . , xn

K Noise-free covariance matrix
Q Covariance matrix
Yi Noisy observation of f at location xi ( f (xi) + εi)
Y Vector of observations (Y1, . . . ,Yn)
εi Sample of an i.i.d. Gaussian noise (E[εi] = 0)
σ2

n Variance of εi
σ2

f Variance of the GP
σ2

y Variance of the observations (σ2
n + σ2

f )
Li(ω) Incident radiance from direction ω

l Lengthscale of the GP which models Li
G() Spherical Gaussian function
ρ() BRDF
m Shininess coefficient of the BRDF
w Gaussian BRDF lobe width w = 1/

√
m

TABLE 1
Notations description.

3 Background
In this section, we give a brief introduction to the theoretical
basis of BMC, and make a short description of the previous
application of BMC to the diffuse BRDF case. Detailed
information can be found in [1], [2], [3]. The notations
used throughout the paper are described in Tab. 1.
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3.1 The Gaussian process prior

As in any Bayesian method, we need to state our knowledge
prior to performing observations. This is usually defined
as a probability distribution often simply called the prior.
In BMC, the prior is modeled by a Gaussian process as
explained in the following.

Let us consider the computation of the integral:

I =

∫
f (x)p(x)dx , with x ∈ RD (1)

where p(x) is analytically known and f (x) can only be
determined through physical observations or, as in our case,
through numerical evaluations. Given the high cost of these
evaluations, it is infeasible to have a detailed knowledge
about f (x) in all its domain. Our knowledge about f (x) is
restricted to a limited set of samples while anywhere else
in the domain, we are not sure about the value of f (x). This
uncertainty about f (x) leads us to interpret it as a random
quantity. The Bayesian reasoning states that all forms of
uncertainty can be modeled by probability. Consequently,
f (x) can be considered as random because its value is
unknown and thus uncertain. To model our uncertainty
about f (x), we will use a stochastic model called Gaussian
process (GP). For a more practical knowledge about GP, the
reader may refer to [5]. Formally, a GP is a collection of
random variables, any finite number of which has a joint
Gaussian distribution. A GP is completely defined by its
mean function f̄ (x) and its covariance function k(x, x′),
which must be positive definite [6]:

f̄ (x) = E[ f (x)] (2)
k(x, x′) = E[( f (x) − f̄ (x))( f (x′) − f̄ (x′))] (3)

and will be denoted as:

f (x) ∼ GP[ f̄ (x), k(x, x′)]

We use the GP formalized by Eqs. (2) and (3) as our
prior model. f̄ (x) is our expectation of f (x) before any
observation is made. The covariance function character-
izes the belief we have on the smoothness of f (x), i.e.,
how correlated are nearby samples. A strong correlation
between the samples implies that f (x) is very smooth.
The covariance function of the prior GP is often assumed
stationary. A covariance function k is stationary when
k(x, x′) := k(x − x′), ∀(x, x′), in which case the variance of
f (x), i.e., k(x, x) = k(0), is constant. The prior covariance
function k is parametrized by a set of hyperparameters
which need to be determined in a preprocessing step. This
problem will be addressed in Sections 4.2.1 and 5.2. For
now, we assume that the hyperparameters are known.

3.2 The posterior Gaussian process

Once the prior is defined, we can collect observations of
f (x) so as to refine our model by leveraging the prior
GP. The resulting process is also a GP and is called
posterior GP. In this section, we describe how to compute
the posterior GP given the prior and a set of observations.

Let us suppose that we are provided with a set D of
noisy samples of f (x):

D = {(xi,Yi) | i = 1, . . . , n} with Yi = f (xi) + εi

the εi being samples of an independent, identically dis-
tributed Gaussian noise with zero mean and variance σ2

n, xi

being a sample location (the input) and Yi its correspond-
ing sample value (the output). Given this additive noise
assumption, the covariance of the observations becomes:

cov(Yp,Yq) = k(xp, xq) + σ2
nδpq (4)

where δpq is the Kronecker symbol. σ2
n is thus a hyper-

parameter of the prior model and represents the variance
which is unexplained by the GP. It is important to un-
derstand that this noise component is not only due to
measurement errors and computation inaccuracies. In a
very broad sense, the noise term allows to accommodate
highly discontinuous data that do not fit the smoothness
assumption implied by the prior GP. Indeed, illumination
functions are generally discontinuous and cannot be mod-
eled accurately with smooth basis functions. The noise term
provides the necessary flexibility so that when building the
posterior process, the most plausible smooth model can be
fitted to discontinuous data. This data fitting has the same
effect as the pre-filtering method proposed by Křivánek and
Colbert [7] which aims at low-pass filtering the observed
samples to reduce aliasing. However GP model fitting
does not assume any band-limited functions hypothesis.
Moreover, smoothness has to be understood in terms of
order of continuity of the integrand, not in terms of spectral
bandwidth. In conclusion, BMC is applicable whatever the
smoothness or the bandwidth of the integrand but of course,
it performs better when the noise level σ2

n is low, that is
when the prior fits well the data.

The posterior process results from applying the Bayes’
rule to incorporate the information brought by the samples.
It can be shown that the obtained posterior process is also
a GP with mean and covariance functions given by [6]:

E[ f (x)|D] = f̄ (x) + k(x)tQ−1(Y − F̄) (5)
cov[ f (x), f (x′)|D] = k(x, x′) − k(x)tQ−1k(x′)

with:

k(x) = (k(x1, x), . . . , k(xn, x))t

Ki, j = k(xi, x j) with (i, j) ∈ [1, n]2

Q = (K + σ2
nIn) (6)

Y = (Y1, . . . ,Yn)t

F̄ =
(

f̄ (x1), . . . , f̄ (xn)
)t

and In being the n × n identity matrix. Y is the vector
of observed samples value while F̄ is the vector of prior
GP mean values at the sampling locations. Q contains the
covariance between the samples and is called covariance
matrix. Eq. (5) gives an estimate of f (x) for an unobserved
input x given the observed data set D. This particular form
of regression is called Bayesian regression.
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3.3 Bayesian quadrature

Eq. (5) gives a posterior estimate of f (x) given the observed
samples. Then, from Eq. (1), a posterior estimate of I, that
is Î = E(I|D), is obtained by integrating both terms of
Eq. (5):

Î = Ī + ztQ−1(Y − F̄) (7)

with:

Ī =

∫
f̄ (x)p(x)dx (8)

z =

∫
k(x)p(x)dx (9)

It can be seen that the posterior estimate Î results from
adding to the prior expectation Ī a corrective term that
represents the effect of the observed samples D. This
term includes three factors: (Y − F̄), which measures how
wrong was our prior expectation for each observed sample
value, Q−1, the inverse covariance matrix which accounts
for the relative positions of the observed samples, and the
z vector, which captures the influence of each sample on
the deterministic part of the integrand given the covariance
function.

