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On Linear Spaces of Polyhedral Meshes
Roi Poranne Renjie Chen Craig Gotsman
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Abstract—Polyhedral meshes (PM) - meshes having planar faces - have enjoyed a rise in popularity in recent years due to their
importance in architectural and industrial design. However, they are also notoriously difficult to generate and manipulate. Previous
methods start with a smooth surface and then apply elaborate meshing schemes to create polyhedral meshes approximating the
surface. In this paper, we describe a reverse approach: given the topology of a mesh, we explore the space of possible planar
meshes with that topology.
Our approach is based on a complete characterization of the maximal linear spaces of polyhedral meshes contained in the
curved manifold of polyhedral meshes with a given topology. We show that these linear spaces can be described as nullspaces
of differential operators, much like harmonic functions are nullspaces of the Laplacian operator. An analysis of this operator
provides tools for global and local design of a polyhedral mesh, which fully expose the geometric possibilities and limitations of
the given topology.

Index Terms—polyhedral mesh, linear space
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1 INTRODUCTION

Polyhedral Meshes (PM’s) have gained popularity in
recent years due to several new methods that render
their construction relatively easy. Typically, a designer
creates a traditional free-form surface and then applies
a meshing scheme that generates an approximating
mesh consisting of only planar faces. Of course, the
focus of these schemes, e.g. [14], [27], is to generate
good approximations, and this is done using very
specific (regular) types of mesh topologies. It may
well be that these are the only topologies that can
approximate general smooth surfaces well. However,
the topology of the mesh itself has its own artistic
value: a triangular meshing of a surface will not have
the same ”look” as a quad or hex meshing. Yet, as
mentioned, the cases where a smooth surface can be
faithfully meshed into a PM are limited. Hence, we
propose a different strategy: instead of constructing
the final PM based on a design of a surface, we explore
the space of possible PM’s with a given topology. Such
a PM is called a realization of the topology.

Our approach is based on the observation that the
complicated manifold of PM’s with a given topology
can be decomposed into overlapping, linear spaces,
each of which is maximal - adding a base PM to
the space will introduce non-PMs to the space. The
advantage of linear spaces lies in the simplicity of
exploring them: PM’s in such a space may be designed
by forming linear combinations of a spanning set of
basic PM’s. The disadvantage is that the dimension-
ality of these spaces is much smaller than that of the
complete manifold of PM’s. Thus, proving that they
are indeed maximal is crucial. By switching between
spaces, it is possible to reach any PM in the manifold.
We will refer to the PM’s of a spanning set simply as

shapes.
The use of linear spaces can be incorporated into

well-known mesh deformation methods, such as as-
rigid/similar-as-possible [11]. In addition, we propose
three types of shapes aimed at different levels of
design, exposing the possibilities and limitations for
deforming a given PM; the reason for their names will
subsequently become clear. Eigenshapes are globally
smooth shapes at different frequencies akin to the
eigenvectors of the Laplacian. Sparse shapes are based
on the smallest groups of vertices that can move
together without impairing the planarity of the faces
of the PM. Finally, fundamental shapes allow a single
vertex to be moved with minimal change to other
vertices while preserving planarity.

1.1 Related work

Meshing and Planarization. The creation of polyhe-
dral meshes is an active field of research. The most
common problem is to mesh, or remesh, a free-form
into a PM. The approach used by Cohen-Steiner et
al. [4] is to try to fit a limited number of planes to
the surface and then intersect them. The surface is
first partitioned into a user-defined number of almost
flat regions, for each of which a plane is fitted. These
planes, called shapes proxies, will generally not have
well-defined intersection points. Thus, the faces they
produce are only close to being planar. Cutler and
Whiting [5] added an iterative optimization process to
the algorithm that guarantees that the resulting faces
are planar.

In both of these systems, the user can control the
number of faces and their density in the result, but
cannot dictate the mesh topology (its edge structure),
which can essentially be arbitrary. While this is not
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Fig. 1. A polyhedral mesh constructed from a planar graph using maximal linear subspaces.

necessarily a drawback, in some cases a regular mesh
is desirable. Liu et al. [14] and Wang et al. [25] showed
how a surface may be meshed into a planar quad-
dominant (PQ) mesh and a planar hexagonal (P-Hex)
mesh, respectively. The two algorithms are quite simi-
lar: an almost polyhedral mesh is first generated from
the surface, based on differential geometric entities
(PQ meshes are based on conjugate networks and P-
Hex meshes on the Dupin indicatrix. [27] and [15]
elaborated on how to design better conjugate net-
works.) A subsequent step involves the planarization
of the result: a non-linear optimization, where the
vertices of the mesh are repositioned to make the faces
planar. This latter step seems to dominate the runtime,
and does not scale well with mesh size. Alexa and
Wardetzky [1] demonstrated the construction of a
Laplacian operator on non-triangular meshes. As a
side effect of their construction, they were able to
devise a related operator that measures the planarity
of faces. With this new operator, they obtained a
planarizing flow, that is, a geometric flow that flattens
faces. In [16], a local/global based alternating algo-
rithm was used to solve the planarization problem
very efficiently. The improved performance enables
interactive deformation of PM’s.

