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A Topologically-informed Hyperstreamline
Seeding Method for Alignment Tensor Fields

Fred Fu and Nasser Mohieddin Abukhdeir

Abstract—A topologically-informed method is presented for
seeding of hyperstreamlines for visualization of alignment tensor
fields. The method is inspired by and applied to visualization
of nematic liquid crystal (LC) reorientation dynamics simula-
tions. The method distributes hyperstreamlines along domain
boundaries and edges of a nearest-neighbor graph whose vertices
are degenerate regions of the alignment tensor field, which
correspond to orientational defects in a nematic LC domain. This
is accomplished without iteration while conforming to a user-
specified spacing between hyperstreamlines and avoids possible
failure modes associated with hyperstreamline integration in the
vicinity of degeneracies of alignment (orientational defects). It
is shown that the presented seeding method enables automated
hyperstreamline-based visualization of a broad range of align-
ment tensor fields which enhances the ability of researchers to
interpret these fields and provides an alternative to using glyph-
based techniques.

Index Terms—scientific visualization, tensor visualization, hy-
perstreamlines, nematic liquid crystals

I. INTRODUCTION

S IMULATION-BASED research of liquid crystalline (LC)
phases has played a key role both in the contribution to our

fundamental understanding of these phases and to engineering
of LC devices. Liquid crystal phases, or mesophases, behave
like disordered liquids at high temperatures, but upon cool-
ing, transition to a lower symmetry liquid-like phase which
possesses some degree of phase order. The most simple of
the LC phases is the nematic phase, which possesses some
degree of orientational order at the molecular scale. This
orientational order is theoretically characterized using a second
order symmetric traceless tensor Q, the alignment tensor [1].
Applications of nematic LCs are pervasive in our daily lives
ranging from LC-based displays (LCDs) to biological systems
[2].

Resolution of the nanoscale structure and dynamics of
nematic domains is challenging for experimental analysis,
and thus simulation-based approaches are frequently employed
both in fundamental and applied science. The theoretical
bases of these simulations have progressed from simple, but
visually intuitive, vector field-based approximations of LC
orientational order to more descriptive alignment tensor theory
[1], [3]. Alignment tensor theory is more descriptive in that it
captures degeneracies in alignment, orientational defects, and
phase transition. One of the persistent challenges resulting
from using alignment tensor theory is that resulting three-
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dimensional transient simulation data have proven difficult to
interpret.

Approaches to visualization of nematic alignment tensor
fields have, until recently, resorted to simplifications such as
extracting the major eigenvector of the tensor and visual-
izing it as a vector field [4]–[6]. Vector field visualization
methods, especially streamline methods, are well-studied in
the literature, and several methods for creating high quality
streamline placements for two-dimensional data have been
proposed [7]–[13]. These include an image-guided algorithm
using low-pass filtering [7], an approach based on separation
distances [8], a method that using templates for different types
of critical points [9], a farthest point seeding strategy [10],
similarity-guided streamline placement [11], and topology-
aware streamline placement [13]. A thorough review of these
streamline seeding strategies can be found in [14]. However,
while vector field approximations of alignment tensor fields
enable visualization using standard streamline approaches,
there are two significant drawbacks. First, degeneracies in
alignment that are frequently present in alignment tensor
fields result in singularities in vector fields. Second, much
information is lost through the vector field approximation
including the degree (or magnitude) of alignment and the
presence of multiple alignment axes (biaxiality).

As a result, recent advances have been made using tensor
glyph methods (Figure 1), particularly the work by Jankun-
Kelly and Mehta [15], [16] which improves upon standard
tensor glyph visualization by applying superellipsoids rather
than using conventional glyph shapes. In general, improve-
ments in tensor field visualization have resulted from the
desire to interpret diffusion tensor imaging data for MRI [17].
More recently, Callan-Jones et al. [18] employed streamsur-
faces and streamtubes [19] to nematic domains that include
topological defects in orientation [20] (shown in Figure 1),
or disclinations, using Westin metrics to characterize the
alignment tensor field, although this method relies on culling
of computed streamlines in order to refine the visualization.
An adaptive streamtube seeding algorithm incorporating tensor
dissimilarity measures also exists [21]. Asymmetric tensor
field visualization has also been studied [22], [23], although
as the alignment tensor is symmetric, these methods cannot
be directly adapted.

