
Real-Time RGB-D Camera Relocalization via
Randomized Ferns for Keyframe Encoding

Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram Izadi

Abstract—Recovery from tracking failure is essential in any simultaneous localization and tracking system. In this context, we explore

an efficient keyframe-based relocalization method based on frame encoding using randomized ferns. The method enables automatic

discovery of keyframes through online harvesting in tracking mode, and fast retrieval of pose candidates in the case when tracking is

lost. Frame encoding is achieved by applying simple binary feature tests which are stored in the nodes of an ensemble of randomized

ferns. The concatenation of small block codes generated by each fern yields a global compact representation of camera frames. Based

on those representations we define the frame dissimilarity as the block-wise hamming distance (BlockHD). Dissimilarities between an

incoming query frame and a large set of keyframes can be efficiently evaluated by simply traversing the nodes of the ferns and counting

image co-occurrences in corresponding code tables. In tracking mode, those dissimilarities decide whether a frame/pose pair is

considered as a novel keyframe. For tracking recovery, poses of the most similar keyframes are retrieved and used for reinitialization of

the tracking algorithm. The integration of our relocalization method into a hand-held KinectFusion system allows seamless continuation

of mapping even when tracking is frequently lost.

Index Terms—Camera relocalization, tracking recovery, dense tracking and mapping, marker-free augmented reality

Ç

1 INTRODUCTION

DEVELOPMENT of systems for simultaneous localization
and mapping (SLAM) has gained enormous momen-

tum in recent years. Seminal works on MonoSLAM [1], [2]
and PTAM [3] enabled real-time performance for sparse fea-
ture methods using commodity hardware. Today, we find
numerous works on real-time dense tracking and mapping
with RGB [4], [5] and RGB-D cameras [6], [7] which allow
accurate 3D reconstruction of the physical world.

Recent advances in this area include object-level SLAM
[8], [9], scalable representations [10], [11], [12], dynamic
scene reconstruction [13], [14], [15], and SLAM on mobile
devices [16], [17], [18]. Real-time SLAM has led to exciting
applications such as environment-aware augmented reality
(AR) [7], [19], [20], [21]. Obtaining knowledge about the 3D
geometry of physical objects in a scene combined with the
ability to sense the depth in real-time allows, for example,
realistic occlusion handling and accurate fusion of real and
virtual objects [22].

The underlying processing pipelines of different SLAM
systems are quite similar. The camera motion is tracked in a
frame-to-frame (or frame-to-model) fashion where the pose
update is determined by computing a relative transforma-
tion between a (partially) reconstructed world (i.e. the map)
and a set of features or 3D point clouds obtained from the

live camera frames. For RGB-D settings, the camera trans-
formation can be for instance computed by employing a
robust version of the iterative closest point (ICP) algorithm
as it is implemented in the KinectFusion approach [6].
Given the estimated camera pose, new measurements are
integrated into the map yielding an updated and refined
reconstruction of the scene. Existing 3D reconstruction pipe-
lines mainly differ in the details how tracking [7], [23], [24]
and mapping [10], [11], [25] are implemented.

1.1 Camera Relocalization in Real-Time SLAM

In order to acquire an accurate map of the scene, reconstruc-
tion pipelines rely on a steady stream of successfully
tracked frames. Tracking failure can have severe consequen-
ces. Integrating measurements with incorrect poses yields
implausible, invalid geometry and might destroy already
reconstructed parts. Indeed, if tracking failure can be
detected, at least map corruption can be prevented. How-
ever, in AR applications in which the pose of the camera is
required to correctly overlay virtual objects onto the real
world, tracking failure leads to an abrupt and unpleasant
end of the user’s experience.

The causes for tracking failure are versatile. Rapid cam-
era motion and sudden change of viewpoint are probably
the predominant ones where image-based camera tracking
fails. In addition, and particularly relevant to systems where
the map is spatially restricted to a limited area of the world,
tracking which relies on the reconstructed map fails every
time the camera points outside this restricted domain. This
can frequently happen in AR scenarios where the user is in
control of a hand-held or head-mounted camera.

To this end, it is of great practical importance to inte-
grate a camera relocalization module which allows instant
recovery from tracking failure. Incorporated into the 3D
reconstruction pipeline, such a module allows seamless

� B. Glocker is with the Biomedical Image Analysis Group, Department of
Computing, Imperial College London, SW7 2AZ, United Kingdom.
E-mail: b.glocker@imperial.ac.uk.

� J. Shotton, A. Criminisi, and S. Izadi are with Microsoft Research,
Cambridge, CB1 2FB, United Kingdom.
E-mail: {jamiesho, antcrim, shahrami}@microsoft.com.

Manuscript received 28 Jan. 2014; revised 4 Aug. 2014; accepted 10 Sept.
2014. Date of publication 25 Sept. 2014; date of current version 1 Apr. 2015.
Recommended for acceptance by M. Gandy, S. Julier, and K. Kiyokawa.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2014.2360403

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015 571

1077-2626 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



continuation of mapping even when camera tracking is fre-
quently lost. This avoids the frustrating task of restarting
an entire scan from scratch due to tracking failure. Also,
this makes AR applications more robust.

We have recently proposed a relocalization module [26]
which can be easily integrated into existing reconstruction
pipelines. Our approach is inspired by different compo-
nents of previous work, resulting in an efficient and scalable
algorithm that provides a solution to the main causes of
tracking failure in systems such as KinectFusion. This article
is an extended version this earlier work. Here, we provide
an extensive performance evaluation and a more detailed
description of our method including visual examples. Com-
parison to more baselines including sparse feature methods
and thorough exploration of the effects of various parame-
ters on the relocalization performance will hopefully pro-
vide valuable insights to our approach.

1.1.1 Related Work

Relocalization has been widely studied in the context of
real-time SLAM. While approaches exist that require an
offline training phase (e.g. [27], [28]), below we focus on
methods which are capable of online real-time perfor-
mance. One can roughly categorize existing approaches
into two categories, though hybrid [29] and more exotic
variants exist [30], [31].

The first category are landmark-based approaches
(LbAs) [32], [33], [34]. During successful tracking, fiducial
landmarks or features, also called keypoints, are extracted
from the camera images, encoded by a descriptor, and
stored in a database together with their 3D locations. When
tracking is lost, landmark candidates are detected in the
incoming frame and based on descriptor similarity putative
matches are established between those candidates and
stored keypoints. In a recent work [33], the authors employ
a 3D test based on depth information to rapdily rule-out
false matches. The combination of the perspective 3-point
algorithm and RANSAC [35] is then commonly employed
to determine the pose of the camera.

We denote the second category as image-based
approaches (IbAs) [36], [37], [38]. Indeed, all methods dis-
cussed here rely on image information, however, the main
difference to the first category is that IbAs make use of
global image matching and do not require explicit landmark
detection. During successful tracking, compact representa-
tions of whole images are generated and stored together
with the corresponding camera poses. Those frame/pose
pairs are commonly referred to as keyframes. When tracking
is lost, the compact representation of the incoming frame is
compared to the ones of all keyframes. The poses of the
most similar keyframes are retrieved and then used to
directly reinitialize the tracking algorithm.

The notion of keyframes often also appears in the context
of LbAs. Here, keyframes are particular camera frames
from which keypoints have been extracted and stored. In
our work, however, we commonly associate keyframes with
IbAs and whole image matching.