Mesh deformation. The problem of editing and
deforming mesh geometry is one of the most studied
topics in geometry processing. Most mesh deforma-
tion methods are intended to work exclusively with
triangle meshes. See [3] for a thorough introduction.
These methods may be classified into two types, based
on the type of user interaction employed. In the first
type, the user directly modifies the surface using
one of a number of common design metaphors. The
most relevant to us are the handle-based methods
(e.g. [2], [11], [20], [19]), where the user controls the

deformation by moving a small number of points on
the mesh. These points generate constraints for an
optimization problem, whose solution is the deformed
mesh. Other common design metaphors are skeleton-
based and cage-based. Jacobson et al. [12] noted the
differences between these methods and provided a
hybrid method incorporating both. More intricate
approaches for mesh deformation use direct control
of the mesh normal and curvature instead of vertex
positions [8], [7].

Fig. 2. Deforming a PM in various linear subspaces.
Each result is not achievable in the other two sub-
spaces.

Handle-based deformation has also been used in
the context of PM’s. In [26], the manifold of polyhe-
dral meshes was discussed in detail. The idea was to
approximate this manifold by an osculant, which is
much easier to explore. In this framework, deforma-
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tion of a PM using positional constraints was made
possible; however, computing the osculant is time-
consuming and the deformation only approximately
preserves the planarity of faces. [28] uses the same
technique to derive a curve-based deformation.

Recently, Vaxman [24] described a linear space of
PM’s by allowing affine transformations per face. In
this work, it was proposed to use it instead of the
entire manifold, simplifying the math considerably. In
fact, this linear space is a special case of the linear
spaces to be described in this paper. The main draw-
back of using this space is its small number of degrees
of freedom (dimension). For example, the number of
degrees of freedom of a quad PM is about half the size
of its boundary, so when the mesh has no boundary,
only the trivial, global, transformations are possible
(e.g. global rotations). Hexagonal PM’s will have only
12 degrees of freedom, regardless of the existence of a
boundary. In other words, specifying the geometry of
4 vertices of a PM with hexagonal topology uniquely
determines the rest of the PM. Pottmann et al. [17]
described another linear space of PM’s, called parallel
meshes. It is also a special case of the spaces to be
described in this paper.

A second type of mesh deformation is indirect.
These include various methods that improve the qual-
ity of a mesh, such as smoothing and enhancing fea-
tures. More relevant to us are methods that are used
to add variation to a mesh, or to create a collection
of meshes based on a single mesh (e.g. [23]). [26]) has
also contributed an indirect deformation approach, by
designing a user interface which allows to traverse
the osculant with ease. In this paper we propose
eigenshapes as a way of indirectly adding variation
to a PM.

1.2 Contribution and overview
In Section 2 we discuss linear subspaces of PM’s
in detail. We characterize all of the possible maxi-
mal subspaces, and show how to construct them. In
Section 3 we describe a number of meaningful sets
of shapes for editing PM’s. In section 4 we discuss
practical consideration and limitations.

2 LINEAR SUBSPACES OF POLYHEDRAL
MESHES

Preliminaries. In our context, a mesh is defined by a
list of vertex geometry and a list of faces. The vertex
geometry can be arranged in a 3 × n matrix, where
n is the number of vertices. We will usually denote
this matrix by an upper-case letter, such as X or Y .
In other words, the vertex geometry is given by

X = (x1, x2, ..., xn)

where the xi are column 3-vectors. We denote by F =
{fj}NF

j=1 the set of faces of the mesh, where each face

is described as an ordered (oriented) list of vertices. In
most cases, F will be common to several meshes, and
we will refer to them only by their matrices. Finally,
we will denote the vertex coordinates of the face f ,
which is a submatrix of X , by Xf .

Manifolds of Meshes. When two meshes have
the same topology, their linear combination can be
defined simply as a linear combination of their vertex
geometries. In other words, two meshes X and Y span
a linear subspace of meshes defined by

αX + βY, α, β ∈ R

We can consider the set of all meshes with n vertices
and a given topology to be vectors in R3n. Obviously,
the dimension of this space is 3n and is isometric to
R3n.

