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ABSTRACT OF THE DISSERTATION

A Distributed Architecture for Interactive Scene Navigation, Modification, and
Collaboration on Multi-Display Walls

By

Duy-Quoc Lai

Doctor of Philosophy in Computer Science

University of California, Irvine, 2015

Professor Aditi Majumder, Chair

This dissertation addresses a growing challenge of visualizing and modifying massive 3D

geometric models in a collaborative workspace by presenting a new scalable data partitioning

algorithm in conjunction with a robust system architecture. The goal is to motivate the idea

that utilizing a distributed architecture may solve many performance related challenges in

visualization of large 3D data. Drawing data from modeling, simulation, interaction and

data fusion to deliver a starting point for scientific discovery, we present a collaborative

visual analytics framework providing the abilities to render, display and interact with data

at a massive scale on high resolution collaborative display environments. This framework

allows users to connect to data when it is needed, where it is needed, and in a format suitable

for productivity while providing a means to interactively define a workspace that suits one’s

need. The presented framework uses a distributed architecture to display content on tiled

display walls of arbitrary shape, size, and resolution. These techniques manage the data

storage, the communication, and the interaction between many processing nodes that make

up the display wall. This hides the complexity from the user while offering an intuitive

mean to interact with the system. Multi-modal methods are presented that enables the

user to interact with the system in a natural way from hand gesture to laser pointer. The

xiii



combination of this scalable display method with the natural interaction modality provides

a robust foundation to facilitate a multitude of visualization and interaction applications.

The final output from the system is an image on a large display made up of either pro-

jection or lcd based displays. Such a system will have many different components working

together in parallel to produce an output. By incorporating computer graphics theory with

classical parallel processing techniques, performance limitations typically associated with the

display of large or numerous items on multiple display devices and multiple input sources

are overcome.
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Chapter 1

Introduction

The discovery process is often based on collaborative visual analytics. Data is turned into

visual information, which when properly presented and analyzed is turned into knowledge.

Two essential factors help to accelerate this knowledge creation process: interactive visual-

ization, which provides control over how data is processed and presented, and collaboration

between different domain specialists who can build off of each others abilities to interpret

and analyze the data.

Interactive visualization of data can be a significant challenge given the large amount of data

that can be generated by modern data-driven science (e.g. geographic data, 3D model, and

simulation). Facilitating collaboration also poses many difficulties due to inherent challenges

in humain and computer interaction. Data sharing may not always be feasible because,

the data is either too large, or the capabilities to process such vast amount of data are

not available to collaborators. In these instances, distributing the derivative products, i.e.

visuals extracted from the data, can be a more suitable and readily available alternative [39].

Large-high resolution visual real estate is needed to express the underlying data complex-

ity without compromising context, and a large physical form factor is needed to support

1



Visualization
Environment

Collaboration

Scalability Interaction

Display Synchronize

Acquire Transport

Figure 1.1: The three primary objectives of the presented framework are to improve collabo-
ration, interaction, and scalability by using new methods to acquire, transport, synchronize,
and display data at a massive scale.

collaborative teams. These requirements are currently achieved by utilizing room-size, high-

resolution collaborative environments built from multi-tile LCDs and projectors in a variety

of configurations to form display walls for 2D and 3D virtual reality environments.

This dissertation addresses a growing challenge of visualizing and modifying massive 3D

geometric models in a collaborative workspace by presenting a new scalable data parti-

tioning algorithm in conjunction with a robust system architecture. The main challenge is

enabling simultaneous navigation and editing of large 3D geometric model while maintain-

ing an interactive framerate. A massive 3D model is impossible to interact with using a

2



Figure 1.2: The front end consists of the display grid, which is made up of n displays. The
back end consists of m compute units. Note that the number of displays and compute units
do not have to be equal.

single computer. Therefore, a backbone of a conglomeration of computers is essential to

do anything collaborative or interactive with such models. Furthermore, today’s 3D models

are getting exponentially large and complex with no collaborative tools to match its scale

and complexity so that many users can work easily with such models. Drawing data from

modeling, simulation, interaction and data fusion to deliver a starting point for creative dis-

covery, I present a collaborative visual analytics framework providing the abilities to render,

display and interact with data at a massive scale on high resolution collaborative display

environments. This framework aims to improve collaboration, interaction, and scalability

using a series of techniques to acquire, transport, synchronize, and display data at a massive

scale on large-high resolution collaborative visualization environments, as outlined in Figure

1.1. This framework allows users to connect to data when it is needed, where it is needed,

and in a format suitable for productivity while providing a means to interactively define a

display workspace that suits one’s need.