Hyperstreamline visualization of tensor fields [24] (Fig-
ure 2) is an alternative approach to glyph-based techniques.
Analogous to streamline visualization of vector fields, hyper-
streamlines are enhanced such that, in addition to direction,
they have volume. This enables simultaneous visualization of
all eigenvalues and eigenvectors of an alignment tensor field.
They are constructed by first computing a streamline using the
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(a) (b)
Figure 1. Two types of orientational defects commonly observed in nematic
liquid crystals visualized with rectangular glyphs and hyperstreamlines: (a) a
+ orientational defect and (b) a − orientational defect.
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Figure 2. Schematic of a hyperstreamline demonstrating its direction and
cross-section.

major eigenvector field:

dr

ds
= n(r) (1)

where r(s) is the position of the streamline, s is the arc length
along the streamline, and n is the major eigenvector of the
alignment tensor field. Using this streamline as a template,
a hyperstreamline is then formed by rendering an elliptic
cylinder such that the major/minor axis is aligned with the
secondary/tertiary eigenvector field (of the alignment tensor).
The lengths of the major/minor elliptic axes are specified by
the magnitude of the secondary/tertiary eigenvalue, shown in
Figure 2. Thus, in contrast to streamlines, hyperstreamlines
incorporate all information quantified by the alignment tensor
in a higher-dimensional form than that of tensor glyphs.

As with streamline visualizations [9], one of the major chal-
lenges of employing hyperstreamlines is that existing seeding
methods are either (i) simplistic (uniform spatial distributions)
which result in difficult to interpret visualizations [25] or
(ii) are complex iterative algorithms which are impractical
for large three-dimensional transient datasets. Additionally,
alignment tensor fields frequently include degeneracies in their
major eigenvector fields such that n(r) in eqn 1 is not well-
defined. In this context, the three main objectives of this work
are to develop a hyperstreamline seeding method such that:

1) generation of seed points results in an approximately
well-distributed hyperstreamline visualizations.

2) generated seed points avoid computation of hyper-
streamlines which intersect areas of degenerate align-
ment.

3) iteration is not required so that the method is feasible
for use in the visualization of large three-dimensional
transient datasets.

4) a priori knowledge of the alignment tensor field, specif-
ically the type of orientational degeneracies that are
present, is not required.

Methods do exist to identify and avoid tensor degeneracies
[25], but they are computationally complex and preclude
the use of functionality in existing visualization libraries,
specifically the Visualization Toolkit (VTK) [26]. Recent work
has shown that utilization of the orientational topology of
alignment tensor fields could result in significant gains [9],
[27], [28].

In this work, a seeding method is presented for the visual-
ization of alignment tensor fields using hyperstreamlines in a
way that incorporates topological information. Degeneracies in
alignment and orientational defects are used to form a spatial
graph with edges determined from nearest-neighbor triangula-
tion. The vertices and edges are then used as a template for
seeding in a way that, without resorting to iteration/pruning,
both approximates an optimal distribution of hyperstreamlines
throughout the domain and avoids hyperstreamline compu-
tation in the vicinity of defects. The method is evaluated
on a representative set of two-dimensional alignment tensor
fields resulting from continuum simulations of nematic LC
reorientation dynamics.

The paper is organized as follows: the alignment ten-
sor and simulation method are described in Section II, the
topologically-informed seeding method is presented in Section
III, results of applying the method to various two-dimensional
alignment tensor fields are presented and discussed in Section
IV, and conclusions are made in Section V.

II. BACKGROUND

A. The Alignment Tensor

The alignment tensor Q is a real second-order symmetric-
traceless tensor and thus has distinct eigenvectors and real
eigenvalues. A symmetric tensor can be decomposed using its
eigenvectors (n, m, l) and eigenvalues (λn, λm, λl) using
Dyadic/Gibbs tensor notation [29]:

Q = λnnn+ λmmm+ λlll (2)

As in ref. [18] we introduce the modified alignment tensor D
with non-negative eigenvalues to simplify implementation of
the method,

D = Q+
1

3
δ (3)

where λ′n ≥ λ′m ≥ λ′l are the eigenvalues of D, the
eigenvectors of D remain the same as Q, and δ is the identity
tensor.