Linearly combining two meshes is meaningful be-
cause the set of all possible meshes (with a given
topology) is a linear space. PM’s, on the other hand,
reside in a complicated, curved submanifold in this
space. Linearly combining two PM’s will usually not
result in a PM, which is the cause of many of the
problems in using them. It so happens that the man-
ifold of PM’s may be covered by linear submanifolds,
which we discuss next. By replacing the non-linear
constraints defining the manifold of PM by linear
ones, many of the problems related to PM design
disappear. We emphasize two important points. First,
the dimensions of the linear subspaces are much less
than 3n. Hence, making sure that they are maximal
is crucial. Second, the set of linear subspaces must
cover the submanifold of PM’s in such a way that any
PM will be reachable from any other PM by moving
through those linear spaces alone.

Linear Spaces. To investigate the linear subspaces
of PM’s we first examine the linear subspaces of much
simpler entities: planar polygons; they are simply PMs
with a single face, so we can use the same notation.
We will further simplify the discussion by assuming
that the polygons are geometrically centered at the
origin. This is not detrimental to the generality of the
arguments, since centering is a linear operation. In
addition, we will assume that the polygons are not
degenerate. While degenerate polygons have a place
in this theory, they do not appear in practice, and
therefore cause an unnecessary complication.

Theorem 1: Let X and Y be two 3 × k matrices
representing the geometry of two planar k-gons in
R3 with k > 3 vertices, centered at the origin. Let
NX and NY be the unit (1× 3) row vectors normal to
the planes defined by X and Y respectively. Then X
and Y span a linear subspace of planar polygons iff
at least one of the following holds:

Relationship of type 1: X is an affine transformation
of Y : X = AY for some 3× 3 matrix A.

Relationship of type 2: NYX = cNXY for some scalar
c.
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Proof: : By definition,

NXX = NY Y = 0 (1)

where 0 is a zero k-vector. Assume that X and Y span
a linear subspace of planar polygons. This implies that
every linear combination of them defines a plane and
thus has a normal vector. In other words, for each α
and β, there exists a vector N(α, β) such that

N(α, β)(αX + βY ) = 0 (2)

Consider the set of vectors N(α, β), α, β ∈ R. First,
assume that it has dimension 3. Then there exist
Ni = N(αi, βi), i = 1, 2, 3 such that the Ni’s are not
collinear. By (3), we can write

(αiNi)X = −(βiNi)Y

where (αiNi) is a 3× 3 matrix whose rows are αiNi.
(βiNi) is defined similarly. Since the Ni’s are indepen-
dent, we can invert (αiNi) : X = −(αiNi)−1(βiNi)Y .
Hence, X is an affine transformation of Y , which is
type 1.

If the set of normals has dimension less than 3, then
this set must be spanned by NX and NY . Thus, we
can write (2) as

(A(α, β)NX +B(α, β)NY )(αX + βY ) = 0

Expanding the LHS and using (1) we obtain

NYX = −Aβ
Bα

NXY

which, noting that Aβ
Bα is a constant, is the relationship

of type 2. In the other direction, first, if X and Y are
planar and X is an affine transformation of Y (type 1
relationship) then the rank of each of the matrices X
and Y is 2 and there exists a 3× 3 matrix A such that
X = AY . Hence, their combination

αX + βY = (αA+ βI)Y

has rank ≤ 2 and thus is planar.
Second, if X and Y are planar and NYX = cNXY

for some scalar c (type 2 relationship), then for any
scalars α and β we can choose A and B such that
c = Aβ

Bα . Working our way backwards, this implies
that

(ANX +BNY )(αX + βY ) = 0

concluding that X and Y spans a linear subspace of
planar polygons.

The following corollaries follow immediately:
Corollary 1: If X and Y are parallel planar poly-

gons, then they span a linear subspace of planar
polygons.

Corollary 2: if X and Y are planar polygons not
related by any affine transformation, yet they span a
linear space of planar polygons, then the normals of
their linear combinations must be linear combinations
of their normals.

Using Theorem 1, it is simple to prove an analogous
result for PM’s:

Theorem 2: Let X and Y be two PM’s in R3 with
common topology. Then X and Y span a linear space
of PM’s iff each non-triangular face of X has a type 1
or type 2 relationship with the corresponding face of
Y .

Fig. 3. Illustrating polygon relationship types. The
blue hexagons are related to the gray one (top left)
by an affine transformation, hence of type 1. The red
hexagon is parallel to the gray one, which is a special
case of type 2. The two green hexagons have identical
normals and a type 2 relationship to the gray one. The
relationship is maintained as long as the vertices of
the green polygons slide on the dotted lines, which are
equidistant from the plane of the grey hexagon.

