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Abstract— Analysts often need to explore and identify coordinated relationships (e.g., four people who visited the same five cities
on the same set of days) within some large datasets for sensemaking. Biclusters provide a potential solution to ease this process,
because each computed bicluster bundles individual relationships into coordinated sets. By understanding such computed, structural,
relations within biclusters, analysts can leverage their domain knowledge and intuition to determine the importance and relevance of
the extracted relationships for making hypotheses. However, due to the lack of systematic design guidelines, it is still a challenge
to design effective and usable visualizations of biclusters to enhance their perceptablity and interactivity for exploring coordinated
relationships. In this paper, we present a five-level design framework for bicluster visualizations, with a survey of the state-of-the-art
design considerations and applications that are related or that can be applied to bicluster visualizations. We summarize pros and cons
of these design options to support user tasks at each of the five-level relationships. Finally, we discuss future research challenges for
bicluster visualizations and their incorporation into visual analytics tools.

Index Terms—Biclusters, interactive visual analytics, coordinated relationships, design framework.

1 INTRODUCTION

Meaningful coordinated relationships discovery is a common problem
in visual analytics. Coordinated relationships are groups of shared
relations between sets of entities of different types. For example, in-
telligence analysts often examine large unstructured textual datasets
to identify coordinated relations between different entity types (e.g.,
people, locations, dates) that might be evidence for collusion [47].
Bioinformaticians explore coordinated relations from expression and
interaction datasets to identify groups of genes and/or proteins that
are commonly expressed or regulated conditions and species [1, 70].
Analysts in cyber security trace coordinated relations between pro-
cesses, hosts and network domains to detect distributed coordinated
attacks [91]. While coordinated relations are thus important in many
areas, we use text analytics as an example throughout this paper.

With training, analysts can manually identify and explore coordi-
nated relations in data, but with significant cognitive effort. This pro-
cess usually involves three essential repetitive tasks: 1) identify and
extract meaningful entities, 2) investigate entities to verify whether a
set of entities are related to the same specific entity or entities, and
3) cluster or group entities based on their shared relationships. For
example, to find four people who all visited the same five cities, an-
alysts may read numerous documents, identify names and cities from
the documents, compare many co-occurring people-city pairs among
different scenarios, and test many possible combinatorial groupings of
the pairs, to finally discover the four people who are all paired with the
same five cities.

For example, Jigsaw [35] supports exploratory text analysis, and its
List View provides a solution for exploring simple 1:1 relationships
from textual datasets based on term co-occurrence. By selecting an
entity (in a list) of interest (e.g., a person’s name), users can easily
find related entities (e.g., locations and dates) because Jigsaw high-
lights these related entities located in other lists. However, Jigsaw
has limited capability to help users to identify coordinated relations.
For instance, consider testing whether there is any set of four people
who have visited the same five cities with Jigsaw. Users can simulta-
neously select multiple entities to view the relationships they have in
common. However, Jigsaw does not explicitly guide users as to which
four people to select, so users must iteratively select many possible
combinations of four names to find potential overlap in their related
cities, which is a time consuming task. The problem gets even more
complicated when composing or chaining multiple such coordinated
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relationships (e.g. were these people traveling on the same dates?).
Thus, tools like Jigsaw do not effectively assist users in exploring co-
ordinated relations.

Computation can ease this combinatoric exploration through the use
of effective data mining algorithms. Analysts seek the help of visual
analytics to support sensemaking [68], for the benefit of both advanced
computational power and human cognitive abilities [82]. Specifically,
biclustering algorithms can provide an efficient solution to identify
coordinated relations.

Fig. 1. An example of a bicluster extracted from a students-to-classes
relation. Dark cells indicate existing relationships, and orange cells rep-
resent relationships part of this bicluster. Three students took the same
four classes.

Biclustering is a data mining technique that has been extensively
used in bioinformatics, especially for gene expression data analysis
[5, 18, 60, 61, 62, 69, 72, 81], Biclusters, the computational outcome
of biclustering algorithms, potentially provide a rich high-level ab-
straction that represents coordinated relationships between groups of
entities of different types (e.g., a group of genes behave similarly un-
der a group of conditions). Biclusters have been applied in intelligence
analysis tasks to help analysts discover coordinated relations from tex-
tual datasets that may represent collusions [28, 80]. In general, a bi-
cluster can be considered a complete bipartite graph where every ver-
tex of one set is connected to all vertices of another set. Specifically,
a bicluster in a relation can be viewed as a bundling of individual re-
lationships into a pair of sets. For instance, as is shown in Figure 1,
from a relation capturing attendance of students in specific classes, we
might infer a bicluster involving a set of students [S1, S2, S3] who
all attend the same set of classes [C1, C2, C3, C4]. In this case, no
additional students or classes can be added to this bicluster; otherwise
it will break the requirement that biclusters are maximal.

While biclusters provide a good mathematical foundation for iden-
tifying coordinated relationships, biclusters must be made usable for
analysts through interactive visual representations. Several designs of
bicluster visualizations, with the purpose of improving human percep-



tion of biclusters and using them to facilitate analysis, have been im-
plemented (e.g., BicAT [6], BiVisu [17], Bixplorer [28], BiGGEsTS
[34], BiCluster viewer [40] and BicOverlapper [74]) and reported
promising results.

However, the challenge is a lack of systematic design guidelines
to direct the design of efficient, human perceptible and usable visual
representations of biclusters with necessary interactions to assist hu-
man sensemaking. Several key questions related to the design of bi-
cluster visualizations still remain unanswered, such as what are the
goals of bicluster visualizations, how users navigate within a list of
many output biclusters to identify interesting biclusters, and how to
design visual representations and interactions that leverage the highly
abstracted information of biclusters along with the detailed contextual
information from the original dataset to support human sensemaking.

In this paper, we present a five-level design framework for biclus-
ter visualizations, with a survey of the relevant state-of-the-art design
considerations and applications. We summarize pros and cons of these
design options for supporting user tasks at each of the five-level rela-
tionships. Finally, we discuss the further research challenges in ex-
ploring the design space of bicluster visualizations and their possible
incorporations into visual analytics tools.

