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Perceptually Uniform Motion Space
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Abstract—Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is
typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not
necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact
of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we
investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the
impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters,
we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then
performed a second study to investigate the performance of the compensation model. From the second study we detected a constant
estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by

comparing our model to a model based on Stevens’ Power Law.

Index Terms—Motion visualization, motion perception, animation, evaluation, perceptual model

1 INTRODUCTION

HE use of motion can be seen in visualization techniques

frequently. It has various purposes, for instance depict-
ing a data attribute, to attract attention, or to convey shape
information. An advantage of using motion in visualization
is that motion detection is a pre-attentive process in the
human cognitive system [1]. Motion can then effectively
guide the users’ attention to interesting features in the data
and reveal small details in the motion pattern [2].

Flow visualizations are aimed to provide insight into
how a fluid deforms under applied shear stress for a
given situation. Unlike data representing solid physical
objects, there are no real structures in a flow apart from
the different flow patterns. Still, when referring to the
topology of a flow, there exist abstract structures such as
critical points and vortices. While topology is an impor-
tant aspect of flow analysis, the velocity magnitude is
also important in many cases.

Another reason for deploying animation of particles in
visualization is that this is often a direct visualization of a
particular phenomenon and might be therefore appreciated
by the domain specialist. It exhibits qualitative characteris-
tics such as detailed flow behavior, similar to the real
observable phenomenon. One example can be seen in simu-
lation of flow around an airplane wing. The lift from a wing
is generated from the low pressure over the wing caused by
the difference in velocity of the air moving above and below
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the wing [3]. In medicine, blood-flow analysis is important
in prevention, diagnosis, and follow-up monitoring of dis-
eases. In this case, accurate flow data can be acquired with a
range of techniques such as 4D Magnetic Resonance Imag-
ing (MR for 3D flow, and B-flow ultrasound over time. For
making correct decisions, multiple features of the flow have
to be analyzed, such as pressure, vorticity and velocity.

Different visual cues can be utilized for different data
attributes. Color coding is a typical method for depicting
data. For instance, the velocity magnitudes in a flow field
can be visualized with color. However, this provides no
information regarding the direction of the flow, and other
techniques such as glyphs must be applied in addition. The
usage of color can be very efficient for a single data attri-
bute. Still, there are other aspects of the flow that are often
important for the user. An issue arises when more attributes
should be visualized simultaneously. If color is already
occupied for velocity magnitude, other means must be
utilized.

In engineering, analyzing aerodynamics is often done by
adding a flow of air around the object of interest. The air
flow is as such not visible. To be able to actually see the
flow, particles are added into the flow field. The motion of
the particles conveys intuitively information regarding both
the direction and the velocity magnitude of the flow. This
technique has commonly been adopted into flow visualiza-
tion [4], [5], [6], [7].

Investigations into how the human visual system pro-
cesses motion can be approached from different directions.
In the direction of neurophysiology, the fundamental laws
of nature are applied for investigating the physical connec-
tion between motion detection and the neural activity. The
approach is more directed towards signal processing, where
one tries to understand how signals from the optic system
are processed and transmitted into the visual cortex. This
can be done either by applying physical models to simulate
the neurological response in the brain, or procedures, where
the actual signals in the brain are being monitored, for
instance electroencephalography.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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In psychophysics, investigation is performed by examin-
ing how physical stimuli can affect the perception in sub-
jects. For motion detection, this is typically performed by
providing a task to the user, based on a certain stimulus.
Analysis is then based on examining correlations between
the parameters in the stimulus and the response given by
the user.

In this paper we have evaluated the perception of a
speed-up factor of one motion pattern with respect to
another motion pattern. We analyzed how the relative
motion perception is affected by four distinct parameters:
relative speed up factor between two sets of particles (speed
multiplier), global scale of the velocities (the overall speed
of particles moving across the screen), chromatic and lumi-
nance contrast, orientation, and direction of motion. In addi-
tion, we have tested for any influence by adding visual cues,
in form of comet tails, and the point distribution (Poisson
distribution versus random). We have performed user stud-
ies where we measured the subjects’ estimation of relative
speed between two separate sets of moving particles. We
have discovered significant trends in estimation error for
two of the parameters, speed multiplier and global scale of
the velocities. The main contribution in this paper is the first
compensation model for creating a perceptually uniform
motion space, when using animated particles in visualiza-
tion. From a series of perception studies we have shown
how the compensation model successfully compensates for
the effect of selected parameters. From our studies, we have
shown how adding multiple visual cues, have a small
improvement in perceived speed of animated particles. In
addition, we provide statistical indication that the effect of
chromatic versus luminance contrast are not as prominent
on currently most widely used LCD monitors, as presented
in previous work.

2 RELATED WORK

In order to understand how the human visual system is
detecting and analyzing motion, there are several aspects
that come into play. For instance, a typical view on prob-
lems in vision is that they can all be modelled as correspon-
dence problems. Finding the correspondence of an object
compared to the brain’s representation of that same object is
used in object recognition. In motion detection, the problem
can be modelled as detecting correspondence over time. As
a computational problem, motion detection can be seen as
detecting changes in a given position. The Reichardt detector
[8] is an implementation based on finding the correspon-
dence over time.

In contrast to the Reichardt detector, an alternative
model for motion detection involves finding change in lumi-
nance over time, known as the temporal derivative. A more
detailed explanation can be found in related literature [9].

From a psychophysics perspective, we find much work
in experimentation on the effect of different parameters
when users evaluate motion. Experiments suggest that con-
trast change has an effect on the perception of the given
speed [10], [11]. However, there is controversy regarding
how this affects the perceived speed in general [12], [13].