Generating subspaces. Our goal is to explore the
linear subspaces of PM’s which contain a given PM,
but first we need to characterize those linear sub-
spaces. We say that a PM Y generates a linear subspace
if that subspace contains Y . Given a linear subspace
of PM’s V generated by Y , Theorem 2 tells us that
the relationship of each face of any X ∈ V to the
corresponding face of Y must be either of type 1 or
type 2. Therefore, we can generate a subspace V from
Y by first specifying, for each face of Y, which type
of relationship applies, and then finding all possible
X that are related to Y in that way.

In practice, we can treat each face Yf of Y as a
separate planar polygon, and write a linear system
for Xf ,

Bfvec(Xf ) = 0 (3)

where the matrix Bf depends on Yf and the type
of relationship, and vec(Xf ) is a vectorization of the
matrix Xf . We can combine all of the small linear
systems into one large linear system

Bvec(X) = 0

and the solution space of this system, namely, the
nullspace of B, is exactly V . The matrix LB = BTB
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may also be used since they share the same null
space. We remark that LB can be normalized to give a
Laplacian-like operator. This operator may be related
to yet another differential operator described in Ap-
pendix 1, but we have yet to pursue this connection.

To construct Bf we consider each type of relation-
ship separately. A relationship of type 1 means that
Xf must be an affine transformation of Yf . Thus Xf

must satisfy
Xf (Y

+
f Yf − I) = 0

where Y +
f is the pseudo-inverse of Yf . This equation

can easily be transformed into the form (3). PM’s
related in this manner were explored by Vaxman [24].

As for a relationship of type 2, we start by exam-
ining its definition, NYf

Xf = cNXf
Yf . Given Yf , the

normal NYf
is also given and so we are left with Xf ,

NXf
and c as variables. Based on NXf

, we can further
divide this into 2 sub-cases:

1) NXf
= NYf

. In this case, we simply have,

NYf
Xf = NXf

Xf = 0

2) NXf
6= NYf

. Note that in this case the (column)
vector N = NXf

× NYf
is in the intersection of

the planes of X and Y . We have the following
decomposition for Xf and Yf ,

Xf = NX1 + EXX2, Yf = NY1 + EY Y2

where EX = N × NX and EY = N × NY , and
Xi,Yi,i = 1, 2 are row vectors with an element
for each vertex. Thus NYXf = NY EXX2 and
cNXYf = cNXEY Y2, and the relationship of type
2 implies

X2 =
cNXEY
NY EX

Y2 = c′Y2

which means that Xf = NX1+c
′EXY2. We apply

the cross product by N to both sides to get

Xf ×N = c′EXY2 ×N

Let M be the null space of Y2, i.e. Y2M = 0.
We finally have that (Xf ×N)M = 0, which can
also be written in the form (3). This means that
in order to generate a linear subspace based on
a relationship of type 2, we must first prescribe
the normal NX or equivalently, N .

Thus given a planar polygon, we can generate 3
types of linear subspaces of planar polygons. We now
proceed to prove that each type of space generated for
a face is maximal. Again we start with the simpler
case of planar polygons.

Theorem 3: Let V = null(B) be a linear subspace
generated by a (non-degenerate) polygon X , where
B is constructed as described above. Then V is a
maximal linear subspace of planar polygons.

Proof: First, assume that V is the space of all affine
transformations of X . Let Y be a planar polygon such

that Y /∈ V . Then X and Y must have a relationship of
type 2: NYX = cNXY . We can assume w.l.o.g that NX
and NY are not collinear. Let R be a rotation matrix
around Nx. Then RX ∈ V and NYRX = c′NXY . This
implies that NYRX = c′′NYX , or NY (R− c′′I)X = 0.
Hence NY and (R − c′′I)NX are collinear. However,
(R − c′′I)NX and NX are also collinear and this in
turn means that NX and NY are collinear. Thus we
have a contradiction.

The second part of the proof is subdivided to two
cases. First, let V be the space of all polygons which
are parallel to X and define Y similarly. Y cannot be
related to all polygons in V by an affine transforma-
tion, so assume w.l.o.g. that X and Y have the rela-
tionship of type 2. Then applying the same rotation
of X strategy used previously we reach contradiction
again.

Finally, we consider the case where V is the space of
all polygons with type 2 relationship to X . To define
this space we need to set another vector N in the
plane of X , which is shared among the planes of
all polygons in this space. Again, Y has w.l.o.g. a
relations ship of type 2 to X . Y cannot contain N
since by construction it would mean that Y ∈ V . This
means that there is another vector N ′ that the planes
of X and Y share. The vertices of X are free to move
in the direction of N , and the new polygon X ′ will
still be in V . X ′ cannot hold a relationship of type 2
with Y (since N and N ′ are different) and X ′ can be
chosen so it will not be an affine transformation of Y ,
and we reach contradiction yet again.

