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Distributed Seams for Gigapixel Panoramas
Sujin Philip, Brian Summa, Julien Tierny, Peer-Timo Bremer, and Valerio Pascucci

Abstract—Gigapixel panoramas are an increasingly popular digital image application. They are often created as a mosaic of
many smaller images. The mosaic acquisition can take many hours causing the individual images to differ in exposure and lighting
conditions. A blending operation is often necessary to give the appearance of a seamless image. The blending quality depends on
the magnitude of discontinuity along the image boundaries. Often, new boundaries, or seams, are first computed that minimize
this transition. Current techniques based on multi-labeling Graph Cuts are too slow and memory intensive for gigapixel sized
panoramas. In this paper, we present a parallel, out-of-core seam computing technique that is fast, has small memory footprint,
and is capable of running efficiently on different types of parallel systems. Its maximum memory usage is configurable, in the
form of a cache, which can improve performance by reducing redundant disk I/O and computations. It shows near-perfect scaling
on symmetric multiprocessing systems and good scaling on clusters and distributed shared memory systems. Our technique
improves the time required to compute seams for gigapixel imagery from many hours (or even days) to just a few minutes, while
still producing boundaries with energy that is on-par with Graph Cuts.

Index Terms—Panorama, Seams, Gigapixel, Parallel, Scalable, Out-Of-Core, MPI
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1 INTRODUCTION

PANORAMIC images, composed as a mosaic of
many smaller images, are an increasingly popular

digital photography application. These images can
range from a few megapixels to many gigapixels in
size and can contain hundreds or thousands of indi-
vidual images. Recently, the trend has been towards
gigapixel sized panoramas due to the availability of
high resolution cameras and inexpensive robots for
automatic capture.

The robots capture the individual images one by
one in a grid pattern and typically take a few sec-
onds per image. Therefore, the capture of gigapixel
sized panoramas can take many hours. This results
in each image having different lighting and exposure
conditions. The resulting panorama is an unappeal-
ing patchwork with visible transitions between the
images. To combat this, blending operations are per-
formed to give the appearance of a single seamless
image. The quality of blending depends on the magni-
tude of discontinuity along the transition boundaries.
Therefore, another step is usually performed where
new boundaries between the images are computed
such that the magnitude of transition between them is
minimized. These boundaries are often called seams.

Seam computation determines which image pro-
vides the pixel value in the final panorama for regions
where multiple images overlap, where each image is
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from a collection of well-registered and transformed
images. The most widely used technique for this
problem is Graph Cuts [1], [2], [3]. This technique
computes a k-labeling to the nodes of a graph in order
to minimize an energy function defined on the nodes
and edges of the graph. For the seam computation
problem, the panorama is represented as a graph
where the pixels are the nodes and the edges connect
a pixel to its neighbors [4], [5]. The labels specify the
source images that provide the corresponding pixel
values. The energy function is typically pixel based
and is used to minimize the color or color gradient
variations between images. Graph Cuts is only an
approximation since the globally optimal solution for
more than two labels is known to be NP-hard [1].

Graph Cuts is not suitable for gigapixel sized
panoramas due to its high computational cost and
memory requirements. A common technique em-
ployed to reduce both the memory and computa-
tional cost of Graph Cuts is to use a hierarchical
scheme [6], [7]. Hierarchical Graph Cuts has been
shown to produce good results for only two to three
levels in practice. Figure 1 demonstrates a typical
problem encountered at higher levels. In this figure,
at four levels the dynamic scene element is small
enough in the coarse solution for the seam to simply
pass through it. The dilatation, which is the region
around the upsampled coarse seams where refine-
ment is performed, is not large enough (10 pixels is
typical) to allow the seam to exit this local minima.
Larger dilatation may help in this case although at
an increased computational and memory cost. This
interplay between a shallow hierarchy and dilatation
parameters makes the technique inherently unscal-
able and not sufficient for direct application to gi-
gapixel sized panoramas. A moving window based
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Fig. 1. An example case where a deep hierarchy for
Hierarchical Graph Cuts produces poor results. A car
that appears in only one of the input images (top)
causes a region with high energy which a pixel based
energy will avoid. The results for up to 3 levels are
good. At 4 levels, in the coarse solution, the car is
small enough for the seam to pass through it. The
dilation parameter (10 pixels in the typical case) is not
large enough to exit this local minima in the refinement
stages.

out-of-core technique is presented in [8] where the
Graph Cuts algorithm is sequentially applied over the
footprint of each individual image of the panorama.
Therefore, at each step the window includes only
the current image and the overlapping regions of its
neighbors. This technique has been shown to work
on gigapixel sized panoramas but it is sequential and
is still computationally and memory intensive, even
over the domains of individual images. This can be
sped up by solving the windows hierarchically but
the problems related Hierarchical Graph Cuts will be
introduced.

For faster seam computation, we look to the
recently introduced alternative to Graph Cuts:
Panorama Weaving [9]. This work presented a novel
technique to combine independently computed pair-
wise seams into a global seam network. It has been
shown to be fast, light-weight and easily parallelized.
However, it is an in-core, parallel technique. In-core
parallel algorithms do not often translate to efficient
and scalable, out-of-core parallel nor to distributed
parallel implementations. The original algorithm is
not an exception. It has scalability issues since the
memory usage increases with the size and number
of input images. Hence, it has been shown to work
only on panoramas of less than 100 megapixels. In
addition, since all the threads have access to all the
buffers via shared memory, it is not easily portable to
large, distributed systems.

In this work, we introduce a scalable version of
the Panorama Weaving technique. In doing this, we
present the first truly out-of-core, parallel and scalable
panorama seams technique that can handle arbitrary
sized panoramas, yet requires limited memory inde-
pendent of the total size of the panorama. We present
the following contributions over the previous work:

• Enable processing of large panoramas, irrespec-
tive of the number of images, by minimizing

memory usage to a fixed set of buffers active at
any time. This enables the seams to be computed
on a wide range of systems from single-core
machines to many-core shared memory worksta-
tions to large distributed and distributed shared
memory clusters.