Research indicates an impact of color and luminance to
motion detection. A continuous change in luminance can
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create apparent motion of stationary objects [14]. Derrington
and Henning presented a study on the impact of color to the
motion after-effect [15]. Backed up by the claim of color and
motion being processed in parallel in the human visual sys-
tem, evidence has indicated that applying only chromatic
contrast compared to luminance contrast will cause a slow
down in the perceived velocity [16], [17].

There exist rules which approach the subject of percep-
tion and how it scales to different stimulus. Weber’s law is
introducing the term Just Noticeable Difference, which means
that the smallest difference between two stimuli is propor-
tional to the absolute magnitude of the stimuli. Fechner’s
law states that the subjects’” impression of a stimuli is pro-
portional to the logarithm of intensity of the stimuli. In
addition, there is Steven’s power law [18], which is a more
generalized description of the relationship between percep-
tion and stimulus. More details are found in existing litera-
ture [19], [20], [21], [22], [23].

Most work in motion detection results in qualitative
statements that mainly explain the effect of a given stimu-
lus. Little information is provided regarding how to com-
pensate for any systematic distortions in the human visual
system. In color theory, there exists a compensation model
which creates a perceptually uniform color space called CIE
1976 (L*, a*, b*) color space (CIELAB). In the context of
motion, a similar model would aid visualization techniques
based on moving elements in conveying the correct infor-
mation according to the underlying data. A similar
approach in the domain of 3D shape perception is taken by
Solteszova et al. [24]. In this work, the authors modify 3D
shapes by building a statistical model of the error in per-
ceiving shapes. Although in a different domain, this paper
also demonstrates how visual representations can benefit
from considering the perceptual aspects of the viewers.

We can explain our goal for this paper by drawing an
analogy to color theory. As CIELAB is a color model where
the perceptual difference for each step in the color space is
uniform, we intend to create a compensation model for
moving particles, which can compensate for systematic dis-
tortions in the visual system when estimating relative
motion. This way, we can apply animated particles in visu-
alization in a manner where the perceived information cor-
relates better with the underlying data.

3 METHODOLOGY

In order to create a compensation model for a given set of
parameters, we need to find the impact that each parame-
ter has on the perceived relative motion. For estimating rel-
ative motion of animated particles, there are several
parameters which can affect how a subject estimates
motion. The density of particles, the size of the particles,
contrast level between particle and background, contrast
type (luminance or chromatic), relative difference in speed
between particles, direction of motion, global scale of the
velocities, shape of the particles, all can affect velocity esti-
mation in different ways.

For our compensation model, we first selected a sub-set
of the possible parameters to investigate. To assess a proper
range for the parameters and the performance of our test-
design, we performed a pilot study with a small set of
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Fig. 1. Process pipeline for achieving perceptually uniform motion space. We started with a pilot study to determine suitable ranges in parameter
space. From the pilot study, we designed an initial study to investigate the selected parameters. The output was an initial compensation model. In
the evaluation stage, we performed two iterations to determine the efficiency of our model and adapted the model according to the new results.

participants. After adjusting the study based on observa-
tions from the pilot stage, we performed a larger study to
find the trends for each selected parameter. Using the
resulting trends we discovered in the initial study, we cre-
ated an initial compensation model and started an iterative
study process to test and refine the model. An illustration of
the process is depicted in Fig. 1.

We started with a study using a simple setup, with basic
particles with a uniform distribution and size. For a basic
set of parameters, we chose four parameters that are seen
frequently in visualization techniques using animated

particles. Examples of tasks involving each parameter can
be seen in Fig. 2.

First, there is the range of screen-space velocities for the
particles. When looking out the window of a fast moving
car, it is difficult to clearly see stationary objects, like trees
or road signs, close to the car. Based on this effect, we can
deduce that there is a speed limit in the visual sector, for
which humans can perceive objects clearly. We assumed
that speed estimation would be affected by this effect as
velocities would approach the limit of the visual system. To
investigate this, we chose a parameter which would scale

Fig. 2. Screenshots from tasks with different parameter settings. 2a shows a basic setup with direction angle set to 0 degree and the speed multiplier
set to 5. 2b shows chroma only contrast. In 2c, the direction of the flow was set to 45 degree down and to the left. 2 d shows the basic particles with-

out a tail.
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Fig. 3. The contrast-type parameter was set to be the angle of two
points circling around a center point in CIELAB color space. 0 degree
gave two colors with no chromatic contrast, and 90 degree returned
two colors with only chromatic contrast, while always maintaining a
constant contrast level.

up the speed of the animated particles globally, namely
global scale of velocities.

Due to the asymmetries in horizontal and vertical vision
[9] (e.g., due to the fact that our eyes are aligned horizon-
tally), we draw the assumption that there would be a
change in the perceived motion when viewing particles
moving from left to right rather than moving from top to
bottom. In addition, comparing motion when particles are
moving in the same direction would be easier than compar-
ing motion in the opposite direction. We chose to test for
this effect by introducing a parameter which would set the
direction of the particle motion. Direction ranged from 0 to
359 degree, where 0 degree meant the particles were mov-
ing in the same direction.

It has been stated that change in contrast and color
can affect the perceived motion [17]. When mixing color
coding and motion in visualization one should then be
careful about the resulting contrast between the moving
particles and the background. Based on the experiments
presented in previous work, we assumed there would be
a trend in estimation error as the contrast type would
change from luminance-only to chroma-only. To adjust
the contrast type, we generated colors by selecting points
in CIELAB color space with luminance only. To shift the
contrast type we rotated the points around the center-
point within CIELAB color space up to 90 degree. 0
degree would then result in two colors with luminance-
only contrast, and 90 degree would result in two colors
with chroma-only contrast. The contrast level would
remain the same for all degrees. Fig. 3 illustrates how
the colors were selected.