3



This dissertation is divided into two components: front end and back end. Figure 1.2 gives an

illustration of how the two components are connected. The front end handles the collabora-

tion and interaction objectives by providing a large seamless display with natural interaction

modalities to hide the complexity of the system. The back end handles scalability objective

by using a distributed architecture and incorporating computer graphics theory with classi-

cal parallel processing techniques to tackle performance limitations typically associated with

the display of large or numerous items on multiple display devices and multiple input sources

are overcome. Since a display wall is a system, and like all systems, to achieve optimal per-

formance, there has to be a balance between different components, thus understanding the

various types of interactions and dynamics within a system is key to increasing computer

scientists understanding of how to build and maintain more efficient and effective systems.

The work presented in this dissertation focusses on identifying each component that makes up

a display wall system and on designing a high performance, high resolution, and interactive

visualization system without specialized or customized hardware that is scalable, flexible,

reliable, usable, and affordable.

We begin with the introduction of the architecture. In chapter 2, we examine why a dis-

tributed architecture is ideal for creating a highly parallelizable and scalable display system.

We look at how current display wall systems are implemented and show our system addresses

certain challenges that other systems have not.

In chapter 3, we define a new memory hierarchy that is associated with the distributed

architecture and how to leverage it to increase data acquisition performance when working

with massive 3D geometric models. We also present a data layout and data management

system to evaluate the performance of the architecture.

In chapter 4, we analyze an existing system to determine the effectiveness of the proposed

memory hierarchy, data layout, and data management system.

4



In Chapter 5, we describe how the system capabilities can be used to promote collaboration.

We look at how collaboration are typically done in the workplace today and how our system

with its capabilities can enhance the collaboration experience and reduce the overhead that

is commonly associated with collaborating and sharing resources.

5



Chapter 2

Distributed Architecture for Highly

parallelizable and scalable Display

System

2.1 Introduction

Interactive modeling capabilities are critical in designing virtual environments for several

applications like urban planning and modeling, complex machinery modeling, or modeling of

complex scenes and animated characters. Interactive navigation and modification of massive

virtual reality (VR) models and environments are challenging due to two reasons. First,

the size of the data required for rendering may be too large to fit in the memory. Second,

interactive modifications cannot be done to gigantic 3D data sets stored on the hard disk,

primarily because they mangle the data layout on the hard disk, which would affect the

performance of later interactive navigation [50].
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Hence, a non-redundant distributed data paradigm holds promise to mitigate the problems in

interactive modification of large data sets, and the subsequent out-of-core interactive naviga-

tion, without focusing on load balancing in rendering. A cluster of storage-compute-display

(SCD) nodes – where each node is self-sufficient, having its own storage, computation, and

display capability – lends itself for an efficient integrated approach to both non-redundant

distributed data management and interactive rendering.

Interestingly, an infrastructure of such a cluster of SCD nodes already exists in the display

domain. Tiled multi-displays, either projection-based or LCD-panel based, already use an

infrastructure consisting of multiple PCs, in which each PC drives a part of the display. Since

today’s commodity PCs come with powerful CPUs and GPUs, this same cluster of PCs can

be considered as a cluster of compute-display nodes for computation and communication.

Further, each PC is also configured with a very large secondary storage and main memory,

which can turn each PC into the storage-compute-display node required for distributed

interactive 3D modeling and rendering of the data set.