A useful decomposition of the modified alignment tensor D
uses Westin metrics [30]: the isotropy measure cs, the linear
anisotropy measure cl, and the planar anisotropy measure cp,

cs, cl, cp ∈ [0, 1], cs + cl + cp = 1 (4)

The alignment tensor characterizes three general types of
alignment:
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1) cs ≈ 1 – isotropy or no preferred alignment.
2) cl ≈ 1 – uniaxial alignment along n.
3) cp ≈ 1 – biaxial alignment along n and m.
The relationship between the eigenvalues of D and Westin

metrics of are [18]:

cl = λ′1 − λ′2, cp = 2(λ′2 − λ′3), cs = 3λ′3 (5)

Figure 3 shows schematic examples of the three types of
alignment in terms of both Westin metrics.

B. Nematic Reorientation Dynamics

Alignment tensor fields analyzed in this work are generated
through simulations of nematic reorientation dynamics in the
absence of flow. Nematic dynamics equations are described in
detail in ref. [2], and are summarized here. A gradient flow
model is used to simulate dynamics of the alignment tensor
[31], [32],

∂Q

∂t
= −Γ :

δF

δQ
(6)

where F is the total free energy of the domain and the kinetic
coefficient Γ is defined to preserve the symmetry and traceless
properties of the alignment tensor.

The free energy density of the nematic domain used is given
by the Landau-de Gennes model [3], [33],

f =
1

2
a (Q : Q)− 1

3
b (Q ·Q) : Q +

1

4
c (Q : Q)

2

+
1

2
L1(∇Q

...∇Q) (7)

where material constants a/b/c characterize the stability of
the aligned LC (nematic) phase and L1 characterizes its
orientational elasticity. Integration of the free energy density
over the domain volume (V ) results in the total free energy
F ,

F =

∫
V

fdV (8)

III. METHODS

The presented method is described for two-dimensional
alignment tensor fields. The method is composed of three
steps:

1) Identification of a topological template of the field
from the domain boundary and orientational defects (if
present).

2) Computation of an approximation of the optimal distri-
bution of seed points guided by the topological template.

3) Computation of hyperstreamlines at every seed point
using the topological template while avoiding regions
with orientational defects.

The method requires only one parameter from the user, ls,
the desired spacing between hyperstreamlines in the final
visualization. For alignment tensor fields corresponding to
nematic LC domains, there also exists a physical length scale
over which the alignment tensor can vary, ln =

√
L1

a [3],
which is used as a basis for choosing ls in the present work.

ri

(a)

ri

(b)
Figure 4. Schematic showing two extreme distributions of seed points (in
green) on a curve ri(s) (in red) of arc length S = 3ls superimposed on the
major eigenvector field n(s) (in black), in which: (a) the tangent to the curve
and the major eigenvector are parallel, in which case S′

i = 0 and thus α = 1,
and (b) the tangent to the curve and the major eigenvector are orthogonal, in
which case S′

i = 3ls and α = 4ls.

A. Identification of a Topological Template
The alignment tensor field is first analyzed for the presence

of degeneracies/defects in alignment (see Figure 1) through
identifying regions with biaxial alignment (cp ≈ 1), as
described in Section II-A). From this analysis, a set of points in
space D is generated which provides topological information
about the domain of the domain.

Once D is determined, an undirected graph G is formed
whose vertices are composed of D and whose edges relate
each point to its nearest neighbor in space (via Delaunay trian-
gulation). The resulting graph is referred to as the topological
template. Using this template, curves ri(s) (where i is used
arbitrarily to index each curve) are defined from a combination
of the line segments/graph edges connecting nearest-neighbor
defects and circles enclosing each defect/graph vertex. In the
case of well-aligned domains, the set D could be empty. In this
case, the orientational topology of the domain is completely
described by the alignment at the domain boundary, which is
used to define the curves ri(s).