Both categories come with advantages and drawbacks.
The main advantage of LbAs is their ability to recover the
pose from novel views. As long as a sufficient number of

keypoints can be recognized, the camera pose can be deter-
mined. Depending on the visual characteristics of the scene
and possible artifacts such as motion blur, it might not
always be possible to obtain sufficiently many matches.
Also, the construction of the keypoint database in real-time
settings can be challenging. Often a costly online training
phase is required which demands additional resources such
as a background thread or extra GPU computations [34].
Another limitation of LbAs lies in their inherent sparse
representation of the scene. Some approaches are limited to
store only a few thousand unique points, as discussed in
[32], [37]. The optimal choices for a suitable pipeline of
robust detection [39], description [40], [41], [42] and match-
ing [43] is certainly a challenge on its own.

Instead of map locations, in IbAs a set of keyframes rep-
resents the reconstructed scene. This allows direct retrieval
of pose proposals for tracking initialization. The main chal-
lenges are related to the online determination of keyframes
and the definition of efficient frame similarity measures. For
the first part, often heuristics are employed such as thresh-
olds on distances in pose space. For instance, a tracked
frame is added to the set of keyframes only if the camera
translation and orientation are sufficiently different from
the previous keyframe [36], [38]. This heuristic might yield
non optimal scene coverage. The second issue regarding
efficient similarity evaluation is commonly tackled by using
compact representations such as heavily downsampled
images and normalized intensity differences [36], [37], [38].
With increasing number of keyframes, the time needed for
the search of the most similar ones can be a limiting factor
of IbAs in real-time settings. The fact that tracking can only
be recovered from views which have been approximately
visited before has been recently approached by utilizing
synthesized views [36]. However, rendering such views can
be costly and defining an optimal sampling strategy in pose
space is non trivial.

1.1.2 Contributions

In light of prior work, we developed a simple yet power-
ful relocalization approach [26] which falls into the IbA
category. Our method makes use of randomized ferns
which have been previously used in the context of key-
point-based relocalization [34]. The way in which we
make use of ferns is quite different and will be described
in Section 2. With our relocalization approach we make
the following contributions:

1) Efficient frame encoding scheme allows compact
representation of keyframes, and fast retrieval of
pose proposals for tracking recovery;

2) Automatic discovery and sampling of keyframes by
exploring the space of appearance during tracking
and avoiding spatial sampling heuristics;

3) Scalability to large scenes through a small memory
footprint, large model capacity, and minimal compu-
tational demands;

Besides those properties which are essential for the
integration of our method into 3D reconstruction pipe-
lines, we demonstrate the robustness of our method with
respect to different settings of internal method parame-
ters. After discussing the technical details, we investigate

572 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



the relocalization performance in an experimental evalua-
tion in Section 3. We then discuss in Section 4 a practical
application of marker-free AR realized with the KinectFu-
sion system equipped with our relocalization module. In
Section 5, we discuss current limitations and future work.

2 KEYFRAME-BASED RELOCALIZATION VIA

RANDOMIZED FERNS FOR FRAME ENCODING

Our relocalization approach is based on the idea of generat-
ing compact codes for camera frames. Those codes can then
be used to efficiently determine frame dissimilarities either
to judge whether a frame is novel enough to be considered
as keyframe or to retrieve the poses of most similar key-
frames when tracking is lost.

We start by explaining how randomized ferns can be
used for generating compact codes.

2.1 Frame Encoding

Given an RGB-D image frame I : V � R2 7!R4, we define the
function that provides pixel values as IcðxÞ 2 Rwhere x 2 V
is the pixel location in image channel c 2 fR;G;B;Dg. For
convenience we introduce the notation IðuÞ ¼ IcðxÞ with
u ¼ ðc; xÞ.

In order to generate compact code representations for
RGB-D image frames, we first define a fern F ¼ ffigni¼1

as a set of n consecutive nodes fi where each node rep-
resents a binary test parametrized by a pair ðui; tiÞ. Each
test is evaluated on the image data as

fðI; u; tÞ ¼ 1 if IðuÞ � t

0 if IðuÞ < t:

�
(1)

Here, t is a threshold on the image pixel value IðuÞ. Evaluat-
ing all fi of a fern F in consecutive order provides a binary
code block bF ¼ f1 . . . fn 2 Bn. Given a conservatory
C ¼ fFkgmk¼1 of m diverse ferns, the concatenation of indi-
vidual code blocks yields a global single code bC ¼ bF1 . . .

bFm 2 Bmn. This mechanism allows us to generate (non
unique) codes for any RGB-D image frame. A particular

binary image code bIC depends on the total number of ferns

m, the number of nodes n in each fern, the binary test
parametrization ðui; tiÞ of each node, and of course on the
visual content of the image frame I.

The idea of using ferns for generating codes for image
patches has been already introduced in [44]. This has been
applied to the task of camera relocalization in [34]. In both
works, the idea is to learn compact codes for efficient key-
point recognition instead of encoding whole image frames.
At test time, in those works the conservatory of ferns is uti-
lized as a classifier to find putative matches between incom-
ing frames and a learned keypoint database.

Although inspired by the promising performance of
those fern-based approaches, we use ferns in a way which
is quite different from previous works. We employ whole
frame encoding for keyframe-based relocalization with a
test procedure that allows us to simultaneously compute
frame dissimilarities between a new frame and all previ-
ously stored keyframes. In the following we define the
frame dissimilarity in terms of the hamming distance.

2.2 Frame Dissimilarity via Hamming Distance

Given compact representations bIC and bJC for two camera
frames I and J , the frame dissimilarity is defined as the
BlockHD as

BlockHD
�
bIC; b

J
C

� ¼ 1

m

Xm
k¼1

bIFk � bJFk ; (2)

where the equivalent operator � returns 0 if two code
blocks are identical and 1 if there is at least one bit differ-
ence. The BlockHD is simply counting the number of differ-
ing code blocks. The normalization with respect to the
number of ferns m maps the distance to the ½0; 1� interval.
This is a nice property which eases parameter tuning of an
algorithm.

2.3 Precision/Recall of BlockHD

In contrast to the well-known bit-wise hamming distance
which counts the differing bits of two codes, the block-wise
version has an interesting property related to the length of
the blocks. Varying the length which is determined by the
parameter n directly impacts the precision/recall character-

istics of BlockHD. The probability that code blocks bIF and

bJF are equivalent decreases with increasing bit length due
the increasing number of binary tests. Remember that the
frames I and J need to produce same feature test responses
for identical codes. Longer code blocks increase precision
but negatively affect recall. Two frames with a low BlockHD
and long code blocks are very likely to be very similar.
However, one might also miss some similar frames due to
image noise or just by chance because of the hard threshold-
ing in the feature tests (cf. Eq. (1)). For shorter codes the
probability is higher that two frames with different visual
content yield a low BlockHD. The recall, however, intui-
tively increases in this case, though the precision might be
low. In case of 1-bit blocks which corresponds to ferns with
only one node, the BlockHD is equivalent to the bit-wise
HD. In the following we describe the mechanisms that
allows us to efficiently compute the frame dissimilarity.