As the difference in speed between the reference and test
stimulus increases, we assumed that the perceived differ-
ence would not scale linearly. The main parameter tested
was speed multiplier between two sets of moving particles.
This corresponds to the theory of Just Noticeable Difference,
meaning that the smallest difference we can detect, is con-
nected to the intensity of the certain input. If the absolute
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speed of the particles is high, the absolute difference
between them should be comparably high.

We investigated the effect of adding additional visual
cues, which would indicate the speed of the particles. To
test if additional visual cues improved the perceived speed,
we added comet tails to particles for half of the tasks gener-
ated. The length of the comet tails were linearly scaled by
the speed of the particles and had a linear drop-off in width
and opacity. We also tested for any influence of the distribu-
tion of the points drawn on the screen. A short pilot study
was performed where half of the tests used a Poisson distri-
bution and the other half used random sampling.

While contrast type and direction has a natural limit of
range, the range of global scale and speed multiplier has
no such limit. However, it is natural to assume that there
is a certain limit for these parameters, where the error in
estimation becomes too large to be clearly connected to the
underlying data. In the pilot study, we found that estimat-
ing speed for particles moving with a velocity over
41.5 degree/second in the visual sector, the deviation in
error becomes so large that any estimation from a user
becomes meaningless when linked to the data. In addition,
if the velocity magnitude of one set of particles became
more than six times the velocity magnitude of another, the
error in estimated speed multiplier became too high to be
useful. We set the base speed to 0.83 degree/second, which
constitutes one pixel per frame at 30 frames per second.
This prevents any jitter in the movement of the particle.
With a base level of 0.83 degree/second, the range of the
global scale parameter was set to 1.0 to 7.0. With a maxi-
mum speed of 41.5 degree/second, we set the range of the
speed multiplier to range between 1.0 to 6.0.

4 TEST DESIGN

The aim for the study was to test for perception of rela-
tive speed between particle sets. In particle based visual-
izations, there is a multitude of variations in complexity
among particle types, size, density, direction of motion,
flow topology and more. To investigate the perception of
relative motion, we made a deliberate decision to start
with a basic setup, which would test only one parameter
at a time. This way, we can remove any unforeseen effects
from other parameters.

In our tests we have two sets of particles displayed on the
screen. One set is displayed at the top half of the screen (test
particles) moving at a velocity v;, and one set is displayed at
the bottom half (reference particles) moving at a velocity v,.
The user was then asked to provide the multiplication fac-
tor, s, which satisfies the equation:

[vil - = [vil. (1)

We have chosen to design the stimulus as a juxtaposition
of two stimuli [25]. An alternative would be a superposition
of the two stimuli, but this design will suffer from particle
mixture and mutual occlusion. In such a case additional
cognitive load will be required to isolate these two stimuli
from each other, prior to the comparison.

The juxtaposition design has one problem though. When
the two stimuli are far away from each other, the subject has
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to frequently move the eyes to switch the focus. Therefore, in
our study we have placed the stimuli as close to each other as
possible. This allows the foveal and parafoveal vision to take
part on the visual processing, without the need of frequent
refocusing from one stimulus to another one.

Change in density as well as a repeating pattern can dis-
tort the perception of speed. To compensate for this, the par-
ticles for each half were generated randomly under the
constraint that the average spatial distribution remained
uniform regardless of velocity and direction similar to the
experiments performed by Geesaman and Qian [26] or
Watamaniuk et al. [27].

However, the random generation of particles might lead
to structures in the motion pattern, i.e., several particles
clustered together due to randomness in the distribution.
To investigate whether such structures affect the test results,
we perform an initial pilot study that compares our ran-
domly distributed particles with those that are regularly
distributed. In order to create moving particles that are reg-
ularly distributed, we generate our particles following a
Poisson Disk distribution as suggested by McCool and
Fiume [28]. We performed a small test with three subjects,
where each subject completed 100 tasks. We then check
whether there is any significant difference when particles
are regularly distributed, we observed that the estimation
error with the regularly distributed particles was slightly
higher, i.e.,, average error —0.0416 with random versus
—0.0991 with regular points. However, this difference was
found to be insignificant with a p-value of 0.3412 when a
regular two sample t-test was applied. Due to this result
and due to the slightly better performance in error, we con-
tinue our study with randomly generated particles.

We selected subjects from various ages, gender, and pro-
fessions. Each user was given a set of 100 tasks. To avoid
any learning curve, we excluded previous participants for
the consecutive experiments. The subjects were not
informed of the parameter intervals and were told to esti-
mate velocities based on visual impression and not from
explicitly timing particles’ traversal over the screen (for
example by counting seconds and comparing distances).
For the four rounds of user studies, we invited 10 partici-
pants for the pilot study, 22 for the initial round, 10 for each
of the evaluation rounds.

For every test subject we used a 24-inch screen with a
16:10 aspect ratio. The pixel size was 0.27 mm and the can-
vas dimension was set to 768 x 768. The user’s head was
approximately 50 cm away from the screen. While tradi-
tional CRT screens are typically used for experiments, we
used modern LCD screens, which have sufficient quality for
our experiments [29] and, more importantly, are utilized
nowadays, in contrast to the CRT monitors that are practi-
cally not in daily use any longer. Wang and Nikolic stated
that the use of LCD can in some cases be preferred, but not
when the image changes rapidly. For our case, the smooth
motion makes it beneficial to use LCD. In addition, the
changes are not rapid. A small blur will appear from the
points, but similar to the comet tails, this has a very little
effect to the perceived stimulus as are shown in the results
in Table 3. Another challenge with LCD screens is represen-
tation of color. While the LCD screens might not provide an
absolute iso-luminant contrast, our motivation is driven by
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real world application, and in a real world scenario, optimal
conditions are never fully achieved. In most real world sit-
uations, the user will use an LCD screen with default
settings.