• Minimize communications among distributed
nodes, yet fully utilize shared memory buffers
within each node, for efficient parallelization on
modern distributed and distributed shared mem-
ory systems.

• Support configurable maximum memory usage
to enable it to run more efficiently on systems
with more memory by reducing redundant I/O
and computations.

2 RELATED WORK

Once the images of a panorama are registered into
a common global frame, it is desirable to smooth the
transitions between the images to give the impression
of a single seamless image. A simple approach is
to perform an alpha-blend over the overlap areas.
Szeliski [10] provides an introduction to this and
other blending techniques. Although highly scalable,
these techniques are not suitable for cases where there
are registration errors, dynamic elements, or varying
lighting and exposure conditions across the images.
These are very common for larger panoramas. Hard
seams between the images that minimize the transi-
tion can often hide registration errors and dynamic
elements and provide a good input for techniques
such as gradient domain blending [11], [12].

Panoramas where images are acquired in a sin-
gle sweep of the scene is a simplified case where
only boundaries between pairwise images need to
be considered [13], [14], [15], [16], [17], [18]. The
optimal boundary between a pair of overlapping
images can be computed quickly and exactly us-
ing the min-cut/max-flow algorithm. There has been
some work to combine such pairwise seams for more
complex panorama configurations. Gracias et al. [19]
use an image distance based metric to combine
the pairwise seams for more complex panoramas.
Efros et al. [20] combine the seams by adding them to-
gether sequentially for the purpose of texture synthe-
sis. Summa et al. [9] present a novel technique of com-
bining these pairwise seams in a general panorama
configuration by introducing the concept of a driving
adjacency mesh to encode the boundary relations and
intersections in a panorama.

Graph Cuts builds on the min-cut/max-flow algo-
rithm [1], [2] to efficiently compute an approximate
optimal solution for k-labeling of a graph. Graph Cuts
has been adapted to the panorama seams problem [4],
[5] and it is currently a widely used technique. How-
ever, it is a computationally expensive and memory
intensive technique and is not suitable for gigapixel
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Fig. 2. Pairwise overlap between two images, A and
B, with their boundaries intersecting at two points. The
optimal pairwise seam lies in the overlap region and
connects these points.
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Fig. 3. (a) Min-cut solution on a 4-connected graph
with an energy function Es defined on its edges. (b) Its
equivalent min-path solution on the dual.

sized panoramas. As mentioned in the previous sec-
tion, a hierarchical scheme can be used to alleviate
some of these problems but it is inherently unscalable.
The only truly scalable technique is an out-of-core
scheme where the Graph Cuts algorithm is sequen-
tially applied over the footprint of each individual
image [8]. As we will show in Section 5, this serial
computation can take several hours to compute a
solution for gigapixel sized panoramas.

There have been works that parallelize min-
cut/max-flow on multicore systems [21], [22], [23]
and GPUs [24]. The system in [23] is also capable
of handling graphs that are larger than the available
memory. However, min-cut/max-flow is not directly
applicable to the panorama seams problem and ex-
tending it to multi-label Graph Cuts is non-trivial.

3 PANORAMA WEAVING

In this section we give an overview of Panorama
Weaving [9] which is the basis of our scalable seam
computing technique.

Panorama Weaving produces a global seam solu-
tion by combining independently computed pairwise
seams. Consider a pair of overlapping images as
shown in Figure 2 with the boundaries of the images
intersecting at two points. The optimal pairwise seam
between the images lies in the overlap region and
connects the intersection points. The overlap region
can be represented as a graph with the pixels being

(a) (b) (c)

Fig. 4. (a) An example labeling of a panorama. (b) The
labeling forms a set of connected regions separated by
pairwise seams. Groups of seams join at points called
Branching Points (shown in red). (c) A mesh represen-
tation of the panorama. The vertices correspond to the
images, the edges correspond to the pairwise seams
and are orthogonal to them, and the faces correspond
to the branching points.

the nodes and edges connecting each pixel to its four-
neighborhood. The optimal seam will be a min-cut of
this graph based on some energy function Es defined
on the edges (Figure 3-a). It has been shown [25]
that there is an equivalent min-path to a min-cut
solution on its dual graph (Figure 3-b). This is true
for all single-source, single destination paths. The dual
graph is created with nodes between the pixels and
edges orthogonal to the edges of the four-connected
graph. One can then compute the min-path on this
graph, with the intersection points as the source and
destination, using a shortest path algorithm such as
Dijkstra’s [26].

The energy function is defined as Es(p, q) where
p, q ∈ N and N is the set of all neighboring pixels.
We would like to minimize the sum of the energy of
all neighbors, E, with a labeling L. For the panorama
boundary problem, this energy is typically [5] defined
as:

E(L) =
∑

p,q∈N

Es(p, q)

If minimizing the transition in pixel values:

Es(p, q) = ‖IL(p)(p)− IL(q)(p)‖+ ‖IL(p)(q)− IL(q)(q)‖

or if minimizing the transition in the gradient:

Es(p, q) = ‖∇IL(p)(p)−∇IL(q)(p)‖+‖∇IL(p)(q)−∇IL(q)(q)‖

where L(p) and L(q) are the labeling of the two pixels.
The label of a pixel specifies the source image that
provides the pixel value. Notice that L(p) = L(q)
implies Es(p, q) = 0.