2.4 Harvesting Keyframes

The key difference to previous fern-based approaches is in
the way we utilize the output of the ferns. Remember a fern
with n nodes can generate 2n unique codes. We associate
each fern F with a code table TF with 2n rows. Each row can
store a set of frame identifiers (ids)1 and all sets are initially
empty. In addition to the fern-specific code tables, we also
define one global table P taking id/pose pairs as input ele-
ments. This set is also initially empty and will be used to
globally store the camera poses of keyframes.

Let us now assume a steady stream of tracked camera
frames with pairs ðI;HÞid where H 2 SEð3Þ is the camera
pose composed of rotation and translation. Here, the id is
assumed to be unique for each frame/pose pair. For each

incoming frame we can generate the code bIC and add its id

to the m sets from the corresponding rows which are linked
with the individual code blocks. Additionally, we would
add the poseH with key id to the global table P .

1. This is different to classification ferns [34], [44] where empirical
distributions over keypoint classes are stored in the code tables.

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 573



Assuming a number of tracked frames have been already
encoded and stored using this strategy. Now, every time we
are about to add a new id to a set in a row of a code table
TF , we can also immediately read out the previously stored
identifiers (cf. Fig. 1). We know that those must correspond
to frames which have an equivalent code block bF . In fact, if
we simply count those co-occurrences of previously stored
frames along the m rows in which we would add the new
id, we can simultaneously compute the dissimilarities
between the new frame and all previously stored frames.
Assuming the count of co-occurrences for two frames I and
J using the above procedure is denoted as qIJ , then we can
equivalently to Eq. (2) compute their dissimilarity by

BlockHD
�
bIC; b

J
C

� ¼ m� qIJ
m

: (3)

In addition, for every incoming new frame I we can
determine the minimum BlockHD with respect to all previ-
ously stored frames as

kI ¼ min
8J

BlockHD
�
bIC; b

J
C

� ¼ min
8J

m� qIJ
m

� �
: (4)

The value kI provides useful information about the novelty
of new frame compared to stored keyframes. A low value
reflects that a very similar frame is already present, while a
high value indicates a novel view from a pose which should
probably be stored as a keyframe. Based on this observation,
we propose a strategy for online harvesting of tracked
frames and automatic determination of keyframes. Based
on the value kI and a predefined threshold t, we decide
whether an incoming frame is added or discarded. It should
become clear that such a threshold influences how densely
the observed scene is covered by keyframes (see Fig. 2).
Intuitively, a compromise is desired which avoids redun-
dant information to be added to the scene representation
while the coverage should also be sufficiently dense. Note,
that our harvesting strategy is completely driven by the
visual content of the camera frames and spatial sampling
heuristics based on pose offsets [36] are avoided.

2.5 Tracking Recovery via Pose Retrieval

When tracking fails for an incoming frame, we make use of
the previously harvested keyframes to retrieve pose pro-
posals for tracking recovery. For the incoming frame we
perform the same encoding procedure as in harvesting
mode which provides dissimilarities to all previously
stored keyframes. Now, instead of determining the value

of the minimum distance, we directly determine the ids of
the k nearest keyframes, i.e. the most similar ones. We can
then read-out the corresponding pose proposals from the
global table P . Depending on the underlying tracking and
mapping approach, we can for example use those k poses
to reinitialize the tracking algorithm. It is also possible to
employ a weighted averaging using the frame similarities
as weightings to compute a novel pose proposal. This is
similar to the idea proposed in [36]. If reinitialization is
unsuccessful for all proposed poses, we discard the current
frame and repeat the same procedure for the next incoming
camera frame until tracking is recovered. In the meantime,
the mapping process is paused and automatically resumed
after recovery. Remember we assume a user controlled,
hand-held camera, and it is likely that at some point the
user will move the camera to a pose which is similar
enough to a previously tracked one. One could also imag-
ine to employ visual guidance which could help the user to
move the camera into areas of good keyframe coverage. In
Fig. 3 we illustrate some examples of the pose retrieval pro-
cess. We show incoming test frames (only RGB is shown)
on the left, and the five nearest neighbors from the stored
keyframes. We also plot the corresponding camera poses
in the reconstructed scene for a geometric interpretation of
those results. Visually, the retrieved keyframes are very
similar to the query image and similarly are their poses in
most cases. If among the five nearest neighbor poses there
is at least one that allows the tracking to resume, we can
successfully recover the pose of the camera and continue
the mapping process.

2.6 Fern Construction

We have not discussed the details for the fern parameters
introduced in Section 2.1. In particular, the binary test
parameters ðui; tiÞ seem crucial for obtaining useful compact
frame representations. However, and maybe not too

Fig. 1. Frame encoding: Fern-based frame encoding takes an input
RGB-D image and generates small code blocks for each fern based on
simple binary feature tests evaluated at randomized, but fixed, image
locations. A code block is associated with a row of a code table which
stores the ids of keyframes with equivalent codes. In harvest mode, the
id of an incoming frame is added to the row if the minimum dissimilarity
kI is above a threshold. For tracking recovery, most similar keyframes
are retrieved from the tables and the corresponding poses are used for
reinitialization of the tracking algorithms.

Fig. 2. Harvesting keyframes: The top-left image shows a reconstructed
scene with 4000 tracked frames. Each camera pose is shown as a red
frustum. When simulating harvesting from this stream of frames, 836 are
accepted as keyframes for kI >0:1 (top-right). Increasing the threshold
to kI >0:2 yields 314 keyframes (bottom-left) and for kI >0:3 only 105
are being accepted (bottom-right). We evaluated the effect of the key-
frame coverage on the relocalization performance and the results are
summarized in Fig. 8.

574 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



surprising, we found that randomness injected into the con-
struction of the ferns yields overall best performance. Simi-
lar findings are reported in related approaches [34], [44],
[45]. Our default construction strategy for the entire conser-
vatory of ferns is explained in the following. The impact of
parameters such as the number of ferns m, the keyframe
acceptance threshold t, or the number of neighbors k are
investigated in our experiments.

>Per default, each fern consists of n ¼ 4 nodes with one
node per RGB-D channel, yielding F ¼ ffR; fG; fB; fDg. This
also defines the parameters ci within the set fuR; uG; uB; uDg.
We randomly sample image locations xi at which the binary
tests are applied from a uniform distribution over the image
domain V. Note, those locations are sampled only once at
the time of the fern construction. Here, we sample one loca-
tion per fern, such that xR ¼ xG ¼ xB ¼ xD. This has the
effect that a code block bF corresponds to feature responses
from all image channels obtained at the same fixed location.
The feature test thresholds ti are uniformly sampled such
that tR; tG; tB 2 ½0; 255� for RGB and tD 2 ½800; 4000�mm for
depth.

3 EXPERIMENTAL EVALUATION

It is not straightforward to assess the overall performance
of a real-time relocalization system. The best way is prob-
ably to actually test the system when it is running in a
live, real-world environment. However, quantitative eval-
uation of a live system becomes difficult, in particular, if
one is interested in how certain system parameters affect
performance.

