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Abstract—We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed
object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic
backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time
performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based
pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates
of more than 100Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information
from the phone’s inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The
reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then
imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy
function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel
posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

Index Terms—3d tracking, 3d reconstruction, augmented reality, mobile phone

1 INTRODUCTION

The 3D modelling of objects from 2D images is a central
problem in computer vision with far reaching applications
in computer graphics. While much work has been dedicated
to this problem in recent years, typical solutions often still
require powerful hardware [9], specialized and calibrated
camera setups with controlled lighting [8], or very accurate
2D object segmentations [1]. These constraints restrict the
applicability of 3D modelling from images to a small group
of expert users. A less constrained solution could make the
technique available to a much wider audience, as happened,
for example, in the cases of panorama stitching, nowadays
a standard feature of consumer grade digital cameras, and
3D articulated pose recovery, cheaply available from the
Microsoft Kinect.

In this paper we aim to provide a reconstruction system
that (i) can work in a real world environment under realistic
conditions and (ii) has a low enough computational cost to
allow it to run in real time on a mobile phone, without
any additional specialised hardware. As all processing is
done on a wire-less device, the user can move freely
around the object, while receiving immediate feedback on
the reconstructed 3D object shape in the phone’s display.
However, this means we not only have to recover the 3D
shape of the object, but also the 3D trajectory of the camera
along with its orientation. We opt to run the reconstruction
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and tracking tasks simultaneously and in parallel.

Tracking the camera pose is region based and, on an
abstract level, its goal is to find a 3D pose relative to the
object that provides maximum separation of foreground and
background areas, which are determined using given image
statistics. Such an approach provides robustness against
a wide range of image artefacts, including partial object
occlusions and motion blur. From a practical viewpoint we
use iterative nonlinear optimization methods. The tracker
repeatedly renders the 3D model, computes a level set em-
bedding function (i.e. distance transform) of the rendering
and takes a step to increase the overlap. Related tracking
approaches [16], [14], [17] therefore typically have very
high computation costs and require a powerful GPU to run
in real time. Instead, we propose an alternative formulation
that avoids the computation of the global distance transform
and its derivatives, and gains further efficiency from a
hierarchical rendering pipeline. Our tracker also makes use
of the additional orientation information that is readily
available from the inertial sensor on a typical mobile phone.
Overall the implementation achieves real time performance
(> 30 fps) on a mobile phone or much higher framerates
(> 100 fps) on a standard desktop PC, without requiring a
GPU.

The reconstruction of the 3D object is internally split
into two phases. For a selected but fairly dense number
of keyframes the extracted 2D foreground and background
probability maps are reprojected and accumulated in their
respective 3D probability volumes. These volumes repre-
sent the probabilities of 3D points being situated inside
or outside the object. In contrast to previous works we
therefore do not require a discrete object segmentation at
every frame, and can also capture and deal with uncertain
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image segmentations gracefully. Furthermore, we advocate
the use of per-voxel posteriors instead of likelihoods, which
further increases the accuracy and robustness to imperfect
image statistics.

In the second phase of reconstruction we impose shape
coherency and compactness for the object. We do this
using a globally optimal total variational formulation and
find the solution using continuous max-flow. Due to the
comparatively high computational complexity of this step
we apply it only every couple of keyframes. We show that
continuously performing this step is not strictly required to
achieve good quality 3D models.

An early version of this work was presented in the
conference paper [13]. Here we dramatically improve the
performance of our method with regard to the reconstruc-
tion of objects with thin parts by (i) increasing the speed
of the frame registration and (ii) using a sliding average to
compute voxel likelihoods. This leads to more accurate re-
sults and faster convergence. Additionally, we provide more
detailed insights into the mathematical formulation, the
technical implementation and experimental performance.

We relate our ideas to the current state-of-the-art in
tracking and reconstruction in Section 2. Section 3 provides
a more detailed overview of our method, driven by a
graphical model, and the notation used throughout the rest
of the work. The two major components, tracking and
reconstruction, are then presented in Sections 4 and 5.
Crucial implementation details for achieving good perfor-
mance follow in Section 6. An experimental evaluation of
the method is performed in Section 7 and we summarise
our conclusions in Section 8.

2 RELATED WORKS

The pose recovery part of our work is related to region-
based 3D tracking, as proposed initially by [17]. In that
work, the Chan-Vese level set energy function [22] is
minimised using a two step process, first in an uncon-
strained manner and second with respect to the 6 DoF
pose of the known 3D shape. A more recent update to this
work replaces the two phase approach with a single-step
approximate evolution to get only the pose [19]. Our work
is more closely following a variational formulation of the
objective from [17], by minimising the pixel-wise posteriors
level set energy function of [2]. However, in contrast to
the 2D object tracking done in [2] we directly estimate
a 3D pose instead. This idea was first proposed in [14],
where a 3D mesh is used to represent the 3D shape. An
improved version of this formulation is presented in [16],
where the triangle mesh is replaced by a volumetric 3D
signed distance transform. In the present work we opted for
a similar volumetric representation, which is well suited for
the reconstruction step later on, but we otherwise follow a
mathematical formulation very similar to [14]. Our main
novelty is to present a more efficient method of computing
the gradient needed during optimization of the tracking
error function. While the previous works of [14] and [16]
require powerful GPUs to achieve framerates of at most

25 fps on desktop PCs, our approximation allows us to get
roughly the same speed on a much less powerful mobile
phone processor or considerably higher framerates on a
desktop PC without a GPU.