2 BICLUSTERING AND CHAINING BICLUSTERS

Clustering is a well-established concept, which has been comprehen-
sively explored over the past fifty years [4]. The basic idea of cluster-
ing is that we are given n points or entities in a given m-dimensional
space and a distance or similarity function defined over that space. The
goal is to identify subsets (clusters) of entities such that points within
a cluster are more similar (or nearer) to each other than to points from
other clusters.

2.1 Biclustering

Compared with the concept of clustering, biclustering is a relatively
younger concept. The idea of biclustering (although not under this
name) has existed since 1972 [38]. Biclustering generalizes the idea
of clustering by simultaneously finding both subsets of entities and
subsets of dimensions such that the selected entities are homogeneous
(only) within the selected dimensions. Biclustering thus treats the no-
tion of points and dimensions more uniformly, which is different from
clustering. Also, while clusters form a partition of the dataset (i.e.,
they are mutually exclusive and collectively exhaustive), biclusters
can overlap and may not collectively span the entire matrix of rela-
tionships. If these two conditions are imposed, biclustering is also
referred as co-clustering [23].

Starting with relations between entity sets, we formalize the notion
of biclusters that we use for this paper as follows:

Relations between two Entity Sets. An entity set is a set of objects
from a specific domain (e.g., dates). We assume that entities have been
extracted from datasets (e.g., documents) by using entity recognizers
such as LingPipe [15] or similar tools. Given two entity sets E and F,
a (binary) relationship R (E, F) between E and F is a subset of E×F
(the Cartesian product of E and F ). We say that E is connected to F.
It is useful to view R as both a matrix and as a bipartite graph. In text
analytics, R can be used variously to model document co-occurrence,
associations, or specific relations extracted by natural language pro-
cessing. For instance, person X can be related to organization Y if
they are mentioned in the same sentence, or if a dependency parse
followed by a semantic labeling infers a “works-for” relationship be-
tween X and Y.

Bicluster. We define a bicluster (E ′, F ′) on R (E, F) as a set E ′ ⊆ E
and a set F ′ ⊆ F such that E ′×F ′ ⊆ R. That is, there is a relationship
between every element of E ′ with every element of F ′. A bicluster
(E ′, F ′) is thin if there is only one entity in either E ′ or F ′.

Closed bicluster. A bicluster (E ′,F ′) is closed if:
(i) For every entity e ∈ E−E ′, there is some entity f ∈ F ′ such that

(e, f ) /∈ R, and
(ii) For every entity f ∈ F−F ′, there is some entity e∈ E ′ such that

(e, f ) /∈ R.

That is, adding an entity in E−E ′ or F−F ′ to the bicluster will vi-
olate the condition that defines a bicluster mentioned above. In other
words, a closed bicluster is the bicluster to which we cannot add ad-
ditional rows or columns if it is represented in the form of matrix.
Hence, a closed bicluster can be regarded as maximal in height and
width (although the term “maximal bicluster” is sometimes reserved
for other interpretations in the data mining community). In this paper,
our notation of biclusters refers to closed biclusters.

With closed itemset algorithms proposed in the data mining liter-
ature (e.g., LCM [83] and CHARM [89]), closed biclusters can be
mined from the original dataset (e.g., documents) based on the pre-
extracted entities. These algorithms work level-wise, such as, by find-
ing biclusters with just one row (or column), and then aiming to grow
them by adding more rows (or columns) and observing how many
columns (or rows), if there are any, are affected.

Fig. 2. Chaining four biclusters through multiple relations by approxi-
mately matching sets of entities across common domains.

2.2 Chaining Biclusters

Since every bicluster is discovered in a single relation, it is possible to
compose separately identified biclusters across two relations by (ap-
proximately) matching biclusters with the shared domains. Jin et al.
presented this approach to identify compositional patterns in multi-
relational datasets [50]. As is shown in Figure 2, four biclusters that
indicate four different relations can be chained together using the com-
mon interfaces (e.g., use location to connect the blue bicluster with the
green one). By chaining biclusters across multiple relations, relation-
ships from a diversity of domains can be bundled in a coherent manner.
Results of such compositions can be read sequentially from one end
to the other, which is similar to a story. For instance in the scenario
from Figure 2, we might learn about ‘a group of faculty from com-
puter science, psychology and other departments’, many of whom ‘are
planning a trip to Toronto and nearby places’, the dates of which are
approximately aligned with ‘the last week of April 2014’; this might
lead us to infer that they are likely HCI researchers planning to at-
tend the CHI 2014 conference. Context information supporting these
relations can then be inspected to gather evidence for this hypothesis.

Chaining biclusters can be achieved by using similarity search al-
gorithms and data structures, (e.g., the cover tree, an efficient data
structure for calculating nearest neighbors [8]). For each unique do-
main (e.g., people, locations, dates, etc.), one cover tree can be defined.
For every bicluster discovered, the set of rows and the set of columns
within the bicluster are indexed into two corresponding cover trees.
After all biclusters are indexed, similarity searches can be readily con-
ducted to find closest overlaps to all identified biclusters [28], which
works as the basis for chaining biclusters.

With a clear notation of entity, biclustering, biclusters and chaining
biclusters, we reach a common ground about these important concepts
that are used in this paper. Each of them corresponds to one or several
user tasks in intelligence analysis, which directs us to pursue system-
atic and comprehensive design guidelines for bicluster visualizations.
This design space should cover design requirements for users to better
perform these tasks as much as possible, such as efficient visual repre-
sentations to illustrate relations corresponding to these concepts, and
fluent navigations to direct users to different visual metaphors. Be-
cause bicluster visualizations have been primarily explored in bioin-
formatics, much of past research in this space falls in this domain.



3 FIVE LEVELS OF RELATIONSHIPS

There are five levels of relationships (or connections) that underlie
the notions of biclusters and chaining biclusters. These relations are
closely related to the logic of the workflow that analysts may follow
for sensemaking. To decompose the complexity of the discovery of
relationships, we categorize these underlying relations into the follow-
ing five levels (from low to high). Lower-level relations provide the
critical basis that supports the exploration and identification of higher-
level relations.

Entity Level: Single Entity Relationships (Entity-LR ). This is
the most basic relationship, in the mathematical form of 1:1 . All other
higher levels of relations build on this logical unit. In this relationship,
for an entity in a particular domain, there is a corresponding entity
that comes from either the same domain or another domain that relates
to this entity based on some data or rules. For example, person A is
related to city B, because person A has visited city B. Two domains,
people and location, are involved in this relationship. As another ex-
ample, gene X is similar to gene Y because they behave similarly un-
der condition Q. In this relationship, despite the fact that there are two
domains, genes and conditions, the two related entities are actually
from the same domain, genes. To form relations in the next four lev-
els, we need entities from different domains, so our discussion in this
paper about Entity-LR refers to those with entities from two different
domains, rather than the same domain.