To illustrate how the pairwise seams combine into
a global seam network, consider a typical labeling of
a panorama as shown in Figure 4-a. The labels form a
collection of connected regions (shown in solid colors)
that are separated by pairwise seams. Groups of these
seams meet each other at a common point, called
the branching point of the seams. Figure 4-b shows
the pairwise seams and the branching points. Note
that this is a simplified model, but as the previous
work has shown this assumption still provides quality
seam solutions. The global seam network as described
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Phase 1 Phase 2 Phase 3

Fig. 5. The three phases to compute the global seam
network. The faces can be processed independently
of each other in each phase. Phase 1 computes the
branching points and boundary seams, phase 2 com-
putes the shared seams and phase 3 detects and
resolves seam intersections.

above can be represented by an abstract mesh data
structure which is the dual of the seam network as
shown in Figure 4-c. The vertices of this mesh repre-
sent the images of the panorama, the edges represent
the pairwise seams, to which they are orthogonal, and
the faces represent the branching-points. Given such
a mesh representation of a panorama, its global seam
network can be computed by processing the faces
of the mesh independently of each other in logically
three phases. Figure 5 gives an overview of these
phases. In the first phase the branching points of the
faces are computed. The seams on the boundary of the
mesh, called boundary seams, can then be found since
their computation is independent of other faces. In
the second phase the seams connecting the branching
points, called shared seams, are computed. These seams
are each shared by two faces, but only one needs to
perform the computation. The seams of a face can
intersect and cross-over each other causing areas of
inconsistent labeling. In the third phase, intersections
between seams of a face are detected and resolved.

The seams corresponding to the edges of a face
meet at the face’s branching point. Thus the branching
point should be located in the region of intersection
of all the pairwise overlaps represented by the edges,
which is the same as the region of intersection of all
the images corresponding to the vertices. Therefore,
the images of a face must overlap each other. In
short, the vertices of a face form a clique of over-
lap relationship. The intersection region is called as
the face’s Multi Overlap region. Figure 6-a shows
an example configuration for a quad face. Only the
pairwise overlaps represented by the edges of the
face need to be considered. For each overlap, the
intersection point that is closest to the multi-overlap
region is labeled as the inside point and the other is
labeled as the outside point (Figure 6-b). The pairwise
seams are combined by replacing the inside points
with the branching point as shown in Figure 6-c.
A single-source/all-destinations min-path tree, called
Seam Tree, is computed on the dual graph of each
overlap with the corresponding outside point as the
source. Each node of a seam-tree gives the cost of the
path from the source to that node. Within the multi-
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Fig. 6. (a) A quad face of a panorama mesh with
its branching point and seams. (b) The collection of
images that form the face. These images have a
non-empty intersection called as the Multi-Overlap re-
gion (light blue). Consider the pairwise overlaps corre-
sponding to the edges. An overlap’s intersection point
that is closer to the multi-overlap region is labeled
as the inside point (red) and the other is labeled as
the outside point (yellow). (c) The inside points are
adapted into a branching point. The branching point is
located inside the multi-overlap region and minimizes
the sum of the min-path distances from the outside
points.

overlap region, the node for which the sum of its
costs from each of the seam-trees is minimized, gives
a good location for the branching point.

For faces that contain the mesh-boundary edges,
the boundary seams (orthogonal to those edges) are
computed by a simple lookup in each of the edge’s
seam-tree from the face’s branching point. Once the
branching points for all the faces are computed, the
shared seams, orthogonal to the interior edges, are
computed by connecting the branching points of each
edge’s adjacent faces with a min-path on the energy
field defined over its overlap.

There is a possibility that the paths of the seams
of a face will intersect each other. The details about
how and why the seams intersect, its implications and
resolution are beyond the scope of this paper. Inter-
ested readers are referred to [9] for further details. At
a high level, intersections between pairs of seams are
handled by truncating the seams up to the furthest
intersection point and computing a new seam path to
the intersection point over a proper energy function.

The mesh representation of a panorama can be gen-
erated from the collection of its input images by cre-
ating an adjacency graph where the nodes represent
the images and the edges represent pairwise overlaps
between the images. All non-overlapping maximal
cliques of this graph are identified and the edges that
form the boundary of the cliques are activated. The
cliques then become the faces and the active edges
become the edges of the mesh.

4 SCALABLE SEAMS

Panorama Weaving is an in-core technique that needs
all its images and intermediate buffers, such as over-
lap energies and seam trees, in memory. This is not
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scalable to gigapixel panoramas as memory usage
greatly increases with the total number of images. In
this section, we describe our scalable seams technique.

One of the strengths of Panorama Weaving is that
faces of the mesh representation can be processed
independently. We use this feature to process one
face at a time and only use the memory required per
face. Moreover, processing within a face is ordered
such that all the images and buffers of the face need
not be active at all times and can be acquired and
released as needed. There is a trade off between
speed and memory as acquiring and releasing results
in increased disk I/O and/or recomputation of
buffers. Therefore, it is necessary to reduce the
number of times a particular buffer is acquired for
good performance. We use a caching scheme for this
purpose. The size of this cache can be configured
based on the amount of memory available in a
particular system or user’s preference. The rest of
the section describes the Scalable Seams technique in
detail:

Input. The input is typically a collection of images
that have already been registered, transformed and
rasterized along with their bounding boxes in the
panorama. The invalid pixels of the images have
an alpha value of zero and this property is used to
identify the shape of the image.

Preprocessing. A pair of images is assumed to be
overlapping if their bounding boxes overlap. This
information is used to build the full adjacency graph
of the images. The mesh representation is then
computed from this adjacency graph as described
in section 3. In case of gigapixel panoramas, since
the images are typically acquired by robots on a
grid, a simplifying assumption can be made that
the panorama forms a quad mesh layout. The size
of the mesh representation is negligible, only a few
hundred kilobytes for panorama with thousands of
images.

