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Abstract—In training assembly workers in a factory, there are often barriers such as cost and lost productivity due to shutdown.

The use of virtual reality (VR) training has the potential to reduce these costs. This research compares virtual bimanual haptic

training versus traditional physical training and the effectiveness for learning transfer. In a mixed experimental design, participants

were assigned to either virtual or physical training and trained by assembling a wooden burr puzzle as many times as possible

during a twenty minute time period. After training, participants were tested using the physical puzzle and were retested again after

two weeks. All participants were trained using brightly colored puzzle pieces. To examine the effect of color, testing involved the

assembly of colored physical parts and natural wood colored physical pieces. Spatial ability as measured using a mental rotation

test, was shown to correlate with the number of assemblies they were able to complete in the training. While physical training

outperformed virtual training, after two weeks the virtually trained participants actually improved their test assembly times. The

results suggest that the color of the puzzle pieces helped the virtually trained participants in remembering the assembly process.

Index Terms—learning transfer, haptics, virtual reality, assembly, training
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1 INTRODUCTION

T RAINING assembly workers to perform tasks in
factory settings is of critical importance due to

the cost, time, effectiveness, and safety of the process.
Training is often done on the assembly line, some-
times causing a loss of productivity. In addition, the
assembly process may be such that the unit cost of the
parts makes training expensive. The cost for forgetting
procedural tasks is high in production environments,
where workers are trained and expected to retain the
skills learned after a period of time without relearn-
ing [1], [2]. Providing training using virtual reality
(VR) hardware and technology can offset these issues
by ensuring a safe and potentially faster training
environment. In order to test the efficacy and speed
of virtual training, we devised a user study examin-
ing traditional physical training compared to virtual
training. The base idea of comparing the training
environments comes from a previous user study [3]
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where a six piece burr puzzle was used for the
assembly task. In a between groups design, train-
ing was done either physically or virtually followed
by testing with real puzzle pieces. Participants were
timed assembling the puzzle. Spatial ability, technical
experience, videogame experience, colorblindness, as
well as other potential influencing factors were mea-
sured. Our previous research showed that virtually
trained participants performed two times faster in the
testing phase than those who were physically trained,
despite longer training times [3]. We not only wanted
to build a more robust study to attempt to replicate
these results but also examine the role of color as a
contributing factor, since it is commonly used to help
distinguish parts in the virtual environments. This
study represents some of the first work to compare
learning gains from virtual training with physical
training using a haptic device and data glove. The
intent of this research is to inform the design of high-
fidelity training within virtual environments.

2 LITERATURE REVIEW / RELATED WORK

Transfer of learning was first studied as transfer of
practice when Thorndike and Woodworth [4] studied
how learning one task can be applied to another
task. Transfer of learning or learning transfer is the
amount of knowledge gained during training that can
be applied to a new task [5]. According to Gick and
Holyoak [6] learning transfer can occur only when
there is task similarity or domain knowledge and
the person is able to perceive the similarity. A task
that is structurally and surface similar will result in
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positive learning transfer whereas the opposite is true
when there is structural and surface dissimilarity [5].
Allen et al. [7] distinguished between physical and
functional fidelity when investigating learning trans-
fer of simulators. In the theory of situated cognition,
Greenco et al. [8] posit that transfer occurs when
similar affordances and constraints are present in
two dissimilar environments like in virtual and real
world environments. Learning transfer and training
recall will be successful according to the construc-
tivism approach as long as the environment, goals,
and cognitive processes activated are the same as
those during training. Learning transfer is associated
with skill acquisition, the learning curve, and skill
retention. We will discuss these in turn. Our goal is
to examine learning transfer under different training
conditions.

2.1 Learning Transfer

Adams et al. [9] discussed three components of hu-
man training as being cognitive, perceptual, and mo-
tor demands. Users form an internal mental model
and develop strategies for task completion. Any mis-
takes are corrected and noted and motor demands
involve the handling, orientation, and connecting of
physical pieces.

Fitts three-stage skill acquisition process is well-
known [10]. The first stage is the cognitive stage
where the learner identifies how something works.
The second associative stage is where the learner
mainly corrects errors made during the cogni-
tive stage. Finally, the autonomous stage is where
the learner shows a gradual improvement indefi-
nitely [11]. However, the plateauing learning theory
by Conway and Schultz [12] states that there is a
plateauing or stabilization of improvement.

Anderson [13] expanded Fitts’ staged theory of skill
acquisition by adding a declarative stage, a knowl-
edge compilation stage, and a procedural stage. Errors
and verbal mediation are common in the declarative
stage, whereas verbalizations disappear, errors are
corrected, and speed increases during the knowledge
compilation stage. The procedural stage is identified
by selecting a few alternative solutions. Fitts’ theory
was used over Anderson because of the simplicity of
the puzzle assembly task and the fact that there was
no verbalization or alternate puzzle solutions.

The learning curve was first discovered by
Wright [14] when investigating factors influencing the
cost of airplanes. The basic factor attributed to the
curve is that for every doubling of units produced,
the labor rate decreased by a constant percentage.
Since then, manufacturers have taken a keen interest
in the cost benefits associated with predicting their
employees’ learning curve [2]. Varieties of the learning
curves are the log-linear model, the plateau model,
the DeJong model, the Stanford-B model, and the S-

model [2]. Although there are several learning theo-
ries presented in the literature, we were particularly
interested in the plateauing model of Conway and
Schultz [12] (pg. 37) as we predict that the virtual
training will have a different learning curve and
stabilization point (plateauing) than physical training.