B. Seed Distribution
Approximating an optimal distribution of seed points along

the curves ri(s) resulting from the topological template re-
quires comparing the unit tangent vector to the curve, t(s), to
the local alignment, represented by the major eigenvector n(s)
of the alignment tensor field (along the curve). For example,
if t(s) is always parallel to n(s) then the curve ri lies along
a hyperstreamline and only a single seed point is needed
anywhere within the curve, regardless of the desired spacing ls
(Figure 4a). The other extreme is if t(s) is always orthogonal
to n(s), which would require α = Si/ls+1 seed points equally
distributed along the curve, where Si is the arc length of the
curve (Figure 4b).

In the presented method, for every curve ri(s) in the
topological template a weighting function wi(s) is defined,

wi(s) = 1− |t(s) · n(s)| (9)

By integrating this weighting function along the curve, a
renormalized arc length S′i of the curve can be found:

S′i =

∫ Si

0

wi(s)ds (10)
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cp→1

cs→1 cl→1

Figure 3. Tensor ellipsoid representations of the modified alignment tensor D for differing Westin metrics values corresponding to: (a) no alignment (isotropic)
(cs ≈ 1), (b) uniaxial alignment (cl ≈ 1), and (c) biaxial alignment cp ≈ 1.

The number of seed points to be distributed along the curve
is then given by α = S′i/ls + 1. Finally, these α seed points
are distributed at specific points si,j=1→α along the arclength
of the curve governed by the α− 1 constraints of the form:

ls =

∫ si,j+1

si,j

wi(s)ds (11)

This procedure is repeated for all curves ri(s) in the
topological template which results in a set of seed points
Pi. Note that the unit tangent for each curve must first be
computed as a function of arc length:

t(s) =

∥∥∥∥drds
∥∥∥∥−1 dr

ds
(12)

which is accomplished by using spatial interpolation of the
curve using cubic splines [34].

C. Hyperstreamline Computation

Once the set of seed points P =
⋃
Pi is determined,

hyperstreamlines are computed and rendered at every seed
point. Directionality of the hyperstreamline computation is
constrained when seed points lie on curves that enclose de-
generacies/defects (identified from the topological template).
For these seed points hyperstreamlines are computed only
in the direction pointing away from the vertex/degeneracy.
This approach avoids computation of hyperstreamlines in the
vicinity of regions in the alignment tensor field where the
major eigenvector becomes degenerate.

Hyperstreamline computation and rendering was performed
using the Visualization Toolkit [26] (version 5.10.1). The
algorithm which this library implements is as follows:

1) Given an alignment tensor field in the form of an un-
structured grid, the Jacobi eigendecomposition algorithm
is used to solve for the eigenvectors and eigenvalues at
every grid-point.

2) Integration of eqn. 1 at every seed-point is then per-
formed using a second-order Runge-Kutta method and
spatial interpolation between grid-points.

3) The size of the cross-section and its orientation along
each hyperstreamline is scaled appropriately with respect

to the size of the domain in order to improve visibility.
Additional scalar field data, such as biaxiality or major
eigenvalue, can be represented through coloring of the
hyperstreamline surface.

In this work, the major eigenvalue field was used for hyper-
streamline coloring.

IV. RESULTS AND DISCUSSION

The presented algorithm was applied to seeding three gen-
eral types of two-dimensional alignment tensor fields observed
in reorientation dynamics of nematic LCs: uniformly aligned
defect-free domains, well-aligned domains with minimal de-
fects present, and complex domains with many defects present.
These three cases represent the breadth of scenarios that might
be encountered by a researcher. In each case, domains are
visualized using tensor glyphs and two different types of
hyperstreamline seeding methods, in addition to the presented
method. The two alternative hyperstreamline seeding methods
are used for comparison and are: uniform and boundary
seeding. In Sections IV-A to IV-B, circular two-dimensional
alignment tensor fields are used and in Section IV-C, a square
domain is used.