Pass 1. For each face of the mesh, its branching
point and boundary seams (if any) are computed
(Figure 5-left). The edges of a face are assigned a
winding order (Figure 7 top) and we process the
edges in that order. Figure 7 shows the various data
buffers required for the computation of the branching
point, and their dependencies. For each edge, the
images corresponding to their vertices are loaded
and their overlap energy is computed. The image
buffers can now be released. Next, the seam tree
is computed after which the energy buffer can be
released. The costs of the nodes of the tree in the
multi-overlap region are accumulated in a cost buffer,
at which point the seam tree can be released. After
the costs from all seam trees of the face have been
accumulated, the location of the minimal value in the

Image

Energy

Seam Tree

Cost Accumulation Buffer

Fig. 7. Computation of the branching point of a
face and the dependencies between the required data
structures. The edges are iterated over based on a
winding order (top). For each edge, the images corre-
sponding to the two vertices are loaded and the overlap
energy is computed. A single-source/all-destinations
min-path tree (seam-tree) is computed on the energy.
The costs to its nodes within the multi-overlap region
are accumulated into an accumulation buffer. After the
costs from all the edge’s seam-trees have been accu-
mulated, the minimal point in the accumulation buffer
gives the location of the branching point. Buffers can
be freed once their dependents have been computed.
Edges are processed sequentially so only one set of
these buffers need to be active at a time.

cost buffer will be the location of the branching point.
Another iteration through the edges is performed
and for mesh-boundary edges, the corresponding
seam path can be found using the edge’s seam tree.
A cost-memory trade-off can be made at this point, if
the seam trees of these edges are not freed in the first
iteration. In this way reloading of the images and
recomputation of the overlap energy and seam-tree
can be avoided. Another such trade-off can be made
for image loading. Since the second image of an
edge becomes the first of the next edge, reloading of
the image can be avoided by maintaining a circular
buffer of length two for the images. The first vertex
of the first edge is also the second vertex of the last
edge. By keeping the first image around for the entire
iteration on the edges, the number of times that each
image of a face is loaded can be reduced to just once.

Pass 2. For each interior edge, the corresponding
shared seam is computed as a min-path between
the branching points of the adjacent faces, over the
overlap energy (Figure 5-middle). The seam only
needs to be computed for one of the faces, so there
should be a consistent criteria to choose that face.
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Passes 1 and 2 do not strictly need to be two separate
passes. During the first pass a face can compute the
proper seam path immediately after its branching
point is computed if the adjacent face’s branching
point is available by then. Merging the two passes
also allows us to save the overlap energy (computed
during the first iteration over the edges) of the shared
edges and reuse that for the min-path computation.

Pass 3. For each face, pairs of seams are checked
for intersections (Figure 5-right). If detected, the
furthest intersection point is identified and the seams
are truncated to this point. Note that seams that
are shared can have intersections in both of its
faces. To be able to process this pass for the faces
independently, the seam paths are implemented as
double ended queues. To truncate a shared seam one
face only needs to update its head and the other only
updates its tail with no conflict between the two.
A new seam is then computed from the branching
point to the intersection point. The required images
and overlap energies are loaded and computed as
required.

Output. The output of our system is a set of seams.
Each seam is represented by the labels of the images
it separates and its path. The contributing region of
each image in the panorama can be rasterized from
the seams that have the image as one of their labels.

Pass 1 is the most computationally expensive part of
the processing. Most of the time is spent in performing
I/O to load images and in computing the seam-trees
(single-source, all-destinations Dijkstra’s algorithm)
for each edge/overlap of a face. Though it uses a
good number of buffers, only a few, fixed number
of them need to be active at a time. Pass 2 can be
eliminated by merging it with pass 1. It computes
single-source, single-destination paths for each of the
shared seams, however, its cheaper than computing
seam-trees. During pass 3, only in cases where seam
intersection occurs, the corresponding pair of images
need to be loaded and buffers allocated for the images
and overlap energy. Dijkstra’s algorithm is run again
to compute the non-intersecting paths.

To demonstrate its scalability and portability,
we have implemented multiple versions of our
technique—a single threaded out-of-core version,
three shared memory multithreaded versions and a
hybrid version that uses both message passing and
multithreading.

4.1 Single Threaded Implementation

The single threaded version sequentially iterates over
each individual face. Processing is performed in two
passes. The computation of branching points and
boundary seams (pass 1) and shared seams (pass 2)

are merged into a single pass as described previously.
Of the two adjacent faces that share a seam, the face
which is processed second computes the shared seam.
Intersection resolution is still performed in a separate
pass. We chose to implement the cost-memory trade-
offs mentioned in Pass 1 above to achieve a balance
between memory usage and performance.

4.2 Multithreaded Implementation

We have implemented three different versions of our
technique using multithreading.

The first version is a direct parallelization of the
sequential out-of-core version. A pool of threads is
maintained and each thread picks its next work from
a global queue of tasks. Initially, one task per face
is put in the queue for branching point and seams
computation. Atomic counters are used to determine
which of the two adjacent faces of a shared seam will
compute it. There is no separate pass for intersection
resolution in this version. As soon as all the seams
of a particular face have been computed, a new task
is put in the queue for intersection resolution on that
face. This way we avoid a stall in the pipeline that
would have resulted from separate passes.

The second version is an extension of the direct
parallel method. Note that nodes and edges are shared
between neighboring faces. This corresponds to shar-
ing of images and pairwise overlaps. Due to dynamic
scheduling, it is likely that parallel threads are work-
ing on adjacent faces. Given that the buffers are read-
only data, we can reduce I/O and computation time
by sharing them among the threads. We call this
the sharing version. The image and overlap buffers
are tracked by reference counters. Whenever a thread
requires a buffer, it increments its reference count and
decrements it when it is done. A buffer is only freed
when its reference count becomes zero.

The third is the caching version which further im-
proves upon the previous version by not immedi-
ately freeing the buffers whose reference count have
reached zero. Instead, it can be configured with a user
defined cache size. When memory usage starts ex-
ceeding this threshold, a cache manager starts freeing
buffers with reference count zero in a Least Recently
Used manner until the memory usage returns to the
set threshold or there are no buffers left with reference
count of zero. This allows the implementation to
use more memory in systems that can afford it to
further reduce disk I/O and redundant computations.
Note that the minimum memory usage will be the
same as sharing version’s memory usage. If the cache
size is configured to a lesser value, this version will
behave like the sharing version. In this version the
task queue is implemented as a priority queue. When
an intersection resolution task for a face is put in
the queue, there is a good chance that the required
buffers are in memory since the seams computation
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Fig. 8. Two adjacent faces i and j that are assigned to
two different nodes, node(i) and node(j). Here i < j, so
node(i) is the owner node of the shared seam between
i and j. Once the branching point of j is computed, it
is sent to node(i) so that it can compute the shared
seam. The seam is then sent to node(j) since it is
required for intersection resolution. If the seam is found
to be intersecting in j, the new end-point is sent to
node(i), as it is the owner node. The computations
and communications are performed asynchronously
for improved performance.

for that face would have been run recently. Therefore,
intersection resolution tasks have a higher priority
than branching point and seams computation tasks,
so that they are executed as soon as possible.