Skill retention strongly correlates with skilled per-
formance, but the amount of skill retention is depen-
dent on task and situational factors [15]. Arthur et
al. [15] lists among others the degree of overlearning,
conditions of retrieval, and motivation as moderators
for skill retention. Overlearning leads to automaticity
and should reduce the amount of skill decay [15].
Lance et al. [16] has shown that overlearning can
actually increase skill decay. They define overlearning
as a learning saturation point when any additional
learning causes a drop in performance or skills decay.
Hall et al. [17] found in their study that extended
practice time did not increase skill retention. Based
on these results, overlearning and skill decay should
be evident in both physical and virtual testing.

2.2 Learning Transfer in a Virtual Environment

Virtual training has proven to be beneficial in a num-
ber of areas such as flight simulator and military
training [9], medical training [18], [19], sports and
rowing training [20], and route information and map-
ping tasks [21].

Our focus is assembly tasks, which is defined by
Boud et al. [11] as, the manipulation and joining of
parts to form a whole. Although virtual training of an
assembly task have been studied for a long time, there
are yet no proven benefits over physical environment
training [21]. The literature shows mixed results in
numerous studies as examined by Hamblin as part of
dissertation work [5]. In one study of an assembly
task in a virtual environment, they found that the
real world training was more effective than virtual
training [5]. Adams et al. [9] performed a study where
a Lego biplane model was constructed to investigate
learning transfer from a virtual environment with the
use of haptic force-feedback and concluded that haptic
feedback was necessary for more efficient learning
transfer. Hall and Horwitz [22] in a follow-up study
from an initial study in 1998 investigated procedural
knowledge retention after a period of time when
learning took place in a virtual environment com-
pared to a conventional 2D computer environment
and reported no significant differences between the
groups. Rodriguez et al. examined learning transfer
of procedural tasks within a multi-modal virtual en-
vironment by building a model lego plane [23] while
Gerbaud et al. created an entire software platform
for teaching procedural tasks using VR [24]. The rich
fidelity of VR environments provide a wide variety of
learning affordances [25].

In order to study the learning transfer effect of
an assembly task within a virtual environment, it
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is necessary to consider and design a virtual envi-
ronment that will optimize learning, but not nec-
essarily merely replicate the physical environment.
Moeser [26] showed that, ”people can be in a real
environment for more than a year without necessar-
ily acquiring a survey representation (configurable
knowledge) of it, but it remains merely route rep-
resentation”. We need to consider that virtual en-
vironments also differ from physical environments
in that mostly cognitive learning takes place in the
former and motor skills in the latter [5]. In a study
designed to test learning of a route through an office
building [27], it was shown that virtual training can
be just as effective, but Piller and Sebrechts [28]
showed that making the walls along the route trans-
parent actually improved the memory of the virtual
participants and they performed better in the real
world when tested. We considered these factors in
our design of the virtual environment. During the
testing phase, we identified the glove was occluding
objects and participants could not see the angle of
rotation. Participants moved their virtual hand away
from the object in order to view the angle of rotation
before rotating it further. Based on this, we made the
virtual representation of the glove transparent which
allowed participants to see the part that they were
handling. This was important to ensure occlusion did
not negatively affect learning.

Recent research in comparing different visual feed-
back types for virtual grasping showed that the see-
through method that we used was one of the best
methods for translational performance for small ob-
jects [29]. While not rated as highly in other areas
such as subjective preference, accuracy is of vital
importance in the assembly process.

Selecting a puzzle for an assembly task has been
successfully used in the past by Shuralyov and Stuer-
zlinger [30]. In a small study, participants were asked
to assemble a 3D puzzle using a mouse and key-
board on a desktop LCD. Task performance time
for the assembly was acceptable, however, it was
noted that participants spent a considerable amount
of time rotating the pieces. Ritter et al. [31] used a 3D
puzzle since participants would already know how to
interact with the puzzles, and shapes provide cues of
what the structure of the puzzle is.

While gender differences were observed when us-
ing paper and pencil measures, no such differences
were observed in the virtual environment tests [32]
where 3D drawings were used instead of the conven-
tional 2D drawings. Parsons et al. [32] speculated that
the strategies employed by males and females were
different which yielded differences in performance.
Parsons et al. [32], Larson et al. [33], and Rizzo and
Buckwalter [34], tested gender differences for mental
rotation in virtual environments and found that gen-
der difference for mental rotation vanishes in virtual
environments. In our studies, we considered that spa-

Fig. 1. Six Piece Wooden Physical Burr Puzzle

tial ability might be a moderator of performance, so
we measured this beforehand with a 2D Vandenberg
and Kuse mental rotation test [35].

Generally individual differences such as gender,
age, videogame experience, prior technical computer
literacy, and computer efficacy affect learning transfer
in virtual environments [36]. We will consider these
factors in our study.

The primary motivation for the work presented
here came from a previous study conducted in 2011
that examined whether training in a virtual environ-
ment was as effective as training in a physical envi-
ronment [3]. Participants were randomly assigned to a
virtual environment (VE) or a physical environment
(PE) to assemble a six-piece burr puzzle (Figure 1).
A burr puzzle is wooden cube-shaped interlocking
3D puzzle. The training instruction sheet used color
coded individual pieces for easy identification. Par-
ticipants were given unlimited time to complete the
assembly task and were asked to assemble it two
times with the aid of the instruction sheet. After
training, performance was tested on the assembly
with the physical puzzle without any instructions and
without color indicators on the physical puzzle pieces.
The results showed that the VE participants took three
times as long as the PE participants to complete the
training, but the VE participants completed the puzzle
in the testing phase almost two times faster than the
PE group. There was a large variance in the time
the participants took for the assembly training. We
wanted to examine both the effects that the unlimited
training time and the use of the color indicators had
on the participant’s puzzle assembly performance in
the study described here.