Group Level: Entity Group Relationships (Group-LR ). This
level of relationship is in the mathematical form of 1:n or n:1 . In
such a relationship, there are, in total, n+1 entities from two different
domains. The semantics of such a relationship is that for an entity in
one domain, there is a corresponding related group of entities in the
other domain. For example, 15 people are related to Amazon, because
they all usually buy items from there or they all work for Amazon. A
Group-LR relationship can result from the union of several Entity-LR
relations that share connections with the same entity.

Bicluster Level: Coordinated Relationships (Bicluster-LR ).
This type of relationship is in the form of m:n . There are two do-
mains with m+n entities involved in this relationship, indicating that
for a group of entities in one domain, a corresponding group of enti-
ties from another domain are related to them. For example, six people
are connected with five locations, because they have each visited all
the five locations. This level is represented by biclusters. This type of
relationship can be formed by combining a series of Group-LR where
every single entity belongs to the same domain and the corresponding
groups of entities in these different Group-LR relations are the same.

Chain Level: Chained Coordinated Relationships (Chain-LR ).
This is a more complex level of coordinated relations, in the mathe-
matical form of m:n:. . . :z . Chain-LR can be considered an extension
of Bicluster-LR because multiple individual coordinated-relations are
connected together based on the shared entities between each pair.
With intermediate groups of entities, at least three domains with
m+n. . .+z entities are connected with each other in Chain-LR. For
example, four students, five cities and seven dates could be connected
because all the four students visited the same five cities during the
same week. Since there are more than two domains involved in this
relationship, compared with Bicluster-LR, it takes more effort to mine
or recognize Chain-LR. It is also more difficult for humans to under-
stand them, especially when the number of involved domains is large.
However, Chain-LR contains more relations, which may provide an-
alysts with meaningful story-like information (e.g., who plans to do
what at which locations on what dates) for making hypotheses.

Schema Level: Schema Level Relationships (Schema-LR ). This
type of relationship presents highly abstracted, database-like, patterns
within a dataset. Schema-LR indicates connections among all do-
mains within a given dataset, which reveals an overview of the dataset.
For example, in an intelligence analysis task, Schema-LR may refer to
relations across all potentially meaningful domains for this task, such
as people, organizations, locations, dates, and so on. Relevant do-
mains within Schema-LR are usually defined or identified by domain
experts, although some software (e.g., Entity Workspace [9], Jigsaw
[35] and NetLens [53]) allow users to choose domains (from those

that can be identified) based on specific tasks. Schema-LR can also be
potentially formed on the basis of the search for involved domains by
traversing those in all discovered Chain-LR.

Table 1 briefly summarizes these five levels of relationships. These
relations cover most meaningful relations that analysts may want to
explore, which leads to two design concerns: 1) how to visually rep-
resent these relations, and 2) how to interact with visual metaphors
that can assist analysts to pick or find meaningful ones. Also, to en-
able human-in-the-loop [20] analysis, users may need control some
key parameters in the data mining algorithms (e.g., biclustering and
chaining), so that meaningful visualizations can be generated based on
expected mining results. For Bicluster-LR, the size of a bicluster (the
number of rows and columns) and domains are two key parameters for
users to control; and for Chain-LR, the size of an overlap between two
biclusters and domains of this share region are two user customizable
parameters. Domains are also a user controllable parameter for both
Entity-LR and Group-LR. The size of a group is another parameter
for users to choose in instances of Group-LR. There is no obvious user
customizable parameters for Schema-LR because this relationship is
usually determined by datasets. These parameters offer opportunities
for interaction in bicluster visualizations.

4 THE FIVE-LEVEL DESIGN FRAMEWORK

Exploration and identification of meaningful five-level relations are
essential tasks for sensemaking, which needs support from bicluster
visualizations. On the basis of these relations, our discussion about the
design framework of bicluster visualizations focuses on visual repre-
sentation design and interaction design. The former addresses visual
design choices for the five levels of relations with the purpose of sum-
marizing feasible visual representation techniques to improve the per-
ceptibility of computational results, especially biclusters and chaining
biclusters. The latter discusses interaction design options with a prin-
cipal task-driven purpose: guiding users to explore potentially mean-
ingful relations. Thus, the interaction design can reinforce the per-
ceptibility of visual representations by making them usable. With the
combination of both aspects, we present a five-level design framework
for bicluster visualizations to provide systematic design guidelines that
inform the design of future visual analytics tools with use biclusters.

4.1 Design Choices for Entity and Group Levels
Several visual representations for graph layouts and interaction tech-
niques have been discussed in [84], many of which can potentially be
applied to present and explore Entity-LR and Group-LR. Entity-LR
are easy for humans to interpret. Based on Entity-LR, Group-LR can
also be easily formed given our previous discussion. In this section,
we focus on the node-link diagram, since other visual representations
(e.g., matrix) are more powerful to present higher levels of relations.

The node-link diagram is an intuitive way to visually represent re-
lations between entities for relatively small datasets [41], although the
shape of nodes or the type of links may be different (e.g., use circles
or squares for nodes and use straight lines or curve lines for links). A
single instance of Entity-LR has just two entities, and whatever shapes
of nodes or types of links are used, it is easy for people to understand.
By visually following an edge, regardless of its line types, people can
easily understand that two nodes are related with each other. How-
ever, the situation becomes different when many Entity-LR instances,
which may form Group-LR, are to be visualized, because there may
be too many lines crossing with each other that obscures relationships
among entities. The study from Ghoniem et al. [32] shows that there
is significant difference in the node-link graph readability between the
graph with straight lines and that with curved lines because curved
lines are more efficient to reduce edge-crossing than straight lines. In
addition, edge aggregation techniques, such as edge bundling [45],
provide solutions to avoid clutter caused by too many lines. Selecting
and highlighting (e.g., via changing shapes, colors, or size) are two
important interactions usually applied in node-link diagrams to help
discriminate some relations from others, because highlighted nodes or
links become visually prominent for humans to perceive. For example,
a node with bigger size is easily differentiated from those with normal



Table 1. A Brief Summary of the Five-Level Design Framework.