If the eye is fixated on a continuous motion over some
time, the eye will adapt to the motion. The reason for this is
an effect called neural adaptation [30], where the neurons
coding the particular motion reduce their responses. This
can result in a distortion of our test. To avoid direction
fatigue for the base speed, we alternate the direction of the
flow for every other test. Furthermore, the subjects were
asked to take a two-minute break after each 25 tasks have
been completed.

The test design remained unchanged for the three itera-
tions of testing.

5 USER STUDIES

5.1 Creating the Compensation Model

In the first round we wanted to investigate the effect of the
selected parameters separately. We generated three types of
tasks, one which tested the effect of global scaling of the
velocities. The scaling is added on both sets of the particles.
This changes Equation (1) to:

[vi| - s-0=]v-0. (2)

The range of o was 1.0 to 7.0 and the range of s was 1.0 to
6.0. For all the tasks involving global scale, the color-param-
eter remained constant at 0 degree and the motion direction
remained strictly horizontal.

The second type was aimed for contrast type. We gener-
ated tests where colors were selected with the scheme
explained in Fig. 3. The parameter ranges of 0 to 90 degree
in CIELAB color space. The range of s was 1.0 to 6.0. The
global scale parameter o was constant at 1.0 and direction
remained strictly horizontal.

Finally we tested for the direction of the flow in the range
of 0 to 359 degree direction. For each task we queried the
subjects for speed multiplier between the two sets of par-
ticles in the range from 1.0 to 6.0. The global scale parameter
o was set to 1.0 and color-parameter was set to 0 degree.

For each parameter tested, we created tests with random
configurations within the given parameter space. For
instance for contrast-type, a configuration might be as fol-
lows: 0 =1, s = 2.3, color-parameter = 90 degree and direc-
tion =0 degree. To prevent samples from being too
clustered in the parameter space, we constrained a random
function to keep the same number of tests within each inter-
val. In total 2,220 tasks were generated for the initial study.
When the study was completed, outliers were removed. We
utilized a visual inspection of the results supported by the
Mahalanobis scores computed for each sample. Here we
take a purely data-driven outlier-removal strategy, rather
than considering specific participating individuals or the
contextual properties of the test. In this stage, we compute a
Mahalanobis score for each sample using the speed multi-
plier versus signed estimation error. The threshold for out-
lier removal was 14.2, determined by visual inspection of
the scores. This resulted in the removal of 22 outliers. The
final sample size was then 2,198.
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TABLE 1 TABLE 2
Results of the General ANOVA Test Treating Each Results from the Two-Sample Unpooled
of the 10 Bins as a Separate Group T-Test with Unequal Variances
Parameter F-value p-value Direction
Global Scale 9.9745 1.440 x 107 [nterval N Mean T-score DoF
Direction 0.7131 0.490 036 50 0126 0.000 129
Speed Multiplier 8.6012 9.176 x 10713 - e :
Chroma vs. Luminance 0.8376 05816 30-72 141 -0.155 0.682 145
72-108 142 -0.110 0.352 146
The high p-value show that there are no significant trend in estimation error 108 - 144 1438 -0.094 0.722 148
compared to direction and contrast type. 144 - 180 145 -0.158 0.729 148
180 - 216 149 -0.220 2.054 148
From the results of the initial study we examined the %ég:%gg %441&'63 :8%(7) (1)232 %ig
relation between signed error and the parameters, i.e., if 9gg_304 128 -0.106 0.440 138
test-subjects overestimate or underestimate the speed. The 324 -360 144 -0.155 0.745 146
trend in signed error is more relevant than unsigned. As '
there is a general trend in overestimation, we can compen- Global Velocity Scale
sate for this by slowing down the test particles. By this we Interval N Mean T-score DoF
will achieve a closer match between human perception of 77.7 ¢ 40 -0.206 0.000 39
relative speed and the intended information communicated 16-2.2 34 -0.007 3.903 36
via the visualization. 22-28 35 0.244 5.834 36
We investigated the estimation trend for each parame- 2.8-3.4 31 0.304 6.435 34
ter. The significance of the trends was evaluated by bin- 3-4-4.0 37 0.375 6.023 37
nin les i ; ; 40-4.6 33 0.313 6.369 35
g samples in parameter intervals. To provide a more 16-52 0 0.405 = 168 35
robust significance evaluation, we performed statistical 7’5 5'g 36 0.594 7804 37
tests for different parameter intervals. In the following, 5g_¢4 28 0,530 8.643 33
we discuss the tests with 10 bins for each parameter. We 64-7.0 35 0.617 8.644 36
start by applying a one-way Analysis of Variance Speed Multinli
(ANOVA) test by treating each bin as a separate group. peed Multiplier
When we observe the results for this general multiple Interval N Mean T-score DoF
group test, we see that there is a significant difference 1,0-1.5 224 0.032 0.000 223
between the groups for the global scale and the speed 1.5-2.0 213 0.009 0.676 217
multiplier parameter. However, for the direction and 2.0-25 217 0.011 0.571 219
chroma parameters, we observe no overall significant dif- 25-30 221 -0.016 1.279 221
: 3.0-35 216 -0.015 1.172 219
ference between the multiple groups (refer to Table 1 for
. . 3.5-4.0 228 -0.099 3.464 225
the corresponding results). In order to achieve more ;5 45 187 20135 5158 204
detailed results to explain the trends within the parame- 45.5 263 -0.112 4.165 242
ter intervals, we perform post-hoc tests. We prefer to do 5.0-5.5 207 -0.153 5.400 214
a two-sample unpooled t-test with unequal variances between 5.5-6.0 222 -0.200 7.144 222
each bin and the bin at the initial parameter setting. We .
. . s : Chroma vs. Luminance
follow this strategy (i.e., initial bin versus the others)
since the parameter intervals are ordered and we want to  nterval N Mean T-score DoF
investigate the trends in relation to this ordering. More- 0-9 35 -0.104 0.000 34
over, we observe that the variance of the data is not equal 9-18 47 -0.127 0.344 40
within different intervals so we assumed unequal varian- 18-27 48 -0.133 0.405 40
. . 27 -36 40 -0.154 0.772 36
ces in our tests. Table 2 displays the t-scores for each
. 36 - 45 39 -0.176 1.164 36
parameter. The table shows the results from having 10 45_54 39 0.052 0.712 36
bins for each parameter. Interval shows the bin size in 54.¢3 42 -0.102 0.032 37
parameter space. N is the number of samples in the bin. 63-72 38 -0.059 0.572 35
Mean shows the average in signed estimation error and 72-81 50 -0.145 0.681 41
81-90 41 -0.156 0.739 38