3 METHODS

Based on the open questions in the research on trans-
fer of training in VEs outlined above, we will study
learning transfer (skill acquisition, learning curve,
skill retention/decay) in the virtual environment and
in the physical environment using the same six-piece
burr puzzle as a proxy for assembly parts. The six
piece burr puzzle provided a familiar concept, yet a
sufficiently complex model in which the participant
had to follow the instructions in a specific sequence in
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Fig. 2. 5DT Glove (left hand) and Phantom

Omni R© (right hand) in virtual training

order to gain procedural knowledge to put the puzzle
together.

3.1 Hardware and Software Environment

We created a multi-sensory environment that incorpo-
rated visual and haptic force-feedback (no auditory
feedback) to make the interaction between the user
and the puzzle pieces as real as possible. Rodriguez
et al. discuss a wide variety of benefits using multi-
modal virtual environments [23].

Studies of asymmetric and symmetric bimanual
tasks have resulted in a series of insights into the
way humans use both hands when completing var-
ious tasks. According to Hinckley et al. [37], biman-
ual interaction is optimal when each hand assumes
its most effective role. The most common biman-
ual interaction is one in which the non-dominant
hand is responsible for gross motor movements while
the dominant hand performs more fine motor posi-
tioning [38], [39]. Supporting research indicates that
the non-dominant hand is generally used for lower-
frequency and high-amplitude movements and the
dominant hand is used for higher-frequency and
lower-amplitude movements [40]. These results moti-
vated our choice of devices with the 5DT glove in the
non-dominant hand being useful for broad range mo-
tion and positioning while the Phantom Omni R© with
haptics was used in the dominant hand for fine motor
control of the individual pieces.

3.1.1 Hardware/Software

The virtual training utilized stereoscopic glasses, a
rear projected desktop stereo image (1280x720), an In-
tersense IS-900 hybrid ultrasonic and inertial tracking
system for tracking the head position, a 5DT Data
Glove 5 Ultra, a Polhemus Patriot magnetic tracker
for tracking the glove, and a Phantom Omni R© with
haptic force-feedback. The Phantom Omni R© and 5DT
glove can be seen in Figure 2.

Fig. 3. Physical (left) and virtual (right) burr puzzles

The application was developed using SPARTA
(Scriptable Platform for Advanced Research in Teach-
ing and Assembly) [41]. SPARTA combines VR Jug-
gler [42] for stereoscopic rendering, OpenSceneGraph
for graphics, Voxmap PointShell (VPS) [43] for
physics calculations, and VR JuggLua [44] for easy
scripting and content creation. It supports multiple
input and output devices including position trackers,
stereo glasses, stereo projection systems, gloves and
haptic devices. The software was developed by re-
searchers at the Virtual Reality Applications Center
at Iowa State University.

3.1.2 Participant Interaction in VR

Participants were seated in front of a glass display and
haptic device. They put on stereo glasses and a glove
which can be seen in Figure 2. They held the stylus
of the haptic device in their right hand and wore the
glove in their left hand. They could then manipulate
the 3D environment by grabbing and manipulating
the virtual puzzle pieces with either the glove or hap-
tic device. The pieces could be grouped together and
moved as a single unit (subassembly) by toggling a
virtual button in the environment. While in this mode,
the button on the haptic device was the only way to
add pieces to the subassembly. Holding the button
on the haptic device allowed the participants to pick
up and move the pieces. The haptic device provided
force-feedback to make the participant aware that the
pieces were colliding.

3.2 Experimental Design

To assist participants in following the instructions
during assembly training time, we colored each piece
of the puzzle a distinct color and used those same
colors on the instruction sheet. We used the physical
burr puzzle to train participants in the physical group
and a virtual desktop training environment for the
virtual group (see Figure 3). Each of the six parts has
the same general shape with slight variations. Because
of this and the general difficulty in assembling the
puzzle we felt using the puzzle was comparable to
more manufacturing oriented assembly scenarios. The
use of the puzzle also allowed us to recruit partici-
pants from non-engineering fields.
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TABLE 1

Independent Variables

Independent Variable Classification Group

Training Condition Between Physical, Virtual

Color Order Between Color First, Wood
First

Test Order Within Initial Test,
Retention Test

From the results of the first study, we decided
to investigate further what caused the differences
in learning transfer between the two groups. We
redesigned the original study to control for the fol-
lowing variables. Training times were held constant
between virtual and physical training. Participants
went through an equipment familiarization video.

In order to reduce cognitive load and utilize the
benefits of the virtual environment, a few features
were changed. First, we replaced the physical manual
button participants had to press to toggle subassem-
bly mode with a virtual button. This saved time
and prevented the participants from having to look
away from the virtual interface. Second, the virtual
representation of the glove was made transparent to
ensure participants could see the part that they were
manipulating. This prevented the representation of
the glove from occluding the pieces.

3.2.1 Study Design

For this study, a mixed model design in a controlled
lab experiment was chosen. The dependent variable
was task performance as measured by the amount
of time to assemble the puzzle. We wanted to see
during testing what influence the coloring had on
performance. Previous research examining the role of
color on mental rotation tasks identified that individ-
uals with strong mental rotation abilities do not use
color identifiers on the piece itself during the mental
rotation while individuals with poor mental rotation
abilities do use color identifiers [45]. Participants were
tested on both the physical color pieces that matched
the training and plain wooden pieces that were not
colored. The independent variables were training en-
vironment (Physical vs. Virtual), and color order of
the first test (first color, then wood, or first wood
then color). Both of these were designed as between
participants tests. Another independent variable was
the testing time. An initial test immediately after the
training period as well as a follow-up test two weeks
later was performed to assess the learning transfer.
This was a within participants test. The breakdown
of independent variables can be seen in Table 1. A
pilot study was conducted with eight participants
who performed equally well in both the virtual and
physical environments, but they were almost exclu-
sively engineering students with high spatial abilities.