Keeping the limitations of simulated tests in mind, in the
following we explore the performance of our system by rel-
ative comparisons. We employ the publicly available ‘7-
scenes’ dataset2 for simulation purposes. All scenes in this
dataset were recorded from a handheld Kinect camera at
640� 480 resolution. We used KinectFusion [6] (with care
to avoid loss of track) to obtain the ‘ground truth’ camera
poses. For each scene, several sequences were captured by
different users, and split into two distinct evaluation sets.
One set is then used as a steady stream of tracked frames

Fig. 3. Pose retrieval: The left column shows the RGB image of the query frame for which tracking has failed. The second to sixth column show the
RGB images of the retrieved keyframes in ascending order with respect to frame dissimilarity (BlockHDs). The plots in the most right column illustrate
the corresponding camera poses. The yellow frustum is the ‘ground truth’ pose of the incoming frame. The poses of the retrieved keyframes are
shown in red (nearest), green (2nd), blue (3rd), magenta (4th), and cyan (5th). In most cases, the retrieved poses are sufficiently close to ‘ground
truth’. An interesting case of visual ambiguity resulting in an outlier keyframe is shown in the third row. The 5th nearest keyframe is visually very simi-
lar, however, its camera pose (shown in cyan) is almost perpendicular to ‘ground truth’. This is a limitation of keyframe matching approaches, but not
a problem as long as at least one of the retrieved poses is sufficiently close to the real one.

2. http://research.microsoft.com/7-scenes/

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 575



for simulating harvesting of keyframes, the other set is used
for performance evaluation. The frames exhibit ambiguities
(e.g. repeated steps in ‘Stairs’), specularities (e.g. reflections
in ‘RedKitchen’), motion blur, lighting conditions, flat surfa-
ces, and sensor noise. It should be noted that the ‘ground
truth’ poses do contain some errors which occur from a
slight tracking drift and model distortions. An overview of
the dataset is shown in Fig. 4 and some more details about
each scene are given in Table 1. The varying difficulties of
the scenes are reflected in the errors, consistently across dif-
ferent approaches.

3.1 Overall System

We integrated our relocalization module into the Kine-
ctFusion pipeline (see Fig. 5) which relies on model-based
ICP camera tracking [6]. In order to detect ICP tracking
failure (and success), we employ a plausibility check on
the magnitude of camera motion and on the ICP residual
error. If the relative motion or residual is too large, ICP
reports tracking loss and relocalization is initiated. A
short demonstration of this system is shown in a video3

which highlights the importance and the performance of
our relocalization module. In particular, the system is
able to immediately recover tracking even when the cam-
era frequently leaves and re-enters the limited reconstruc-
tion volume.

3.2 Performance Evaluation

Our main metric for comparing different settings and
approaches is the percentage of frames for which the pose
was successfully recovered. Here, we define recovery to be

successful if the final estimated pose after ICP camera track-
ing is within 2 cm translational error and 2 degrees angular
error compared to ground truth. In order to explore the
effect of the randomness in our method we perform three
complete runs for all experiments. In each run, the conser-
vatory of ferns is constructed from scratch. The reported
performance values of our method are averages over three
runs. The stability of the performance for different runs is
discussed in Section 3.6.4.

Fig. 4. RGB-D dataset: For each of the seven scenes, we have recorded several sequences of tracked RGB-D camera frames. The frame trajecto-
ries used for simulating the online harvesting are shown in red. The frames used for evaluating tracking recovery are shown green.

TABLE 1
Main Results: Summary of the Relocalization Performance Evaluated on the RGB-D Dataset ‘7-Scenes’

Percentages correspond to the number of successfully recovered frames (within 2 cm translational error and 2 degrees angular error). The best performance is
obtained with our relocalization approach and the kNN pose proposal strategy. Similarly good performance for scalability test on the ‘All-in-One’ representation
indicates promising scalability properties for our compact encoding scheme.

Fig. 5. Pipeline integration: The diagram illustrates the integration of our
relocalization module into a standard 3D reconstruction pipeline such as
KinectFusion. Every incoming frame is pushed through our encoding
and frame dissimilarity mechanism. Depending on whether camera
tracking is successful, we can forward tracked frames to the map inte-
gration and keyframe extraction procedures, or we initiate pose proposal
retrieval for tracking recovery.3. http://www.doc.ic.ac.uk/ ~bglocker/videos/ferns.mp4

576 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



3.3 Frame Processing

Per default, our relocalization method operates on down-
sampled, smoothed images with a resolution of 40� 30 (fac-
tor 16) and Gaussian blur of s¼2:5 pixels (after
downsampling). The same pre-processing is for instance
used in [37], [38] and we use this setting when comparing to
baselines. In order to explore the effect of this pre-processing
we performed a set of experiments with varying downsam-
pling factors ð1; 2; 4; 8; 16Þ. In each case, we keep the Gaussian
blur with s¼2:5 pixels for the respective image resolutions of
640� 480, 320� 240, 160� 120, 80� 60, and 40� 30. The
results for those tests are reported in Section 3.6.5.

3.4 Pose Proposal Strategies

There are several strategies of using pose retrieval for reloc-
alization. One way is to simply initialize the tracking algo-
rithm with the nearest neighbor (NN) pose, i.e. the one from
the keyframe with smallest BlockHD. It is also possible to
retrieve a set of kNN proposals and initialize the tracking
with each of those. Besides proposing directly the poses of
keyframes, we can also interpolate a proposal via weighted
averaging over the kNN poses [36].

In the following, we will compare relocalization perfor-
mance for different strategies, namely NN, kNN, and
weighted average pose (WAP). In contrast to NN and WAP
where we provide a single proposal, kNN corresponds to a
multi-proposal approach where the poses of the k closest
keyframes plus their WAP are used for initializing ICP. If
ICP reports success for more than one pose, the one with
lowest residual error is selected for continuing normal
tracking and mapping. We also investigate the influence of
k in a separate experiment. In particular, we explore values
5, 10, 20, and 40 for the k nearest neighbor pose proposal
and pose averaging. The results for varying values of k and
the impact of including WAP are reported in Section 3.6.6.

3.5 Baselines

We compare our method to another image-based approach
denoted as ‘tiny image baseline’. This IbA baseline repre-
sents whole image matching approaches [36], [37], [38].
Keyframes are stored with their camera poses, after down-
sampling to 40� 30 pixels and applying a Gaussian blur of
s¼2:5 pixels [37]. For pose retrieval with best possible accu-
racy (at the expense of speed), we use brute-force matching
against all available stored frames using the normalized
distance over RGB-D as defined in [36]. It should be noted
that this exhaustive search is impractical for real-time
systems but it should give an upper bound on the perfor-
mance. In practice, keyframe sampling heuristics are usu-
ally employed to keep the number of keyframes at a
reasonable level [36]. Such heuristics, however, do not guar-
antee sufficient coverage of a scene. In order to eliminate
this factor of insufficient keyframe density, we opt for the
brute-force search strategy. We use the same pose proposal
strategies as for our method, i.e. NN, kNN, and WAP with
k¼5. The comparison with respect to this baseline is
reported in Section 3.6.1.

In addition, we also compare the performance of our
real-time keyframe method with two landmark-based
approaches. Both of them require an offline training phase

and thus, are not suitable for integration into real-time
SLAM systems. Those methods can be considered for reloc-
alization tasks when a previously scanned scene is revisited,
and there is sufficient time for training in between. The com-
parison, however, allows us to get an estimate of how close
we can get to the performance of those offline methods. The
first LbA method employs the fast ORB feature descriptor
[46] and a database of 3D points which is built during the
training phase. Relocalization then becomes a problem of
2D-3D feature matching which is solved using RANSAC
and the perspective 3-point method. The second method is
a random forest approach for directly estimating corre-
spondences between 2D image points and 3D locations in a
canonical representation of the reconstructed scene. The
details for both methods are given in [28], and a comparison
with our method is discussed in Section 3.6.2.