2.2 Sorting Classification of Parallel Rendering

There are three broad classes of parallel rendering methods, based on where the sort from

object-space to screen space occurs. That is to say where the data distribution occurs during

the process of transforming 3D geometric data to 2D pixel data. These classes encompass

most feed-forward parallel software and hardware rendering architectures that have been

described to date. Figure 2.1 shows a basic overview of the standard, feed-forward rendering

pipeline, adapted for parallel rendering. The pipeline consists of two main parts: geometry

processing, and rasterization. Geometry processing usually is paralelized by assigning each

processor a subset of the primitives (objects) in the scene. During the geomtery processing

stage, 3D geometric data is transformed based on the view point to meta-2D space (the depth
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Figure 2.1: The graphics pipeline in a parallel rendering system. The processors perform
geometry processing. The renderers perform rasterization.

is perserved). Rasterization usually is parallelized by assigning each renderer a portion of

the pixel calculations. During the rasterization stage, the meta-2D data is transformed into

2D data, pixel, so that it can be displayed. The sorting can occur before the geometry

processing stage, in between the geometry processing and the rasterization stage, or after

the rasterization stage. Molnar et al. [32] have defined the three occurrences: sort-first,

sort-middle, and sort-last .

2.2.1 Sort-first

In a sort-first method, primitives are distributed early in the rendering pipeline, before

geometry processing, to processors ( a.k.a. renderers) that require the data to perform the

reamining rendering calculations (Figure sort first). This is done by dividing the display

screen into disjoint regions and designating processors for all rendering calculations that
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Figure 2.2: Sort-first method. Redistributes raw primitives prior to the geometry processing.

affect their respective screen regions. As a pre-process, primitives are stored either remotely

or locally on renderers in some arbitrary fashion. At the start of the rendering process, each

renderer determines the region of the scene they need to process and fetch all primitives that

fall into that region. This is generally done by computing the screen-space bounding box

of the primitive. Based upon how the primitives are initially laid out, the redistribution of

primitives to the renderers may drastically affect overall rendering performance.

This redistribution of primitives at the start of the rendering process is the main feature that

distinguishes a sort-first method. The main disadvantage of the sort-first method is that it

is scene dependent. Given a multi-renderer system, a renderer can be tasked to render more

data than other renderers, thus affecting the number of frames per second that it can output.

Although sort-first may appear impractical at first due to the rendering load balancing issue,

it uses much less communication bandwidth than the other approaches, especially if spatial

locality are utilized or if frame-to-frame coherence can be exploited. It is also important to
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Figure 2.3: Sort-middle method. Redistributes the primitives based on the screen-space.
This occurs between the geometry processing and rasterization stage.

note that as the number of renderers increases the sort-first method scales since the same

amount of data is rendered by more renderers, thus reducing the average workload.

2.2.2 Sort-middle

In the sort-middle method, primitives are redistributed in the middle of the rendering

pipeline, between the geometry processing stage and the rasterization stage. Geometry

processing and rasterization can be performed on separate processors or on the same pro-

cessor but on separate components of the processor, hence the separation can occur between

the two stages.

In a sort-middle system, geometry processors are allocated to a subset of the primitives to be

displayed and rasterizers are assigned a portion of the display screen. During the rendering
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process for each frame, the geometry processors transform, apply lightning... to all primi-

tives allocated to them and organize them with respect to the screen space. The geometry

processors then transmit all of the screen-space primitives to the appropriate rasterizer(s).

Since the two processors (geometry and rasterizer) may be separate sets of processor transi-

tion between the two stages of the pipeline is well integrated into the hardware process. A

possible way to implement the sort-middle method is to have two graphics cards and dedicate

one graphics card to processing the geometry and transferring the screen-space primitive to

the second graphics card for rasterrs, or they may time-share the same physical processor.

Sort-middle is general and simple, and has been explored in both software [17, 60] and

hardware [14, 1, 21] parallel rendering systems.

2.2.3 Sort-last

In the sort-last method, the sorting is done at the end of the rendering pipeline, when all

the primitives have been rasterized into pixels. In sort-last the processors are referred to

as renderers. Each processor is assigned arbitrary subsets of the primitives. Each processor

computes pixel values for its subset, regardless of its actual location in the display screen.

Renderers then transmit these pixels over a communication network to compositing proces-

sors, which processes the visibility of pixels from each renderer.

The visibility check stage is the last stage in the rendering pipeline. Renderers operate

independently up until the visibility check stage. After the visibility check stage, the pixels

must be transferred to designated display processors over the communication network. For

real-time application rendering high-resolution images, this can result in significantly high

data rates.
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Figure 2.4: Sort-last method. Redistributes the pixels to the display.