Similar to a range of previous works [24], [3], [15] we
augment the visual pose tracker with additional information
from an inertial sensor. We use only a lightweight fusion
mechanism, but the inertial sensor still provides valuable
information about the camera rotation, sufficient to resolve
the ambiguities in visual tracking [15].

In the object reconstruction part of our framework we
make use of the wide range of prior work on recovery
of the visual hull from silhouettes, for example [23],
[20], [5], [4], [8]. One of the early approaches proposed
in [23] locally minimises the reprojection error between
3D surface and observed image intensities by forward
projection, making it slow and subject to local minima.
More recent methods instead use the reverse strategy of
backprojecting 2D image information into 3D volumetric
representations. In [20] binary segmentations are extracted
from the images and backprojected, whereas non-discrete
image statistics are used in [5], [4] and [8]. All of these
methods use globally convergent optimization approaches
to segment the foreground object out of the 3D volume,
graph-cuts in [20], [5], [4] and total variational primal—-dual
optimisation in [8]. While the reconstruction step in our
work is similar to the above in that we backproject image
statistics into a 3D volume and then use globally convergent
optimization methods to find the 3D object surface, there
are some important differences. First, we propose to use
voxel posteriors instead of likelihoods and show that this
improves the performance and robustness of the method.
Second, we use continuous max-flow optimization [25],
which is both much faster than the discrete graph cuts of
[5]. [4], [20] and shows better convergence than the primal-
dual total variational optimisation from [8]. Finally, unlike
all of the aforementioned works, our system estimates
the camera poses online using the partially reconstructed
object model and we need neither carefully calibrated
camera setups, nor controlled lighting or static background
environments.

The problem of simultaneously tracking and densely
reconstructing an object has also received prior attention.
Two recent representative methods are [11] and [1]. In
both of them a static background is assumed and feature
tracking is used to localize the camera. In [11] a sparse
cloud of 3D points is reconstructed from detected 2D
feature points and a convex 3D shape is then extracted
using Delaunay tetrahedralisation. Similarly, the camera
pose in [1] is estimated from a sparse 3D map using the
PTAM system [7], but then the object is segmented in
each frame using graph cuts and the segmentations are
merged into a 3D volume using an ad-hoc voting based
fusion method. As in the aforementioned [20], this requires
an explicit and discrete segmentation into foreground and
background for each input image. In contrast to these
methods, our approach does not make use of a static map
of the background and can hence handle partially dynamic
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Fig. 1. Graphical model for our method.

scenes, and it does not require feature points, making it
more robust to motion blur and partial occlusions.

Another closely related category of research covers sys-
tems for simultaneous localisation and mapping (SLAM)
with popular examples given in PTAM [7], DTAM [9] and
very recently a system presented in [21]. Such systems track
and reconstruct the whole scene observed by the camera,
producing sparse [7] or dense [9], [21] 3D world maps.
Our approach in contrast only creates a model of the actual
object that we intend to reconstruct and completely ignores
the background. Of course in some cases it will be possible
to create a full dense 3D scene model first and then segment
the object in the 3D data afterwards. The reconstruction
and particularly the tracking might even benefit from in-
corporating information and additional landmarks from the
background. If the fundamental assumption of a static scene
background is violated however, the performance of such
systems can be expected to break down. This is commonly
the case, for example when reconstructing a statue with
people walking in the background. Our proposed system
completely ignores the scene background and dynamic
movements, light changes, and other unmodelled effects in
the background and furthermore it does not require strongly
textured foreground objects.

3 GRAPHICAL MODEL

Figure 1 shows the graphical model describing our method.
An overview of the practical implementation is shown
and discussed in Section 6. The 3D shape we track and
reconstruct is denoted with the random variable u. We use
a volumetric shape representation, which makes u a 3D
volume probability, O identifying voxels certainly outside
the shape and 1 inside. The maximum likelihood estimate
of the outline of the shape is the 0.5 level set of u. We
denote by v a distribution over voxels in this volume.

We assume a set of n views. For each of these views, we
denote the distribution over 3D poses of the 3D object with
p. We use a standard six degree of freedom representation
for pose (three for translation and three for Rodrigues
parametrised rotation). The contour of the projection of u
under the pose p is embedded inside a 2D signed distance
transform (SDF), which we denote by ®. Similarly, a voxel
location v under the pose p projects to a pixel location
x. In Figure 1 we denote these deterministic relationships

with dotted lines. Note that in this work we consider the
3D poses to be independently distributed. This could be
changed, allowing for a motion model to be added.

Each pixel location x has a corresponding colour ¢. As
with other region-based methods, we assume a known pair
of per-view foreground and background colour models,
which we denote by P(c|R) with R € {Rs,R,}. Here
these are 32 x 32 x 32 bin RGB histograms. R € {Ry,R;}
are indicator variables for the foreground and background
regions, respectively.

Joint inference on the full graphical model is not practi-
cable, especially on a mobile device. As other works have
done before us, we therefore chose to split the inference
into a tracking stage, i.e. an estimation of the pose p, and a
reconstruction stage, i.e. an estimation of the shape u. In the
interest of brevity we use u, v and p to denote both estimate
and respective probability distribution for the remainder of
the paper.