Level of Relationships Format Number of Domains Number of Entities User-Controllable Parameters
Entity Level 1 : 1 2 2 Domains
Group Level 1 : n or n : 1 2 n+1 The size of a group; domains

Bicluster Level m : n 2 m+n The size of a bicluster; domains
Chain Level m : n : . . . : z At least 3 m+n+ . . .+ z The size of overlap between two biclusters; domains

Schema Level 1 : . . . : 1 Multiple NA NA

size. However, node-link diagrams can hardly represent Bicluster-LR
and Chain-LR in an easily perceptible way due to the following three
limitations:

L1 : Random locations. In a node-link diagram, entities are ran-
domly placed in the space by connecting one another with links. With-
out clearly visual, spatial structures, users have to manually reorganize
the location of entities to form a new visual structure of the identified
Bicluster-LR and Chain-LR so that they can easily understand.

L2 : Number of links does not scale. Visually following links is
the only way to explore relations between entities. The difficulty of
doing so depends much on the number of edges in the graph.

L3 : Difficult to incorporate domain information to spatially ag-
gregated entities. Color coding is usually applied in node-link dia-
grams to indicate entities’ domain (or categorical) information. As a
result, entities with the same domain information are not spatially ag-
gregated, and users have to track both colors and links to find out two
specific groups of entities that are related.

Using better layout techniques, matrix-based visualizations and par-
allel coordinates [48] are solutions that can help to overcome the
above three limitations. Matrix-based visualizations and parallel coor-
dinates show greater suitability for exploring Bicluster-LR and Chain-
LR than Entity-LR and Group-LR, so we discuss them later in Sec-
tion 4.2.1 and Section 4.2.2, respectively.

Tree visualizations and layouts incorporating spatial distance (e.g.
a force-directed layout [30]) are two common layouts for node-link
diagrams. They can improve readability of the node-link diagram by
overcoming L1 because the location of nodes is determined based on
certain rules. For example, in a force-directed layout, two nodes are
placed near each other because they are considered as similar. If in-
stances of Entity-LR and Group-LR are in hierarchical relationships,
tree visualizations are good choices. However, tree visualizations can-
not be applied to explore Bicluster-LR and Chain-LR. The definition
of a tree violates that of Bicluster-LR and Chain-LR discussed in Sec-
tion 3, since all nodes in a tree belong to the same domain, rather than
different ones.

When using spatial distance to enhance node-link diagrams, inter-
actions that support spatially organizing information (e.g., dragging
entities and spatially grouping entities) are key design concerns, which
enable users to navigate and/or create spatializations for spatial rea-
soning [13]. Tools such as IN-SPIRE [87] and ForceSPIRE [24] im-
plemented these design choices to support users to spatially organize
visual metaphor of documents in the workspace. Vizster [39] applied
the force-directed layout in the node-link diagram for social network
analysis, and it used “blobs” (transparent coloring regions) surround-
ing entities to represent community structures. Noack’s LinLog en-
ergy model [63] applies energy-based and force-directed methods to
layout clusters. Clusters in LinLog are defined as a group of nodes
that have many internal edges but few external edges to nodes outside
this group. Similar to Vizster, LinLog uses spatial separation to show
different clusters, but it does not show edges between entities. Because
of missing edges, it is impossible to explore Entity-LR and Group-LR
from LinLog’s visual representation without any necessary interaction
(e.g., clicking nodes to show its edges). Spatial distance is readily
perceived by humans, which can be used to indicate structures of a
dataset. However, to find meaningful relations between specific enti-
ties, visual metaphors that work as scaffolding are still indispensable.
Therefore, the number of links for entities still is a key constraint for

the application of visually using spatial distance to explore Bicluster-
LR and Chain-LR.

4.2 Design Choices for Bicluster Level

There are two major design concerns for Bicluster-LR : how to visual-
ize a single bicluster; and how to visualize all possible biclusters iden-
tified from a dataset and navigate users to find meaningful ones. The
first concern may lead to a simple visual metaphor of a single bicluster
that is easy for humans to perceive, and the second concern may result
in specific visualization techniques (e.g., focus+context [43, 57]) that
allows users to explore meaningful biclusters based on the context.
Matrix-based visualizations and parallel coordinates provide possible
visual solutions to meet these two design concerns, and the former has
been studied in the bioinformatics domain [67, 73].

4.2.1 Matrix-Based Visualizations

Matrix-based visualizations represent Entity-LR, Group-LR and
Bicluster-LR, where a relationship is indicated by a cell in the ma-
trix and the two corresponding entities are respectively listed as a row
name and a column name of the matrix. For Entity-LR and Group-LR,
compared with node-link diagrams, matrix-based visualizations are
less intuitive for humans to perceive [33]. For Bicluster-LR, matrix-
based visualizations are superior to node-link diagrams by overcoming
the three constrains mentioned in Section 4.1. In a matrix, entities are
listed as names of rows or columns, rather than randomly located in the
space. By using cells to indicate relations, matrix-based visualizations
effectively avoid visual clutter [71] caused by edges crossing and/or
overlapping. Besides, domain information can be easily incorporated
into matrix-based visualizations, and entities fitting in the same do-
main can be spatially listed near each other. For example, columns
and rows of a matrix respectively belong to two different domains.
This offers a clear visual representation for a single bicluster.

Bixplorer applied this idea to visualize individual biclusters mined
from textual datasets, and reported that users could perform text analy-
sis using these visual biclusters [28, 80]. However, for an overview of
all mined biclusters from the text, Bixplorer simply listed all mined bi-
clusters, requiring users to select biclusters from the list and view them
in a detailed preview panel to determine whether each bicluster might
be useful. Bixplorer emphasized a bottom-up approach, enabling users
to discover relevant biclusters based on the documents and entities in
their focus of investigation. The relevant biclusters were visually em-
bedded directly into a user’s spatial document workspace, thus placing
them in context. Methods are needed to enable top-down overview of
textual datasets from the perspective of biclusters that help direct users
to meaningful biclusters and then to supporting document details.