4.3 Hybrid Implementation
The hybrid implementation extends the caching ver-
sion of the multithreaded implementation to run
on large systems with distributed memory compute
nodes by adding a message passing layer. It uses mes-
sage passing for communicating among the nodes and
shared memory for communicating among the proces-
sors/cores within a node. The faces of the panorama
mesh representation are statically distributed among
the nodes during initialization. Within each node, the
faces are dynamically processed with a task queue
and thread pool, like the multithreaded implementa-
tions. The cache in this version is local to each node
and can be configured according to the amount of
memory available per node. The various buffers are
only shared among the threads within a node. Each
node does its own I/O and computations of buffers
to minimize communication.

4.3.1 Inter-Node Communication
Nodes containing adjacent faces need to communicate
certain data among them via messages, as shown in
Figure 8. Shared seams between adjacent faces that are

assigned to different nodes only need to be computed
by one of the nodes. For consistency, we denote the
node which has the face with a lower id value as the
owner of the corresponding shared seam and is the
node that maintains the seam. The node with the face
with higher id value, called the partner node, sends
its branching point to the owner node, which then
computes the seam. After the seam is computed it
is communicated to the partner node since both the
faces need it for the intersection resolution phase.
Intersection resolution may change the end points of
a seam. For shared seams, the owner node receives
the opposite end-point from the partner node and
updates the seam.

The sending and receiving of messages are han-
dled by a message passing engine, which internally
uses MPI. Though the MPI standard supports mul-
tithreaded programs, the support for safe and fast
multithreaded calls to MPI functions is not mature
enough in many implementations and therefore, is not
portable. Instead, threads pass control to the message
passing engine at strategic locations by calling its
send/receive routines which are protected by locks.
When data required by another node is ready, it
should be immediately sent so as to reduce latency.
Therefore, these are good points to pass control to
the engine. When a thread wants to send a message,
it puts the message in a global send queue and the
engine’s send routine is called. The engine tries to
acquire a lock and if successful, sends the messages
in the queue. If the lock is owned by another thread,
the engine just returns instead of blocking and the
messages in the send queue are sent the next time
the engine receives control from any thread. After a
thread has finished executing a task, it again passes
control to the engine where it sends any outstanding
messages and polls for messages to be received. Since
we are using asynchronous send/receive routines, this
guaranties their progress in a portable manner by
passing control to MPI routines regularly.

4.3.2 Computation Overview
In each node, the task queue is initialized with one
task per assigned face for branching point and seams
computation. This task first computes the branching
point of the corresponding face. If the branching point
is required by other nodes, it is immediately put in
the send queue and the message passing engine’s
send routine is called as described above. The task
then computes the seams of the face. Computation
of shared seams, for which the adjacent faces are on
the same node, are tracked using atomic counters.
Shared seams with adjacent faces on different nodes
are computed in their corresponding owner nodes.
Such a seam can be computed only if the opposite
branching point has already been received, else the
computation is skipped instead of waiting. The receipt
of the branching points are also tracked using atomic
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variables. When the required branching point for a
skipped shared seam is eventually received, a new
task is put in the queue that just computes the seam.
Immediately after a shared seam is computed, if it
is required by another node it is put in the send
queue and the message passing engine’s send routine
is called. Once all the seams of a face have been
computed and/or received, a task for intersection res-
olution for the face is put in the task queue. After all
the tasks have finished, the new end-points of remote
shared seams are sent to their respective owner nodes.
Points to be sent to the same node are coalesced into a
single message. In the end, each node dumps its share
of seams into separate files.

4.3.3 Task Distribution and Scheduling
Computation is distributed among the nodes by as-
signing equal number of faces to each of them. This
results in some load imbalance since the faces can take
different amounts of processing time. The load imbal-
ance can be reduced by assigning weights to the faces
based on their processing time and distributing them
accordingly. The effectiveness of this scheme depends
on how well the weights predict the actual execution
time of the faces. One good heuristic is the sum of
the sizes of the overlapping buffers corresponding to
the edges of the face. This heuristic is based on the
fact that a significant amount of processing time of
a face is spent in computing the seam-trees which in
turn depends on the area of the overlapping regions.
We implemented a load balancing technique using
the above heuristic for weights and an optimal chain-
on-chain partitioning algorithm [27] for assigning the
faces to the nodes. The load balanced version did not
show consistent improvement over the trivial distri-
bution version. We found that even with the trivial
distribution the load imbalance is not very high and
implementing a load balancing system is not worth
the trouble.

Two important factors that affect the performance
of our system are—the reuse of buffers already in
memory/cache and the amount of time the threads
are idling waiting for work. These factors depend on
how the faces of the mesh are partitioned, the order
in which they are processed and the priorities of the
different types of tasks that processes the faces.

For good performance, the faces should be pro-
cessed in an order that utilizes images that are already
active or in the cache. For gigapixel sized panoramas,
the faces can be assumed to form a grid-of-quads
layout and they can be easily sorted according to Z-
order indexing. Processing the faces in Z-order gives
good caching performance, but it is not ideal for
minimizing waits. Prioritizing faces that produce data
required by neighboring nodes can minimize idling
times by making such data available as soon as pos-
sible. A node should first process those faces whose
branching points are required by neighboring nodes.