A sort-last system can be implemented in two ways. One method minimizes the amount of

data transferred by only distributing pixels that are actually produced by rasterization. This

is method is known as sparse. The second method transfers a full image from each renderer,

where null pixels will be interpreted as a valid pixel with an alpha for selective composite.

This method is known as full-frame. The second method is straightforward and can easily

embedded in a linear network and scales linearly. Since the renderers implement the entire

rendering pipeline up until the final pixel merging stage, they can operate independently until

then. This leads to a better load distribution across all renderers. Since the rendering can be

done on any renderer and not be tied to the screen space, unlike sort-first. There is a large

body of work in the area of sort-last. Molnar et al. presents a system that handles primitive-

per-processors [34] and Shaw et al. presents a system that handles multiple-primitives-per-

processor [45].
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2.3 Related Work

Parallel Rendering Architecture: Although our work is related to data management

and can be used along with any distributed rendering system, we will only discuss some of

the literature in this manuscript. There exists a plethora of work in distributed rendering

paradigms like SAGE, Equalizer, Chromium and Gigawalk [43, 16, 26, 2], where the rendering

is distributed among machines, each of which is connected to a display node – essentially on

a cluster of compute-display nodes. Prior sort-first or sort-middle systems [26, 2, 42] follow

a pseudo-centralized data management architecture in which the entire data is duplicated

at each node to reduce network load and avoid the movement of data. The data can be

managed in the traditional triangle-soup format [26, 2] or can be pre-organized using any

particular data structure, such as a graph [42], a space filling curve [59, 6], or an octree [4].

When there is a request from the application, this data structure can then be traversed to

locate the requested data [47, 25]. The data management handled by such data structures,

is very similar to a centralized system, where one central node would have the data, and

would send it to multiple rendering nodes to render their part of the scene. The resulting

frame would be stored on the rendering node until the central node tells the rendering node

to display the frame.

Some prior work [16, 43] follows a sort-last architecture, although [16] can also operate in

sort-first mode. In any sort-last architecture, setup of the display region and the rasterized

frame dominates the rendering time. Further, for the same size of the data, the scalability

of the system is dictated by the size of the frame buffer since the communication between

the nodes depends on the frame buffer size. Hence, performance decreases if the size of the

display is increased. In addition, an editing application needs back-indexing of the screen

coordinate to geometric primitive, which is also prohibitive in sort-last architecture. Finally,

the shipment of pixels to different display nodes for final sorting requires that if there is

a minor change in the viewpoint, and hence a change in the image, the network will be
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used to sort and recompose the entire frame in all of the display nodes, even if the data

did not change. To avoid all these limitations, [16, 43] are only used for navigation and not

for editing. Further, the data is often duplicated across different rendering nodes, while a

central node oversees the entire system and delegates the appropriate work to each render

node. Note that [16] leaves the data distribution approach open to the application.

Recent work like the ones proposed by Erol et al. [18], and Moloney et al. [35] present

different methodologies for load balancing of the rendering process which, often requires

that the data be rendered on one node and displayed on another node. Our system differs

from this because it primarily focuses on the efficient distribution of data, and each rendering

node is coupled to its own display.

It is evident that a sort-first architecture [33] is most conducive for editing purposes, since it

allows easy back-indexing. Therefore, along with our distributed data management system,

we use a simple sort-first parallel rendering system in our experiment. The aim is to distribute

3D primitives, early in the rendering pipeline, to processors that can do the remaining

rendering calculation. This leverages the low communication cost advantages of the sort-

first architecture, because 3D primitives are only sent once to the rendering node, and is used

by that node in rendering successive frames. Although some of the disadvantages of a sort-

first architecture, related to complex data handling strategies, are adequately remedied by

our novel data layout and management technique; others, including render-load imbalance,

are not eliminated. Our work uses a form of distributed shared memory management that

is similar to the ones proposed by Nieplocha et al.[36], Chapman et al. [9], and Fitzpatrick

et al. [20]. Unlike the aforementioned work, the shared memory management is integrated

into a memory hierarchy to improve the rendering performance of the system.

In summary, we present a new distributed data management method, which is loosely in-

tegrated with the rendering system. A simple parallel rendering method is also presented

that takes advantage of the tiled display architecture and the underlying data distribution.
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It should be noted that our data management system is complementary to the rendering

system; hence, any system that does not assume a specific data layout can use our data

management system.