4 POSE OPTIMISATION

The projection of a known 3D shape u given a pose p,
separates any image into a foreground and a background
region. Assuming known colour statistics for these regions,
the pose optimisation aims to maximise the discrimination
between foreground and background with respect to the
pose p. The theoretical foundations of this approach have
been introduced in [14], and we summarise them in the
following.

Treating u and v as known in the graphical model, the
joint probability for a single view becomes similar to the
one presented by Bibby and Reid in [2] for the case of 2D
tracking and segmentation. This is written as:

P(x,¢,p, ®,R) = P(x|p, @, R)P(c|R)P(R)P(®|p)P(p) (1)

In the following we omit P(®) and P(p) as we consider all

SDFs and poses equally likely and we omit p for brevity, as

it does not influence the final energy function formulation.
Marginalising wrt. the colour models we obtain:

P@2) = [] {LP®I®RPR} @)
X;€Q) R
with Q, being the 2D image domain and
P(X,|<D7Rf) _ He(q)(xi)) P(X,‘q),Rb) _ 1 —Hersq)(Xl))
b
3)

where H, denotes the smoothed Heaviside function (com-
monly used in level set based tracking and segmentation)
and 71y and 7, are the number of foreground and back-
ground pixels, respectively.

The colour posteriors are written as follows:

PRjle) = Zlelj)c(bcﬁj(jzl()RPj()Rl) PR = % @

where 1 = 17+ 1), is the total number of pixels in €.
This choice of posteriors has been shown in [2] and [14] to
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produce a better separation between foreground and back-

ground over the standard approach of using likelihoods, and

in turn this leads to more accurate 3D tracking.
Switching to log probabilities, we write:

E = log(P(®|Q)) = (5)
= Y log(H(®)Ps+ (1—H.(®))P;) (6)
X;€Qo
where:
P(c|Ry)
Pr= 7
! = RyPElR) + mP(elRy) @
P(c|Ry)

"= np(elRy) + P (elR;) ®

This energy function captures the separation between
foreground and background with respect to the 2D shape
embedded in ®. In our case this shape is generated as the
projection of the 3D shape u using the pose p. This casts
the problem of maximising separation of foreground and
background as one of optimising E with respect to p using
standard gradient-based methods. This requires evaluating
the following derivative:

JE _ 0o (D) (P, — Py) (8<I>ax 8cI>ay>
op 55, He(P)Pr+ (1 —H(P)P, \ dx dp ~ dy dp
9)

with 8, the derivative of the smoothed Heaviside function
and x and y the 2D coordinates of points situated on the
contour of the projection of the 3D shape. The remaining
derivatives d®/dx and d®/dy are computed numerically
and dx/dp and dy/dp follow trivially as detailed in [14].

The framework presented above has been shown to pro-
duce state of the art results in region based 3D tracking [14].
This however comes at the expense of high computational
cost, as the projection (i.e. rendering) of the 3D shape and
its distance transform & have to be computed once per
iteration. This means that a real time implementation is only
possible using GPU processing. Even so, speeds higher than
20-25 fps are not easily achieved.

In the remaining part of this section we address the three
main speed bottlenecks of this approach: (i) the rendering
of the 3D shape, (ii) the computation of the SDF and
its derivatives and (iii) the optimisation method. We also
discuss the issue of silhouette ambiguity, which concerns
tracking reliability instead of speed, but is especially im-
portant when doing 3D reconstruction.

Hierarchical Binary Rendering. We use a volumetric
representation for the shape u. The established method for
rendering a 3D shape represented in such a way is to use
a raycasting algorithm [9]. Unfortunately this operation is
prohibitively slow without GPU hardware, especially on a
mobile phone. Our tracker however only needs a binary
rendering with depth values only for the pixels located
on the edge of that rendering. With this in mind, we
chose perform the raycasting operation in a hierarchical
manner. We initially raycast a very low resolution image
(40 x 30 pixels). We then resize this image by a factor
of two, raycast the pixels around the edge and interpolate

.

Fig. 2. Geometric explanation for the computation of
the derivative of the distance transform.

the others. The process is repeated multiple times until
the desired resolution is reached. On a 640 x 480 image,
this process results in a speedup in excess of 10x over
a standard CPU-based raycast and has the added benefit
of producing a resolution hierarchy, that can be used in
tracking as shown further down.

Distance Transform and Derivatives. Our pose opti-
misation requires several computations of a 2D SDF for
each frame. On a mobile phone, standard SDF computation
algorithms take many tens of milliseconds to process a
single image, so they are too slow for our purposes.

The Euclidean SDF & of a contour is designed to
increase linearly in the direction normal to the contour.
This observation leads to our approximate SDF, where, for
a contour point at location x, we increase the value of ®
linearly from a value of —d at location x — dii to a value of
+d at location x+ dii. Here 1 is the normal to the contour at
location x, and is computed by applying a Scharr operator
[18] to the raycast binary image. The horizontal and vertical
Scharr kernels are:

+3 410 43 +3 0 -3
v=|0 0 0| H=|+10 0 —10| (10)
-3 —10 -3 +3 0 -3

This is an approximation of the full SDF from two points
of view. First, we only compute a local, per contour point
SDF, in a +d band around the contour, as shown in Figure
2. Since the informative part of the SDF is only situated
close to or on the actual contour points, this approximation
has virtually no effect on the final pose optimisation result,
as we show in Section 7. Second, the approximation might
produce incorrect distance values around concavities of the
contour, but again this did not adversely affect the final
outcome of the pose optimisation.