This reduces latency of branching point messages but
it also reduces the chance of redundant disk I/O and
computations. As mentioned previously, computation
of a shared seam between adjacent faces on different
nodes is skipped in the seams computation task if
the opposite branching point has not been received.
This can result in extra I/O and computation as a
new task is spawned to compute the seam, which
may have to reload the required images and recom-
pute the corresponding buffers. Faces that need to
communicate their seams should be processed next
so that they are available for intersection resolution
in the neighboring nodes as soon as possible. Fi-
nally, all the remaining faces should be processed.
This order reduces idling time in the threads but its
pattern of accessing images is not good for caching.
For our implementation we use column major order
for partitioning and processing the faces. This order
processes the faces that need to send their branching
points first but the faces that need to send their seams
are processed last. This may introduce stalls in the
neighboring nodes that have exhausted their local
tasks and are waiting for the shared seams for more
intersection resolution tasks. But overall, this order
seems to provide a good balance between caching
performance and minimizing idle time.

Task priorities are also used for good caching per-
formance and to minimize idling times. Tasks that
compute skipped seams have the highest priority
since the task that skipped the corresponding seam’s
computation may have run recently and the required
buffers might still be in the cache. The seams gener-
ated by these tasks are also required by neighboring
nodes for intersection resolution tasks, so prioritizing
them decreases latency for the seam messages. The
branching point and seams computing tasks have the
next priority since their results are required for further
computations. The intersection resolution tasks have
the lowest priority since their results are final and not
required for further computations.

5 RESULTS

We have conducted tests to compare our technique
with a sweeping window implementation of Graph
Cuts [8] with additional strong scaling tests of our
multithreaded and hybrid implementations. The fol-
lowing datasets were used for testing:

• SLC. 122, 625× 26, 632, 3.27 gigapixels panorama
composed of 624 individual images acquired in a
48× 13 grid. Figure 9, top.

• Lake Louise. 187, 068 × 40, 201, 7.52 gigapixels
panorama composed of 1512 individual images
acquired in a 72× 21 grid. Figure 9, center.

• Campus. 294, 040 × 109, 080, 32.07 gigapixels
panorama composed of 5500 individual images
acquired in a 100× 55 grid. Figure 9, bottom.
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Fig. 9. Seams computed on the three different
datasets. Top, SLC panorama, 3.27 gigapixels with 624
images. Computed in 3.76 minutes using 24 cores.
Center, Lake Louise panorama, 7.52 gigapixels with
1512 images. Computed in 26.72 seconds using 1024
cores. (courtesy of City Escapes Nature Photogra-
phy). Bottom, Campus panorama, 32.07 gigapixels
with 5500 images. Computed in 60.45 seconds using
1024 cores.

The results show that our sequential implemen-
tation is much faster, uses much less memory and
produces seams with energy comparable to Graph
Cuts (5.1). Section 5.2 shows that the multithreaded
implementations scale almost linearly, even up to the
full machine, while still maintaining the memory us-
age per thread. The performance is further improved
with the use of caching at the cost of increased
memory usage. Section 5.3 shows that the hybrid
implementation also has good scalability, even up to
1024 processors.

5.1 Comparison with Graph Cuts

As mentioned in Section 2, the out-of-core, sweeping
Graph Cuts window [8] approach is the only minimal
seam approach that has been shown to work with gi-
gapixel sized panoramas and therefore is used for our
comparison. We also extended the implementation
by adding support for hierarchical solving. For each
image, it and its overlapping images are loaded and
the energy function is computed over the domain of
the image. The Graph Cuts algorithm is then applied
on the energy for the solution of the window. Overlap-
ping portions from solutions of previous windows are
locked so that the seams are consistent across window
boundaries. For hierarchical implementation an image
pyramid with the specified number of levels is created
per each window. Graph Cuts is first applied to the
energy computed at the deepest level. The solution
is then upsampled to the next level using bilateral
upsampling. A dilation is applied on the upsampled

SLC
Time (min.) Max MB Total Energy

GC1 1533.97 3324 1.070× 108

GC3 318.21 867 1.119× 108

SS 64.6 290 1.036× 108

Lake Louise
Time (min.) Max MB Total Energy

GC1 8037.82 4022 2.927× 108

GC3 1029.88 1067 3.279× 108

SS 266.64 382 2.841× 108

Fig. 10. Results of our single threaded out-of-core
implementation (SS) and the two sliding-window based
out-of-core Graph Cuts implementations—Full reso-
lution version (GC1) and Hierarchical version with 3
levels (GC3). GC1 is too slow to be practical. GC3 is
faster and uses lesser memory but produces poorer
results. Our method is much faster than GC3 and uses
much less memory while producing seams that are
better than even GC1.

seams and Graph Cuts is again performed on the
dilated region. This step is repeated till the top level
of the pyramid. For Graph Cuts we use the widely
used implementation provided by [1], [2], [3], [28].

Each alpha-expansion of Graph Cuts can be possi-
bly parallelized for non-overlaping image neighbor-
hoods. Since this is a local approach, only the image
being processed and the overlapping regions of its
neighbors need to be kept in memory. In our work,
we have found no research or publications on the
scalability and efficiency of such an approach for out-
of-core or distributed settings so direct comparison is
difficult. Although, when compared to our technique
this approach has some critical drawbacks. For each
alpha-expansion step, the results of the overlapping
regions need to be communicated with an image’s
neighbors. This requires the transfer of an image
buffer. Synchronization would also be required after
each expansion step and each iteration. Moreover,
there may be multiple, possibly many, iterations to
produce an acceptable result. In contrast, our tech-
nique only needs to communicate points and/or poly-
lines and only requires a single pass. Graph Cuts com-
munication would be quite expensive on large dis-
tributed systems and be a critical bottleneck in high-
latency, low-bandwidth, distributed systems now seen
in cloud computing infrastructures. Finally, like the
initial Panorama Weaving technique, the scalability of
this algorithm is limited by the amount of solution
buffers that can be held in memory. Schemes, similar
to what we have presented in this work, would be
required for this technique to scale efficiently.