3.4 Variance analysis

3.4.1 Variance of the integral estimate and optimal sam-
pling pattern

The posterior estimate of I given by Eq. (7) has a Gaussian
distribution of mean Î and a variance given by:

Var(I|D) = V̄ − ztQ−1z (10)

with:

V̄ =

"
k(x, x′)p(x)p(x′) dxdx′ (11)

Note that the estimate of the posterior variance in Eq. (10)
does not depend on the observed values Y. It only depends
on the location x of the samples. This might seem not
plausible at first sight but actually, the covariance function
of our prior model (Eq. (4)) already comprises the statistical
information necessary to estimate Var(I|D). This variance is
due to the implicit variability of our observations given our
prior. It can be interpreted as a measure of the confidence
we may attribute to our integral estimate. Note also that
BMC does not require drawing the samples randomly
according to a PDF. However, Eq. (10) shows that the
Var(I|D) strongly depends on the choice of the samples set
position {xi}. An optimal choice consists in selecting the {xi}

that minimizes Var(I|D). This optimal set will reflect both
the influence of the deterministic function p(x) (through
the z vector) and that of the prior knowledge on f (x)
(through the covariance function). The resulting effect can
be compared to product sampling or bidirectional sampling
techniques that try to obtain information on f (x) in order
to improve the efficiency of importance sampling.

3.4.2 Bias considerations

As opposed to CMC, in BMC the observed data are
considered as known and thus deterministic whereas the
function f (x) (Eq. (1)) is considered as uncertain. The BMC
integral estimate is obtained by computing the integral of
the most probable function among all possible realizations
of the posterior GP. The estimator of Eq. (7) is thus
unbiased (in the Bayesian sense) as its value coincides with
the expected value of the posterior probability distribution.
However this unbiasedness has nothing to do with the
usual interpretation of this term in a classic Monte Carlo
framework in which sampling is produced by a random
process. That is why unbiasedness considerations can be
misleading when comparing classic and Bayesian Monte
Carlo, since the randomness in each of the methods is of a
very different nature.

Specifically, in a frequentist approach such as CMC, the
estimate can be refined by averaging estimates with respect
to multiple sample sets whereas a Bayesian method uses
averaging with respect to the posterior distribution instead.
In [8] (Chapter 3, Section 2), Bishop applies a frequentist
bias-variance analysis to regression and he shows on a para-
metric regression example how the regularization parameter
(which, in BMC, corresponds to the noise ratio introduced
in the next section) can be used to control the frequentist
bias. However, Bishop points out that this is of limited
practical interest since averaging w.r.t. multiple sample
sets would affect the efficiency of a Bayesian approach.
Indeed, as noted by Bishop, to fully benefit from the
Bayesian approach, a direct application of BMC would
combine multiple sample sets into one large set rather than
considering each set individually. Therefore, in our BMC
method, we will consider only one single samples set and
apply a full-fledged Bayesian method. Furthermore, the
Bayesian framework offers much more efficient methods
to implement progressive refinement than averaging with
respect to multiple sample sets.

3.5 The case of stationary covariance functions and
the noise ratio hyperparameter

In the absence of accurate information on f (x) variations,
it is sensible to assume a stationary covariance function for
the prior GP. Note however that this does not mean that
the prior GP is second-order stationary. For this to be true,
the mean function f̄ (x) must be constant, which is not the
case in general.

As mentioned in Section 3.1, the variance of the prior
GP is constant in the case of stationary covariance functions
and we have:

k(x − x′) = σ2
f k
′(x − x′) (12)

where σ2
f = k(0) is the prior GP variance and k′(x − x′)

is its correlation function. σ f is thus an hyperparameter of
our GP model. It represents the strength of the correlation
induced by the GP. As the additive noise ε is assumed
independent from the prior GP, the variance of the observed
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samples value σ2
y can be expressed as follows:

σ2
y = σ2

f + σ2
n

The above equations reveal the σ f and σn hyperparame-
ters as totally independent variables. However, in global
illumination problems, many integrals of the same type
but with different data have to be computed to render a
full image. The observed variance σ2

y can strongly vary
from one integral to the other, but in practice, we can
expect that the values of both hyperparameters will roughly
have the same order of magnitude as σ2

y . Therefore, the
noise contribution is better characterized by the ratio σn/σ f

rather than σn alone. Henceforth, we will thus use the noise
ratio hyperparameter σ′n = σn/σ f instead of σn to represent
the noise contribution.

In the following of this section, we show that once σ′n
has been determined, the value of σ f is not required to
compute the integral estimate Î.

Given Eq. (12), the Q matrix defined in Eq. (6) can be
expressed as follows:

Q = σ2
f Q′

with Q′ = K′ + σ′2n In (13)

where K′ is obtained by replacing k(x − x′) by k′(x − x′):

K′i, j = k′(xi − x j) with (i, j) ∈ [1, n]2

We can now rewrite Eq. (7) with terms that depend on σ′2n
instead of σ2

f and σ2
n:

Î = Ī + z′tQ′−1(Y − F̄) (14)

where the z′ vector is obtained by replacing k(x − x′) by
k′(x − x′) in Eq. (9). Each element of this vector can then
be expressed by the following convolution integral:

z′i =

∫
k′(x − xi)p(x)dx (15)

where xi is a sample location. Assuming that the σ′n
hyperparameter is known, the integral estimate given by
Eq. (14) does not require determining σ2

f and σ2
n. The noise

ratio σ′n can be interpreted as the level of confidence we
have in the GP model fitting. The higher is σ′n, the lower
is the proportion of the observed samples variance that can
be explained by the GP.