T-score shows how the bin compares to the top row. DoF
indicates the degrees of freedom for the t-test. Since the
different intervals contain samples from the same indi-
viduals under different conditions, i.e., varying parame-
ters, we calculate the degrees of freedom accordingly and
use n/2 — 1 as the formula where n is the total number of
observations in the both groups. One point to mention
here is that we checked for normality (using a Shapiro-
Wilk Normality Test) on each of the bins prior to per-
forming the tests whether to use non-parametric tests
instead. We observed that for some of the bins, the

A significant correlation can be seen for the speed multiplier and global
velocity scale parameters. For the direction parameter only a weak correla-
tion can be seen, at around 180 degree. Unlike previous work, we could
not detect any significant trend from change in contrast type. Here the
results are collected into 10 bins for each parameter. Interval column indi-
cates the parameter range for each bin. N is the number of samples in each
bin. Mean shows the average in signed estimation error and T-score shows
how the bin compares to the top row. DoF indicates the degrees of freedom
for the t-test, where it is calculated as n/2 — 1 (n being the total number
of samples) to account for repeated measurements.



1548

25

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO. 11,

NOVEMBER 2014

25

2.0

15

Estimation Error

20

05

Estimation Error

o.of,",*

" '\t-\- , a?

050 "

Global Scale

(a)

2.5

10 20 30 40 50 60 70 B0 20
Chroma vs Luminance

(b)

25

2.0

Estimation Error

Estimation Error

2.0

50 100 150 200 250 300 350
Direction Angle

(c)

3 4
Speed Multiplier

(d)

Fig. 4. Scatter plots of the samples generated from the first perceptual study round. The red curve shows the regression curves used for the compen-
sation model. The curve for chroma-type (4b) shows no specific trend and thus this parameter was not included in the compensation model.

normality condition was not met. However, we still pre-
fer the parametric t-tests since they provide us an insight
on how the error evolves over the consecutive intervals.

We assumed that there would be a trend in estimation
error which correlated with the relative motion between
the two sets of particles. From Table 2, we can see there is
a trend to continuously underestimate the speed value as
the speed multiplier is increasing. Fig. 4d shows a scatter
plot of the error in estimation compared to the speed mul-
tiplier parameter.

The results from the initial study also justify the
assumption that there would be a change in estimation as
the global scale of the velocities increases. Unlike the speed
multiplier, subjects move from an underestimation to an
overestimation. However, the slope for the regression
curve for the relative motion factor remained unaffected
by the global scale parameter.

We had a hypothesis that comparing particles moving in
different directions would be more difficult than comparing
particles moving in parallel to each other. The difference in
direction, however, seems to have a very small impact on
the estimation error. From the results we could only find a
significant correlation in unsigned error. There was, how-
ever, a weak correlation in the signed estimation error. This
leads to the conclusion that direction should be accounted
for in our compensation model.

Based on previous experiments in prior work [17], we
expected to see a general trend in underestimation when
using iso-luminant contrast. However, we were unable to
detect any slow-down effect in our experiment. Fig. 4b

shows the impact on the estimation error related to the
contrast-type.

In addition, Table 3 shows the measured effect of the
added visual cue. The effect is small and only prominent for
animated particles with higher velocities.

The overall goal was to detect which parameters caused a
trend in estimation error, which in turn, could be compen-
sated for in particle-based visualization. From analyzing the
result, we found strong correlations between speed multi-
plier and scale when comparing them with the estimation
error. We also found a weak correlation between direction
and estimation error. Therefore we chose to include the
three parameters into our compensation model. We also
checked for dependence between these parameters using

TABLE 3
This Table Shows the Mean Error and Standard Deviation of the
Estimation Error for Each Task Type, Compared to the Overall

Parameter Tail Mean Error/Std. Dev.
All without 0.335 / 0.283

with 0.299 / 0.271
Global scale without 0.489 / 0.489

with 0.375 / 0.432
Contrast type without 0.253 / 0.182

with 0.250 / 0.174
Direction without 0.321 / 0.219

with 0.296 / 0.240

Comparing the tasks where the additional perception cue was taken into
account, there is a 3.6 percent decrease in mean error and standard deviation
goes down by 1.2 percent.
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TABLE 4
Regression Line Parameters Fitted
to Test Results

Constant Value
Qs -0.010414

by 0.02680727
aq 0.0261351
by -0.16202086
cq -0.14056624
Uy 0.48538867
bs 0.29785412

Pearson’s correlation test and observed no significant
dependence within any of the parameters.

To create the compensation model we needed a function
to describe the trends in the estimation error. For the global
scale, we choose a logarithmic function,

Ea(g) = Qg - log(d) + bUa (3)

where o is the global scale and a and b are constants defined
in Table 4. The logarithmic function gave a slightly worse fit
compared to a second order polynomial, but since the first
order derivative became negative at 6.5 in parameter space,
we found the second order unsuitable to describe the trend,
since the average estimation error was not decreasing (see
Table 2).