We tested the hierarchical, sweeping-window
Graph Cuts based implementation on the two smaller
datasets, SLC and Lake Louise, with two different
configurations—one running the solver at full reso-
lution and the other with 3 levels of hierarchy. We
compared the running times, memory usage and total
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SLC
Direct Shared Cached (8 GB)

Threads Ideal Actual Eff. % MB Ideal Actual Eff. % MB Ideal Actual Eff. % MB
1 103.26 103.26 100.00 290 101.53 101.53 100.00 290 70.86 70.86 100.00 8294
4 25.82 26.23 98.41 784 25.38 23.34 108.75 769 17.72 18.44 96.08 8323
8 12.91 12.75 101.26 1412 12.69 11.12 114.17 1306 8.86 8.85 100.13 8323

12 8.61 8.44 101.99 2207 8.46 7.37 114.79 1869 5.91 5.92 99.70 8383
16 6.45 6.43 100.43 2636 6.35 5.56 114.10 2179 4.43 4.49 98.69 8386
20 5.16 5.18 99.63 3280 5.08 4.43 114.70 2624 3.54 3.63 97.56 8403
24 4.30 4.53 94.93 4018 4.23 3.76 112.41 2991 2.95 3.12 94.72 8415
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Lake Louise
Direct Shared Cached (8 GB)

Threads Ideal Actual Eff. % MB Ideal Actual Eff. % MB Ideal Actual Eff. % MB
1 412.85 412.85 100.00 382 405.10 405.10 100.00 382 294.62 294.62 100.00 8304
4 103.21 103.26 99.95 1129 101.27 92.60 109.37 1052 73.65 75.92 97.01 8393
8 51.61 49.19 104.91 2099 50.64 43.73 115.79 1891 36.83 36.46 101.01 8413

12 34.40 32.86 104.69 3079 33.76 28.97 116.52 2536 24.55 24.24 101.27 8481
16 25.80 24.77 104.16 3953 25.32 21.69 116.71 3471 18.41 18.25 100.90 8526
20 20.64 19.82 104.17 4860 20.25 17.30 117.07 4395 14.73 14.55 101.28 8861
24 17.20 16.79 102.46 5820 16.88 14.71 114.76 4750 12.28 12.45 98.58 8599

Fig. 11. Scaling results of our three parallel implementations on the SLC (top) and Lake Louise (bottom) datasets
(All timings are in minutes). Due to space limitations the tables only show data for core counts in multiples of
4. The plots show all the data points. All implementations show good efficiency (Eff. %) throughout, with the
shared implementation achieving super-linear speedup due to data sharing. The maximum memory usage (MB)
of the direct and shared implementations do increase with the number of threads but memory/thread is always
maintained bellow the usage of single threaded runs. The cached implementation can be configured with a cache
size (8 GB in this case) that allows it to scale to systems with larger memory. It provides the best performance
among all three implementations by further reducing disk I/O and computations.

energy of the results with the single threaded, out-of-
core implementation of our technique. The tests were
run on a system with a quad core Intel Core i7 920
CPU @ 2.67 GHz and 6 GB of memory.

The results are detailed in Figure 10. Even though
the out-of-core Graph Cuts implementation can han-
dle gigapixel sized panoramas, it is too slow for
practical purposes. The hierarchical solver is much
faster and requires lesser memory at the cost of a
lower quality solution. In contrast, our system is much
faster, uses much less memory and the final energy
computed is lower than the full resolution Graph Cuts
implementation.

5.2 Multi-Threaded Scalability Tests

We have performed scalability tests on our three
multi-threaded, out-of-core implementations. The sys-
tem for these tests was an Intel Xeon based worksta-
tion with 4 Intel Xeon E7540 CPUs @ 2.00 GHz, having
6 physical cores and 12 HT threads each and 128 GB of
RAM. The tests were run on the SLC and Lake Louise
datasets. Figure 11 shows the performance results.

The direct threaded implementation is fast and scal-
able and exhibits near linear scaling throughout. Even
for up to the maximum number of physical cores the
efficiency is maintained around 95% for SLC dataset.
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Fig. 12. Scaling results on the NVIDIA cluster for the Lake Louise (left) and Campus (right) datasets. Time in
seconds and percent efficiency are shown for caching disabled and enabled runs. The tests were run on up to
60 nodes with 8 threads/node for a total of 480 threads. The cache size was configured to be 16 GB/node for the
caching enabled runs. The Campus dataset scales better as it has more faces that keep the threads busy without
idling. For both datasets the performance is better with caching enabled but the efficiency drops on higher nodes
because caching is not as effective due to each node having to process fewer number of faces.

The slight reduction in efficiency at 24 threads is due
to the smaller size of the panorama and it is not seen
in the larger Lake Louise dataset, which is maintained
at 99% efficiency. From the table, it can be seen that the
maximum memory usage increases with the number
of threads for the direct and shared implementations,
but memory/thread is always maintained bellow the
usage of single threaded runs.

The sharing implementation shows an overall im-
provement in performance compared to the direct
implementation. By sharing the buffers among the
threads it reduces their disk I/O and recomputations.
This results in a super-linear speed-up as shown in
the graph with efficiency reaching as high as 114%
for SLC and 117% for Lake Louise datasets. The data
sharing also reduces the maximum memory usage of
this implementation. As shown in the table, for SLC
dataset it only requires 3.0 GB of memory with 24
threads compared to 4.0 GB for the direct implementa-
tion. Similarly for Lake Louise dataset it only requires
4.8 GB of memory with 24 threads compared to 5.8 GB
for direct.

For the caching implementation, the tests were con-
figured to use 8 GB of cache which is a reasonable size
for modern workstations. With this implementation
we are able to further improve the performance while
still maintaining its scalability. As the table shows, the
efficiency doesn’t go bellow 94% for SLC and 98% for
Lake Louise datasets. The maximum memory usage

is maintained around the configured 8 GB size.

5.3 Hybrid Scalability Tests
We performed scalability tests for the hybrid im-
plementation on three different systems. Two of the
larger datasets—Lake Louise and Campus were used
for these tests. Two sets of tests were run with caching
enabled and disabled. The cache sizes were config-
ured based on the amount of memory available in the
corresponding systems. All three systems are shared
machines. To discount the effects of other jobs on the
shared resources such as the file system, several runs
were made for each configuration and the best times
were recorded.