Data Layouts: There is little prior work on interactive editing of large models and scenes,

primarily due to the conflicting need for a good data layout for interactive rendering and

imperative shuffling of data during the editing process. In order to achieve interactive render-

ing of large 3D walkthrough scenes, various acceleration techniques, like model simplification

and cache coherent data layouts on hard disk, have to be used. When the scene is mod-

ified, however, it is difficult to rearrange the layout to maintain a consistent out of core

data format or cache coherent data layout. Hence, the data organization on the disk de-

generates quickly after modifications and edits of the data, which significantly affects the

performance for interactive navigation. Sajadi et al. [50] have proposed solutions for inter-

active edits while maintaining interactive rendering speeds for Solid State Drives, however,

only for single display system. Finally, extensive work have been done in data partitioning

for interactive rendering on a single computer such as Far Voxels [23], Quick-VDR [61], and

other cache-oblivious data layouts [19, 57, 30, 4]. Our work is complementary to all of the

above work, since we do not propose a data layout method on a single computer, but propose

a data distribution method on multiple computers. On individual machines in our cluster,

any of the aforementioned data layout methods can be used to store the data allocated to

that particular node by our data distribution algorithm.

Generating an optimized memory layout of the data is a computationally intensive process;

therefore, it is only worthwhile to do for relatively stable data sets. If the data are truly

dynamic and change every frame, then the cost of computing a layout outweighs the benefits

since the layout is suitable only for one or a small number of frames. For such data sets,

the layouts are computed only after the positions of the models are stabilized. We assume

that the virtual environment data set undergoes changes that are found in a typical editing
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scenario. These models reside in the main memory during the editing operation, and the

layouts are computed after the changes are committed.

Unlike existing distributed rendering schemes that duplicate the data, our scheme partitions

the data. Such data partitioning has many advantages, out of which two are very relevant.

(a) This leads to data scalability where the data size in each SCD node is small enough for

interactive rendering and modification, even for very large 3D virtual environment models.

(b) Since the data size in each node is small, it makes the data layout schemes less relevant for

interactive navigation. Therefore, efficient model modifications can be done without the con-

cern of expensive data layout recomputation or its impact on interactive navigation. Hence,

our distributed data management approach, tied closely with the tiled display architecture,

seamlessly addresses the various requirements of massive VR environments. It allows not

only interactive visualization, but also interactive model editing during navigation, in an

effective manner.
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Chapter 3

Distributed Memory Hierarchy

We propose a distributed infrastructure and memory architecture for navigation and model-

ing, using a tiled cluster of SCD nodes, as shown in Figure 3.1. Each display node is powered

by a compute node. Each compute node is equipped with a CPU, GPU, a secondary storage,

and main memory. All compute nodes are connected via a network; in most cases, this will

be a local area network (LAN). All physical connections between the computer, display, and

network are depicted by the solid black lines in the figure. We assume that the displays

of the SCD nodes are arranged in a grid. We assume that an adjacency graph defines the

topology of the display grid and is stored at each SCD node. We consider an SCD node to be

adjacent to another if their displays are spatially adjacent or partially overlapping. The ad-

jacency graph can be automatically generated in this case at each SCD during camera based

calibration and registration process using several prior techniques such as those proposed by

Bhasker et al. [3], and Sajadi et al. [52, 51, 53]. Figure 3.2 shows such an adjacency graph

for a 3× 3 array of 9 projectors, the prototype system we use in this manuscript.
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Figure 3.1: Proposed Distributed Memory Hierarchy. The distributed architecture utilizes a
cluster of PCs to define a new memory hierarchy - from the fastest to the slowest – the Local
Cache (LC), Adjacency Cache (AC), Local External Memory (EM), and Virtual External
Memory (VEM). When the data are not found in a faster memory, it is searched in and
fetched from the slower levels of memory hierarchy.