In reality, to avoid having to specify an explicit
normal for each face having a relationship of type
2, we used three cases when specifying relationships
types for faces. The first case, which we call the affine
case, is simply when all faces have type 1 relationship.
In the second case, the target face normal was chosen
to be identical to the source normal. The subspace
generated by this case is that of all polygons which are
parallel to the source polygons, hence, the parallel case.
In the third case, the vertical case, all the face normals
were set to the up (vertical) vector. The justification
for this is the fact that many meshes, especially archi-
tectural meshes, have a prominent up direction.

Theorem 3 tells us that the construction of lin-
ear subspaces of PM’s can produce all the maximal
linear subspaces. However, some linear subspaces
constructed that way may not be maximal. This can
happen when the constraints imposed on a face by
other faces, and its own linear subspace, cause it to be
in another linear subspace. For example, the red cube
in Fig. 4 was deformed in the parallel subspace. In this
space, each face can only be stretched in the obvious
directions, which is a subset of the affine transforma-
tions of the face. Thus, the parallel subspace in that
case is not maximal, since it is contained in the affine
subspace. Note that by removing a single face from
the cube, the linear subspaces become different. These
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situations are easily detectable, and the face can be
reassigned. However, in our experiments we rarely
encountered such situations.

It is now easy to show that there is a piecewise
linear path between any two PM’s in the manifold:
using the affine space generated by the two meshes,
they can be projected to the same plane, where they
share the parallel space. This construction however
is not very useful as it does not provide any insight
into the manifold itself. Nevertheless, it forms a loose
”lower bound”.

In our examples, the relationship types per face
were color coded by blue, red and green for the affine,
parallel and vertical cases, respectively. When more
than a single relationship type is used to generate
the subspace, it is referred to as a mixed space. We
note here that in the case of the affine and vertical
spaces, B can be separated to three identical matrices,
operating on x,y and z separately. Exploiting this, the
performance of the algorithms presented in the next
section can be significantly improved.

Fig. 4. Hexahedron in different subspaces generated
by the (gray) cube on the top left. They are the closest
ones in their subspaces to the (gray) non-PM on the
top right, subject to the hard constraint imposed by the
yellow vertex.

Degrees of freedom. The number of degrees of free-
dom (NDOF) of a linear subspace of PM’s is exactly
the dimension of the nullspace of B. We can estimate
the NDOF in some specific cases, such as when the
space is not mixed. The NDOF is then exactly the co-
rank of B. However, this value depends too much on
the current embedding of the PM and does not give
any insight into the relation to its topology. We instead
provide a lower bound on the NDOF for a given PM,
which can be inferred from the topology alone.

Denote by Nv ,Nb,Ne,Nf ,Nc the number of vertices,
boundary vertices, edges, faces and corners of the PM,
respectively. The number of variables (the mesh vertex
geometry) is always 3Nv . In the affine case, the num-
ber of equations is 3Nc, but each face is determined
by just three vertices. Hence a lower bound on the

TABLE 1
Minimal number of free vertices (NFV) in different

subspaces

Quad mesh Hex mesh

Affine Nb
2

+ b+ 2g −Nv
2

+ 3
4
Nb +

3
2
b+ 3g

Parallel Nb
2

+ b+ 2g Nv
6

+
5Nb
12

+ 5b
6

+ 5g
3

Vertical −Nv
3

+
2Nb
3

+ 4b
3

+ 8g/3

NDOF is 3(Nv + 3Nf −Nc). Similarly, in the parallel
case the lower bound is 3Nv − Nc + Nf , and in the
vertical case it is 3Nv − 2(Nc − 2Nf ).

We can use the generalized Euler formula, Nv−Ne+
Nf − b = 2g, where b is the number of boundaries,
and g is the genus of the mesh, and the fact that Nc =
2Ne −Nb to obtain

Nc = 2(Nv − 2g +Nf − b)−Nb

Plugging this into the formulas for the NDOF yields
an expression that does not depend on Nc and Ne.
For (semi-) regular graphs, Nf can also be expressed
using Nv and Nb and vice-versa, which may give more
intuitive results. Additionally, we define the number of
free vertices (NFV) as the NDOF divided by 3. The NFV
roughly gives the number of vertices that can be fixed
independently. We list the minimal NVF for quad and
hex meshes for both cases in Table 1.

The table shows that the minimal NFV for quad
meshes in the affine and parallel cases is determined
by the size of the boundary. In fact, our experiments
show that, apart from very symmetric cases like
spheres or tori, the minimal NFV for the affine case
is the true NFV, up to a global transformation. This
means that there is very little that can be done with
closed quad meshes in the affine case. The situation is
even worse for hex meshes: unless the mesh is just a
strip of hexagons, the minimal NFV will be negative.
In fact, we prove in Appendix 2 that
the actual NFV is 3 for any 3-regular
mesh without a boundary. A trick
that can be used to increase the NFV
is to apply a half-edge subdivision to
the hex mesh (see inset). Technically,
the new mesh will not be a hex mesh,
but it might retain the ”look” of the
original hex mesh, and the minimal
NFV will be much higher. As for the
parallel case, it is easy to show that
for closed 3-regular PM’s, the NFV is
exactly Nf .