The first machine is the NVIDIA cluster. Each node
of the cluster contains two quad core Xeon X5550
processors @ 2.67 GHz and 24 GB of RAM. The tests
were run on up to 60 nodes (480 cores). For runs with
caching enabled, the cache size was configured to 2
GB per thread. The conservative size of 16 GB, of the
avialable 24 GB, was chosen because some amount
of memory is used up by the operating system and
system buffers and we wanted to avoid swapping
to disk which would have been detrimental to the
performance. The results from our tests are shown
in Figure 12. Note that for the first few core counts
we get more than 100% efficiency. This is due to the
sharing of the buffers among the threads within a
node which reduces some disk I/O and computations.
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Fig. 13. Scaling results on the Longhorn cluster for the Lake Louise (left) and Campus (right) datasets. Time
in seconds and percent efficiency are shown for caching disabled and enabled runs. The tests were run on up
to 128 nodes with 8 threads/node for a total of 1024 threads. The cache size was configured to be 32 GB/node
for caching enabled runs. Our system scales much better on this cluster compared to the NVIDIA cluster due to
its use of the high performance Lustre file system. Similar to the NVIDIA cluster, the bigger dataset, Campus,
scales better than Lake Louise dataset and the caching version doesn’t scale as well as the non caching version
though it is faster.

From the plots, we can see that the system scales quite
well with efficiency around 70% for the Lake Louise
dataset on 480 cores with caching disabled. The effi-
ciency is much better for the larger Campus dataset,
around 87% on 480 cores without caching. This is
because there are more faces to be processed which
reduces the effect of load imbalance, and the chance of
threads idling waiting for tasks, on higher number of
nodes. The results for the runs with caching enabled,
show that the performance is consistently better than
the caching disabled runs, but it doesn’t scale as well.
This is because the effectiveness of the per node cache
reduces with increasing number of nodes since they
have to process fewer faces. Still we can see good
scaling performance with the efficiency being around
66% for the Lake Louise dataset and 81% for the
Campus dataset on 480 cores.

The second system is the Longhorn cluster, with
nodes containing 8 Nehalem cores @ 2.5 GHz and
at least 48 GB of RAM. For cache enabled runs, a
conservative cache size of 4 GB per thread or 32 GB
per node was chosen. The scaling tests were run on
up to 128 nodes or 1024 cores. The results are given in
Figure 13. Similar to the NVIDIA cluster we can see
that the scaling is better for the larger Campus dataset
than the Lake Louise dataset. The efficiency of the
caching enabled runs are again lower than the runs
with caching disabled for higher number of cores but

they are still consistently faster. Overall, our system
scales better on the Longhorn cluster than the NVIDIA
cluster with the efficiency on 1024 cores for the Lake
Louise dataset with caching enabled and disabled
being 66.23% and 66.68% respectively, and 80.26%
and 78.08% for the Campus dataset. The scalability is
better on Longhorn primarily due to its faster Lustre
file system compared to the NFS based file system on
the NVIDIA cluster.

The third system is the SGI UV 1000 which has 264
Xeon X7542 cores @ 2.67 GHz and 2.8 TB of RAM. The
UV is a distributed shared memory ccNUMA system
where a single process can address the entire memory
of the system. It consists of 22 blades, each containing
two six-core processors and 128 GB of RAM. The
blades are connected to each other using the SGI
NUMAlink 5 interconnect. Although it is possible to
run just one process with 264 threads using shared
memory, the NUMA nature of the system means that
it would not scale very well. For good efficiency on
higher number of cores it is important to use shared
memory only among the cores within a blade and
use message passing between the blades. Our hybrid
implementation maps nicely to this problem. Our
implementation uses SGI’s MPT library for MPI calls
on this system. To get good scaling it is important
that each thread that is spawned is allocated a unique
physical core, all the threads of a single process are
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Fig. 14. Scaling results on the SGI UV 1000 system for the Lake Louise (left) and Campus (right) datasets.
Time in seconds and percent efficiency are shown for caching disabled and enabled runs. One process was
assigned to one physical processor with six threads per process mapped to each of its six cores. The tests were
run with up to 44 processes and 6 threads/process for a total of 264 threads. The cache size was configured to
be 36 GB/process. The drop in efficiency at 264 cores (full machine) is due to some resources being used by
the operating system and other services.

assigned to cores in the same blade and the assigned
physical memory also resides on the same blade.
The MPT library can be configured for this using
some environment variables as described in [29]. The
scaling results are given in Figure 14. One process was
spawned for each physical CPU and each of them
spawned six threads, one each for the six cores of
the CPU. For the caching enabled runs the cache size
was configured to 36 GB per process. The plots show
that we are getting good scaling with the efficiency
being above 90% even for the full machine (264 cores)
for both data sets with caching turned off. Similar
to the other machines the efficiency of the caching
enabled runs drop on higher core counts (87.27%
for Lake Louise and 88.12% for Campus) due to
the diminishing value caching provides with higher
number of processes. The drop in efficiency on the
full machine (264 cores) for both types of runs is due
to some of the cores being assigned to the OS and
other services running on the system.

6 CONCLUSION

In this work, we have presented a technique for
computing seams for gigapixel sized panoramas that
is fast, light and scalable. On resource constrained
system it is able to run in an out-of-core fashion using
very little memory and still produce a solution orders
of magnitude faster than the previous state-of-the-art:
a moving window Graph Cuts scheme. On multi-core

systems it can run in parallel and achieve super-linear
speed-ups by sharing data among the threads and
reducing redundant disk I/O and computation. On
systems with higher memory resources, it can utilize
some of it as a cache to further reduce disk I/O and
computations for improved performance. On clusters
and distributed memory systems, it utilizes hybrid
multithreading/message-passing techniques to scale
to hundreds of cores. Moreover the energy of the
seams produced by our technique is comparable, if
not better, to the previous work.

Panorama Weaving allows for interactive editing
of seams. For future work, we plan to extend our
technique to allow local editing of seams for large
panoramas in a scalable and interactive manner.
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