3.6 BMC algorithm overview

To summarize, the BMC method consists of the following
steps:

1) Build the GP prior by choosing a covariance function
and a mean function

2) Learn the hyperparameters associated with the covari-
ance function

3) Select the set of sampling positions {xi} which mini-
mize the variance of the BMC estimate and compute
the inverted covariance matrix Q′−1

4) Compute the z′ vector and the vector of quadrature
coefficients c = z′Q′−1

5) Collect the observed samples value Yi for each sam-
pling position {xi}

6) Compute the prior mean value vector F̄
7) Compute the posterior estimate with Eq. (14)

As mentioned above, global illumination problems imply
the computation of many integrals of the same type with
different data and of course, all these steps need not be
repeated for each integral evaluation. As a matter of fact,
in implementing a BMC algorithm, we will try to transfer
the most computer intensive steps to a preprocessing stage.
By using the same set of hyperparameters for all integral
evaluations, Brouillat et al. [2] have shown that steps 1
to 4 can be preprocessed in the case of diffuse reflection,
which makes the computing load of BMC comparable to
CMC methods. However, their approach is not applicable
to the case of glossy BRDF because of the dependency on
the viewing direction. The deterministic function p(x) that
essentially contains the BRDF will then change at each
integral evaluation and steps 2 and 3 can no longer be
preprocessed as we will see in the following. In the next
sections, we will propose a more general approach based
on a spherical Gaussian framework that can be applied to
a large class of problems.

4 A spherical Gaussian-based BMC framework
We will now consider the computation of the illumination
integral at a given shading point:

Lo(ωo) =

∫
Ω2π

Li(ωi) ρ(ωi,ωo) (ωi · n) dΩ(ωi) (16)

In this integral, the analytical part, which corresponds to
p(x) in Eq. (1) is naturally the BRDF factor ρ(ωi,ωo)(ωi·n).
The unknown function f (x) in Eq. (1), modeled with a
Gaussian Process, is the incident radiance Li(ωi) at the
shading point in Eq. (16). Our goal is to compute an
estimate of Lo(ωo) from a set of samples value {Li(ω j), j ∈
[1, n]}, where ω j are the samples location (called xi in
Section 3.2).

Throughout this section, we describe our approach to
the different problems involved in computing the Bayesian
quadrature. We start by describing a spherical Gaussian-
based framework for BMC which greatly simplifies the
computation of the integrals for the z′ vector. Then we
show how the prior GP covariance and mean functions are
built, and how optimal sampling patterns are built. Finally,
we elaborate on our rendering algorithm.

4.1 Our theoretical approach

In this section, we essentially address step 4 of the BMC
algorithm presented in Section 3.6 and more particularly
the problem of making the computation of the z′ vector
tractable knowing that it is not possible to precompute the
z′j coefficients given their dependency on ωo. Our approach
is to model both the BRDF and the correlation function
with spherical Gaussian functions (SGF), a choice which
allows us to reduce the z′ computation to a simple query
to a scene-independent 2-entry look-up table.
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An interesting property of SGFs is that the product of
two SGFs yields a SGF. This property will be very useful
for the computation of the Eq. (15) integral. As far as p(x)
can be modeled by a SGFs product or mixture, the method
described in this section can be applied to compute the
quadrature of Eq. (14) given its linearity properties.

A SGF results from the restriction of a Gaussian RBF
(Radial Basis Function) to the unit sphere S 2. Consequently,
for x, y ∈ S 2, we have:

|x − y|2 = 2(1 − x · y) (17)

since |x| = |y| = 1. A SGF can thus be expressed as follows:

G(x − y; µ, λ) := µ exp
(

x · y − 1
λ2

)
Since to each point x ∈ S 2 corresponds a direction ω, we
model the correlation function k′ by a SGF Gk′ defined as
follows:

k′(ω − ω′) := Gk′ (ω − ω′; 1, l) = exp
(
ω · ω′ − 1

l2

)
(18)

where l is the lengthscale hyperparameter which controls
the smoothness of the prior GP. We model the BRDF ρ by
a SGF Gρ defined as:

ρ(ωi,ωo) := Gρ(ωr −ωi; ks,w) = ks exp
(
ωr · ωi − 1

w2

)
(19)

where ks is the specular coefficient. Gρ has an axially
symmetric lobe whose axis is aligned with ωr which is itself
function of the outgoing direction ωo. w characterizes the
lobe sharpness, i.e., the “width” of the lobe. It is important
to note that this choice does not restrict the generality of
our analysis as several works have shown that most BRDFs
can be approximated by a mixture of SGFs (e.g. in [9]).
In particular, one single SGF is sufficient to model the
glossy term of a Phong’s BRDF. In this case, the lobe axis
direction ωr is the perfect mirror incident direction:

ωr = 2(ωo · n)n − ωo

and using the following approximation:

cosm θ = em ln(cos θ) ≈ em(cos θ−1) (20)

with cos θ = (ωr · ωi), we have w = 1/
√

m, m being
the Phong shininess parameter. The resulting approximation
RMSE is below 10−3 when m > 10. Note also that modeling
BRDFs with SGFs (which are naturally isotropic) does not
restrict our framework to the isotropic BRDF case since
anisotropic BRDFs can be modeled using a weighted sum
of (isotropic) SGFs as mentioned above. Moreover, we
have found that the Blinn-Phong BRDF can be modeled
with only 3 SGFs with a RMSE below 0.05. More details
regarding the potential application of our approach to
multiple-lobe BRDFs are given in Section 6.2.