Similar to Bixplorer, matrix-based visualizations enhanced with
heatmaps are widespread in the bioinformatics domain for gene ex-
pression data analysis (e.g., BicAT [6], BiCluster viewer [40], BicOv-
erlapper 2.0 [75], BiGGEsTS [34], BiVoc [37], Expression Profiler
[54] and GAP [88]). To perform gene expression analysis, the col-
lected raw microarray data are transformed into gene-expression ma-
trices, where rows usually represent genes and columns stand for con-
ditions [12]. Matrix-based visualizations are a good fit for this task. By
simultaneously reordering rows and columns in the matrix, biclusters
can be formed from the gene-expression matrices [61, 81], which helps
to identify co-expressed genes under a shared set of conditions. Les



Misérables Co-occurrence1 developed with D3 [10] is a good example
that visually shows this process. Compared with static visualizations,
presenting the dynamic reordering process helps users to understand
how biclustering works and how biclusters are formed from a matrix.

A typical matrix-based visualization that shows the result of two
biclusters identified from gene-expression matrices is shown in Fig-
ure 32. The big matrix represents a gene-expression matrix and two
small matrices indicate two identified biclusters. Comparing the two
biclusters, we find that all genes are the same except two, and there
are six conditions shared across the two biclusters. Parts of relations
within the two biclusters overlap, so it is impossible to visually sep-
arate these two biclusters by just reordering rows and columns of the
big matrix. Therefore, although the big matrix contains all relations
to form biclusters, extra techniques are required to layout all possi-
ble biclusters in a human perceptible way and navigate for exploratory
analysis. This is conceptually a double Euler diagram problem on two
domains simultaneously.

Fig. 3. An example of the matrix-based visualization to illustrate two
biclusters mined from a gene-expression matrix2.

Grothaus et al. [37] proposed an automatic layout algorithm that al-
lows for replicating rows or columns to optimize the layout of matrix-
based bicluster visualizations. The optimization refers to two aspects
for the big matrix: 1) to form contiguous subregions and each of them
contains as many overlapping biclusters as possible; and 2) to keep the
size of the big matrix as small as possible. Bicluster Viewer [40] ap-
plied this algorithm to a matrix-based visualization with five key inter-
actions to help navigate and explore biclusters from gene-expression
matrices. Users can zoom in/out of the matrix, and highlight se-
lected biclusters and their corresponding rows and columns. Users
can choose to show all biclusters within the big matrix, with replicated
rows and columns, and a rectangle with a colored frame is used to in-
dicate the region of each bicluster. In addition, Bicluster Viewer can
show biclusters without replicating any rows or columns. In this case,
each bicluster may be split into different subregions within the big ma-
trix, which are visually indicated by rectangles with the same colored
dashed lines. To help navigate among biclusters, Bicluster Viewer
maintains a list of identified biclusters, where the selected biclusters
are highlighted with yellow and biclusters formed by replicating rows
and colums are colored with red. However, similar to the problem with
Bixplorer, the bicluster navigation list in Bicluster Viewer displays all
biclusters in a simple list without user-defined names or labels. The
arbitrary bicluster identifier names do not provide users with seman-
tic information. Semantic meanings influence human interpretation
[16, 26], which requires appropriate information scent to enable users
to understand relations within a bicluster in a brief manner.

A matrix-based visualization provides an efficient visual represen-
tation for a single bicluster, which is easy for human to perceive.
By replicating rows or columns, it is possible to layout all biclusters
within a big matrix, and interactions applied in Bicluster Viewer pro-
vide a feasible instance to help users navigate among these biclusters.
However, these replicated rows or columns may cause confusion, par-
ticularly when they are repeated several times and these repetitions

1This visualization can be found at http://bost.ocks.org/mike/miserables/
2Taken from http://genomics10.bu.edu/terrence/gems/help.html

may appear spatially near or far from each each. Given the combina-
torial nature of biclusters, this process may require a large number of
row and column replications.

4.2.2 Reduced Parallel Coordinates with Two Domains

Parallel coordinates is a well explored visual technique to present high-
dimensional or multivariate data [22, 44, 86]. Since Bicluster-LR just
has two involved domains, our discussion of parallel coordinates in
this section refers to the reduced version with two domains. Instead of
randomly placing entities in a two-dimensional space, parallel coordi-
nates spatially sorts entities in a list based on their domains. Compared
with the node-link diagram discussed in Section 4.1, parallel coordi-
nates uses locations to separate one group of entities from another, and
display them in an easily perceivable way. For example, in parallel co-
ordinates, Entity-LR is represented as two entities from two lists with
a line between them; Group-LR is displayed as one entity from a list
that has several lines connecting with several entities from another list,
and Bicluster-LR is more complex, which is represented as many en-
tities from a list and each of them has the same number of links to the
same entities in another list.

Jigsaw applied parallel coordinates in its List View [35], where en-
tities are organized in different lists based on their domains. Similarly
to [52] and [27], Jigsaw allows users to select domains (e.g., people,
dates, locations, etc.) to be displayed in the List View. With interac-
tions such as selecting, highlighting and ordering entities, users can
easily explore Entity-LR and Group-LR of interest in Jigsaw. With
these interactions, analysts can find biclusters in Jigsaw, and an exam-
ple is shown in Figure 4. In this example, “The Sign of the Crescent”
dataset [47] is imported in Jigsaw3 and it takes three steps (from A to
C) to find a bicluster that indicates the three key persons involved in
the Atlanta event and a group of locations that they all visited. Jigsaw
uses highlighting, particularly highlighting relevant entities by orange
based on word co-occurrence, to guide users to perform exploratory
analysis. However, there is little guidance for users to find biclusters.
After step A in Figure 4, how do users know which entity in the list to
consider adding into the bicluster in the next step? Users have to ap-
ply trial-end-error to finally reach the 3x6 bicluster shown in Figure 4.
Thus, visually discriminating entities in the same list may better help
analysts to find entities for their next analysis step. Coloring relevant
entities in the same list based on the number of entities (in another list)
shared with the selected one is a possible solution.

Fig. 4. An example of finding a bicluster in Jigsaw’s List View. Yellow
indicates entities that a user selected and orange indicates relevant enti-
ties corresponding to the selected one(s) based on word co-occurrence.