3.1 Memory Hierarchy

We denote the secondary storage of each SCD node as EM (external memory) and the local

main memory as LC (local cache). For each SCD node, the collection of LC of adjacent

SCD nodes, as given by the adjacency graph is termed AC (adjacency cache). The dashed

red line in Figure 3.1 represents a prioritized route (via the communication network) to get

data between one compute node’s LC and its neighboring’s LC(s). For each SCD node, its

VEM (virtual external memory) is the combination of all the other SCD nodes’ EM , not
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just those of the adjacent SCD nodes. The dashed black line in Figure 3.1 represents the

route that connects the EM of all the SCDs together (via the communication network).

Note that the GPU memory is not included in our memory hierarchy design. Usually, slower

levels of memory hierarchy have larger capacity: for example, hard disk drives (HDDs) are

slower than main memory, but have larger capacity. Since network data are fetched from

the main memory, and data in the GPU, if required, has to be transferred via the main

memory, fetching data from the AC is faster than fetching data from the GPU. In other

words, transferring from the GPU memory to another machine is both slower, and has

smaller capacity, than using the main memory. Thus, including the GPU in the memory

hierarchy does not provide any advantage to our conceptual design. Further, the data that

is held in the GPU is rendered by that machine. In all likelihood, that the data are not

rendered at the same time by another machine. It may have been required in earlier, or may

be required in subsequent frames, however, during those times, that data will not be in the

GPU memory to be taken advantage of. Thus, including the GPU in the memory hierarchy

does not provide any application-dependent advantages either.

3.2 Memory Performance

In this section, we analyze the performance of these memory structures: LC, AC, EM , and

V EM , in order to establish a suitable memory hierarchy to determine the order in which

data has to be requested from these memory structures. For each SCD, as expected, fetching

data from its LC is the fastest, while fetching data from the V EM (EM of other SCD nodes)

is the slowest. The data fetch speed comparison between the AC and the EM requires more

discussion.
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Figure 3.3 shows the graph of time taken to transfer data of different sizes from the AC

and the EM to the LC. The time to transfer data from the AC includes the network

latency (a constant time overhead when getting the first byte, independent of the amount

of data transferred), and the sustained transmission rate (typically, this is a linear function

of the amount of data transferred). The y-intercept of the blue-line in Figure 3.3 represents

the network latency, and it is approximately 250 µs. The latency time can be isolated by

measuring the time to send just one byte of data (including the packet header overhead)

across the LAN. Similarly, the data transfer time from EM to LC includes disk seek time,

and other operating system specific variables including disk-cache. This is again determined

by the y-intercept of the red-line in Figure 3.3, which is around 7 ms. For HDD, it is

very difficult to isolate and measure this latency because at any given instance, the HDD

is servicing multiple requests thus contaminating the measurement for a particular data

request. Furthermore, there is also the scenario of read ahead where the HDD reads from

surrounding blocks and caches the data. In summary, from Figure 3.3 we see that the AC

is faster than the EM , and hence the experiments and the empirical data show that the

memory hierarchy from fastest to the slowest is LC, AC, EM , and finally, V EM .

HDD vs. SSD: In the context of using HDDs as EM , we can also use SSDs as EM . Given

that SSDs do not suffer from rotational latency and seek time, their number of Input/Output

Operations Per Second (IOPS) is significantly higher that of their HDDs counterpart, but

still orders of magnitude slower than main memory (LC). Therefore, it can be integrated

into the memory hierarchy between main memory and hard disk. Hybrid drive is an example

of such integration, where SSDs and HDDs are combined. A SSD could potentially replace

a HDD as an EM , in which case the memory hierarchy, specifically the EM and the AC,

will have to be restructured based on their relative performance. Currently, the latency for

fetching data from the SSD-based-EM may almost be the same as the network latency of

fetching data from the AC. From current technology trend, however, network bandwidth is

faster than HDDs, and even SSDs (e.g. InfiniBand, 10 GigE). Therefore, if improvements
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in network bandwidth were considered, fetching large amount of data from the AC may

be more efficient than fetching from SSD-based-EM, and the currently proposed memory

hierarchy still holds. Nevertheless, replacing HDDs with SDDs will drastically improve the

worst case scenario, where data has to be fetched from the V EM , which will be discussed

in section 4.

Although the proposed memory hierarchy may differ based on system configuration, as dis-

cussed above, once the hierarchy is fixed, our data distribution and management method-

ologies, which are detailed in the next section, will guarantee that any requested data will

be efficiently delivered to the requesting node.