3.2.2 Procedure

A broad overview of the procedure can be seen
in Figure 4. Using blocking, participants were ran-
domly assigned to groups with consideration taken
to roughly distribute men and women between the
groups. This was done to account for similarities
among groups of subjects, thereby helping to allevi-
ate unequal variances which can occur when doing
completely random sampling [46].

After an informed consent was obtained, partic-
ipants were asked to complete a brief question-
naire containing demographic questions about their
computer usage and expertise, videogame playing,
number of engineering courses completed, and ed-
ucational background. The Ishihara color blindness
test [47] was administered to control for variances due
to color blindness.

Participants were given a timed 10 minute re-
drawn Vandenberg and Kuse Mental Rotation Test
(MRT) [35]. The test measures spatial ability and
presents the participant with 20 questions that require
matching a target shape to the corresponding rotated
shape. The test also includes eight questions which
asked participants what type of strategy they utilized
for the mental rotation task. This test was selected due
to its reliability shown in a previous study [35].

Next, all participants were shown an equipment
demonstration video which demonstrated the equip-
ment to be used in the virtual environment and
how to carry out subassembly grouping. Subassem-
bly grouping allowed the participants to pick up,
move, and rotate multiple objects as a single group.
The video showed a user manipulating small virtual
cubes/boxes to demonstrate assembly which were
different from the burr puzzle pieces. We considered
the inclusion of a video demonstrating the equipment
to be used as beneficial for the virtual assembly
task [11]. Participants in the physical condition also
watched this video since they were not informed
beforehand which condition they were assigned.

The virtual training participants were then given
eight minutes to familiarize themselves with the
equipment and VR setup by performing a box-
stacking task that required use of the subassembly
feature. Participants were free to request assistance
and ask questions during this period. Participants
in the physical training group were given an online
crossword puzzle as a filler task. The crossword puz-
zle filler task was deemed suitable as per past studies
in virtual environments [34].

Next came the assembly training period. All par-
ticipants were given 20 minutes training to assemble
the six-piece burr puzzle according to an instruction
sheet placed in front of them. The puzzle pieces on
the instruction sheet were colored to match the colors
of the physical pieces and the virtual pieces. Partic-
ipants were asked to assemble the puzzle as many
times as possible and were timed on each successful
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Fig. 4. Overview of study design and random assignment

completion. In both virtual and physical training, the
puzzle pieces were randomly positioned and oriented
after each successful assembly in order to mimic the
physical environment. The software tracked the com-
pletion times of the virtual environment and a second
researcher recorded times in the physical training
environment. The times were recorded in order to
measure the learning curves and learning saturation
point (stabilization plateau) of all participants.

After the training phase, participants were given
a set of eight Vandenberg and Kuse MRT questions
about the strategies they used during training. These
questions also served as a distractor task in order to
eliminate any recency effect that might occur. The re-
cency effect refers to the potential that a participant’s
performance is more highly influenced by a recent
task than by a task performed less recently [48]. An
initial test was administered by asking all participants
to assemble the physical puzzle without instructions.
There were two sets of physical puzzles used in
the testing: one had all pieces colored and one had
all the pieces the natural wooden color. Depending
on whether the participant was assigned to a color-
first or wood-first treatment condition, the participant
was either given a colored puzzle or a wood grain

puzzle to assemble first, followed by the other puzzle.
Participants were instructed to assemble each puzzle
three times within a ten-minute period.

An exit survey was administered which asked par-
ticipants what recall strategy they used, the ease of
use and helpfulness of the training environment, dif-
ficulty of the task, and overall realism of the training
environment.

After two weeks, participants returned and per-
formed a retention test which was the same as the
initial test of assembling the physical burr puzzle.
The same color-first or wood-first treatment was used
for each participant as in the initial test. Participants
were instructed to assemble each puzzle three times
within a five-minute period. During the initial test,
both groups of participants encountered the physical
wooden puzzle for the first time where both color
and the instructions were removed. For the second
test after two weeks, both groups had equal experi-
ence levels with the physical puzzle. To account for
learning effects, we factored in additional time for the
initial test (10 minutes) as compared to the second test
after two weeks (5 minutes).
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TABLE 2

Number of Participants by Condition

Color First Testing Wood First Testing

Physical Training Female: 4, Male: 13 Female: 6, Male: 10

Virtual Training Female: 6, Male: 10 Female: 6, Male: 8

4 RESULTS

4.1 Participants

Sixty-three participants (22 females and 41 males)
completed the study. Some participants received class
credits as compensation by enrolling in the study
through the psychology or marketing departments.
Sixteen participants received 5 USD compensation.
The participants were mostly undergraduates with
ages ranging from 18 to 31 years old (M = 21.62,
SD = 2.64). Five participants tested positive for being
colorblind. The breakdown of participants in each
condition can be seen in Table 2. Given that not all
participants finished all tests, we wanted to report
the most conservative test possible for each separate
test so instead of using mean imputation, we used
pairwise deletion to remove the individual that was
missing the value when appropriate for the following
tests.1 All results were analyzed at a confidence level
of 95%. The differences between genders on different
factors can be seen in Table 3.

There were no significant differences in the MRT
score t(61) = -0.52, p = 0.59 between the group of
participants performing the virtual training and the
group of participants performing the physical train-
ing. This shows that the relative spatial abilities be-
tween the groups is roughly equal and should not
overly influence the testing times. Even so, MRT was
included as a covariate in later tests. The number of
engineering courses taken by participants in each of
the virtual and physical training groups was also not
significantly different t(61) = -0.96, p = 0.34. There
was a low correlation between video game playing
and MRT score, r(60) = 0.28, p = 0.02. There was no
significant correlation between video game playing
and the number of puzzles assembled during training,
r(60) = 0.009, p = 0.94.