Parallel coordinates is also applied in bioinformatics to display bi-
clusters (e.g., BicAT [6], BiCluster viewer [40], BicOverlapper 2.0
[75] and BiVisu [17]), where each vertical axis indicates a condition
and a polyline represents a gene. However, compared with matrix-
based visualizations, parallel coordinates is less used in this domain

3Version 0.53, from http://www.cc.gatech.edu/gvu/ii/jigsaw/



[73] and few interactions are available in these tools. Parallel coor-
dinates may do a better job to show variation in trends of genes un-
der different conditions than explore biclusters. Although these tools
show results of possible biclusters, none of them perform user stud-
ies to evaluate whether these biclusters in parallel coordinates can be
perceived or not. Johansson et al. [51] tested readability of paral-
lel coordinates with five stimulus patterns, and their study shows that
difficulty to discriminate these five patterns in parallel coordinates in-
creases when the noise level goes above 13%. This suggests that if
lines indicating relations of different biclusters can be visually well
organized, users may identify biclusters in parallel coordinates.

Four Design Choices. There are four different design choices dis-
cussed in relevant literature that can be applied to improve the display
of biclusters in parallel coordinates. The most basic one is to move en-
tities belonging to a bicluster together and use different color to high-
light them, such as step D in Figure 4. This aggregates entities spa-
tially close with each other, which helps to separate these entities from
others. Another way is to replace straight polylines with curved lines
[36] and add force, similar to force directed layout, to these curved
lines to aggregate or bundle them based on certain rules [93]. In this
way, possible biclusters can be explored by starting analysis from the
aggregated curved lines. The third way is to aggregate entities and
polylines respectively and use colored ribbons, similar to the Bubble
Sets technique [19], to wrap the aggregated entities and polylines from
the first vertical axis to the final one [3, 31, 55, 58, 65, 92], which can
be used to indicate a bicluster that is determined by the smallest set
of the shared entities across all axes in this region. Finally, tile-based
parallel coordinates [2] provides an efficient way to avoid visual clut-
ter, since it divides the plotting space into rectangular tiles and colors
these tiles based on the sum of polylines that intersect with the tile.
This can be applied to show biclusters with a modification of color
coding rules for tiles. For example, based on the selected entities, a
set of polylines (denoted SetA) can be formed by a union operation of
all polylines starting from these entities. Then for each tile, a set of
shared polylines (denoted SetB) can be found by an intersection oper-
ation between the polylines passing through this tile and those in SetA.
Finally, each tile is colored based on the total number of polylines in
SetB. By following the colored tiles, it is possible to identify whether
biclusters exist or not for the selected entities.

These four design concerns provide possible solutions for present-
ing a relatively small number of biclusters in parallel coordinates. If
there are overlaps between biclusters, the first design choice will not
completely display all biclusters unless some entities are replicated.
Applying the third design choice with replicated entities, biclusters in
parallel coordinates are still difficult to identify, because many regions
may overlap with each other. These overlaps may lead to misunder-
standing and obscure the exact number of clusters [21]. The second
design choice avoids aggregating entities together, but visual clutter
may still appear due to many curved lines, especially when there are
many bicluters. For the last design choice, if many biclusters exist,
various tiles may have the same color. In this case, it is difficult to
differentiate biclusters. However, the 1-dimensional sorting of paral-
lel coordinates should reduce the replication problem in comparison
to the 2-dimensional sorting of the matrix-based approach. Although
there may be some interesting optimizations that attempt to sort two
vertical axes in parallel coordinates so that the bicluster links are as
horizontal as possible. Ultimately though, this solution devolves into
a linear list of biclusters as used in Bixplorer.

Fig. 5. An example of rearranging axes by switching axes BB and CC4.

To overcome these drawbacks, interactions are a key requisite to

identify meaningful biclusters. In addition to the basic interactions
mentioned in the Jigsaw example (e.g., select and highlight entities),
brushing and rearranging axes are two important interactions to ex-
plore parallel coordinates [78]. Brushing allows users to create a cus-
tomized region (e.g., a focus area) in an axis and move it to select a
set of polylines [79]. By following these polylines, analysts can deter-
mine whether biclusters exists or not for entities enclosed in the bin.
For example, all three entities shown in step D in Figure 5 have six
lines connecting to the same six locations, so that the three people and
the six locations form a bicluster. Axes rearrangement assists to ex-
plore relations between two specific axes, which may reduce polylines
crossing and help to find relations between entities in two nonadja-
cent axes. An example of axes rearrangement in parallel coordinates
is show in Figure 54. By switching two axes BB and CC, relations be-
tween entities in AA and CC are clearly revealed. If axes AA, BB and
CC are different domains, axes rearrangement also provides a feasible
way to explore Chain-LR.

4.2.3 Zoned Node-Link Diagram
Node-link diagrams can also be used to explore Bicluster-LR. BicOv-
erlap [74] applied modified node-link diagrams to show biclusters and
overlaps among biclusters. In BicOverlap, each node represents an en-
tity, and the layout of nodes are determined based on a force-directed
layout algorithm. Nodes in different domains are indicated with differ-
ent visual marks. All nodes in each bicluster are wrapped in a “zone”.
The boundary of this “zone” is determined by the outermost nodes. To
avoid visual clutter, edges between each pair of nodes are hidden. It
seems that this design works for both single and all biclusters cases,
but at least three drawbacks exist. Visual marks help to discriminate
one domain from another, but they are hard to remember without a
legend. By hiding edges, the visual representation in BicOverlap im-
plicitly emphasizes entities rather than relations, so relations may be
obscured by a large number of entities. Overlaps among “zones” indi-
cate overlaps among biclusters, but the perceptibility of this depends
on the number of biclusters overlapping with each other. Small-size bi-
clusters, those with a small number of entities, within a heavily over-
lapping region may be ignored. However, the advantage is that this
design is able to convey an overview of biclusters within a dataset.
Furthermore, enhanced with interactions (e.g., filter biclusters by do-
mains and popup a bicluster of interest), this design can help explore
meaningful biclusters within the overall context.

4.3 Design Choices for Chain Level
How to visually represent a bicluster-chain or all bicluster-chains and
help users navigate to meaningful chains is a crucial task for Chain-LR
visualizations. Hybrid matrix diagrams provide a feasible solution to
fulfill these demands. Hybrid matrix diagrams combine node-link dia-
grams or parallel coordinates with matrix based visualizations, which
substitutes nodes in the node-link diagram or entities in axes of the
parallel coordinates with matrices. Parallel coordinates discussed in
this section are those with multiple domains and design concerns dis-
cussed in previous section can also be applied here. Each matrix in
the hybrid diagram indicates a bicluster, and the node-link diagram
or parallel coordinates illustrates how several biclusters are connected
together, which also specifies the structure of bicluster-chains.