3 EXPLORING LINEAR SUBSPACES

Overview. Once all faces of the mesh have relation-
ship types assigned to them and the matrix B is com-
puted, we can begin the exploration of null(B). While
we can do this by simply computing an orthogonal
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basis for null(B), it may not be very useful: this basis
will contain random PM’s. Instead, we discuss ways
to create more meaningful shapes, which are targeted
toward different levels of editing.

Eigenshapes. [26] proposed to explore the manifold
of PM’s not by explicitly setting positional constraints,
but by traversing the neighborhood of the PM. This
is done by choosing a few directions (two or three
for easy navigation) on the osculant which match the
manifold the best. Using linear subspaces, we do not
have to worry about going far away from the mani-
fold, which allows us to be more adventurous with the
exploration. We propose using the PM’s ”harmonics”
as a basis for exploration. More precisely, we use the
eigenvectors of the Laplacian L constrained to the
linear space, which we call eigenshapes. These are
defined by the constrained Rayleigh quotient:

max
X

XTLX

XTX
s.t.BX = 0 (4)

The solution to this problem is found in [9] as the
eigenvectors of PLP where P = I − BT (BBT )−1B.
See implementation details in Section 4 on how to
compute the eigenshapes efficiently. To effectively
visualize the eigenshapes and to explore them effi-
ciently, we suggest the following idea: add the eigen-
shapes to the source PM and apply a ”band-pass-
filter” to it. By sliding the filter we can quickly see
how eigenshapes of different frequencies affect the
PM (Fig. 11)

Sparse shapes. Habbecke and Kobelt [10] discussed
editing of constrained meshes, where their goal was to
be able to reposition a vertex while making as little as
possible change to the rest of the mesh and satisfy the
constraints. This addresses the well-known problem
of editing with constraints, where making a change
in one portion of a mesh damages the work that was
already done elsewhere in the mesh. Their approach
is based on linearizing the constraints and finding
sparse solutions to the linearized system. The same
strategy can be used to deform PM’s and in fact, one
of the constraints treated in [26] is the planarity of
faces. In terms of basic shapes, in order to be able
to move just a small set of vertices, a shape where
most of the vertices lie on the origin is needed. These
sparse shapes are just sparse vectors in null(B). To find
sparse solutions, Habbecke and Kobelt employ the
Orthogonal Matching Pursuit (OMP) algorithm [21],
and the same can be done to find sparse shapes.

For many subspaces, the only sparse shapes that
can be found are not sparse at all. For example, the
affine space for quad meshes contains truly sparse
shapes only for very symmetric cases (Fig. 5). In these
cases approximate sparse shapes - shapes that are not
in the linear subspace but close to it - can be found
instead. For comparison, the accurate sparse shape in
the middle of Fig. 6 has ||BX|| ≈ 10−12, and the
approximate sparse shape has ||BX|| ≈ 10−4. The

original PM was produced by planarizing a deformed
torus, which had ||BX|| ≈ 0.1.

Affine Dual Vertical

Fig. 5. Adding eigenshapes of different subspaces to
a simple spherical quad PM. See also accompanying
video.

Fig. 6. Sparse shapes. (Left) Part of a symmetric
torus quad PM, having an accurate sparse shape.
(Middle) Deformed torus. Its accurate sparse shape is
not sparse at all, but it has an inaccurate sparse shape.
(Right) Sparse shape of a flat PM.

Fundamental shapes. While a sparse shape changes
only a small number of vertices, it can still be non-
local, moving vertices on opposite sides of the PM. In
many cases a shape with more locality is required; one
that perhaps moves all vertices, but to a lesser extent.
To elaborate, suppose a vertex vi has been selected.
We may then define the fundamental shape associated
with vi as the solution to the optimization problem

min
X
||X − δi||2 + λ||LX||2s.t.BX = 0

where δi is a vector whose only non-zero elements
are the ones corresponding to vi and LX is a regu-
larization term. Of course, both the distance function
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and the regularization terms can be replaced by other
similar functions.