4.2 Training Results

In comparing the number of completed puzzles dur-
ing training, those who were trained physically com-
pleted significantly more puzzles than those who

1. We observed that a substantial number of participants in the
virtual training condition did not finish the puzzle assembly as
compared to the physical training participants. To further investi-
gate this, we ran the same primary data analysis as the time data
but used a dichotomous dependent variable of whether or not they
completed the puzzle assembly test. The results show no three-
way or two-way interactions, with only a main effect of training
environment, F(1, 58) = 16.31, p < .001. However, the post-hoc
power analysis shows this doesn’t adversely affect the study results.

were trained virtually, t(61) = 10.01, p < .001. In
addition, those who were trained physically needed
significantly less time to assemble the puzzles dur-
ing training, t(48) = -6.73, p < .001. The correla-
tion between the number of assembled puzzles done
in training and participant MRT score were weakly
correlated, r(61) = 0.34, p = 0.005. Participants who
were trained with the physical puzzle, r(31) = 0.79,
p < 0.001, showed a significantly stronger correlation,
z = 2.704, p = 0.006 [49], [50], than those who were
trained with the virtual puzzle, r(28) = 0.34, p = 0.05.

4.3 Test Results

A mixed-factorial ANOVA analysis was used to test
the omnibus model using SAS proc mixed. Only
participants who finished all levels of the within-
subjects variables were included in the analysis. This
ensured balance between the groupings. A significant
3-way interaction exists (see Figure 5) between the
three independent variables of testing session (initial
vs. retention-test), color order (color first or wood
first), and training environment (PE vs. VE) on the
dependent variable of test time, t(28) = 2.26, p =
0.03.2,3 To better understand the drivers of the inter-
action, simple 2-way interactions were investigated
in the context of training environment (PE and VE
respectively). The results show that the interaction of
testing session and color order for those who were
trained physically (the two solid lines in the figure)
is not significant t(28) = -0.93, p = 0.36, with a simple
main effect showing that time will significantly in-
crease from initial to retention-test between 23 and 66
seconds regardless of color order when the individual
is trained physically t(28) = 4.16, p < 0.001, CI=[23,66].
Conversely, the interaction of testing session and color
order for those who were trained virtually (the two
dashed lines in the figure) is significant t(28) = -
3.47, p = 0.002. The simple-simple main effect shows
that time will significantly increase from initial to
retention-test between 15 and 96 seconds when tested
with wood first t(28) = 2.82, p = 0.009, CI=[15,96], but
will significantly decrease from initial to retention-test
up to 90 seconds when tested with color first t(28) =
2.13, p = 0.04, CI=[2,90].4 The breakdown of testing
performance can be seen graphically in Figure 5 and
numerically in Table 4.

Comparing the PE and the VE directly at the two
respective testing times, we find that the initial times

2. MRT was included as a covariate in the analysis to account for
any confounding variance between subjects due to spatial ability.

3. Gender was tested as an independent variable but there were
no significant interactions or main effects, thus we did not include
it in the analysis.

4. Least square estimates are used to calculate the means, stan-
dard errors, and significance tests. Least square means allow for a
more precise estimate of the means which are adjusted for the other
effects in the model [51]. The SAS LSM estimator allows for the
testing of all hypotheses/primary tests using contrast coefficients
and produces an associated t-test to evaluate significance.
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TABLE 3

Demographic Information: Differences by Gender

Male
Mean (Std. Dev.)

Female
Mean (Std. Dev.)

df, t p Overall
Mean (Std. Dev.)

Measurement Unit

Number of Engineering
Courses Taken

2.80 (0.90) 2.95 (1.50) t(61) = -0.09 0.92 2.85 (6.22) Range: 0-30

Computer Technical
Expertise

3.45 (0.10) 3.23 (0.09) t(60) = -1.39 0.16 3.37 (0.60) Likert (1=low to
5=expert)

Video Game Playing 3.18 (0.18) 1.86 (0.20) t(60) = -4.43 <.001 2.70 (1.27) Likert (1=never to
5=play daily)

Mental Rotation Score 12.98 (0.92) 10.77 (1.34) t(61) = -1.38 0.17 12.21 (6.09) Score Range: 0-20
(low-high)

for those who completed the training in the PE were
significantly lower than those who completed the
training in the VE whether they completed the testing
using wood or color first. Stated more formally, the
simple-simple main effect shows that time is signif-
icantly lower, by 12 to 68 seconds, for the PE with
wood first t(27) = -2.94, p = 0.007, CI=[-12, -68] and
anywhere from 54 all the way to 107 seconds lower in
the PE with color first t(25) = -6.28, p < 0.001, CI=[-54,
-107]. Similarly, time is also significantly lower at the
p < 0.1 level for retention-test times for the PE with
wood first t(27) = -1.78, p = 0.086, CI=[-2, -82]. Con-
versely, for those in the VE using color first, retention-
test scores are not significantly different from those in
the PE using color first t(25) = -0.01, p = 0.99.

A post-hoc power analysis was run to verify that
the necessary power was achieved to enable the dis-
covery of significant effects for all available tests. An
alpha level of 0.05 was used along with a sample size
input of 30 (conservative estimate of the lower of the
two sample sizes). A four group power analysis was
run (for the 2x2 combination of the two between-
group variables) with two measurements (for each
level of the within-subjects variable). A conservative
correlation between measurements of 0.01 was used
as this was the smallest correlation between initial and
retention-test scores among the various combinations
of groups. Effect sizes of Cohen’s d were calculated for
each difference in initial and retention-test least square

means using the formula d = |x̄2−x̄1|
σ

[52] where σ is
the pooled standard error of the differences between
the pairs of least square means, or σ = se√

1

n1
+ 1

n2

, which

Cohen indicates can also be used in a within-subjects
design [53]. Using this equation, the smallest effect
size between initial and retention-test scores was 0.55,
which was used as a conservative estimate in the
power analysis. To test for nonsphericity, the mixed
model was run using both the Huynh-Feldt (hf) and
unstructured (un) options for the covariance matrix
calculation. The difference in the -2 Log Likelihood
values of 13.3 with a difference in degrees of free-
dom of 5 distributed as a chi-square test rejects the
null hypothesis of sphericity and implies some non-
sphericity. Given there are only two within-subjects

Fig. 5. Testing Performance Between Training Environ-

ments With Color Order

measurements, the sphericity correlation must be 1
based on the formula ( 1

numMeasurements−1
). Using

these inputs, we get a power of 0.93, which is well
above the typical measure of 0.8 [54].