3.6 Results

In the following we investigate different properties of our
relocalization system. Besides quantifying the actual perfor-
mance for pose recovery in comparison to baselines, we
also explore the impact of different parameters and the scal-
ability to larger scenes. We also report detailed timings and
computational impacts of the individual components of our
method.

3.6.1 Baseline Comparison

Our main quantitative results for the comparison to the key-
frame baseline are summarized in Table 1. Both, our
approach and the baseline perform best in terms of success-
fully recovered frames when using the kNN proposal strat-
egy. Overall, our approach is able to recover from
significantly more test frames compared to this baseline. In
all the experiments, we set k¼5 such that in total six poses
(including the WAP) are used for initializing ICP. Using
WAP alone as a single proposal does not perform too well
for both ourmethod and the baseline (see Table 1). However,
adding it as an additional pose proposal in the kNN
approach seems beneficial. This is investigated inmore detail
in Section 3.6.6. In Fig. 6 we show some more detailed statis-
tics of the angular and translational error distributions for
ourmethod and the baselinewhen using the kNN strategy.

The given percentage of successful frames is always with
respect to the total number of tested frames as listed in the
column ‘Recovery’. The column ‘Harvest’ indicates the
number of frames used for simulating keyframe harvesting,
or in case of the baseline directly the number of keyframes.
The number of accepted keyframes for our approach is
given in the column ‘Keyframes’. Note that these quantita-
tive results correspond to a simulated setting where it is
assumed that all ‘Harvest’ frames are observed before the
‘Recovery’ frames are tested.

3.6.2 Comparison With Landmark-Based Approaches

In Fig. 7 we compare our method and also the ‘tiny image
baseline’ with the performance of two LbAs which have
been discussed in [28]4. Those methods require an offline

4. The error thresholds in [28] were set to 5 cm and 5 degrees, so
numbers reported here are updated for 2 cm and 2 degrees.

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 577



training phase in which the landmark database respectively
the regression forests are constructed. This offline training
yields favorably performance on all of the sequences com-
pared to our real-time approach, but limits the applicability
of those approaches.

3.6.3 Number of Ferns And Acceptance Threshold

The main comparative results are obtained with our default
setting of m¼500 ferns and a keyframe acceptance thresh-
old of t¼0:2. In Fig. 8 we compare the performance of our
method using the kNN with k¼5 strategy with varying
parameters m and t. We observe that initially adding more
ferns improves relocalization while further improvement
beyond 500 ferns is marginal. Regarding keyframe accep-
tance, we find that a lower threshold (t¼0:1) yielding
denser scene coverage does not necessarily improve relocal-
ization. Setting the threshold too high (t¼0:3) yields a too
sparse sampling of keyframes and relocalization perfor-
mance decreases. A visual example for the coverage of the
‘Chess’ scene for varying values of t is shown in Fig. 2. The
number of accepted keyframes for the three different
thresholds are provided in Fig. 8. For our largest scene
‘RedKitchen’ those numbers are 1368, 588, and 272, and for
the smallest scene ‘Heads’ 218, 91, and 45 keyframes are
accepted (on average) under the different thresholds.

3.6.4 Effect of Randomness

In general, the relocalization performance is very stable
across different runs in which the ferns have been randomly
constructed from scratch. Also, the number of accepted key-
frames (overlaid in white) does not vary significantly. The
only larger variance is found for the challenging ‘Stairs’
sequence. In Fig. 9 the variation across three different runs
with default fern setting is summarized.

3.6.5 Effect of Frame Size

Up to a factor of 16, the downsampling of frames has little
impact on the overall performance as can be seen in Fig. 10.
For higher factors a significant drop in performance can be
observed. In practice, we use a factor of 16 yielding frames
of size 40� 30 which is computationally beneficial for
subsequent processing, in particular, when applying the
Gaussian blur.

Fig. 7. Comparison with offline LbAs: Compared to our real-time fern-
based method, the two offline landmark-based approaches perform
favorably. Though, their applicability is limited to scenarios of revisiting a
previously reconstructed scene after training.

Fig. 6. Error statistics: Angular and translational error distributions are shown for our fern-based method and the ‘tiny image baseline’ when using the
kNN pose proposal strategy. The large translational error for the ‘Stairs’ scene is explained by the repetitive appearance of stair cases which yields
ambiguities that are difficult to resolve.

Fig. 8. Effect of number of ferns and harvesting threshold: Relocalization
performance when varying the number of ferns m (top graph) and
changing the keyframe acceptance threshold t (bottom graph). Initially
increasing the number of ferns improves performance, which levels off
afterm¼500. The threshold t influences the number (in white), and thus,
the density of keyframes. Optimal coverage seems to be obtained with
t¼0:2 (see also Fig. 2 for a visual example).

Fig. 9. Effect of randomness: Performance is relatively robust to the
effect of randomness in different fern constructions. Only for the chal-
lenging ‘Stairs’ sequence we found some significant variation in perfor-
mance over different runs.

578 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



3.6.6 Nearest Neighbors and Proposal Selection

For k ¼ 5 we have tested the kNN strategy with and with-
out including the interpolated pose WAP. Without WAP
we got consistently worse results, so including it seems
beneficial. This is summarized in Fig. 11 where we also
report the selection frequencies of the pose proposals for
the kNN strategy with WAP. Proposal selection is based
on the smallest ICP residual. The WAP proposal is almost
as often selected as the nearest neighbor pose.

We further tested different values for k and the results
are summarized in Fig. 12. Overall performance can be
slightly increased, in particular on the ‘Heads’ scene, when
considering more neighbors. However, the running time for
the relocalization process increases linear with the number
of proposals. In summary, our default setting of k¼5
including WAP seems a good compromise between perfor-
mance and speed (see also Section 3.6.9).

3.6.7 Importance of Color and Depth

We also evaluated the importance of using both color and
depth information for the relocalization and compared the
performance to two setups where we use either RGB or
depth only. For those experiments we use a fern encoding
with the same capacity as for the RGB-D version, i.e. same
number of ferns and 4-bit block codes. Instead of associating
each bit to one channel, in the RGB only setup we randomly
select a channel per bit when constructing the ferns and
those selections are spatially varying. For the depth only
variant, all 4 bits are associated with the depth channel, and
thus the corresponding feature tests are evaluated on depth
only. The results are summarized in Fig. 13. The best perfor-
mance is obtained when using the full RGB-D information.
The RGB only version still performs reasonable and might

suggest that our relocalization module could be employed
in RGB SLAM systems. The average of successfully recov-
ered frames drops from 66.1 percent to 62.7 percent. Depth
information alone is not sufficient to obtain a similarly good
performance. The performance measure for the latter one is
only 52.5 percent.