Our distributed shared memory architecture is independent of the application and the appli-

cation data. Therefore, it can be integrated into any parallel rendering system. Currently,

we use a grid topology to take advantage of the natural tiling of the displays. For a different

topology, the optimal data distribution among the machines will change, but the overall

concept of LC, AC, EM , and V EM will remain the same.

3.3 Data Retrieval

In an interactive model exploration and editing application, we expect users to continually

interact with the data set. We expect them to navigate through it with different zoom

levels, interspersed with interactive edit, delete, or create operations, on the scene’s objects.

In order to facilitate such applications, we must manage the flow of data to ensure that our

system operates at an interactive rate.

We assume that the V EM , which is the union of all participating EMs, stores the entire

scene. Since data editing is one of our primary objectives, we want to allow efficient updates

during data modification. Unlike earlier work, which duplicates the data, we distribute the
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Figure 3.4: An example of data partitioning and retrieval for a system composed of 4 SCD
nodes: The 3D data volume is partitioned and stored on the EM of the four machines
(colored differently in the figure). The content that an SCD node displays is dependent on
the view point and view frustum, rather than what is stored on its local EM . The figure
shows the view frustum rendered by each SCD. The data required to be rendered by an
SCD has to be fetched from the EM and V EM , and stored on its LC for rendering. In
the example shown, all the data to be rendered has to be fetched from EM2, and relevant
portions are stored on individual LCs for rendering.

24



data to different V EMs, without duplication. Hence, we propose schemes for partitioning

the complete data set in the object space and store the partitions in participating EMs on

different machines. With such an object space partitioning, given a spatial region of interest,

the EM , in which the data of that region resides, can be easily calculated.

During navigation, the entire display (or a smaller user-defined region) is considered as a

single view frustum. This view frustum is divided among different SCDs based on the portion

of the view frustum that the SCD’s display occupies, with respect to the entire display. Only

the data that is inside an SCD’s view frustum is rendered by that SCD. Therefore, the data

required by each SCD for its rendering will be brought from different EMs, including the

SCD’s own EM , and stored on the SCD’s LC. In other words, the data stored on the LC

is determined by the image space (view frustum based) partitioning, while the data stored

on the EM is determined by the object space partitioning. Note that the partial view

frustums will be slightly different depending on whether the tiled display is a multi-LCD

or a multi-projector display. For LCDs, the view frustums will be partitioned across the

different machines (Figure 3.4), however, in a multi-projector display, although the data

partitioning will be same, the partial view frustums will have overlaps with adjacent partial

view frustums.

Whenever the global view frustum moves, each SCD node will recalculate its own view

frustum. The SCD node will request the necessary data to render the scene from the data

management system, based on the predefined memory hierarchy. The SCD node will first

request the data from its LC. If the data are not available there, it will then try the

AC (spatially adjacent SCDs’ LC), which will most likely have the requested data in their

individual LC, due to temporal coherence in the global view frustum during navigation. If

still not successful, the SCD node will calculate the location of the required data in the

V EM , which is unique since the data are partitioned and not duplicated. The SCD node
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will then fetch the required data from the appropriate SCD node’s EM . In this sense, our

proposed system is very similar to a single computer’s memory hierarchy.
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3.4 Data Partitioning and Distribution

Our distributed architecture eliminates the need for a central server, enabling each SCD

node to operate independently from the other nodes. Hence, in the proposed approach,

individual SCD’s rendering load (how much data the node has to render on its display) no

longer affects other SCD nodes, however, if any SCD node is under heavy load from servicing

data (how much data the node has to send to other nodes), the slowdown will propagate

to the other nodes. Hence, the challenge is to distribute the data set in a manner that will

prevent any single SCD node from having all the data, for any particular view frustum. On

the other hand, if the data are scattered across many SCD nodes, it cannot be efficiently

retrieved. We seek a data partitioning method that would balance the data load of individual

SCD nodes, while maintaining data coherency for efficient retrieval. This will minimize the

network latency for fetching data, which in turn minimizes the delay between frames. In

the following sections, we propose a data partitioning and distribution method that satisfies

these competing constraints.