We also need to compute the values of the derivatives
d®/dx and dD/dy. Numerically, these are obtained with
the centred finite differences approximation, using:

0P _ (lx+1,y]) —@(x—1,5))

dx 2

and similarly for y.
In this work we obtain the values of ®([x+ 1,y]),P([x—
1,y]), ®([x,y— 1]) and ®([x,y+ 1]) without explicitly eval-
vating . This process is represented in Figure 2. Here x;

an
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Preset calibration

Inertial sensor -

Camera

Fig. 3. Inertial sensor integration.

and x;;; are two consecutive contour points, linked by a
contour segment. Two example normals to this line segment
are drawn in black, with arrows. These pass through the
centre of the segment [x,y] and the point [x — 1,y]. The
value of ®([x— 1,y]) then is equal to the signed distance
between [x,y] and the projection of [x+ 1,y] onto the normal
passing through [x,y]. In Figure 2 this is the (signed) size
of the line segment drawn in pink and bold. The process is
identical for [x+1,y], [x,y—1] and [x,y+1].

Optimisation Method. Our raycaster produces a hi-
erarchy of object renderings. We use this to speed up
our tracker, replacing costly high resolution iterations with
cheaper low resolution ones, resulting in a 2 to 3x speedup.
We use the Levenberg-Marquardt (LM) algorithm to min-
imise the energy function at each hierarchy level.

Silhouette Ambiguity. The mapping from silhouette to
pose is ambiguous, as 3D rigid objects often project to
virtually identical silhouettes under different poses. We
experimentally investigate the effect of this ambiguity on
tracking in Figure 5, showing that silhouette-only tracking
and reconstruction is effectively impossible. Inspired by
[15], we use the inertial sensor typically available on mobile
phones to disambiguate rotation.

The relation between the two pose estimations is depicted
in Figure 3. Rg_l) and Rg) are the rotation matrices of
the object in the camera coordinate system, at the previous
frame and current frame, respectively. Similarly, Rat_l> and
RL(f) are consecutive rotation matrices of the camera in the
inertial sensor (i.e. phone) coordinate system. Finally, C
is the calibration rotation matrix, converting the visual to
the inertial sensor coordinate systems and is constant and
precalibrated for each type of device. Therefore:

-1
Ry =Ry (") Ry

Between consecutive frames we only optimise for trans-
lation, using the change given by the inertial sensor as
rotation estimate. To compensate for inertial sensor drift, we
use one gradient descent rotation-wise iteration every ten
frames. We do not use LM for rotation owing to ambiguity
we only trust the visual rotation estimate to correct for
slight drift, not to fully dictate the pose.

12)

5 SHAPE OPTIMISATION

The shape optimisation assumes known pose and per-pixel
foreground or background likelihoods for each of the n

views. These are back-projected into a pair of 3D likelihood
volumes, capturing the probability that a voxel v belongs
to the inside and outside of the shape, respectively. The
likelihoods are next turned into posteriors, in a manner
similar to the one presented in the previous section. Finally,
the 3D shape u is extracted from the two posterior volumes,
such that the inside/outside separation is maximised. This
framework is similar to the one established in [8], [5], but
here we use voxel posteriors instead of likelihoods and
account for the online accumulation of views.

An alternative approach would have been to fuse indi-
vidual per-view segmentations (obtained using, say, per-
view graph-cuts) instead of probabilities. This approach has
been shown in [8] to produce inferior results, because (i)
individual segmentations often tend to be poor (because of
e.g. shadows and reflections) and (ii) the camera pose is
not perfectly known, so silhouette uncertainly has to be
accounted for.

Considering x and @ as known in the graphical model,
the joint probability for n views becomes:

P(u,V,Ry_ns€1.n) = P(V|u,Ry_n)P(c1_n|Ri_n)P(R1..n)
(13)
Expanding, we write:

Pi@s) = [T { ¥ PORs1.0)P(Rs s aler.n)

veQs ~jefb

(14)
where Q3 is the 3D domain of voxels v and:
P(ci.nlRj1.n)P(R;

PRy for.) = St Rt PEs) g5

Yicrp Pt alRi1 n)P(Ri1. n)

u 1—u
P(V|u,Rf1.n) =5  P(Vu,Rp1_n)=—— (16)

Cr 4}

with {; and {, being the average number of voxels (over all
views n) that project to a foreground pixel (with P(c|Ry) >
P(c|Rp)) and a background pixel, respectively.

The final two probabilities P(ci_ ,|R;.,) and P(R;. )
should be computed as the joint probabilities of P(cy|Ry)
and P(Ry), with k € 1...n. As observed by [8], this joint
probability cannot easily be computed numerically, as it
tends to be a product of very small numbers. The authors in
[8] used the geometric mean to obtain average probabilities.
We proceed in a similar manner, and write:

P(cralRy 1) = exp (Zﬁllog(;’(CklR.f,k))) (17
Pler a1 ) = 1 —exp <ZZ_1 log(1 ;P(Ck\Rb,k))
(18)

The probability of foreground and background region over
n views becomes P(Ry . ,) = Ty/N with 7 being the
average value of 7y (as defined in Equation (4)) over the
n views. P(Rp,1..,) follows analogously.
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The final expansion of P(u|Q3) becomes:

E=PulQ3) = [] {uP+(1—u)P,} (19)
V€Q3
ny P(ci nlRf1..n)
P=—_= — — 20
Cr P(e1..nlRf1..n)TF+P(C1. n|Rp1..0) T 0
P, = M P(ci..n|Rp.1..n) 1)

& P(er_nlRy1 a)Tif +Pler_a|Ro1..n) T

One way to optimise Equation (19) is to consider u as the
smoothed Heaviside of a 3D level set embedding function.
This method is subject to local minima and requires the
SDF structure to be maintained. When u is a 3D volume of
probabilities, [10] shows that u can be solved for globally
using convex optimisation.