In all three visualizations, the same value of the hyper-
streamline spacing parameter ls = 2ln is used, where ln is a
characteristic length scale of the tensor field which governed
by the physics of the problem (see Section III). Additionally,
two optional parameters were included which were found
to be useful for creating uncluttered hyperstreamline visu-
alizations: the vertex seed radius and the vertex/edge seed
ratio. The vertex seed radius is the radius of the circle used
as the curve ri(s) around an orientational defect (vertex in
the undirected graph) and was chosen to be 2.5ln in the
following visualizations. The vertex/edge seed ratio specifies
the relationship between the hyperstreamline spacing ls along
boundaries/graph vertices versus along curves encompassing
defects. The value of this parameter used was 2, which corre-
sponds to the hyperstreamline spacing along edges (between
defects) being twice that of the spacing around defects. These
two additional parameters are not data-specific, and thus the
only input required from the user is the specification of ls.
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(a) (b) (c)
Figure 5. Visualizations of a uniform defect-free alignment tensor field within a two-dimensional circular domain using: (a) rectangular tensor glyphs, (b)
hyperstreamlines seeded uniformly in the field, (c) non-uniform seeding (Section III-B) hyperstreamlines seeded along the boundary. The value of ln is 0.02
in all cases and the domain diameter is 1.

A. Uniform Alignment

Figures 5a-c show visualizations of an alignment tensor
field within a circular domain using both rectangular tensor
glyphs, uniform hyperstreamline seeding in the domain, and
boundary hyperstreamline seeding using the seed distribution
method described in Section III-B. In this case, the alignment
tensor field contains no orientational defects and thus the
presented method forms the topological template using the
physical boundary (Figure 5c).

The tensor glyph visualization shown in Figure 5a uses a
random distribution of points within the domain so that the
scale of the glyph is large enough to be distinguishable. In
this simple case, using tensor glyphs results in a visualization
that is indicative of the alignment tensor field configuration.

Using uniform hyperstreamline seeding, as shown in Figure
5c, results in a significant amount of hyperstreamline overlap
in that multiple seed points are placed along lines of constant
alignment. Figure 4a illustrates this scenario which results in a
visualization that is severely cluttered. Alternatively, the use of
topology of the domain through seeding on its boundary (in the
absence of defects) in combination with the presented seeding
distribution method results in a hyperstreamline visualization
(Figure 5c) that is approximately optimal, given the user-
specified hyperstreamling spacing criteria.

B. Minimal Defects in Alignment

Figures 6a-d show visualizations of an alignment tensor
field, now with two defects present, within a circular domain
using both rectangular tensor glyphs and hyperstreamlines,
respectively. In this case, the presented method uses the
undirected graph formed from the defects, shown in Figure
7, as opposed to the boundary.

Compared to the tensor glyph visualization (Figure 6a),
which again uses a random distribution of points within the
domain, all three of the hyperstreamline visualizations provide
a more understandable representation of the alignment tensor
field. In this case, the tensor field has significant gradients in
alignment which is poorly represented in the glyph case. This

vertex	seed	radius

Figure 7. Visualization of the undirected graph representing the topological
template (Section III-A) and seed points of the tensor field used in Section
IV-B. Seed points are shown in yellow and green, defects in red, and the
curves comprising the template (ri(s)) are represented by dotted lines. The
vertex seed radius is labelled in black.

could be addressed by increasing the density of tensor glyphs
proportional to the local spatial gradient in alignment, but this
would result in an overlapping of glyphs and/or rescaling to the
point that the glyphs are not distinguishable. The advantage of
using higher dimensional hyperstreamline visualization is clear
in comparing Figure 6a with Figures 6b-d. The continuous
variation in direction that the hyperstreamline represents is
not accessible with tensor glyphs.

Comparing Figures 6b-d, using uniform seeding, boundary
seeding with the presented seed distribution method, and
the presented topological template/seed distribution method
(Figure 7) demonstrates two significant disadvantages of both
the uniform and boundary seeding methods. First, both the
uniform and boundary seeding methods admit the possibility
of hyperstreamlines entering defect regions where degenera-
cies in alignment result in instabilities in the numerical method
used to solve eqn. 1. An example of this is shown in the left-
center region of Figure 6c where a hyperstreamline abruptly
ends in the vicinity of a defect. The hyperstreamline integra-
tion (Section III-C) failed in this region due to two eigenval-
ues having equivalent magnitudes. The topologically-informed
template results in seeding that avoids this failure-mode, as
shown in Figure 6c, in that computation of hyperstreamlines
within the vertex/degeneracy seed radius is explicitly avoided.