Given Eqs. (15), (18) and (19), each coefficient of the z′
vector can be expressed as follows:

z′j =

∫
Ω2π

Gk′ (ω j − ω
′; 1, l) Gρ(ωr − ω

′; ks,w) dΩ(ω′)

where ω j is the direction vector of sample j. As the product
of two SGFs is also a SGF, we have:

z′j =

∫
Ω2π

G(ωm − ω
′; cm, lm) dΩ(ω′) (21)

with:
1
l2m

=

∣∣∣∣∣ω j

l2
+
ωr

w2

∣∣∣∣∣
ωm = l2m

(ω j

l2
+
ωr

w2

)
cm = ks exp

(
1
l2m
−

1
l2
−

1
w2

)
By developing Eq. (21), we have:

z′j = cm S g(ωm, lm)

where S g(ω, l) is the spherical Gaussian integral (SGI):

S g(ω, l) =

∫
Ω2π

exp
(
ω · ω′ − 1

l2

)
dΩ(ω′) (22)

The computation of the z′ coefficients is then reduced to
evaluations of the SGI of Eq. (22) which can easily be
tabulated for quick evaluations. Only the elevation angle
θ = (ω,n) is necessary to specify the input direction ω
in Eq. (22) given the axial symmetry of the SGI about
the normal n. Therefore, only a single 2-entry table with
(θ, l) as inputs is necessary for SGI evaluations. This table
is independent of the scene and the used BRDFs. It is
computed just once and used for any BMC integration
within this framework.

4.2 Constructing the prior GP model

4.2.1 Hyperparameters selection
In the preceding sections, we have shown that only two hy-
perparameters are needed to compute the integral estimate
from Eq. (14): the noise ratio σ′n and the lengthscale l. Our
strategy for determining appropriate hyperparameters value
consists in using the same set of hyperparameters for all
illumination integrals that involve the same BRDF. We shall
see in Section 5 that this choice is perfectly acceptable since
the hyperparameters values mainly depend on the BRDF
shininess, although they can vary depending on the scene
lighting conditions. This simplification allows us to learn
the hyperparameters for each BRDF at a scene level, and
then precompute the inverse covariance matrix Q−1 and the
optimal sampling pattern (i.e., steps 2 and 3 of the algorithm
of Section 3.6).

To learn the hyperparameters at a scene level for a given
BRDF, we use the same technique as that of Brouillat et
al. [2], with the difference that we sample the incoming
radiance with a distribution concentrated within the BRDF
lobe. In this way, the fitting of the covariance function
is adapted for the range of interest of the inter-samples
distance, that is, a narrow range of distances for high shini-
ness and a wide one for low shininess. But this approach
has a limitation regarding scenes with several BRDFs
since it implies learning the hyperparameters separately for
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each shininess parameter used in the scene. Although this
operation takes just a few seconds per shininess parameter
(typically around 1 to 4 seconds depending on the scene
complexity), it would make the BMC approach inefficient
for scenes with different shininess parameters. To cope with
this problem, a fast method to approximate the hyperparam-
eters is proposed in Section 5.4.

4.2.2 Determining the mean function
To fully define the GP, a mean function L̄i(ωi) corre-
sponding to f̄ (x) in Section 3.1 must be specified. Our
approach to this question is to assume a locally constant
mean function L̄i that will be determined from the observed
samples value Li(ω j). A simple average of the samples
value would provide a strongly biased L̄i estimate since the
samples distribution is not at all uniform as explained in
Section 4.3. Instead, we leverage the prior GP as described
in Chapter 2, Section 7 of [6]. The method consists in
inferring a mean function from the observed samples value
through an explicit basis function model. In our case, we
only use one basis function (h(ω) = 1) and its associated
weight is thus the desired constant mean value, which
yields:

L̄i =
HQ′−1Y
HQ′−1Ht (23)

where H = [h(ω1), . . . , h(ωn)] = [1, . . . , 1] and Y =

[Li(ω1), . . . , Li(ωn)]t is the vector of observations. As
shown in [6], this method slightly increases the estimates
variance but this can be neglected in practice. Then from
Eq. (8) and Eq. (19), we have:

Ī = L̄i µ(ωr) (24)

where µ(ωr) is the SGI:

µ(ωr) =

∫
Ω2π

Gρ(ωr − ω; ks,w) dΩ(ω)

To evaluate this integral, the same 2-entry table as the one
required for evaluating the SGI of Eq. (22) can be used.
Moreover, since H = [1, . . . , 1], Eq. (23) can be expressed
as a weighted sum of the observed samples value:

L̄i =
1
Γ

∑
j

γ jY j

where the weight γ j is equal to the sum of the coefficients
of the jth column of the Q′−1 matrix and Γ =

∑
j γ j is the

sum of all coefficients of the Q′−1 matrix. All the γ j/Γ
weights can be precomputed once the sampling pattern and
the hyperparameters have been determined.

4.3 Optimal sampling pattern

The choice of the sample directions {ω j} is crucial to
the quality of the rendering integral estimate, especially
in the case of glossy BRDFs. Nevertheless, not only the
BRDF but also the characteristics of the incident radiance
function Li should be taken into account for this choice.
These characteristics are represented in a stochastic manner
through the hyperparameters of the prior GP.

The variance estimate in Eq. (10) factors in the influence
of the BRDF (through z′), the prior GP hyperparameters,
and the sampling pattern defined by the {ω j} set. Moreover,
since the global hyperparameters σ′n and l are known at this
stage (see Section 3.6), the variance only depends on the
{ω j} set. This is a strong feature of the BMC framework
since we can optimize the samples direction in order to
minimize Var(I|D).

Optimizing the directions for a large set of samples
can become cumbersome. A naive approach would be to
consider that the variance is a function of n variables which
are the samples directions. But minimizing such a function
would become intractable even for medium size sample sets
(40 samples or more). Our solution to this problem consists
in modifying the spiral points algorithm [10] as shown in
Alg. 1.

Algorithm 1 The modified spiral points algorithm.