To find a function for the effect of direction, we fitted a
periodic cosine function,

Eq(a) = aq - cos (o + ba) + ca, (4)

where « is the angular difference between the two sets of
particles and a, b and c are defined in Table 4. Since the
trend in error is cyclic, we found the cosine function to be
better suited than a higher order polynomial.

Finally, we fitted a second order polynomial function for
the speed multiplier parameter, which we constrained to be
zero when the particles were moving with the same speed,

Ey(s)=as-s*+bs-s— (as+by), (5)

where s is the speed multiplier, and a and b can be looked
up in Table 4.

Each function provides an estimated error for the given
parameter. The final compensation function should provide
a scaling function for the velocity to compensate for the total
error from all parameters. In addition, the average error at
the base level for each parameter would be contained in
each function. This was solved by only including the change
in error for the scale parameter and the direction parameter.
The compensation function combines the error functions in
the following manner:

Cy(0) =1+ Ey(0) + E,(1)
Cyla) = 14 E4(ar) + E4(0)
Cy(s) =1+ Ey(s) (6)
1
F.(o,s,a)= C. GO

where F is the final compensation function, graphically
depicted in Fig. 5.
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Fig. 5. A volume rendering for the 3D function defining our compensation
model.

Before we move on the two following sections where we
present our evaluation and adjustment of the compensation
function, we first present how our model can be evaluated
in relation to the psychophysics literature, in particular to
Steven’s power law [18].

5.2 Validation against Psychophysics Theories

In our method described above, we take a linear approach
in computing the errors between the reference and test dis-
plays, and we compute the difference between the multipli-
cation factor we set and the one given by the user. Here, we
validate this error computation approach with a compari-
son to Steven’s Power Law theory [18] from psychophysics
literature.

As briefly mentioned in Section 2, Steven’s theory
states that there is a non-linear relationship between per-
ception and stimulus that follows a power law function
in the form y = k2. If we apply this to our case where
the stimulus is the velocity of the test particles v,, this
formula turns into v, = kv;\. Here, v, indicates the
velocity (of particles) that subjects should be perceiving
according to Steven’s theory.

Following Steven’s theory, we adjust the ground truth
while evaluating the s values that subjects provide for each
test. This leads to new error values and distributions. Refer
to Appendix for further details on how these computations
are carried out. We first compute the mean of the error dis-
tributions for the new values. The average error for the
global scale related tasks is 0.290 when the modified error
values are considered. When compared to the previous
error distribution, we observe no significant difference.
However, for the other tasks (i.e., chroma versus luminance
and direction), the average error values are significantly
lower, indicating an overall underestimation. This is very
likely due to the fact that in these other tasks speed differ-
ence is not the only varying stimuli and a more complex
psychophysical is needed.

We now focus our attention to check whether we observe
similar trends in estimation error when the error values are
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TABLE 5
Results of a General ANOVA Test Treating Each of the
10 Bins as a Separate Group with Errors Computed
by Considering Steven’s Power Law

Parameter F-value p-value
Global Scale 3.9193 9.4186 x 10~°
Direction 0.4316 0.6494

Speed Multiplier 74.9567 4.9585 x 10712
Chroma 0.5580 0.8312

computed according to the Power Law model. In order to
do that, we perform a one-way ANOVA test following the
same procedure used earlier in this section, i.e, the process
that led to Table 1. When the new error distributions are
used in the ANOVA test, we arrive at the same result with
our approach—there is a significant difference within the
bins only for the global scale and speed multiplier parame-
ters (see Table 5). This shows that our earlier observations
are in line with the power-law-modified computations.

Moreover, we use the new error distributions to fit the
same functions we use earlier in this section to perform a
further comparison. We compare the coefficient of determina-
tion scores [31] (i.e., R?) for both our functions and the new
functions fitted to modified error values. We observe that
our functions fit better to the data compared to power law
functions.

These reported observations demonstrate that our com-
pensation model is in agreement with the previous related
studies that fit Steven’s Power Law functions to human psy-
chophysical data and thus provides additional support for
the validity of our model.

5.3 First Evaluation Study

After we built the initial version of the compensation model,
we continued the process by evaluating it through a new
round of perceptual study. Our aim at this stage was to
assess the changes in the results due to the modifications by
the compensation model. We then aimed to improve the
model further, as a result of the investigation of the results
from the new user study.

In this second round of the study, we made tests to eval-
uate the three parameters, namely, speed multiplier, direc-
tion of motion, and velocity scale. Note that, we left out the
contrast parameter at this stage. We randomly created 486
different combinations of these parameters to build the
tasks for this round. For each of these parameter combina-
tions, we created two separate types of tasks. In the first
task, the final velocity was modified by the compensation
model (i.e., experimental group), and, in the second task the
final velocity was set without any modification (i.e., control
group). This process led to 486 x 2 = 972 tasks in total. Simi-
lar to the previous round, we used particles with tails for
half of the 486 parameter combinations. The tasks were then
distributed randomly to 10 subjects, who have not taken
part in the first part of the test.

We started analyzing the results by performing an outlier
analysis of the results. First, we removed the corresponding
tasks from two specific users since their results exhibit con-
flicting trends when compared to both the 22 users in the
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first round and the other eight users in the second round.
Additionally, we removed 16 results after an inspection of
their Mahalanobis scores. Here, we use two Mahalanobis
scores computed using two sets of variables, 1) speed multi-
plier versus estimation error 2) global scale versus estima-
tion error. The threshold to mark samples as outliers are 8.3
for the first score and 7.8 for the second. After the outlier
removal, the remaining set consists of 756 task results.