3.6.8 Scalability to Larger Scenes

An important aspect of keyframe-based approaches is scal-
ability to large scenes. In particular, this is a challenge for
whole image matching approaches such as our baseline
where the search for closest keyframes can become imprac-
tical when thousands of keyframes are stored. In order to
evaluate the scalability of our approach, we performed the
following experiment. We constructed a single conservatory
of ferns with our default parameters m¼500, t¼0:2 and
k¼5. We then used all 26,000 frames from all seven scenes
for keyframe harvesting. In total, 2091 frames are accepted
as keyframes, which is slightly less than the sum over all
keyframes from individual scenes, i.e. 2181. In the most
right column in Table 1 we report the relocalization perfor-
mance when using this ‘All-in-One’ keyframe representa-
tion. The overall performance is only slightly worse
compared to the scene-specific constructions. We believe
this indicates promising scalability properties for our
encoding scheme and a model capacity which is sufficient

for representing large scenes of more than 30m3 and thou-
sands of frames.

3.6.9 Timings

Real-time performance of relocalization is essential when
being integrated into a tracking and mapping pipeline. In
the following we report average timings for individual

Fig. 10. Effect of frame size: Downsampling with factors up to 16 has lit-
tle impact on the overall relocalization performance. Performance drops
significantly for 32 and 64. We use a factor of 16 which yields a frame
size of 40�30 and enables very efficient processing in the subsequent
pipeline.

Fig. 11. Proposal selection: Including the weighted average pose in the
kNN proposal strategy seems beneficial in terms of relocalization perfor-
mance. The selection frequency reveals that the WAP is almost as often
selected as the NN pose.

Fig. 12. Effect of number of neighbors: Relocalization performance can
be slightly increased when considering more keyframe proposals. This,
however, comes with higher computational costs. Overall, our default
setting of k¼5 seems a good compromise.

Fig. 13. Importance of color and depth: Best relocalization performance
is obtained when using the full RGB-D information. A system using RGB
only still performs reasonable, while depth information alone seems
insufficient to obtain good performance.

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 579



components of our method. All timings have been acquired
while running KinectFusion on the ‘RedKitchen’ scene
where a relocalization module based on the default setup
and 574 stored frames is assumed to be in place. This allows
us to measure the expected impact of keyframe harvesting
and recovery under realistic conditions. While the KinectFu-
sion pipeline itself is mostly running on GPU (Nvidia
Geforce GTX 580), our relocalization runs currently entirely
on a single core CPU (Intel Xeon 2.27 GHz).

The key intervention to the existing pipeline is that every
incoming frame is pushed through the frame encoding and
dissimilarity computation mechanism. So, even in normal
tracking mode our method has an impact on the overall
tracking and mapping performance. We found this impact
to be very small, with only 3ms for frame encoding includ-
ing computation of kI . A KinectFusion system running at 30
FPS will continue to run at 27 FPS when keyframe harvest-
ing is running in the same computation thread. Of course,
the relocalization module could also run in a parallel, dedi-
cated thread. When tracking is lost, we measure 160ms for
camera recovery with kNN with k¼5 including 6 runs of
ICP (for the k+1 proposals). The total impact of relocaliza-
tion during tracking recovery is about 165ms, which keeps
the system reasonably responsive. For comparison, the tim-
ings increase slightly for the ‘All-in-One’ representation
with 2091 keyframes where harvesting takes about 7 ms.

4 MARKER-FREE AUGMENTED REALITY

Real-time 3D reconstruction provided by RGB-D systems
such as KinectFusion enables exciting augmented reality
applications. Here, we present a prototype of an AR system
with potential use in medical and industrial environments
where digital 3D models or scans of physical objects are
available. In medical settings, anatomical scans of patients
are frequently acquired with computed tomography (CT) or
magnetic resonance imaging (MRI) systems for the task of
diagnosis, interventional planning and surgical navigation.
For example, in keyhole surgery doctors use the anatomical
scan to plan the port placement of instruments to have opti-
mal access to the region of interest [47]. Industrial AR sys-
tems for support and training of complex maintenance
tasks [19] benefit from overlay of 3D geometries and other
information extracted from available CAD or mesh models
[7], [48]. In contrast to systems based on optical tracking
and RGB only cameras, an additional depth sensor can
overcome challenges such as occlusion handling and fusion
of real and virtual objects.

Let us assume we are given a surface mesh of a real
world object consisting of a set of n 3D vertices V ¼ fvigni¼1.
For example, the mesh could have been extracted from an
available 3D scan and could represent the skin surface of a
patient’s head. In order to be able to correctly overlay
object-specific visual information on top of the camera

image, we need to find a transformation T : R3 7!R3 which
registers the mesh and the online 3D reconstruction. We
assume the latter is represented as a truncated signed dis-

tance function (TSDF) [6] denoted as D : R3 7!R where zero-
crossings correspond to object surfaces. Finding the optimal

transformation T̂ can be formulated as an optimization
problem as follows

T̂ ¼ argmin
T

Xn
i

min jDðT ðviÞÞj ; �� .½ (5)

Here, the value � truncates the cost function which makes it
robust to outliers and missing data in partially recon-
structed objects. The minimum of the cost function corre-
sponds to the transformation where a large number of mesh
vertices is located at object surfaces, i.e. at zero-crossings in
the TSDF volume. The advantage of this direct mesh-to-vol-
ume registration is that no explicit correspondences are
required between the 3D model and the reconstruction.
However, a sufficiently good initialization is important.

As mentioned earlier, we assume a user controlled cam-
era which allows us to employ a simple manual initializa-
tion mechanism which works well in practice. Although, an
automatic approach can be envisioned [49]. When a reason-
able part of the object to be augmented has been recon-
structed, we display the 3D mesh model with a fixed offset
in front of the camera. The user’s task is then to navigate the
mesh model by moving the camera to the proximity of the
reconstructed object. Enabling z-buffer based rendering
gives additional guidance to the user when the mesh and
the reconstruction are sufficiently close. The actual registra-
tion can then be performed automatically. We employ the
downhill simplex algorithm as an iterative optimization
method which requires less than 5 seconds for the registra-
tion. Once the transformation according to Eq. (5) is deter-
mined, any information contained in the object’s 3D model
or scan can be correctly overlaid on top of the tracked cam-
era images. This procedure enables compelling, marker-free
AR which for example allows to peek inside the human
body and visualize anatomical details of clinically relevant
structures as illustrated for a head phantom in Fig. 14.

5 CONCLUSION

In this extended version of our work on keyframe-based
relocalization using randomized ferns we explored in par-
ticular the performance under varying set of parameters.
We hope this exploration provides valuable insights about
our method. The comparison with (offline) landmark-based
methods shows that there is still space for improvement in
terms of relocalization performance. An additional compari-
son with online LBAs would be interesting but is beyond
the scope of this work. Setting up an entirely fair and con-
vincing comparison with existing implementations (e.g.
FAB-MAP [30]) is a challenge on its own due to the com-
plexity of finding optimal parameters for methods devel-
oped by someone else. The main limitation of keyframe-
based approaches, that the camera view should not be sub-
stantially different from views covered by keyframes, could
be potentially overcome using synthetic view sampling [36].
Here, our compact frame encoding is a key advantage.
Instead of synthesizing whole frames, we only need to syn-
thesize the compact codes for novel views which could dra-
matically reduce computational costs.