4.4 Learning Curve

Figure 6 shows the results for the learning curve
of participants as measured during training. As the
number of times they assembled the puzzle during
the training period doubled, their puzzle assembly
time was reduced by half. For those who were phys-
ically trained, the learning curve is quite short and
they reached a plateau point quickly. The number of
puzzles that the physically trained group assembled
eventually reached a plateau of peak performance.
Virtually trained participants initially exhibited worse
performance than the physically trained participants,
but also exhibited improving performance as the
training progressed.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

TABLE 4

Task Performance Time Results (in seconds)

Initial Test Retention Test t value p value CI

Physical Training
Color First 15.09 69.49 3.37 0.002 [21, 87]

Wood First 20.53 55.1 2.47 0.02 [6, 63]

Virtual Training
Color First 55.41 111.27 2.82 0.009 [15, 96]

Wood First 101.48 55.41 -2.13 0.04 [2, 90]
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4.5 Strategies

According to the self-reports on recall strategies used,
the PE group reported to remember how the pieces
were to be assembled, whereas the VE group relied
primarily on color as a recall strategy. The PE group
had the 10 fastest testing scores. These fastest PE
participants said that they mostly used shape as their
recall strategy. Comparing the 5 fastest mean test
times for both physical and virtual, both shape and
color were cited equally as a recall strategy.

After both the MRT spatial ability test and after
the training, participants were asked a series of eight
questions regarding the strategies that they employed
for the task. The response data was categorical; there-
fore, a chi-square analysis was performed comparing
the responses between the virtual and physical train-
ing groups. Two results for the questions asked after
the training was finished were significant. One ques-
tion asked how participants compared the matching
of the target figure, χ2 (2, N=63) = 7.29, p = 0.02.
The range of approaches to solving the problem in
terms of developing a specific approach as compared
to using various approaches was also significantly

different, χ2 (2, N=63) = 13.30, p = 0.001. The results
can be seen in Table 5. All other chi-square results
were not significant.

At the end of the initial test, participants were asked
questions regarding the difficulty, ease of use, and
general realism. The overall results can be seen in
Table 5.

Participants who were physically trained rated the
difficulty as significantly easier than those who were
virtually trained using a Likert scale (1=very diffi-
cult, 5=very easy), t(60) = 4.42, p < .001. Participants
who were physically trained rated the ease of use
in assembling the parts in the training environment
as significantly easier than those who were virtually
trained using a Likert scale (1=very difficult, 7=very
easy), t(60) = 5.20, p < .001. There was no significant
difference in how realistic the participants in each of
the training conditions felt the training environment
was depicted using a Likert scale (1=not at all realistic,
5=very realistic) which suggests the virtual training
was fairly accurate. Interestingly, virtually trained
participants rated the training environment for learn-
ing the assembly process using a Likert scale (1=not at
all helpful, 5=very helpful) on average slightly higher
(M = 4.03) than the physically trained group (M =
3.75). However, there was no significant difference
between the two groups, t(60) = -1.10, p = 0.27. When
asked to rate how seriously they took performing
the tasks using a Likert scale (1=very unseriously,
5=very seriously), there was no significant difference
between the virtually trained versus the physically
trained groups, t(59) = -0.49, p = 0.62.

5 DISCUSSION

The three-way interaction of testing session, color
order, and training environment on the time needed
to finish the virtual task offers interesting results.
First, those individuals who completed the test in
the PE performed significantly worse in the initial
test as compared to the retention-test regardless of
whether the individual performed the assembly using
the wood or color puzzle first. This implies that the
order of training with regard to wood or color order
does not matter when the user is trained physically,
with training times becoming significantly worse in
the retention-test regardless. Conversely, the order
of color and wood puzzles becomes a significant
factor for those who are trained virtually. While
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TABLE 5

Questions After Training

Physical
Training

Virtual
Training

Test p value

Comparison to Target After Training (Vandenberg and Kuse #5) number of participants

I always compared the options to the target figure. 16 24

χ2 (2, N=63) = 7.29 p = 0.02Once I found the matching puzzle piece, I compared the rest of the
options to the match.

6 1

I did a bit of both. 11 5

Problem Solving Approach After Training (Vandenberg and Kuse #6) number of participants

I developed a specific approach to solve the problems. 23 9

χ2 (2, N=63) = 13.30 p = 0.001I tried various approaches to solve the problems. 4 16

I did a bit of both. 6 5

Exit Questionnaire Mean (SD)

Rate the difficulty of the tasks you completed. (1=very difficult, 5=very
easy)

3.78
(1.03)

2.63
(0.99)

t(60) = 4.42 p < .001

Rate the ease of use in assembling parts in the training environment.
(1=very difficult, 7=very easy)

5.03
(1.61)

3.10
(1.26)

t(60) = 5.20 p < .001

Rate how realistic you felt the training assembly environment was. (1=not
at all realistic, 5=very realistic)

3.65
(0.86)

3.33
(0.95)

t(60) = 1.39 p = 0.16

Rate how helpful the training environment was for learning the assembly
process. (1=not at all helpful, 5=very helpful)

3.75
(1.07)

4.03
(0.92)

t(60) = -1.10 p = 0.27

Rate how seriously you took these tasks. (1=very unseriously, 5=very
seriously)

3.90
(0.58)

4.00
(0.88)

t(59) = -0.49 p = 0.62

those trained virtually using wood first show the
same degradation in speed in the retention-test, those
trained virtually using color first show a significant
improvement in speed in the retention-test. Further-
more, this improvement places these individuals at
the same level of performance in the retention test
as those trained physically. Given the advantages of
virtual training with regards to time and money, this
offers promise as a viable method for adequately
training personnel that is equitable to a physical train-
ing environment.