To evaluate the impact of our compensation model, we
treat the experimental and the control group separately
(with/without modification). We observe the effect of each
parameter on the estimation error separately. In order to do
that, we plot the estimation error against the three different
parameters for both of the experimental and control group.
These plots can be seen in Fig. 6. Moreover, we fitted regres-
sion lines to each plot (Table 6) and computed the average
estimation error for the two groups of tasks.

For the tasks that are modified with our compensation
model, both regression lines highlight a very significant
result. We observe that our compensation model manages
to flatten out the estimation error trends for both parame-
ters. Specifically, for relative motion the estimation error
trend slope goes down from —0.05 to —0.005, and for veloc-
ity scale the slope goes down from 0.07 to 0.005. This
amounts to an approximately 90-93 percent improvement
for the trends in estimation error.

Although the correlation between these parameters and
the error is removed, the results show that our modifica-
tions lead to an overall underestimation of the velocities.
This is clearly seen when the average signed estimation
error is observed. The average signed error changed from
—0.06 to —0.26. The same observation is also supported by
the placement of the regression lines in the second column
of Fig. 6, i.e., the regression line is below the x-axis. This

5 5
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2 3 4 2 6 i 2 3 4 5
Speed Multiplier Speed Multiplier

Fig. 6. The regression curves from samples generated in the first evalua-
tion round. The different curves show without (left) and with (right) our
compensation model.
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TABLE 6 TABLE 7
Regression Line Parameters Fitted to Test Results Regression Line Parameters Fitted to Test Results with/without
with/without Modification Modification

Parameter Modification Slope Intercept ~ Parameter Modification Slope Intercept

Speed multiplier without -0.05 0.120 Speed multiplier without -0.051 -0.068
with -0.005 -0.241 with 0.007 -0.153

Global scale without 0.076 -0.354 Global scale without 0.064 -0.37
with 0.005 -0.283 with 0.015 -0.240

observation leads to a modification of the compensation
model. We corrected the overall underestimation by insert-
ing a constant e into Equation (6), where € is equal to the
average signed error, i.e., —0.26.

A second modification to our compensation model
relates to the direction parameter. In order to check for the
correlation between estimation error (both signed and
unsigned) and the direction of motion parameter, we first
group the task results into 10 bins that correspond to 10 con-
secutive intervals of the motion direction parameter, i.e.,
each interval spans 360/10 = 36. Second, we calculate the
correlation between the signed/unsigned error and the
direction of motion parameter over these 10 intervals. How-
ever, there is no significant correlation in any of these inter-
vals. Therefore, we have left out the direction of motion
parameter from our compensation model.

As a result of these two modifications, updated compen-
sation model is formulated with:

Cy(0) = 1+ E,(0) + E,(1)

Co=1+c¢
Cy(s) = 1+ Ey(s) (7)
1
Flos) =5 a

These modifications to the compensation model called
for a second evaluation round to assess the efficiency of the
updated model.

5.4 Final Evaluation Study

In the final round, we wanted to investigate whether the cor-
rection based on the constant found in the previous round
would have the desired effect. In addition, we removed the
compensation for direction as this parameter had no signifi-
cant impact. The setup for the final study was almost identi-
cal to the previous study with 972 tasks, two sets with equal
parameters leaving 486 with compensation from Equation (7),
and 486 without any compensation. The tasks where gener-
ated using the same constraints from the previous study.
Again, we performed the study with ten new participants.
From the results we again removed outliers using the
Mahalanobis score. We computed the distance for global
scale compared to estimation error, and relative motion
compared to the estimation error. The distance threshold
was determined by visual inspection resulting in threshold
of six for the global scale parameter and ten for the relative
motion parameter. In addition, samples from one user was
deemed unusable, due to having trends conflicting with the
other 39 subjects included from all the results. In total 81
samples were removed, leaving 892 samples for analysis.

The results from the final study are shown in Table 7. The
average estimation error for sample without compensation
was —11.5 percent. For samples with compensation the aver-
age estimation error was —17.8 percent. From the previous
round we had an average estimation error of —26 percent.
Thus leaving the final improvement to be 8.2 percent higher
than the previous round.

The parameter impact showed similar improvement in
the last round, as we can see in Table 7. In Fig. 8, we can see
the regression curves for the tested parameters. The
improvement in slope is most prominent for the speed mul-
tiplier parameter, the slope for global scale parameter
changed from 0.064 to 0.015. We then conclude that the
effect of both parameters have successfully been reduced by
more than 75 percent.

Based on the results from the last study, we present the
final compensation model as follows:

E,(0) = ay - log(o) + by
E(s) = ass® + bs — (a, + by)
Cy(0) =1+ E,(0) + E,(1)

Co=1+4¢ (8)
Cy(s) =1+ Eq(s)
1
F.(o,s) = . C, O

Where the constants can be found in Table 8. The func-
tion is shown as a color map in Fig. 7.

6

Speed Mulitplier

3 4
Global Scale

0.51 Correction Value

Fig. 7. The final compensation model resulted in a 2D function, depicted
here as a height map.
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6 DiISCUSSION

Experiments have shown that there was only a systematic
change in estimation error when comparing two of the
four parameters selected for our study, the speed multi-
plier and the global scale of the velocities. Increasing the
speed multiplier, i.e., when the difference in speed was
increased, the perceived difference seemed to scale at a
lower rate. Also, when increasing the global scale of the
velocities, the estimation error changed from underestima-
tion at low speed (base-speed lower than approximately
1.66°/s), to overestimation at higher speeds (above
1.66°/s). In this case there seems to be a sweet spot where
we are most likely to achieve the best estimation, without
any compensation. The trend in estimation error compared
to speed multiplier remained approximately the same
throughout the range of the global scale parameter and
should be accounted for.