1: ∆φ← π(3 −
√

5) . Compute the step on φ
2: φ← 0 . Initialize φ for the first sample
3: ∆z← 1/n . Compute the step on z
4: z← 1 − ∆z/2 . Initialize z for the first sample
5: for all k ← [1 : n] do
6: zp ← polyval(coeff , z) . Covariance effect
7: zv ←

1
m ln[1 + zp(em − 1)] . BRDF effect

8: θk ← arccos(min(zv, 1)) . Compute θ angle
9: φk ← mod(φ, 2π) . Compute φ angle

10: z← z − ∆z . Give a step on z
11: φ← φ + ∆φ . Give a step on φ
12: end for

The original algorithm generates a discrete spiral on a
sphere about the up axis z with a constant pitch (∆z). In
our application, the z axis is aligned with the surface normal
n. The z coordinates of the original spiral points are thus
uniformly distributed. We replace the uniform distribution
by a polynomial distribution (whose coefficients are called
coeff in Alg. 1, line 6) to account for the covariance effect
(line 6). In addition, we change this algorithm to produce a
discrete spiral on the BRDF lobe (line 7) rather than on the
sphere. In Section 4.4 we show that this can be obtained
by warping the z coordinates with the following function:

zv = g(z) =
1
m

ln[1 + z(em − 1)]

where m is the Phong shininess parameter.
The optimizer will then take the polynomial coefficients

coeff as input arguments to minimize Var(I|D) instead of
taking as input all the sampling directions. The number of
parameters to optimize is thus reduced to the number of
coefficients of the polynomial (a polynomial of degree 3
is sufficient). Actually, only the term −ztQ−1z of Eq. (10)
needs to be considered as V̄ does not depend on the
sampling pattern. The convergence is very fast (a few
seconds) with the BFGS quasi-Newton method provided
by Matlab and the result is not very sensitive to the initial
values even if the initial polynomial is of degree 0.
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The variance of the BMC estimate strongly depends on
the correlation function which is, in its turn, parametrized
by the lengthscale hyperparameter. We can thus expect the
optimal sample set to depend on the lengthscale value. A
very smooth Li function implies a large lengthscale value.
Consequently, a high concentration of samples around the
BRDF apex would be redundant as the samples are highly
correlated. This explains the sparsity of the samples on the
lobe (Fig. 2(b)). Conversely, if Li has a low lengthscale
value the samples will tend to be concentrated around the
BRDF lobe apex (Fig. 2(a)). In a preprocessing step, we
compute optimal sampling patterns for a discrete set of
pairs (l,m), l and m being the lengthscale and the Phong
shininess parameter respectively. These optimal sampling
patterns are independent of the scene to be processed. When
rendering, we select the appropriate sampling patterns from
the precomputed ones.

Note that the use of an optimized sampling pattern is
beneficial to fully exploit the BMC method. It allows
accounting for the prior information about the unknown
function Li on the samples distribution. This aspect is
detailed in Section 5.

(a) l = 0.05 (b) l = 0.17

Fig. 2. Optimal sampling patterns of size 20 computed
for two different lengthscale values and a purely glossy
Phong BRDF with a shininess m = 50. Each blue point on
the lobe corresponds to a sample direction.

4.4 The z warping function for Gaussian lobe
Our approach to this problem is to exploit the property of
every function f on S 2 that:

lim
n→∞

1
n

n∑
j=1

f (ω j,n) =
1

4π

∫
S 2

f (ω)dΩ(ω)

for configurations of asymptotically uniformly distributed
sampling directions {ω1,n, . . . ,ωn,n} [10]. Therefore, at the
beginning of the optimization algorithm, if the initial
sampling pattern is such a configuration, all samples can
contribute equally to the integral estimate, which can be
considered as a sensible choice for a starting point. Our
goal in this section is to show how such configurations can
be built with the spiral points algorithm. In Section 4.3,
we have assumed that the lobe central axis is aligned with
the surface normal (ωr = n) and consequently, using the
spherical Gaussian BRDF expression given by Eq. (19),
the illumination integral of Eq. (16) becomes:

Lo(ωo) = ks

∫
Ω2π

Li(ωi) exp[m(n · ωi − 1)] dΩ(ωi)

This equation can be further developed as follows:

Lo(ωo) = ks

∫ 2π

φ=0

∫ π
2

θ=0
L(θ, φ)em(cos θ−1) sin θ dθdφ

where (θ, φ) are the polar coordinates of the ωi. If we make
the substitution z = cos θ, we obtain:

Lo(ωo) = ks

∫ 2π

φ=0

∫ 1

z=0
L(z, φ)em(z−1) dzdφ

If we directly sample the function L(z, φ)em(z−1), the distri-
bution over the hemisphere Ω2π must be uniform as stated
above, which is precisely what the original spiral points
algorithm does. But if we sample the function L(z, φ) only,
another substitution is necessary to include the BRDF factor
into new integration variables. This is possible by making
the substitution:

z′ =
emz − 1
em − 1

(25)

and then:
dz′ =

m
1 − e−m em(z−1)dz

which leads to:

Lo(ωo) =
ks(1 − e−m)

m

∫ 2π

φ=0

∫ 1

z′=0
L(z′, φ) dz′dφ

Note that the integration domain remains the hemisphere
Ω2π. This domain is then uniformly sampled as for the
original integral but we still need to revert to the original z
coordinate to obtain the polar coordinates of the sampling
directions. By inverting Eq. (25), we have:

z =
1
m

ln[1 + z′(em − 1)]

which gives the warping function we need for our spiral
point algorithm. Its effect can be interpreted as a warping
of the distance measure so that inter-samples distances are
measured between points on the Gaussian lobe rather that
on the unit sphere.

4.5 The rendering algorithm

The BMC integrator described in Alg. 2 is applied to every
shading point. The BMC function (line 1) has two param-
eters: the outgoing direction ωo and the surface normal
n. It returns the BMC estimate of Lo(ωo) as defined in
Eq. (16). All global data for the whole scene including the
hyperparameters (l, σ′n), the inverse covariance matrix Q′−1,
the optimal sampling pattern SS and the BRDF parameters
(w, ks) are assumed to belong to the program global scope
and are thus not explicitly declared.