The globally solvable formulation for our reconstruction
is obtained by replacing the logarithmic opinion pool with
a linear one in Equation (14) and adding a weighted surface
regularization term:

E=Y {uP,+(1-u)P,+a|Vul}

V€Q3

(22)

where ¢ is a tunable parameter.

To minimise such an energy function the authors in
[8] use the primal-dual algorithm of [12]. We use the
continuous min-cut / max-flow formulation of [25], which
leads to considerably faster convergence compared to [12].
In a max-flow context, minimising Equation (19) with
respect to u such that u € [0, 1] is equivalent to minimising:

E = max minZ{up, + (1 —u)ps+u divp} (23)
v

Pr.ps,p U
such that ps(v) < Bi(v), p:(v) < P,(v) and |p(v)| < a. In
the context of max-flow, p,ps; and p; are flow capacities,
for undirected edges for p, between nodes and source for
ps and between nodes and sink for p; [25].
Continuous max-flow [25] is an iterative algorithm that
uses the augmented Lagrangian function of Equation (23):

LC(pS7pt7p7u) =
. C .
Ly{upi+ (1 —u)ps+udivp} = Z[|divp — p, + pi 2(24)

where c is a constant step size. This Lagrangian is used to
minimise Equation (23) wrt. p,ps and p; in turn. For the
[-th iteration of the algorithm the authors in [25] write:

plth = argmax L.(p, pl, p,u’) (25)
[lpll-<a

p§l+1) = argmax Lc(ps»pgvplﬂ’/) (26)
P.V(V)<Pi(v>

pt(lJrl) = argmax Lc'(pi;ptapl7u1) (27)
Pi(V)<Py(V)

ul*D =4 —¢(div pl*h — Pglﬂ) +P§]+l>) (28)

The optimisation is started by setting u = P, — P, where
P; > P, and zero otherwise, and p; = p, = min(P,, P,).

So far we have assumed that all n views are available
simultaneously. This is not true in our case, as we run our
algorithm online. We therefore propose four changes to the
reconstruction methodology.

First, the likelihood volumes P(c;. |R;.. ) and the val-
ues of ¢, {y, My and 7, are updated continuously online
instead of accumulated only once for all n views.

Second, it is often the case that tracking with an inaccu-
rate shape leads to inaccurate pose results. This means that,
primarily in the beginning of the reconstruction process,
we pollute the joint foreground likelihoods P(ci..,|Rf 1..n)
with pixels that actually belong to the background, and
vice-versa. Tracking does gradually improve as the shape
becomes more accurate, but colour likelihoods have already
been incorrectly integrated. A solution to this problem
would be to maintain a history of the likelihood changes as
a function of pose. When observing the target a second
time from any given pose we would replace previously
integrated likelihoods from the probability volume and with
new ones. Such an approach is however not tractable on a
mobile phone due to memory constraints. Here we use an
alternative, in the form of a sliding average. Assuming n
already registered views, for a new view n-+ 1 we write:

P(ei nlRf 1 nt1) =
(WZZ1 log(P(ck|Ryfx)) +1log(P(Cnt1|Rfnt1))

xp w1

(29)

where w is capped to a fixed value (e.g. 250).
P(ci..n|Rp1. nt1) follows analogously.

Third, after running the max-flow algorithm, we rescale
the non-zero region of interest in the 3D volume u to fill the
volume, with a constant padding. This mitigates the effects
of scale drift and helps us use the full representational
power of the discretisation.

Fourth, instead of running the continuous max-flow
optimisation to full convergence after all n views have been
registered, we run a single iteration for every five views
that have been registered. We run only one iteration for
real-time considerations as the final estimate will change
with updated input data anyway. This leads to another
problem, namely how to transfer the intermediate shape
results from one reconstruction to the next. This is not
straightforward, as, especially in the early stages, large
portions of the estimated 3D shape might change and the
intermediary values for u are far from the globally optimal
shape embedded by the updated posterior volumes.

To alleviate this problem we propagate the intermediary
values of the 3D shape by conditioning P(v|u,Ry1..,) and
P(V|u,Rp1..,) on the previous 3D reconstruction ul=1n,
Intuitively, this means that the probabilities of a voxel
being inside or outside the 3D shape should increase if the
voxel was inside or outside, respectively, at the previously
available reconstruction. Formally this changes:

L=

(t—=1) Ul ¢
P(V‘M,Rf,l,..n) to P(V|u,ui 7Rf.,1...n) _ Tf (30)
A (t—1)
- 1—
P(¥[u,Rp1..n) to P(v]u,us ™ Ry ) = (g)b
b
€1V
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with:

u T =Bl T = po 1 1 —u )
(32)

where f3 is a tunable parameter (0.5 in our implementation).
The change in voxel probabilities also leads to slightly
different formulas P; and P,, which are trivial to compute.