The second disadvantage of using both the uniform and
boundary seeding methods is that the spacing of hyperstream-
lines is poorly constrained within the bulk of the domain. In
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(a) (b) (c)

(d)
Figure 6. Visualizations of an alignment tensor field within a two-dimensional circular domain with minimal defects (shown in red) using: (a) rectangular
tensor glyphs, (b) hyperstreamlines seeded uniformly in the field, (c) hyperstreamlines seeded along the boundary, (d) hyperstreamlines seeded along the
undirected graph of defects (shown in Figure 7). The value of ln is 0.02 in all cases and the domain diameter is 1.

Figure 6b, the same type of cluttering is observed as described
in the previous case. In Figure 6c, the imposed spacing on
the boundary is constrained well, but this results in cluttering
of hyperstreamlines in the bulk of the domain. The use of
the topological template/seed distribution, shown in Figure
6d, results in an approximately optimal hyperstreamline dis-
tribution such that the spacing is well-constrained in the bulk
of the domain, while relaxing this spacing at the boundaries.
This hyperstreamline distribution is clearly preferred in that it
results in an uncluttered visualization throughout the domain.

C. Many Defects in Alignment

Figure 8a-d show visualizations of a complex alignment
tensor field with many defects. This alignment tensor field
would require analysis at multiple scales, including the largest
scale (the whole domain) as is shown. The significant disad-
vantage of tensor glyphs is apparent in comparing Figure 8a
to Figures 8b-d; in order for the glyphs to be distinguishable,
their scale must be large with respect to the characteristic
length of variation in alignment. Thus many important features
of the alignment tensor field are not visualized due to the
coarseness of the visualization. Once again, the higher dimen-
sional character of hyperstreamlines provides a more useful

visualization in all cases.
Focusing on uniform hyperstreamline seeding, Figure 8b,

the degree of hyperstreamline overlap is severe. While visual-
ization of the largest scale of the alignment tensor field is
distinguishable, analysis at smaller scales is infeasible due
to overlap. Comparing boundary and topological template
seeding, Figure 8c-d, it is observed that both disadvantages
described in the previous section are magnified for boundary
seeding in this larger and more complex alignment tensor
field. Through the use of the topological template, shown in
Figure 9, these features are accounted for and the resulting
visualization is meaningful on multiple scales, ranging from
the whole field to sub-regions.

V. CONCLUSION

A topologically-informed method is presented for seeding of
hyperstreamlines for visualization of alignment tensor fields.
The method is shown to approximate an optimal distribution of
hyperstreamlines for a breadth of two-dimensional alignment
tensor fields ranging from those without defects to those
with complex topology. The method requires only a single
parameter from the user, avoids possible failure modes in
hyperstreamline computation, and requires no iteration to yield
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(a) (b) (c)

(d)
Figure 8. Visualizations of a complex alignment tensor field within a two-dimensional square domain with many defects demonstrating: (a) the undirected
graph of defects, (b) rectangular tensor glyphs, (c) hyperstreamlines seeded uniformly in the field, (d) hyperstreamlines seeded along the boundary, (e)
hyperstreamlines seeded along the undirected graph of defects. The value of ln is 0.008 in all cases where the domain scale is 1.

Figure 9. Visualization of the undirected graph representing the topological
template of the tensor field used in Section IV-C.

satisfactory hyperstreamline spacing. The results of applying
the presented seeding method show that it enables automated
efficient hyperstreamline-based visualization of alignment ten-
sor fields and thus enhances the ability of researchers to
interpret this type of data. While the description of the method
and results were limited to two-dimensional tensor fields, the
presented work provides a basis for extension of the seeding
method to three-dimensional alignment tensor fields.
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