The optimal sampling pattern, initially centered around
the surface normal n, is rotated around n (line 2) by a
random φ value. The idea behind this random rotation is
to introduce a scrambling effect that allows masking the
visibility of the regular sampling pattern, hence avoiding
the introduction of artifacts in the final image. Note that
since the covariance function is a SGF dependent only on
the inter-samples distance, it is invariant to rotations of the
whole sampling pattern. This property allows generating
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Algorithm 2 The Bayesian Monte Carlo integrator
1: function BMC(ωo,n)
2: SS rotated ← rotateRandomφ(SS )
3: ωr ← reflect(ωo,n)
4: SS rotated ← centerOnR(SS rotated, ωr)
5: for all ω j ∈ SS rotated do
6: Y[ j]← Li(ω j)
7: end for
8: L̄i ← computeWeightedMean(Y)
9: Ī ← L̄i × µ(ωr)

10: F̄← L̄i ×H
11: z′ ← computeZvector(ωr,w, SS rotated)
12: Lo ← Ī + z′t × Q′−1 × (Y − F̄)
13: return Lo

14: end function

different optimal sampling patterns by randomly rotating
the original optimal sampling pattern while keeping the
same matrix Q′−1. The mirror incident direction ωr is
computed at line 3. An additional rotation aligns the central
axis of the sampling pattern with ωr (line 4). The loop
beginning at line 5 numerically evaluates the samples value
for each sampling direction ω j. L̄i is computed at line 8
according to Eq. (23) and Ī is computed at line 9 according
to Eq. (24). At line 11, z′ is computed as described in
Section 4.1 and Eq. (21) through a lookup in a scene-
independent precomputed table of SGI values. Finally,
the Bayesian quadrature (Eq. (14)) is applied to estimate
Lo, which amounts to a vector-matrix and a vector-vector
product.

As the sampling pattern SS is centered around ωr, a
part of the sampled BRDF lobe may be located under the
plane tangent to the object surface at the shading point; in
other words, some of the directions of the sampling pattern
may be occluded by the object surface. A straightforward
solution would be to simply discard these samples. But
this would imply recomputing and inverting the covariance
matrix whenever one or more samples of the samples
set lie outside the domain of integration. To avoid this
computational overhead, we use a fixed number of samples,
which raises the problem of assigning a value to the
occluded samples.

The values of the occluded samples could be naively
set to zero, but such a method could potentially introduce
wrong information with an important effect on the estimated
integral value. The reason for this is that although the
considered sampling direction ω j is outside the integration
domain, i.e., ω j < Ω2π, it may still contribute to the
reconstruction of the function Li(ωi) within the integration
domain. Setting the value of such samples to zero would
introduce wrong information and force the reconstructed
signal to tend towards zero when approaching the surface
tangent plane. Indeed, there is no reason why an artificial
discontinuity of the incident radiance should be introduced
at the tangent plane since occlusion due to the surface is
already accounted for through the choice of the integration
domain. We have experimentally found that an efficient

solution to this problem is to assign to such samples the
value of the closest sample that lies in the unoccluded
part of the lobe. In particular, this solution performs better
than assigning the occluded samples the mean value of the
samples within the integration domain.

5 Results
5.1 Experimental setup
In order to assess the effectiveness of the BMC method,
its results are compared with those of BRDF-based low-
discrepancy Monte Carlo importance sampling using a
Halton sequence (LDIS), and pure random Monte Carlo
importance sampling (MCIS). To evaluate the importance
of the optimized sample sets in the BMC integration we
also tested BMC using LD-based sample sets (LDBMC).
The efficiency of each method is computed in terms of
root mean square error (RMSE) with respect to reference
images computed using LDIS with 10000 samples per
pixel. We have chosen to test our framework using Phong
shininess coefficients m varying from 10 to 200, a range
of values which we consider illustrative of the common
usage of glossy BRDFs. Six different scenes have been
used, the details of which are presented in Tab. 2. In

Scene triangles m ll σ′nl
Dragon 100K 20 0.29 0.96
Buddha 170K 50 0.17 0.53
Horse 110K 80 0.13 0.67
VW 440K 20, 50, 80 nd nd
Room 540K 20, 50, 80 nd nd
Plates 20 10, 50, 80, 200 nd nd

TABLE 2
Test profiles. Columns list the scene characteristics, the

Phong shininess parameter m and the learned
hyperparameters ll, σ′nl. Values of ll and σ′nl tagged as

‘nd’ indicate that the approximate method of
hyperparameters is used, as shown in Section 5.4.

some scenes (i.e., Dragon, Buddha and Horse), for the sake
of computation speed, incident illumination is simulated
by an environment map, a simplification that does not
limit the significance of our results and conclusions since
our goal is to show that we can obtain better estimates
with less samples and a negligible computing overhead
whatever the used global illumination method. In other
scenes (i.e., VW and Room), the results are generated using
final gathering for photon mapping. As for the Plates scene,
only direct incident illumination was computed. The results
were generated at a resolution of 1024 × 1024 pixels for
all the scenes except the Plates scene (1152 × 768 pixels),
using a 64 bit machine equipped with a 2GHz Intel Core
i7 processor and 8GB of RAM. The Mitsuba raytracer
[11] was used to implement the methods of MCIS, LDIS,
LDBMC and BMC.

5.2 Hyperparameters learning
The validity of our prior model depends on the good choice
of the hyperparameters. Tab. 2 lists the hyperparameter
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values obtained by learning for the scenes Dragon, Buddha
and Horse. The learning method provides us with the
hyperparameters that allow the best global adaptation of
the GP model. But it is not guaranteed that these hy-
perparameters yield the best integral estimate. To validate
our hyperparameters learning method, we have measured
the RMSE for different values of the hyperparameters (see
Fig. 3).

(a) Lengthscale l (b) Noise ratio σ′n

Fig. 3. Relative RMSE difference when varying one of
the hyperparameters. ∆ξ = ξ − ξl, ξ being the RMSE of
an image computed when varying one hyperparameter,
and ξl being the RMSE of an image computed with the
learned hyperparameters (listed in Tab. 2). In (a) σ′n is
fixed to its learned value, while in (b) the lengthscale l
is assigned its learned value. The abscissa axis of the
lengthscale plot (a) is the relative difference between the
tested lengthscale and the learned value lengthscale ll.

Let ll and σ′nl be the learned hyperparameters listed in
Tab. 2. To generate the RMSE plots of Fig. 3(a), we have
fixed the value of σ′n to σ′nl and computed the RMSE for
different values of l. We have repeated this process for the
plot of Fig. 3(b) by varying the value of σ′n while keeping
l = ll. Fig. 3(a) shows that the RMSE is minimum around
∆l = ll − l = 0 for the three scenes, which means that the
learned lengthscale value ll is appropriate for integration.
Furthermore, Fig. 3(b) shows that we can draw the same
conclusion for σ′nl. Note that the RMSE is more sensitive to
negative than to positive deviations from the optimal value.
A more detailed analysis of this interesting feature will be
presented in Section 5.4.