6 IMPLEMENTATION AND TIMINGS

Next we present a practical implementation of the theoreti-
cal framework introduced above. We dissociate the tracking
and reconstruction tasks and run them in parallel as two
separate threads, in a manner akin to [7]. Sections 6.1
and 6.2 present the implementation of the two threads and
Section 6.3 shows timing results.

6.1 Tracking Thread

Algorithm 1 Image acquisition and 3D tracking thread

each novel frame, we build a set of pose dependant colour
models, using linear interpolation on the set of histogram
initialisations, weighted by the distance in rotation space
between the instantaneous inertial sensor measurement and
the pre-captured ones. The initial object segmentations are
done very easily by the user, by keeping the object centred
and adjusting a slider which changes the threshold value of
a binarisation algorithm. Alternative approaches, such as
saliency, could be used.

The next major step is update the 3D position of the
camera on the new frame using the newly obtained image
statistics. Before doing this however, we update the 3D
volume used for tracking with the latest approximation of
the object shape built by the reconstruction thread. We use
64 x 64 x 64 volumes for tracking and 128 x 128 x 128
for reconstruction, so this stage also involves a trilinear
rescaling. As described in Section 4, we use the Levenberg-
Marquardt algorithm to track the camera. The method used
to compute the pose derivative is outlined in Algorithm 2.

1: read and fuse the inertial sensor data.

2: build the interpolated colour models P(c|Ry) and
P(c|Ry).

3: compute tracking image statistics: Py and P,.

4: if reconstruction thread has new result then

5: update 3D shape used for tracking using the latest

reconstructed result.

6: end if

7: track object in new frame using current shape approx-
imation.

8: if current frame is keyframe and reconstruction pro-
cessing has finished then

9: transfer image statistics to reconstruction thread.
10: (re)start reconstruction processing.
11: end if

The implementation of the tracking thread is detailed in
Algorithm 1. This is executed every time a new frame is
available from the camera.

The first step is to compute the orientation of the device
from the inertial sensor measurements. We used Apple
iPhones throughout our experiments, so this step is done
using the Apple Core Motion framework and the fused
gyroscope and accelerometer sensor measurements.

Next, we must extract the image statistics (i.e. the pixel
wise foreground and background posterior probabilities Pr
and P,), used by both the reconstruction and tracking
stages. This requires known foreground and background
colour models P(c|Ry) and P(c|Ry), which in our case are
32 bin RGB histograms. A common approach [2], [14]
is to initialise the models using a known single image—
mask pair and adapt them online using the instantaneous
object segmentation. This approach fails in our case as the
histograms are quickly polluted in the beginning of the
reconstruction process. Our solution is to capture several (5
to 10) colour models using image—mask pairs taken from
various positions around the object, along with their associ-
ated inertial sensor rotation measurements. At runtime, for

Algorithm 2 Pose derivative evaluation
1: project 3D shape with the current approximation of the

3D pose using our hierarchical raycasting method.

find contour points using Scharr filtering.

for each 2D contour point with location [x,y] do
compute SDF derivatives d®/dx and dP/dy.
compute pose derivatives dx/dp and dy/dp.

end for

compute and sum per-point derivatives of the energy

function from Equation (9).

A R

Once the current camera pose has been computed, the
image statistics are transferred to the reconstruction thread.
This process is keyframe based, with keyframes at least
three frames apart and with an inertial sensor rotation
observed a maximum of five times. We allow each rotation
several times to accommodate updates due to improved
pose estimates. We could have followed the more traditional
approach of using the estimated translation, but experimen-
tally we found our solution to lead to better results.

6.2 Reconstruction Thread

Algorithm 3 Reconstruction thread

1: update  voxel  statistics  P(ci. n|Rfi.,) and
P(ci._n|Ry1..n) using new keyframe

2: if enough new keyframes have been registered then

3: compute reconstruction membership functions F;
and P, from voxel likelihoods.

4 find new 3D shape approximation u using continu-
ous max-flow.

5: rescale shape to fill 3D volume.

6: end if

The reconstruction thread is described as Algorithm 3.
We first update the voxel statistics P(ci._n|Rf1..,) and
P(ci. n|Ry1..n) using the pixel statistics from the new
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TABLE 1
Per frame example timings for our method.
Tracking Frame registration Max flow
Desktop PC 9.3ms 18ms 102ms
iPhone 5 43.3ms 198ms 667ms
iPhone 5s 31.7ms 143ms CPU / 88ms GPU 504ms

keyframe. This process is implemented on the mobile phone
GPU using a vertex shader and the OpenGL transform
feedback. The voxel location is sent as a parameter to
the shader which computes the per-frame foreground back-
ground likelihoods and writes them back to CPU accessible
memory, where the sliding average method is used to
produce the new set of joint colour likelihoods.

After a sufficiently large number of novel keyframes
has been accumulated (five in our case), we compute
the inside/outside membership functions from the voxel
statistics and use a vanilla implementation of the continuous
max-flow algorithm [25] to update the 3D shape u. The last
step is to centre and rescale the useful areas of the update
3D shape (where u > 0.5) to fill the reconstruction volume.