4.3.1 Node-Link Diagrams + Matrices
NodeTrix [42] and Bixplorer [28] are two systems that apply hybrid
matrix diagrams, and a similar design is also mentioned in [7]. An ex-
ample of hybrid matrix diagrams generated with Bixplorer5 is shown
in Figure 6. In this example, there are three biclusters that (from left
to right) respectively represent relations between people and location,
phone number and people, and date and phone number. Curved lines
indicate shared entities between two biclusters. Bixplorer’s bottom-
up approach allows users to interactively expand chains from a given
bicluster.

4Modified based on the example of reordering from the following website
http://syntagmatic.github.io/parallel-coordinates/

5The tool can be found at http://recsys.cs.vt.edu/mineviz



Fig. 6. An example of bicluster chain with three biclusters in Bixplorer.

In a more top-down design that attempts to support Ben Shnei-
derman’s visual information seeking mantra [77] of overview first,
NodeTrix uses a node-link diagram to show many connected matri-
ces. NodeTrix provides three types of links: “underlying links” (sim-
ple curved lines, same as those in Bixplorer), “underlying links with
full size” (curved lines, the thickness of which equals to the width of a
matrix cell’s edge) and “underlying links with attributes” (curved lines
highlighted with different colors). The first type of link shows detailed
connections, and the last type of link visually differentiates some links
from others. Users can also extract a node from a matrix and merge
two matrices together in NodeTrix. The design of NodeTrix is able
to show several bicluster chains, actually a graph of related biclus-
ters. The interaction design of NodeTrix concentrates on assisting the
analysis of the connected parts of the graph by splitting and merging
biclusters to explore alternate configurations of chains. Still, there is a
need for designs that can guide users in exploring these chains.

Visually dynamic path extraction [46] seems a promising way to
enhance NodeTrix’s design for chain exploration. enRoute [66] imple-
mented dynamic path extraction for biological pathway analysis, and
used Bubble Sets [19] based techniques (using isocontours to create
a colored region to wrap a set of entities) to visualize a selected path
and its alternatives. In enRoute, all possible paths between the user-
selected start and end node are visually presented, and users can add
nodes to extend selected paths. Incorporating this into NodeTrix’s de-
sign, users can begin chain exploration by choosing a start and end bi-
cluster, or the system shows all computed chains with heatmap styled
bubble sets. The color of these bubble sets can be encoded based on the
two domains of a bicluster. For biclusters with the same two domains,
the more cells in a bicluster, the darker its color will be. Moreover,
user-selected biclusters or chains can rise up to the front layer. Thus,
based on this design, users can perform chain analysis by starting with
the overview and seeking guided visual metaphors on demands.

4.3.2 Parallel Coordinates + Matrices

Some design considerations discussed in Section 4.2.2 (e.g., wrap enti-
ties and polylines with colored ribbons, brush and rearrange axes) also
apply for Chain-LR exploration. The design of hybrid diagrams that
combine parallel coordinates and matrices provides a better solution
for chain exploration, and it was applied for comparing results of dif-
ferent clusters. HCE [76] applied parallel coordinates with matrices to
compare results of two hierarchical clustering algorithms of genomic
microarray data, and its biology users showed positive feedbacks about
this design. The Caleydo Matchmaker technique [59] applied this de-
sign to conduct visual comparison among multiple groups of clusters.
In this design, matrices in each axes can represent biclusters with two
specific domains, and matrices connected among multiple axes can
indicate chains. Compared with the previous hybrid diagram design,
biclusters in this design are better organized. Since entities are ag-
gregated into different biclusters, compared with parallel coordinates
with entities on axes, this design reduces the number of links between
each pair of adjacent axes. Moreover, using colored ribbons or the
Bubble Sets technique to wrap matrices and links works as a salient
visual representation of bicluster chains.

4.4 Design Choices for Schema Level
Schema-LR indicates relations among domains. The number of do-
mains is much smaller than that of entities, so visual representations
of Entity-LR can also be applied to Schema-LR. For example, the nor-
mal node-link diagram (e.g., database schema diagrams) is an obvious
visualization that can clearly convey Schema-LR in a dataset. In this
representation, each node stands for a domain in the dataset, and the
thickness of links can indicate the strength that two domains are con-
nected. The connection strength can be calculated based on the num-
ber of connections between entities in the two domains or the number
of biclusters formed with entities of the two domains, or the number
of chains participated in.

This design gives a clear overview of the dataset, and an alternative
design is the clutter map proposed in [29]. A clutter map is similar
to a node-link diagram with more detailed information. In the clutter
map, the size of nodes is determined based on the number of entities
belonging to this class (or domain) and edges are balloon-shaped that
are visually merged with connected nodes. The size of the balloon
depends on the shared entities between two domains, which can be
modified to determine ballon size based on the number of biclusters
relevant to the two domains. Another similarly applicable design is
that from PivotGraph [85], which lays out aggregated nodes in a grid,
similar to a chessboard. Node positions in the grid are determined by
an algorithm that minimizes the number of edge-crossings. The size of
nodes and the thickness of edges can be applied to encode the number
of entities and biclusters respectively. Curved lines with arrowheads
are used in PivotGraph to demonstrate directed edges, if there is any,
which can also be applied to direct possible analytical paths for users
to explore. For example, the path from Domain A to Domain B, then
to Domain C is thicker than the path from Domain A to Domain B,
then to Domain D, which indicates that starting analysis with Domain
A to Domain B and Domain C may be more reasonable.

A fourth design is the chord diagram6, which is inspired by Circos
[56]. In the chord diagram, each chord can represent a domain in the
dataset, and the length of a chord depends on the number of entities
in this domain. Ribbons connecting two chords can indicate biclusters
relevant to the two domains, and the thickness of ribbons may be de-
termined by the number of the shared biclusters. Compared with the
previous three design options, the chord diagram may not work well
for a dataset with too many domains, because all chords are aligned in
a circle. If the number of domains is large, the length of each chord
will become small, and the number of ribbons will grow, which may
lead to visual clutter inside the circle.