5.3 Comparison with importance sampling

Fig. 4 illustrates the results obtained with LDIS and BMC
for the three scenes with a varying number of samples. The
rendering times of both methods are similar as BMC with
a single BRDF entails a negligible overhead compared to
LDIS. The close-up views clearly demonstrate that BMC
achieves a reduction of high frequency noise as compared
to LDIS for the same number of samples. The RMSE is
also reduced.

Fig. 5 shows the RMSE plots as a function of the number
of samples for MCIS, LDIS, LDBMC and BMC. We can
observe that the RMSE of BMC is consistently lower
than that of the other methods. This result confirms the
advantage of BMC compared to LDIS observed in Fig. 4.
Moreover, it is interesting to note that the slope of the
straight line fit of the RMSE plot as a function of the

number of samples n is slightly but consistently steeper
for the BMC method (n−0.72) than for LDIS (n−0.68). Recall
that the theoretical optimal rate of convergence for Quasi-
Monte Carlo (QMC) integration over the unit sphere in R3

is of order n−0.75 [12] under minimal integrand smoothness
assumption. LDIS is below the n−0.75 rate because this
optimal rate assumes a hypothesis on the smoothness of the
integrand which is generally not fulfilled by the incident
radiance function. In BMC, the embedded Bayesian re-
gression smooths out the discontinuities before integration,
which explains its better performances with respect to
the convergence rate. Numerical simulations based on the
variance expression given by Eq. (10) show that this rate
can even be better than n−0.75 for lower noise ratio, that is
when the GP prior fits well the incident radiance function.

Note also in Fig. 5 that the results obtained with
LDBMC, when low discrepancy sequences are used instead
of optimized point sets, do not show significant improve-
ments compared to standard importance sampling except
for small point set sizes. This result shows the importance
of optimized point sets for BMC. It is only through an ap-
propriate samples distribution that the information brought
by the prior covariance function can be efficiently exploited.

5.4 Skipping the learning step

A detailed analysis of the sensitivity of the method suggests
that BMC can still achieve good performances using ap-
proximated values for l and σ′n, which would allow skipping
the learning step. Indeed, Fig. 3(b) shows that for our
test cases, we can use any value of σ′n in the interval
[0.4, 1.1] without incurring a significant RMSE increase.
However, we have observed that when increasing σ′n, the
error tends to increase faster in the areas of high variance
of the incident radiance and is thus more conspicuous. We
have found experimentally that σ′n = 0.5 is a good trade-off.

Fig. 3(a) shows that the estimation of the integral value
is not very sensitive to positive variations of l. Moreover,
Fig. 6 demonstrates that the learned values of lengthscale
exhibit a dependence on the shininess parameter m, such
that ll ≈ α/

√
m = α × w where m = 1/w2 as defined in

Section 4.1.
A linear regression on the learned lengthscale values

yields α ≈ 1.25 (see Fig. 6). To test this fast hyperparame-
ter derivation method, we have compared the performances
of BMC without hyperparameters learning and LDIS for
three different scenes (VW, Room and Plates). The results
are shown in Figs. 1, 7 and 8 and demonstrate that BMC
still clearly outperforms LDIS both in terms of RMSE and
visual quality. We have found that the slope of the line fit
on the resulting RMSE plot is steeper for BMC, similarly
to what we have obtained with learned hyperparameters in
Fig. 5.

Fig. 8 shows images computed with the LDIS (Fig. 8(a))
and BMC (Fig. 8(b)) methods. The scene is made up of four
plates, each one having a different shininess coefficient. It
contains seven light sources of variable size and variable
radiance producing an incident radiance along the plates
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(RMSELDIS = 0.015 and RMSEBMC = 0.011) (RMSELDIS = 0.011 and RMSEBMC = 0.008) (RMSELDIS = 0.012 and RMSEBMC = 0.009)

Fig. 4. Close-up views for three scenes rendered with Bayesian Monte Carlo (BMC) and low-discrepancy importance
sampling (LDIS). The number of ray samples per visible point is 40 for the Dragon and the Buddha, and 20 for the
Horse. Each of these objects has a purely glossy Phong BRDF with a shininess parameter of 20, 50 and 80 respectively
from left to right.

Fig. 5. RMSE plots as a function of the number of samples n. Note that the slope of the line fit for BMC (n−0.72) is
steeper than for LDIS (n−0.68), LDBMC (n−0.67), and for MCIS (n−0.50).

Fig. 6. Fitting of the learned lengthscales as a function of
the shininess parameter m.

of variable frequency. Note that this frequency increases as
we approach the center of the plates. The objective is to
show, through this scene, how our BMC method behaves for
different frequencies of the incident radiance and different
shininess coefficients. Both the BMC and LDIS methods
exhibit the same general features: for the same illumination
conditions the noise increases as m decreases, and for the
same shininess coefficient m the noise is higher for sharp

variations of the incident radiance. We can notice that the
BMC method provides results with a lower noise when
compared to the LDIS method. This can be explained by
the fact that in BMC the GP acts as a low pass filter. The
color transitions also appear smoother in the BMC images
than in the LDIS images.

6 Discussion
6.1 Possible Improvements

The results we have obtained demonstrate the soundness
of our approach. However, the implementation of BMC
presented in this paper is far from exploiting the full
potential of the Bayesian approach. Indeed the main ad-
vantage of BMC over other methods lies in its ability to
incorporate the prior knowledge, which can be obtained
in two complementary ways. First by specifying a more
accurate mean function for the prior GP with, for example,
a rough approximation of incoming radiance using spherical
harmonics or a SGF mixture (to this regard, there are
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(RMSE = 0.024, time = 4m09s) (RMSE = 0.020, time = 4m11s)
(a) Reference (b) LDIS (c) BMC

Fig. 7. Indirect radiance component for the VW scene rendered with LDIS (b) and BMC (c). The shown images have
been multiplied by a factor of 4. The RMSE and the time are computed by considering only the glossy component. 16
ray samples per visible point were used for the materials with a glossy BRDF (VW glass, VW bodywork and VW roof),
while 64 samples were used for the diffuse BRDFs.