Another possibility to improve the relocalization per-
formance could be to consider a multi-frame retrieval pro-
cess similar to [50]. Instead of only looking at one
incoming frame and try to relocalize its particular pose,
one could consider a set of consecutive frames for which a

580 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



frame-to-frame tracking could give additional information
about the relative pose trajectory. This information could
then be matched to a set of retrieved pose proposals which
would ideally improve the robustness for selecting the
correct poses.

An interesting direction for future work would be to
investigate how loop-closure detection could be realized
within our method. Similar to [32], one could build a scene
graph where stored keyframes correspond to nodes. As
pointed out in [32], loop-closure and tracking recovery are
similar events of edge creation between active and existing
graph nodes.

In a similar context, one could explore the use of continu-
ous pose retrieval for detecting tracking drift. When a previ-
ously scanned area of a scene is revisited one could
compare the current pose estimation of the tracking algo-
rithm with pose proposals obtained from the relocalization
module. If the frame dissimilarity is very low, but the differ-
ence between the estimated and retrieved pose is large this
could indicate a drift in the tracking. This information could
then potentially be used for map correction.

In conclusion, with our current relocalization method we
provided a solution to the main causes of tracking failure in
systems such as KinectFusion. This has been acknowledged
by the Kinect for Windows development team which has
integrated our method into the Kinect for Windows SDK5.

REFERENCES

[1] A. J. Davison, “Real-time simultaneous localisation and mapping
with a single camera,” in Proc. IEEE Int. Conf. Comput. Vis., 2003,
pp. 1403–1410.

[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: Real-time single camera SLAM,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, Apr. 2007.

[3] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in Proc. IEEE Int. Symp. Mixed Augmented Reality,
2007, pp. 225–234.

[4] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: Dense
tracking and mapping in real-time,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2011, pp. 2320–2327.

[5] V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and S.
Bathiche, “MonoFusion: Real-time 3D reconstruction of small
scenes with a single web camera,” in Proc. IEEE Int. Symp. Mixed
Augmented Reality, 2013, pp. 83–88.

[6] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J.
Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and
tracking,” in Proc. IEEE Int. Symp. Mixed Augmented Reality,
2011, pp. 127–136.

[7] S. Lieberknecht, A. Huber, S. Ilic, and S. Benhimane, “RGB-D
camera-based parallel tracking and meshing,” in Proc. IEEE Int.
Symp. Mixed Augmented Reality, 2011, pp. 147–155.

[8] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping
at the level of objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2013, pp. 1352–1359.

[9] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas, “Acquiring 3D
indoor environments with variability and repetition,” ACM Trans.
Graph., vol. 31, no. 6, p. 138, 2012.

[10] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J.
McDonald, “Kintinuous: Spatially Extended KinectFusion,” in
Proc. RGBDWorkshop, 2012.

[11] H. Roth and M. Vona, “Moving volume kinectfusion,” in Proc.
Brit. Mach. Vis. Conf., 2012.

[12] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-time volumet-
ric surface reconstruction,” ACM Trans. Graph., vol. 32, no. 4,
p. 113, 2013.

[13] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocu-
lar SLAM in dynamic environments,” in Proc. IEEE Int. Symp.
Mixed Augmented Reality, 2013, pp. 209–218.

[14] M. Dou, H. Fuchs, and J.-M. Frahm, “Scanning and tracking
dynamic objects with commodity depth cameras,” in Proc. IEEE
Int. Symp. Mixed Augmented Reality, 2013, pp. 99–106.

[15] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A.
Kolb, “Real-time 3D reconstruction in dynamic scenes using
point-based fusion,” in Proc. IEEE Int. Conf. 3D Vis., 2013, pp. 1–8.

[16] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys, “Live Metric 3D Reconstruction on Mobile Phones,”
in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 65–72.

[17] V. A. Prisacariu, O. Kahler, D. W. Murray, and I. D. Reid,
“Simultaneous 3D tracking and reconstruction on amobile phone,”
in Proc. IEEE Int. Symp.Mixed Augmented Reality, 2013, pp. 89–98.

[18] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg, “Global
Localization from Monocular SLAM on a Mobile Phone,” IEEE
Trans. Visualization Comput. Graph., vol. 20, no. 4, pp. 531–539,
Apr. 2014.

Fig. 14. Marker-free augmented reality: Illustrated is a potential medical AR application. The top left image shows a skin surface model of a head
phantom fused with a real MRI scan of a patient with a brain tumor. Relevant clinical structures such as the tumor (red) and important blood vessels
(blue) are highlighted. Such a segmentation is commonly done during interventional planning. The second image shows our polystyrene head phan-
tom. Reconstructing the same outer surface with a real-time system such as KinectFusion (third image, top row) allows a mesh-to-volume registra-
tion between the surface model and the TSDF of the reconstruction (top right image). The bottom row shows in-situ AR visualizations of anatomical
structures overlaid on the RGB camera view. The live depth measurements also enable realistic occlusion handling.

5. http://www.microsoft.com/en-us/kinectforwindows/

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 581



[19] J. Platonov, H. Heibel, P. Meier, and B. Grollmann, “A mobile
markerless AR system for maintenance and repair,” in Proc. IEEE
Int. Symp. Mixed Augmented Reality, 2006, pp. 105–108.

[20] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P.
Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison et al.,
“KinectFusion: real-time 3D reconstruction and interaction using
a moving depth camera,” in Proc. 24th Annu ACM Symp User Inter-
face Softw. Technol., 2011, pp. 559–568.

[21] R. Salas-Moreno, B. Glocker, P. Kelly, and A. Davison, “Dense Pla-
nar SLAM,” in Proc. IEEE Int. Symp. Mixed Augmented Reality,
2014.

[22] M. Tatzgern, R. Grasset, D. Kalkofen, and D. Schmalstieg,
“Transitional Augmented Reality Navigation for Live Captured
Scenes,” in Proc. IEEE Virtual Reality, 2014, pp. 21–26.

[23] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual
odometry from dense RGB-D images,” in Proc. IEEE Int. Conf.
Comput. Vis. Workshops, 2011, pp. 719–722.

[24] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J.
McDonald, “Robust Tracking for Real-Time Dense RGB-D
Mapping with Kintinuous,” MIT-CSAIL, Tech. Rep. 031, 2012.

[25] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-Dmap-
ping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” Int. J. Robot. Res., vol. 31, no. 5, pp. 647–
663, 2012.

[26] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi, “Real-Time RGB-
D Camera Relocalization,” in Proc. IEEE Int. Symp. Mixed Aug-
mented Reality, 2013.

[27] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton, T. Sharp, A.
Fitzgibbon, and S. Izadi, “Multi-Output Learning for Camera
Relocalization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 1114–1121.

[28] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A.
Fitzgibbon, “Scene Coordinate Regression Forests for Camera
Relocalization in RGB-D Images,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2013, pp. 2930–2937.

[29] G. Reitmayr and T. W. Drummond, “Going out: robust model-
based tracking for outdoor augmented reality,” in Proc. IEEE Int.
Symp. Mixed Augmented Reality, 2006, pp. 109–118.

[30] M. Cummins and P. Newman, “Appearance-only SLAM at large
scale with FAB-MAP 2.0,” Int. J. Robot. Res., vol. 30, no. 9,
pp. 1100–1123, 2011.