An important task of Schema-LR visualizations is to direct users
to drill down to one or several domain(s) to explore more information
for further analysis. On the basis of understanding visual representa-
tions of Schema-LR, users still need interactions to find domains that
are meaningful for them. Dynamic path extraction, as discussed in
Section 4.3.1, presents patterns among different domains based on ex-
tracted paths. This may guide users to further explorations of bicluster-
chains related to some specific domains. It may also be useful to con-
sider a chain-centric approach to Schema visualization, that overlays
many chain paths onto the schema diagram.

5 FOUR-LEVEL OF INTERACTION DESIGN

From the perspective of intent, there are four-level of interactions
that potentially can be applied to bicluster visualizations: Readabil-
ity Level (Readability-LI ), Navigation Level (Navigation-LI ), Pa-
rameter Level (Parameter-LI ) and Object Level (Object-LI ) [25].
Readability-LI aims at improving the readability of visualizations, so
most interactions discussed in Section 4 (e.g., select or highlight a
node) belong to this category. Navigation-LI enables users to navigate
between the five relationship levels and their visual representations.
Parameter-LI enables users to control key parameters of algorithms.
Object-LI helps users focus on their analytics process. Navigation-LI
enhanced with Parameter-LI provides promising solutions to navigate
visualizations of one relationship level to another.

6An interactive example is at http://bl.ocks.org/mbostock/4062006



For Parameter-LI, users are exposed to the underlying algorithm
parameters. Using sliders to control the parameters values of an al-
gorithm is a common example. iPCA [49] implemented this, where
users can control how much a dimension will contribute to the PCA
calculation by manipulating the sliders and choosing dimensions by
check boxes. Bixplorer applied this to enable users to control the min-
imum size of biclusters to be identified from a textual dataset [80].
PivotSlice [90] allows users to drag parameters to specify domains for
relationship discovery.

By controlling the parameters in the last column of Table 1, it is pos-
sible for users to navigate in either a top-down manner or a bottom-up
one. For a top-down example, by choosing domains in Schema-LR,
users can get specific Chain-LR or Bicluster-LR that they then can
drill down to the Group-LR and Entity-LR. Bixplorer applied this by
enabling users to extract, from a bicluster, a row or a column as a thin
bicluster, and further extracting a cell from the thin bicluster. The row
or column belongs to Group-LR and the specific cell is an instance
of Entity-LR. Conversely, in a bottom-up fashion, Bixplorer users can
also merge cells together to form a new row, a new column or a new bi-
cluster in the form of a matrix, and then users can link their customized
biclusters with each other to form a new chain that is meaningful for
them. Thus, Parameter-LI of the higher level relations determines the
computational results of the lower level, while Navigation-LI directs
users to actually transform from one level of visualizations to another
level. Visualizations at each of the five levels can be either linked or
visually integrated to enable drill-down and roll-up through the lev-
els. Bixplorer visually integrates the lower levels, but also provides
separate linked views (lists) of the higher levels.

Similar to Parameter-LI, Object-LI can be applied to enhance
Navigation-LI between and to direct the mining of biclusters and
chains on various domains. Object-LI is an implicit way to control al-
gorithms compared with Parameter-LI, since not all users realize that
some of their interactions with visual metaphors are used as param-
eters of algorithms to control the future output. ForceSPIRE [24] is
an example of such interactions (e.g., moving, annotating and high-
lighting) that re-weight the term dimensions in the distance metric and
recalculate similarities among documents. EvoGraphDice [11, 14]
employed a similar idea to dynamically change a scatterplot matrix.
Object-LI enable users to focus on the data and perform exploratory
analysis (for Bicluster-LR and Chain-LR ) by implicitly tuning the al-
gorithm parameters. For example, in Analyst’s Workspace [46], the
system shows bicluster chains to users that connect pairs of documents
that the user interacts with, and then updates the chains by adding more
relevant biclusters into the path of the chain based on the specific bi-
clusters and documents that the users either keeps or eliminates. This
implicitly incorporates analysts’ judgement about members of a bi-
cluster chain into the computation or visualization of results.

6 CONCLUSION AND FUTURE CHALLENGE

All specific design choices discussed above are summarized in Table
2. Node-link diagrams support tasks relevant to almost all five levels,
although variation exists for each specific level. Matrix based visu-
alizations and parallel coordinates are valuable for the exploration of
Bicluster-LR and Chain-LR. The hybrid visualization that combines
the node-link diagram or parallel coordinates with matrices can do a
better job, because it can display the overview of a dataset with the
structure from the node-link diagram or parallel coordinates, and de-
tailed relations buried in matrices. Several tools implement these de-
sign choices and have been evaluated with user studies. Positive user
feedback from them indicate that these visual representations are good
directions to pursue. However, at least three challenges still exist when
applying this design framework to the design of future visual analytics
tools for biclusters.

C1 : Integration Challenge. How to pick design options from this
framework and snap them together into an integrated whole is a basic
problem. Users likely need multiple coordinated visualizations for ex-
ploratory analysis across all five levels [64]. We have identified design
options for each level but still lack examples that successfully combine
them together to fulfill tasks across all five levels for sensemaking.

C2 : Traversal Challenge. How visual analytics tools should guide
users’ traversal through this five level framework is still not clear. Al-
though Shneiderman’s visual information seeking mantra has much
impact on visualization design, the analytical process may not always
work the same way. Biclusters offer a bridge connecting the overview
and details in a dataset. However, at which end should bicluster visu-
alizations start (i.e., Schema-LR first, or Entity-LR first)? How can
we enable rapid bi-directional navigation among these levels, as sug-
gested by Pirolli’s sensemaking model [68]?

C3 : Layout Challenge. How to effectively layout all biclusers and
bicluster chains in an overview still needs further research. Although
possible solutions are discussed in this design framework, the repli-
cated information may still cause confusion. Also, it may be difficult
to enable users to customize the layouts generated by automatic layout
algorithms.

These three challenges direct future research paths for the further
exploration of a design space of bicluster visualizations. C1 brings
the question of how these design choices can be combined together.
Results from C2 may give clues to the answer to C1 , because the
design of bicluster visualizations should follow users’ analytical pro-
cesses. Together with novel layouts identified in C3 , this framework
and agenda can make biclusters usable for efficiently discovering co-
ordinated relationships in visual analytics.
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