This finding is important for assembly work where
there are interruptions in production or time lapses
between training and on-the-job performance, espe-
cially for procedural training tasks since it is costly
to retrain workers. Our results are further consistent
with Bailey’s [1] finding that skill decay is not strictly
related to the learning curve since the PE participants
registered superior training times over the VE partici-
pants. However, there seems to be evidence of a small
amount of overlearning once the automaticity phase
and thus a learning curve plateau has been reached.
This can actually lead to skill decay similar to what
we witnessed for the physical environment [16], [15].

Although the training environment matched the
testing environment and the long-term memory of the
learned skill should have been activated during the
retesting [55], this did not appear to be the case for
the PE and it may have been the case for the VE.

5.1 Training and Learning Curves

Our observations during the training phase were con-
sistent with Adams et al. [9] who defined three com-

ponents of human training as cognitive, perceptual,
and motor demands. We observed that participants
build an internal model of tasks in their memory and
put together a strategy to avoid common mistakes
with easily confused pieces such as the teal and green
pieces. In order to highlight the perceptual aspects, we
used shape, color and sequence of the puzzle pieces.
We also used three different sets of puzzles of both
color and wood to avoid participants from learning
physical friction points between unique puzzle pieces.
For motor demands, we observed a dexterous manip-
ulation of the pieces, how to handle them, move them,
orient them and connect them in both the VE and PE.
Motor demand benefits most from haptic feedback [9],
but the misalignment of pieces due to tolerance and
lack of snap-to functionality presumably contributed
to slower performance for the VE participants.

Comparing the learning curves of both groups, the
PE participants seemed to have reached a plateau or
stabilization point after around the 6th puzzle comple-
tion and thus very little or no learning took place after
that according to our results and also according to the
learning curve theory of Conway and Schultz [12].
The VE participants appear to be moving towards
this plateau during our training period, but probably
did not reach it completely. The learning curve of the
VE participants was quite dramatic showing a high
increase in performance after only a few assemblies. A
possible reason for the skill decay shown in the retest
of the PE group is that when people reach a learning
saturation point, there is an overlearning effect [9]
where any additional learning may cause a drop
in performance [16]. We noticed several times when
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performance for the PE participants dropped and
then increased again, only to drop another time. This
could also be attributed to fatigue since participants
had to complete so many iterations of the puzzle
assembly. We found no evidence that an increase in
practice trials increased skill retention as observed for
the PE participants who showed greater skill decay
after two weeks. This finding is similar to Hall et
al. [17]. We attribute this skill decay to the plateauing
effect and its associated overlearning effect for the PE
participants as discussed before [2].

We observed that the learning curve times were also
consistent with the literature [2] with PE participants
recording a decrease in times in every doubling of
efforts until the plateau was reached. The learning
curve stages observed for the PE participants were
also consistent with Fitts’ three-stage skill acquisition
model comprising the cognitive, associative, and au-
tonomous stages [10]. During the cognitive stage, we
observed participants first followed the instructions
during the assembly process until they reached a level
of proficiency as is evident up to the fourth puzzle
completion. Then they moved on to the associative
stage by discarding the instructions and attempting
it on their own. During the associative stage, they
struggled quite a bit with the correct orientation for
the teal piece as well as noticing the geometric dif-
ference between the green and purple pieces. Finally
they reached the autonomous stage with only a minor
improvement in time until finally saturation of per-
formance and no performance gains could be seen. It
is not evident from the data whether the VE group
reached the associative stage since there was no jump
in performance times as was evident for the PE group.
The VE certainly never reached the autonomous stage.

5.2 Virtual Environment Training

We attribute longer training times in the VE group to
the hardware and software environment. The cogni-
tive load associated with learning the novel interface
as well as attempting to learn the puzzle assembly
was demanding. Puzzle parts in the VE environment
did not have a snap-to function or a constraint system
which meant that participants had to spend time
grouping the pieces before they could rotate the half
completed puzzle. The grouping of pieces required
toggling a virtual button to enter the grouping mode,
adding or removing the necessary pieces, and then
toggling the virtual button again. The pieces could
only be added or removed from the group via the
Phantom Omni button and not with the glove. The
clearance between pieces may have also contributed
to longer times in the virtual training. Often, despite
prior warning that the pieces did not have to be
aligned perfectly, participants spent a lot of time try-
ing to get the pieces in a near-perfect fit before moving
on to the next piece. This led to excessive time spent

on fitting single pieces as opposed to completing the
puzzle as quickly as possible.

This was contrary to the PE where the pieces fit
snugly and would stay in position. However, both
hands were necessary for the assembly of the physical
puzzle even during rotation as one hand was needed
to hold the assembled puzzle. This was not required
for the virtual training because gravity was not en-
abled.

We also observed that VE participants would favor
one device over another during the familiarization
session. For example, when participants struggled
with selecting the pieces with the glove, they would
then switch to the Phantom Omni and favor using this
device. The same was true when they struggled ini-
tially with the Phantom Omni. This device preference
may have influenced their performance and overall
preferences.

In general we saw after the eight minute familiar-
ization task, participants were sufficiently comfortable
with the device use. Participants indicated that the VE
was equally helpful as a training environment.