[31] K. Ni, A. Kannan, A. Criminisi, and J. Winn, “Epitomic location
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2008, pp. 1–8.

[32] E. Eade and T. Drummond, “Unified loop closing and recovery
for real time monocular SLAM,” in Proc. Brit. Mach. Vis. Conf.,
2008.

[33] J. Martinez-Carranza, A. Calway, and W. Mayol-Cuevas,
“Enhancing 6D visual relocalisation with depth cameras,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2013, pp. 899–906.

[34] B. Williams, G. Klein, and I. Reid, “Automatic Relocalization and
Loop Closing for Real-Time Monocular SLAM,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 33, no. 9, pp. 1699–1712, Sep. 2011.

[35] M. Fischler and R. Bolles, “Random sample consensus: a para-
digm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[36] A. P. Gee and W. Mayol-Cuevas, “6D Relocalisation for RGBD
Cameras Using Synthetic View Regression,” in Brit. Mach. Vis.
Conf., 2012.

[37] G. Klein and D. Murray, “Improving the agility of keyframe-based
SLAM,” in Proc. Eur. Conf. Comput. Vis., 2008, pp. 802–815.

[38] C. Pirchheim, D. Schmalstieg, and G. Reitmayr, “Handling pure
camera rotation in keyframe-based SLAM,” in Proc. IEEE Int.
Symp. Mixed Augmented Reality, 2013, pp. 229–238.

[39] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A
machine learning approach to corner detection,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 32, no. 1, pp. 105–119, Jan. 2010.

[40] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
robust independent elementary features,” in Eur. Conf. Comput.
Vis., 2010, pp. 778–792.

[41] N. Sunderhauf and P. Protzel, “BRIEF-Gist – Closing the Loop by
Simple Means,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
2011, pp. 1234–1241.

[42] S. A. Winder and M. Brown, “Learning local image descriptors,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[43] D. Nister and H. Stewenius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2,
2006, pp. 2161–2168.

[44] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 3, pp. 448–461, Jan. 2010.

[45] V. Lepetit and P. Fua, “Keypoint recognition using randomized
trees,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9,
pp. 1465–1479, Jul. 2006.

[46] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an effi-
cient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput.
Vis., 2011, pp. 2564–2571.

[47] M. Feuerstein, T. Mussack, S. M. Heining, and N. Navab,
“Intraoperative Laparoscope Augmentation for Port Placement
and Resection Planning in Minimally Invasive Liver Resection,”
IEEE Trans. Med. Imaging, vol. 27, no. 3, pp. 355–369, Mar. 2008.

[48] B. Schwald and B. De Laval, “An augmented reality system for
training and assistance to maintenance in the industrial context,”
J. WSCG, vol. 11, no. 1, 2003.

[49] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust
Global Registration,” in Proc. Eur. Symp. Geometry Process., 2005.

[50] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter nights,” in
Proc. IEEE Int. Conf. Robot. Autom., 2012, pp. 1643–1649.

Ben Glocker received the PhD degree with high
distinction from the Technical University of
Munich, Munich, Germany, in 2011. He is cur-
rently a lecturer in Medical Image Computing at
Imperial College London, London, United
Kingdom. He is a member of the Biomedical
Image Analysis Group in the section of Visual
Information Processing at the Department of
Computing. His research area includes image
analysis and computer vision with a focus on
machine learning. He is interested in real-time

SLAM and 3D reconstruction and its use in medical applications. Before
joining Imperial in 2013, he was a post-doctoral researcher at Microsoft
Research Cambridge. He was awarded the Francois Erbsman Prize and
won the Werner von Siemens Excellence Award in 2007. He received
an honorary mention for the ERCIM Cor Baayen Award 2013 which rec-
ognizes promising young researchers in the field of Informatics and
Applied Mathematics.

Jamie Shotton studied computer science at the
University of Cambridge, Cambridge, United
Kingdom, where he remained for his PhD in com-
puter vision and visual object recognition. He
joined Microsoft Research in 2008 where he is
now a senior researcher in the Machine Learning
and Perception group. His research focuses at
the intersection of vision, graphics, and machine
learning, with particular interests including human
pose and shape estimation, object recognition,
gesture and action recognition, and medical

imaging. He has received multiple Best Paper and Best Demo awards at
top academic conferences. His work on machine learning for body part
recognition for Kinect was awarded the Royal Academy of Engineering’s
gold medal MacRobert Award 2011, and he shares Microsoft’s Out-
standing Technical Achievement Award for 2012 with the Kinect engi-
neering team. In 2014, he received the PAMI Young Researcher Award.

582 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 5, MAY 2015



Antonio Criminisi received the degree in elec-
tronics engineering at the University of Palermo,
Palermo, Italy, in July 1996, and the PhD degree
in computer vision at the University of Oxford,
Oxford, United Kingdom, in December 1999. He
joined Microsoft Research in Cambridge
(Machine Learning and Perception Group),
United Kingdom, as a visiting researcher in 2000.
In February 2001, he moved to the Interactive
Visual Media Group in Redmond, WA, as a post-
doc, and back to Cambridge as a researcher in

October 2002. In September 2011, he became a senior researcher and
is now leading the medical image analysis team. His current research
interests include medical image analysis, object category recognition,
image and video analysis and editing, one-to-one teleconferencing, 3D
reconstruction from single and multiple images with application to virtual
reality, forensic science and history of art. In October 1990, he was
appointed “Alfiere del Lavoro” by the Italian President F. Cossiga for his
successful studies. His thesis “Accurate Visual Metrology from Single
and Multiple Uncalibrated Images” won the British Computer Society
Distinguished Dissertation Award for the year 2000. He was a Research
Fellow at Clare Hall College, Cambridge from 2002 to 2005. He has won
a number of best paper prizes in top computer vision conferences.

Shahram Izadi is currently a principal researcher
at Microsoft Research, Cambridge, United
Kingdom, where he leads the interactive 3D tech-
nologies (I3D) group. His group straddles many
boundaries including human-computer interac-
tion, augmented reality, applied computer vision
and graphics, electronics, signal processing, and
optics. He also holds a visiting professorship at
UCL in the Virtual Environments and Computer
Graphics (VECG) group. His research focuses
on building new technologies and systems that

push the boundaries of human-computer interaction (HCI). This typically
involves building new types of cameras, sensors or displays; creating
practical algorithms and techniques for these types of novel technolo-
gies; as well as designing new user experiences that are enabled
through this technical research. He has been at Microsoft Research over
nine years, spent time at Xerox PARC before and was awarded a PhD
with Tom Rodden and Yvonne Rogers working on the EQUATOR proj-
ect. He was awarded a TR35 in 2009 and a Microsoft Next award in
2012. He served on the organisational committee for ACM UIST, CHI,
Ubicomp, TEI, ITS, ISMAR and CSCW. His work has led to over 80
research papers, and over 80 patents. These include multiple best paper
awards at UIST, CHI, ISMAR, Pervasive, CSCW and Ubicomp. His work
has led to products such as Microsoft Surface, Sensor-in-Pixel, Micro-
soft Touch Mouse, Kinect One, and Kinect SDK.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GLOCKER ET AL.: REAL-TIME RGB-D CAMERA RELOCALIZATION VIA RANDOMIZED FERNS FOR KEYFRAME ENCODING 583



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