Although, there was no systematic trend in the signed
estimation error, when comparing to the direction of the
flow, there was a change in the error magnitude. When
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TABLE 8

Constants for Equation (8)
Constant Value
as -0.010414
bs 0.02680727
ay 0.48538867
by 0.29785412
€ -0.26
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Fig. 9. Error distribution computed following Steven’s power law versus
the global scale test parameter.

the difference in direction approached 180 degree, there
was a small increase in error. However, due to the lack
of any systematic change, we were unable to correct for
this effect.

From the experiments in previous work, it has been
reported a slow-down effect has been reported when gradu-
ally changing from luminance contrast to chromatic con-
trast. In our experiments, this effect was not reproduced.
While we should be careful to rule out any impact from con-
trast-type completely, we might see that this slow down
effect is caused not only by different types of contrast, but
the gradual change. Mather [14] reported that a change in
luminance can create an apparent movement of stationary
objects, and it could be that this effect is affecting the per-
ceived motion of moving objects.

From the results using multiple visual cues for velocity
encoding, such as comet tails for example, we can only see a
slight improvement from simple moving particles. The lack
of improvement could indicate that the claim of using mul-
tiple visual cues improves the subjects’ understanding of
speed, is not as prominent as previously believed. However,
for higher speeds, comparing tests with a higher global scale
of velocities to the general average, there is an improvement
of 11.4 percent in estimation error, shown in Table 3. In
addition, our results only relate to perceived speed and not
to direction, and the additional visual cue provides informa-
tion not only about the speed, but also about the history of
motion as well as that of the particle’s current direction. In
addition, the usage of comet tails enables the encoding of
velocities in still images, which simple particles do not offer,
as can be seen in Fig. 2.

To utilize the compensation model in a real world envi-
ronment, there are certain aspects which should be consid-
ered. Since this scales the velocities of particles based on the
underlying data, integrating the particle velocities in order
to calculate its position becomes an issue. The reason for
this is that the actual motion of a particle in the given flow
would move at the velocity given by the flow, and arrival
time and position would be distorted by the scaling from
the compensation model. This can be resolved by scaling
the reference frame. Still, the distortion might lead to a less
comprehensible visualization. A more proper usage would
be to integrate particles for a short time, in order to encode
speed at certain position. For longer temporal integration,
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other visualization techniques, such as stream lines, would
be advised. It is also important to note that visual speed esti-
mation of animated objects will not be very highly accurate.
Using moving particles should be used more as an over-
view, and using a compensated model for depicting the
velocities would create a better impression of what exists in
the underlying data.

7 SUMMARY AND CONCLUSION

In this paper we have presented a new perceptually based
compensation model for using animated particles in visu-
alization. The compensation model is based on the results
from a series of perceptual studies, investigating the per-
ceived speed of moving particles. The main goal has been
to assess trends in estimation error based on selected
parameters. We chose to test for four different parameters,
namely global scaling of the particle velocity, the velocity
direction, contrast type (iso-luminant versus achromatic),
and speed multiplier. Four rounds of studies were per-
formed: A pilot study, an initial study, which was aimed
for testing each parameter separately. A second study,
which tested the performance of the compensation model.
Finally, the last study was conducted to assess the
improvements from the previous round.

The results showed that significant trends were only visi-
ble in two parameters, global scaling and speed multiplier.
A weak trend was found in the direction parameter. Using
the trends in estimation error, we constructed a model
which can compensate and reduce the effect of each param-
eter. The improvement was confirmed with a new study
where the different parameters were combined. The results
from the second study showed a large improvement in the
impact factor from the selected parameters. However, the
direction parameter was deemed insignificant. In addition,
we also found a constant underestimation in speed estima-
tion. Finally, we adjusted our compensation model accord-
ing to the underestimation constant and performed an
evaluation study of the corrected model. This again con-
firmed the reduction in impact from the significant parame-
ters, as well as it improved the error in estimation
compared to the previous study. This work was aimed at
2D flow, and can be used as a starting point for the percep-
tion of moving particles in 3D.

The final output from this work is a compensation
model for the perceived speed of moving particles. Based
on the global scale of the velocities and their relative
speed-up factor, we have made an initial step towards a
perceptually uniform motion space for animated particles.

APPENDIX
APPLYING STEVEN’S POWER LAW

As discussed in Section 5.2, we support the validity of
our approach by modifying the error computations in
line with Steven’s Power Law [18]. Here, we give details
on how we represent the error in velocity estimations in
our tests.

Assuming that the human perception of velocity follows
a Power Law model, the test subjects perceive the reference
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speed v, according to the following function:
Vo = k- v, 9)

where v, is the perceived velocity. Subjects responded with
a estimated speed multiplier between the reference speed
and the test speed (i.e., trying to estimate s in Equation (1)).
So, the above formula becomes:

Vpr - 8s = k- (v - 5), (10)

where s, is the multiplier given by the subject as a response
to the test, and s is the true speed multiplier. Since, v, is
not known in Equation (10), we replace it with Equation (9)
to get:

(k-v)) - s =k-(v,-s)". (11)
We solve this Power Law model by linearizing this function
through taking the log of both sides and estimate the k and
A values, in our study these values are found to be
k= 1.4458 and A = 0.8428. Notice that since we try to build
a single model (not subject based), we estimate these single
values for all the subjects.

The next step here is to modify the s values according to
the Power Law model. These values then serve as the
expected speed multipliers (i.e., ground truths) in our tests
and we denote them as s.,,. Assuming a Power Law model
version of Equation (1), the computation turns into:

Vi = k- (Vr . Sexp))\
1

Vi A
Seap = \ 77| -
v k- v

After plugging in the k£ and A values and performing the
computations we find the estimation errors as

Serr = Ss — Seap-

After the new error distribution is computed, we perform
the analysis detailed in Section 5.2. As a companion to the
discussions in that section, refer to Fig. 9 that displays the
distribution of error values versus the global scale test
parameter.
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