6.3 Timings

Table 1 shows example timings obtained by our method
for the sequence shown later in Figure 13. The tracker runs
at 107 fps on a desktop PC (Intel Core 17-3960X 3.3GHz
CPU), 23 fps on an iPhone 5 and 31 fps on an iPhone
5s. Performance degrades roughly 25% on an iPhone 4s.
This means that tracking is possible on lower end devices
but reconstruction is not. GPU-based frame registration is
much faster than the CPU version, but our implementation
is only possible on the iPhone 5s (as it uses the transform
feedback capability introduced in OpenGL ES 3.0).
Tracking is run at each frame, the frame registration
every 3rd frame and the continuous max-flow optimisation
once five keyframes have been accumulated. Our method
can run on a continuous stream of novel frames, or,
once a critical mass of frames has been obtained (in our
experiments 1500 frames) we can re-track and re-register
previous ones to refine the model in a postprocessing step.

7 RESULTS

We have tested our method quantitatively and qualitatively,
on both artificial and real data, in static and dynamic
environments.

Quantitative Testing. We begin in Figure 4 with a
quantitative comparison between the PTAM system [7], our
tracker and the one presented in [16], which minimises the
same energy function in a fully analytical manner, without
any approximations. Note that in all the experiments con-
taining charts, the colour assigned to the model corresponds
to the colour of the chart plot. The results produced by the
object trackers are nearly identical. The average differences
in translation and rotation between [16] and PTAM are 9.6
mm and 2.0° and between this work and PTAM are 11.3
mm and 2.5°. The small improvement in the tracker from

[16] comes however as the expense of twice the processing
time and the added requirement of powerful GPU.

Figure 5 shows a quantitative comparison between our
tracker with and without using the inertial sensor and
PTAM [7] for another sequence. Without the inertial sensor,
the average difference between tracker and PTAM is 129
mm and 12.0°. With the inertial sensor the difference de-
creases to an average of 11.4 mm and 1.3°. The very large
difference incurred when the inertial sensor is not available
is due to silhouette ambiguity, as shown in columns 2, 4
and 6 of Figure 5(top). The silhouette provides too little
information for an accurate rotation estimation and the
optimisation converges to a incorrect local minima. When
aided by the inertial sensor, rotation is no longer ambiguous
and the overall tracking errors become much smaller.

Note that in both of the above tests, the difference
between the trackers and PTAM is caused by the formers’
use of information from only around the projected contour,
and the latter’s use of the whole image. Note that, while
the PTAM system is more likely to be closer to the ground
truth, it is not guaranteed to be the actual ground truth.

Figure 6 shows a quantitative comparison between the
reconstruction obtained using the posterior voxel probabili-
ties presented in this paper and the likelihoods used in [8],
which we consider as close to or at the current state-of-the-
art. Here we generate artificial ground truth data using the
human body shown in Figure 6. The generated sequence
shows the 3D shape rotated on each axis between 4180
and translated by a random amount. We ran the reconstruc-
tion algorithm using the two types of voxel statistics with
four configurations: (i) ground truth histograms and known
pose (Figure 6 — left chart); (ii) ground truth histograms and
camera rotation with optimisation for translation (Figure 6
— left chart); (iii) noisy histograms and known pose (Figure
6 — right chart) and (iv) noisy histograms, known rotation
+ optimisation for translation (Figure 6 — right chart). The
red contour in the lower left sub-figure shows the area of
foreground that was added to the estimation of the back-
ground histogram in order to corrupt it. The matching score
plotted in the four charts is the standard intersection vs
reunion measure of overlap [6], evaluated between ground
truth and reconstructed volume. This is plotted against the
number of continuous max-flow iterations (i.e. number of
registered keyframes times five). Note that we do not run
any shape alignment since all versions of the algorithm
should produce aligned shapes.

When the histograms are not noisy all four methods pro-
duce similar results, with the best ones being obtained using
posteriors and ground truth poses. Overall, likelihoods
produce a less accurate discrimination between foreground
and background. In the beginning of the reconstruction
process this has the advantage that more of the shape is
left uncut, so tracking is more stable. This may lead to
better reconstruction results, as visible in the early part of
the reconstruction process depicted in Figure 6 — left chart.
As soon as the reconstructed shape begins to stabilise, the
posteriors lead to superior results. The difference between
posteriors and likelihoods becomes much more pronounced
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Fig. 4. Comparison between the camera pose recovered by our tracker, the tracker of [16] and the PTAM system
of [7] as ground truth. The filmstrips show frames from the experiment, with the top row showing our results and
the bottom row the results from [16].
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Fig. 5. Comparison between our tracker with and without the inertial sensor and the PTAM system of [7] as
ground truth. The filmstrip shows frames from the experiment with row 1 showing the original image, row 2 the
result obtained without the inertial sensor and row 3 the results obtained with the inertial sensor.
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Fig. 6. Reconstruction comparison between our system and that of [8] on a crouching human form. The top 2
rows show views of the 3D reconstructed shape, with the lower left figures showing in red the foreground area
that was added to the background histogram to corrupt it. Results obtained with ground truth histograms appear
in the left chart and top row and results obtained with imperfect histograms in the right chart and bottom row.
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Fig. 7. Comparison between the reconstruction accuracy obtained for the arms of the person represented by
the 3D shape at various keyframe selection frequencies: (a) — ground truth and (in red) the regions of the model
used for the comparison; (b,c,d,e) — final reconstructions when allowing the keyframes to be 1,3,5 and 10 frames

apart, respectively.
!