5.3 Role of Color

Training was done with colored pieces for both en-
vironments, but the PE group had the advantage of
having handled the real puzzle. The PE group self-
reported that their recall strategy was mainly shape
and the VE group reported color as the main recall
cue. Perhaps color is primarily used during the initial
stages of learning when participants need to quickly
identify which piece to be grabbing or examining.
Selection of color is presumably a faster cognitive pro-
cess than shape in this case. Since the PE participants
reached the automaticity stage, it’s possible that they
relied more on shape than the VE group who may
have relied more on color since they were still learning
the assembly.

We believe VE participants spent most of their time
in Fitt’s cognitive stage learning the assembly of the
puzzle and studying the color and shape of the pieces.
For the PE group, they spent less time overall learning
and more time in automaticity just putting the puzzle
together. This difference in time spent in learning
stages could be an explanation for the performance
increase of the VE participants two weeks later. For
the PE group, their learning may have been at a very
short and shallow level while the VE group spent
more time understanding the assembly process itself.

5.4 Individual Differences

We measured spatial ability of participants with a
paper-based redrawn Vandenberg and Kuse Mental
Rotation Task (MRT) [35]. Our study confirmed that
there is a positive correlation between mental rotation
ability and training performance. There was a sig-
nificant difference in performance between the high
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and low MRT scoring participants. The fact that there
were no significant differences between MRT scores
and gender is contrary to findings of previous studies
that males outperform females in MRT [36], especially
since it was a paper-based MRT test.

Although significant differences were reported be-
tween genders for videogame experience, there was
no evidence that videogame experience had a sig-
nificant effect on task performance across groups.
Technical expertise also had no significant effect on
task performance across groups.

Participants reported that there was a significant
difference in difficulty and ease of use with training
environment across groups. However, there was no
significant difference for self-reported realistic train-
ing environment and helpfulness of the training en-
vironment, which is promising when considering vir-
tual reality as a training environment.

6 LIMITATIONS AND FUTURE WORK

A number of limitations were identified during and
after this study. These limitations and recommenda-
tions for future work are discussed briefly here.

One of the constraints and contributors to time
taken in the VE group during training is the absence
of a snap-to-fit function or constraint system [56]. The
virtual puzzle pieces did not fit perfectly as there
was some amount of tolerance between the pieces.
Participants spent extra time attempting to fit the
pieces perfectly despite being informed beforehand
that the pieces will not fit perfectly. Additionally, once
the piece was in the desired location, the participant
had to take an extra step to group the pieces in order
to rotate the semi-assembled puzzle to determine the
fit for the next piece. A snap-to-fit function might also
mimic to a certain degree the physical puzzles pieces
which have a natural tight fit and stay in place after
the pieces are fitted without having to first group the
pieces. Of course, such a snap-to function would need
to have a small boundary between pieces. The ratio-
nale in not providing a snap-to function was to mimic
a real assembly environment as closely as possible.
There is always a tradeoff in VR between utilizing
technology and functionality that does not exist in
the physical world which could possibly introduce
extraneous variables, and attempting to keep it as
similar as possible to the physical world.

The transparency of the selected puzzle pieces was
another constraint that we faced. During the pilot
phase the virtual representation of the glove was a
solid color and when a puzzle piece intersected the
glove, the piece turned slightly transparent indicating
that it could be grabbed. However, since the solid
colored virtual glove sometimes occluded the puzzle
piece, we made the glove transparent for the study.
Unfortunately, while the transparency of the virtual
glove was a good solution, some participants com-
plained that the transparency of the puzzle piece was

not as discernable against the transparency of the
glove. A recommendation for future studies would
be to make selection of a puzzle piece in the virtual
environment cause a complete change of color instead
of just causing a change in transparency.

We observed individual differences for interaction
between the glove and the haptic device. Participants
showed a preference for either the glove or the haptic
device for predominant use. The device preference
seemed to depend on the equipment training phase
where participants gained familiarity with the de-
vices and interaction for 8 minutes. If participants
experienced initial difficulty or comfort with either
of the two devices, these preferences extended to
the training and testing situations. We believe that
in the future, participants should be encouraged and
given tasks that use these devices equally and en-
courages bimanual operation. We speculate that this
ambidexterity through bimanual usage will increase
task performance speed.

We also observed that participants in the VE were
pre-occupied with learning the devices and the virtual
interface, learning the grouping procedure (subassem-
bly) as well as concentrating on the fit of the puzzle
piece. They did not seem to examine the instructions
as often as the PE group. In testing, VE participants
had difficulty remembering the assembly of the puz-
zle as was outlined in the instruction sheet.

In future studies, we recommend that another per-
formance measure should be how often participants
looked at the assembly instructions and at what time
did they stop looking at the instructions. This could
possibly lead to more understanding of the learning
curve data and its relationship to Fitts’ learning stages.
This measurement could indicate what learning stage
the VE participants spent the most time on. To com-
plete the multi-modal approach, adding audio to
match the sound of the wood blocks colliding would
augment the haptic feedback and further immerse
participants.

Another interesting factor to explore would be to
determine if a participant’s recall strategy changed
from the initial test to the retention test. We would
be particularly interested in what recall strategy the
VE group used then since they reported using color
as a cue more frequently than the PE group.

7 CONCLUSION

We have discussed a study conducted wherein we
tested the differences in task and testing performance
of a manual assembly of a six-piece burr puzzle be-
tween groups who were trained using physical objects
and those who were trained with virtual objects.

We summarize our findings and contributions as
follows. 1) While training in the virtual environment
is outperformed by physical training on initial tests,
appropriate use of color cues in virtual training can
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make it equally effective to physical training on per-
formance testing after time has passed. 2) The learning
curves within physical and virtual environments can
differ, requiring different numbers of training itera-
tions for each mode to avoid overlearning and pre-
mature skill degradation. 3) When designing training,
it is important to consider not only the training time,
but the anticipated time spent in Fitts’ cognitive stage
within that overall time.
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