Handle-based deformation. PM’s can be deformed
directly, and the handle-based approach is probably
the most natural metaphor to use (excluding, perhaps,
the recent curve-based approach [28]). This was stud-
ied in detail in [24] and [16] for the case of PM’s in
the affine case only, where an As-Rigid/Similar-As-
Possible (ARAP/ASAP) deformation was computed
within the resulting subspace. The well-known solu-
tion to the ARAP/ASAP deformation problem uses
an alternating local/global scheme [13], [20]. The
only difference when applying this to PM’s is that
the constraints defining the linear subspace must be
satisfied when solving the global steps. In Fig. 7
we used the same method as in [24] to deform in
an ASAP way a half sphere hex mesh in the non-
mixed spaces. The boundary was kept fixed and one
vertex on the top was moved slightly higher. The
affine subspace allows only global transformations
and the parallel subspace produced self-intersections
almost immediately. The vertical subspace produced
pleasing, nontrivial results.

Fig. 7. Fundamental shapes of the deformed torus.

Fig. 8. ASAP deformation of a hexagonal half sphere.
Note that in the (blue) affine subspace, only global
transformations are possible.

Dual exploration. Every polyhedron admits a fam-
ily of dual polyhedra, most notably the polar dual
[18], having the property that the vector to each of the
dual vertices is parallel to the corresponding primal
face. Usually polar duals are associated only with star-
shaped polyhedrons, since otherwise the polar dual
may self-intersect. Here we ignore this and associate
polar duals with general, non-convex PM’s. Obviously
the polar dual associated with a PM is itself a PM, so
the ideas presented in this paper apply also to the
space of polar duals to a given PM. This essentially
means that we can explore the subspace of the PM
based on its face normals instead of the vertex posi-

tions. Although the subspaces defined using the face
normals are linear, since they are the same as the
linear spaces of polar duals, they are not linear with
respect to the vertices of the primal mesh. The reason
is that the duality transformation is not linear. Still, it
involves only solving a sparse linear system and can
be done in real time.

The benefit of dual exploration of PM subspaces
is that this gives a completely different number of
DOFs compared to the primal space, based on the
normal of the faces instead of the vertices. As an
extreme example, the duals of any 3-regular meshes
are triangle meshes, which trivially preserve planarity.
Hence, editing a 3-regular mesh in the normal domain
is also trivial: any choice of normal will result in a
valid PM. Fig. 9 shows the dual deformation of two
PM’s. The results there could not have been achieved
using only one primal linear space.

Primal Dual Deformed Primal

Fig. 9. Deformation of a (left) sphere and a torus using
the (middle) polar dual. In both cases an eigenshape
of low frequency was added to the dual mesh, and a
new (right) primal mesh results.

4 DISCUSSION AND FUTURE WORK
Implementation details. Most of the software imple-
mentation was done in MATLAB, and was wrapped
as a plugin for Autodesk Maya, for its user interface.
The matrix B was built by constructing Bf face-by-
face. Bf as defined here is already not full rank, so we
reduced the number of equations per-face using SVD.
The construction takes less than a second for meshes
with approximately a thousand faces.

To compute the eigenshapes, a sparse QR decom-
position was used to generate an orthonormal basis
N of null(B), then any X in null(B) can be written
as NW for some W , and

max
X

XTLX

XTX
= max

X

WTNTLNW

WTNTNW
= max

X

WTNTLNW

WTW

which is solved using the eigendecomposition of
NTLN . This approach gives much better precision
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and performance than the formula in [9], since pseu-
doinverse computation is avoided and full size sin-
gular value decomposition is replaced with a much
smaller eigenvalue decomposition. For the handle-
based deformation, the relevant matrices were de-
composed in a preprocessing step. We did not invest
much effort to use the best possible decomposition
and carefully tune the parameters. Specifically, we
used LDL decomposition for the initial mesh approx-
imation step, but a sparse QR decomposition for the
global steps in the ARAP/ASAP deformation, due to
numerical instabilities caused by LDL there.

Limitations. Our assumption is that the initial PM
has planar faces. Otherwise, many of the calculations
made are not well-defined. Of course, the planarity
of faces can only be up to some numerical precision.
We have found that the affine case is less sensitive
to non-planar faces than the other cases. The mesh in
Fig. 11 does not have planar faces, yet the eigenshapes
computed for it in the affine space do not cause
them to be ”less” planar. On the other hand, the
eigenshapes of the parallel case (not shown) quickly
deteriorate the quality of the mesh.

Creating an initial PM. The linear subspaces de-
scribed here need an initial PM realizing a given
topology to be generated from. The simplest way to
generate such a PM is to take a non-polyhedral mesh
with the given topology and project it to a plane.
The original mesh can then be projected into a linear
space generated from the flat mesh. The result of this,
however, is usually unsatisfactory and we did not
use it. Most of the PM’s in this paper were created
by experimenting with the TopMod 3.0 software [6],
where we used the variety of subdivision schemes
implemented there to create elaborate meshes from
simple solids. If only the mesh topology is given, then
a simple ”spring-based” embedding, such as Tutte’s
[22], should suffice.