Fig. 8. Comparison between the reconstruction accuracy obtained for (a) the ground truth shape, (b) when the
sliding average is used and (c) not used.

Reconstruction Accuracy With and Without the Sliding Average

= Without Sliding Average
0.3 = With Sliding Average

02 \ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300




IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

with imperfect histograms, as is often the case in real world
usage. Here using likelihoods leads to many shape details
being lost and to a decrease in accuracy of over 20%.

Figure 7 shows the reconstruction accuracy depend-
ing on the sampling frequency of keyframes. Registering
keyframes more often leads to faster convergence. The best
results are obtained when keyframes are allowed to be a
single frame apart, with the accuracy decreasing as larger
separations between keyframes are imposed. In the earlier
version of this work, we were limited by the speed of
the implementation to a minimum of ten frames between
keyframes. In this work, as the implementation is now
considerably faster, we can sample three times as often
i.e. allow keyframes to be three frames apart, while still
running in real time on a mobile phone.

Figure 8 shows how using the sliding average affects the
reconstruction accuracy. Computing a full average means
that the colour likelihoods registered in the beginning of
the reconstruction process are weighted equally to the ones
registered in the later parts of the this process. This is incor-
rect, as the initial inaccurate shape leads to inaccurate pose
tracking results. This means that background likelihoods
are registered as foreground and vice-versa. The sliding
average allows us to weight early measurements less than
recent ones, which improves performance.

Qualitative Testing. The following five figures (9, 10,
11, 12 and 13) show qualitative reconstruction results ob-
tained on real data. In each figure, the first three columns of
the film strip show the beginning of the reconstruction pro-
cess and are taken within the first 50 processed keyframes.
The next two columns show results obtained around the
200-300 keyframe mark. The last column shows the final re-
sult obtained after a maximum of 1000 keyframes. Figures
9 and 10 show our reconstruction working in a museum, in
a fully unstructured and dynamic environment, corrupted by
occlusions, reflections and imperfect illumination. Figure 9
also shows the textured end result, while Figure 10 shows a
3D printed replica of the final result. Our method achieves
good performance, with artefacts appearing only around
the head of each figure. These are caused by specular
reflections, which changed the colour of the object from
red and black respectively to white. To our knowledge,
no other object reconstruction method could process these
videos because of the large number of image imperfec-
tions. Figures 11, 12 and 13 show reconstruction results
obtained in a slightly better lit office environment, with
Figure 11 also showing the textured result and 12 the 3D
printed replica. In all three cases we can obtain very good
reconstructions, with the shape usually converging within
300 to 400 keyframes (i.e. 1-2 minutes of video data).

Failure Cases. Figure 14 showcases a typical failure case
for our method. Our two main sources of error are the use
of (i) silhouettes and (ii) histograms as colour models. The
former means that we are unable to recover the parts of the
shape that are not visible along the silhouette. Examples
are the indentation of the hat in Figure 14 and the inside
of the shoe in Figure 13. The latter means that image
artefacts such as specularities and shadows decrease the

reconstruction accuracy. This leads to increased thickness
in the base of reconstructed hat in Figure 14, and to the
incorrect indentation in the head of the lion in Figure 9.
The other primary failure case present in [13], namely
our brittleness when dealing with thin structures, has been
addressed by our more frequent use of keyframes and the
sliding average. This however remains a problem and our
method still has trouble reconstructing very thin parts of
the object (e.g leaves, fingers). Another possible source of
failure in our system is rotation drift in the inertial sensor.
Limited amounts of drift are compensated for using the
visual rotation optimisation, but large amounts of drift result
in decreased tracking and subsequently rotation accuracy.

8 CONCLUSIONS

We have presented a novel framework for simultaneous 3D
tracking and reconstruction of objects that runs in real time
on mobile phones.

Tracking is formulated as the minimisation of a region
based level set energy function wrt. the 3D pose of the
object. The energy function uses foreground and back-
ground appearance models, and the goal is to maximise
the separation between these two regions induced by the
projection of the 3D object.

Evaluating and minimising such an energy typically
requires the computation of a signed distance transform
and its derivative, but we present an alternative formulation
which avoids this costly computation, and show that this is
one of the major contributing factors towards the efficiency
of our method. Further speedups are achieved using a
resolution hierarchy in the raycasting step.

The energy function has inherent ambiguities for 3D pose
estimation, but we demonstrate that these can be resolved
by using additional rotation information from the inertial
sensor found in modern mobile phones. Overall this results
in our tracker achieving framerates of more than 100Hz
on a desktop PC and better than 30Hz on the best mobile
devices, both without involving a GPU.

Reconstruction of the 3D object model occurs simul-
taneously in a parallel thread. We define probabilities of
lying inside or outside the object in a 3D volume, and
re-estimate these using a continuous max-flow algorithm.
The use of posterior voxel probabilities improves robustness
and accuracy, particularly with imperfect image data. By
moving trivially parallelisable parts of these computations
onto the simple GPUs available on modern mobile phones,
we manage to run the reconstruction step at 11 fps, allowing
the integration of more information in the 3D volume and
leading to faster convergence and increased accuracy.

The main direction for future research is the incorpora-
tion of texture information along with the current region
based method.
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Fig. 10. Idol tracking and reconstruction example. The subject is within a reflective glass case.
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