(a) LDIS (RMSE = 0.096) (b) BMC (RMSE = 0.080)

Fig. 8. Direct radiance component for the Plates scene rendered with LDIS (a) and BMC (b). The RMSE has been
computed considering only objects with a glossy BRDF (i.e., the four plates), for which 32 ray samples per visible point
were used. The Phong shininess coefficient m of each of the plates is 10, 50, 80 and 200 from bottom up respectively.

some similarities with the control covariate method [13]).
Second by improving the covariance function adaptation.
In particular, the hyperparameters can be adapted locally
to better fit the local radiance function characteristics. For
example, different classes of pixels can be distinguished
based on the samples variance. In this way, different hyper-
parameters can be chosen for each class. Indeed, the pixels
for which the samples variance is high have generally more
impact on the visual quality and should be assigned proper
hyperparameters value whereas the hyperparameters choice
is much less critical for low variance pixels. As these latter
pixels represent the great majority, this explains the low

RMSE sensitivity to hyperparameters variation observed in
Fig. 3. Furthermore, noise ratios are expected to decrease
with local hyperparameter adaptation and consequently
higher convergence rate can be obtained as explained in
Section 5.3.

6.2 BMC with many complex BRDFs
In this paper, we have focused our attention to single
spherical Gaussian BRDF since it is the basic component
in our approach to illumination integral computation. In
Section 4.1 we have given some indications on how to gen-
eralize our approach to any type of BRDF, either analytical
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or measured, but further research work is necessary in order
to develop an efficient implementation. In the following, we
try to be more specific on the different possible approaches.
If a BRDF is approximated by a weighted sum of n SGFs,
it is easy to see that the illumination integral can be broken
down into a weighted sum of n integrals of the same type
as Eq. (16). Our method can then be applied separately to
each term of the sum and each integral will be assigned a
samples set of size proportional to its weight.

However, this straightforward method cannot be optimal
in terms of sampling efficiency since each integral esti-
mate will not benefit from the information brought by the
samples used in the other integrals. An alternative to this
method is then to use a single samples set for all the BRDF
lobes. In this case, only one global covariance matrix is
necessary for computing the integral estimate with Eq. (14).
In Eq. (15), since the function p(x) that represents the
BRDF is expressed as a weighted sum of SGFs

∑
j α jG j(),

the z′ vector in Eq. (14) will also be expressed as a weighted
sum of vectors

∑
j α jz′j and each z′j can be computed with

the method described in Section 4.1. As for samples set
optimization, the morphing function can be built from an
approximation of the BRDF leading to a simpler analytical
expression.

As mentioned above, one of the main problems to solve
in BMC lies in the computation of the z′ vector and the
complexity of this computation depends on the choice of
the deterministic function p(x) in Eq. (1). So far, we have
considered in a rigid manner that this function corresponds
exactly to the BRDF but actually this choice can be made
more flexible since p(x) does not need to be an accurate
approximation of the BRDF. If a function g(x) (e.g. a
weighted sum of SGFs) is a quite raw approximation of
p(x), it is possible to consider that the unknown function is
f (x)p(x)/g(x) and substitute g(x) to p(x) in Eq. (15). This
will not change very much the behavior of the unknown
function as the factor p(x)/g(x) is generally a very smooth
function but it could greatly simplify the computation of
the z′ vector for complex BRDFs.

As regards the application of BMC for scenes with a
large number of different BRDFs, the single problem that
could arise is the need for precomputing an optimized
samples set for each shininess coefficient. This operation is
much lighter than learning the hyperparameters and is scene
independent. But still, if one wants to avoid performing
this operation for each different shininess coefficient, the
same strategy as the one applied for the hyperparameters
could be used: optimize the sample sets for a subset of
shininess values (which results in a polynomial of degree
3 as described in section 4.3) and interpolate the values of
these polynomials for the intermediate values.

6.3 Limitations
As explained in this paper, the main difficulties that we are
faced with in implementing BMC lie in the computation
of the inverted covariance matrix and the z′ vector. Our
proposal in this paper is to solve this problem by precom-
puting optimized points sets and using spherical Gaussian

mixtures. As far as this solution is applicable, there is no
reason why BMC should not perform better that CMC
methods.

Directly applying our framework to the case of a very
large samples set would increase the memory footprint and
make costly the preprocessing step because of the inversion
of the covariance matrix and the samples set optimization.
One possible solution is to resort to a progressive approach
which would refine the integral estimate by using successive
small sample sets. At each iteration, the prior GP for the
current estimate (for the current samples set) would use
the posterior GP of the previous estimate (for the previous
samples set). In this way the estimate is progressively
refined.

The extension of BMC to larger dimensionality, such
as illumination integral calculations requiring image plane
sampling, lens sampling and multiple reflections, is not
obvious. Indeed, finding an appropriate prior model (defini-
tion of the known and uncertain functions, determination of
the hyperparameters and the mean function) while keeping
a good trade-off between efficiency and performance is a
difficult task.

7 Conclusion

In this paper, important steps are given towards the goal
of reaching a general Bayesian Monte Carlo approach
for solving global illumination problems, which was until
now limited to the diffuse BRDF case. Modeling the
BRDF and the covariance function with the same family
of spherical Gaussian functions is a key point, since it
allows making the computation of the Bayesian quadrature
coefficients tractable for glossy BRDFs. The results con-
firm that Bayesian Monte Carlo outperforms the classical
Monte Carlo methods. In a context where rendering times
are dominated by the cost of sampling, Bayesian Monte
Carlo has a clear advantage over low discrepancy Monte
Carlo importance sampling since it exhibits less noise
and lower RMSE for the same number of samples, while
having a negligible overhead. Finally, we demonstrated
that Bayesian Monte Carlo outperforms low discrepancy
Monte Carlo importance sampling even with a suboptimal
hyperparameters setting that avoids the learning step. Future
work will aim at improving the efficiency of Bayesian
Monte Carlo as explained above and also at extending
its use to other problems of larger dimensionality, e.g.,
measured BRDFs, multiple reflections, depth blur, multi-
view rendering, among others.
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