Selecting the Right Space. There are, literally, an
uncountable number of linear subspaces available for
a single PM. Even if we limit ourselves to the three
cases mentioned above, the number of possibilities
to assign them to faces is exponential and manually
assigning them is tedious. We did not investigate
methods to find the optimal linear subspace to work
with, or even attempt to define what exactly optimal
means. A simple definition could be: the subspace
with the highest dimension. Experimentally we ob-
served that in many cases the parallel space had the
largest dimensional. However, this subspace does not
generate much visual variation in the overall look of
the PM, compared to the other spaces. This problem
remains open for now, and we reserve it for future
work. In practice, switching between the non-mixed
cases provided sufficient variation.

Currently we use a number of heuristics while ex-
perimenting with our system. The affine space is eas-
ier to work with when there are many DOFs, as is the

case for quad meshes with boundaries. In situations
where the number of DOFs is too small, this is usually
caused by faces with more than four edges or vertices
of degree three. These can be automatically reassigned
to the other two cases to achieve more freedom. On
the other hand, when using the parallel or the third
case, some faces may enjoy too much freedom and
misbehave while deforming. These can be reassigned
to the parallel case, since it better preserves the shape
of a polygon.

A related problem is how to interpolate PM that are
not related by a single linear space. We have shown
that any two can be connected by a succession of three
linear spaces, which is not very useful for interpo-
lation. An interesting thing to try is to approximate
paths in the manifold of PM’s by linear segments
using the linear subspaces.

Design pipeline. Our experiments led us to the
following pipeline for designing a PM. It is important
to remember that we are mere computer scientists,
and not artists. For flat meshes, the first step is to
afford them some height. This is done by regular
deformation followed by a planarization step, or by
using the affine linear subspace and applying the
handle-based deformation or using the eigenshape
band-pass-filter technique. The reason for not using
the parallel or vertical subspaces is that they cannot
”unflatten” the PM. However, mixed spaces can also
be used. Once we have a PM with some volume,
the rest depends on the effect we aim to achieve.
For large deformations we use the affine subspace
when working on quad meshes with boundaries, and
the other subspaces otherwise. To add variation or
waviness to the PM, we use the eigenshapes. The
affine eigenshapes are useful when the overall look
of the PM needs to be maintained but the shapes
of individual faces need to be changed. Using the
parallel eigenshapes is an efficient way of adding
variation to meshes having uniformly-sized faces. We
show a variety of results in Figs. 9, 10, 11 (see also
the accompanying video).

The sparse and fundamental shapes, while helping
to visualize the limitations of various subspaces, have
not proven very useful for the design process. The
reason is that, by definition, they can only make the
PM less smooth, which usually means less visually
pleasing. However, we believe they are valuable as a
theoretical tool for studying PM’s. One future research
direction could be to use them to decide where to
make small adjustments to the topology of the mesh
in order to add more freedom to specific places.
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APPENDIX 1
We show a relation to differential equations in the case
of the affine space. Assume a regular quad grid in the
xy-plane and consider just the z direction. Then LB
can be written as a stencil:

LB =

 1/4 −1/2 1/4
−1/2 1 −1/2
1/4 −1/2 1/4


For a 2D function u, this stencil is used to find the
discretization of the mixed second derivative uxy.
Just as PM’s are those that satisfy LBX = 0 locally,
functions that satisfy uxy = 0 can be viewed as the
continuous version of PM’s. These are all of the form
u(x, y) = f(x)+g(y), where f and g are any functions.
Hence we see that in the continuous case, as in the
discrete case, the solution is determined by its values
on one side of the boundary.

APPENDIX 2
Recall that an orthogonal dual of an embedded planar
graph is an embedding of the dual graph such that
primal and dual edges are orthogonal. Also recall that
a lifting of a planar graph is a movement of its vertices
in the z-direction such that the faces remain planar.
Any PM in the affine space of a PM can be reached
by consecutively lifting the source PM in the x,y and
z directions. Hence, the dimension of the affine space
is less than three times the dimension of the space of
graph liftings. There is a known 1-1 correspondence
between orthogonal duals and graph liftings up to
translation[18] and we can take advantage of their
simple geometric representation to get more insight
on the space of liftings. Consider any 3-regular graph.
Its dual faces are all triangles. Being an orthogonal
dual, each dual triangle must have a fixed shape
and orientation. In addition, all triangles must be
translated and scaled together. Therefore, the entire
space of orthogonal duals is determined by 3 values
(translation and scale). Therefore, liftings of 3-regular
graphs have only 3 DOFs and as a consequence, the
affine space of 3-regular graphs has dimension at most
12.
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