The data for the following sections is collected and measured on our prototype system of a

3× 3 array of 9-projector display (Figure 3.5), which is described in detail in Section 4. We

use two different data sets for all of our results and analyses. To simulate scenarios where the

data set is larger than the memory available, we restrict the main memory size to a fraction

of the data set size. The first is a 4 GB City Model from University of California, Irvine,

which has a relatively uniform spatial distribution. We restrict the main memory size to 500

MB for this model. The second is a 20 GB Boeing model, with a highly non-uniform spatial

data distribution. We use a main memory size of 2 GB for this model.
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Figure 3.5: Top: This shows a display of the City model on our 3 × 3 grid of storage-
compute-display (SCD) nodes, projected from a 3 × 3 multi-projector display. Bottom: A
20 GB Boeing 777 model, displayed on the 3 x 3 SCD grid.
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3.4.1 Interleaved Data Partitioning

In this section we describe the modulo interleaving method, an interleaved data partition-

ing scheme for the 3D data, on a 2D grid, such as those commonly used in walk through

environments. With minimal effort, this technique can also be extended to apply to a 3D

grid as well. Let us consider the bounding box of the data, and let us designate one of the

planes as the ground plane. This is relatively easy for massive walk through models, where

the notion of the ground plane naturally exists. Let us consider that we have an array of

m× n = N SCD nodes. The ground plane is divided into a cm× cn grid, where c ≥ 1 is an

integer that signifies the granularity of interleaving. As the value of c increases, it indicates

a transition from a coarser, to a finer, interleaving. The data above each of the cm× cn grid

constitutes a cell, the smallest chunk of data to be given to an SCD node. Each SCD node

(i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n, is assigned to a cell (i′, j′), based on modulo functions

i′ = km+i and j′ = kn+j, where 0 ≤ k ≤ c−1. Figure 3.4 shows an example for m = n = 2

and c = 1. Figure 3.9 shows data distribution for m = n = c = 3. Data interleaving based on

space filling curves [59, 6], which are used to characterize locality, leverages spatial coherence

in only one dimension, whereas our proposed interleaving leverages spatial coherency in two

dimensions.

The modulo interleaving has two main advantages: uniform data distribution and uniform

network load distribution.

Uniform Data Load: A finer granularity of interleaving (c > 1) allows for a more uniform

distribution of data among EMs, even if the data are non-uniformly distributed in space.

Let the amount of data at the EM of the SCD node (i, j) be A(i, j). This is considered to

be the load at the SCD node (i, j). Figure 3.10 shows the A(i, j) for different SCDs as a

grayscale image for different values of c. The variance in A(i, j) across all of the machines

will measure how well-balanced the data distribution is, at the time of the calculation. Let us
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Figure 3.6: (a): This plot shows how changing value of c (granularity of interleaving) changes
the variance in the load across the SCDs. Variance stagnates beyond a certain c, indicating
that no further improvement in load balancing can be achieved by increasing c. The single
outlier to this trend is the lower variance for c = 10, for the Boeing data, whose highly
non-uniform distribution is shown in Figure 3.9. (b): This plot shows the maximum delay
between frames, with changing value of c. We denote the optimal c, having the minimal
maximum delay, as cT .

consider the Boeing model, a highly non-uniformly distributed data set. Figure 3.6a shows

that the variance decreases with increasing value of c, and stagnates beyond a certain c. Note

that due to the varying local density of the data in the model, outliers can sometimes be

seen, where their variance do not steadily decrease with increasing c, as shown in Figure 3.6a.

With such a high non-uniformity in the data distribution, other data balancing methods may

be utilized, such as the scene adaptive data balancing method, as detailed in Section 3.4.2.

Uniform Network Load: When an SCD needs spatially coherent data that are within its view

frustum to be rendered, finer interleaving indicates that the data need to be fetched from

multiple SCDs, thereby alleviating the network service load from any single SCD. Therefore,

the total time to fetch the data and render the frame is reduced by increasing the value

of c. Beyond a certain value of c, however, the granularity of the data is so fine that too

many units of data are requested from each EM , which would require multiple disk seeks

to each EM to fetch all of the required data. This overhead offsets the benefits of reduced
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Figure 3.7: Scalability of the Proposed Data Distribution Method. The performance of the
system remains the same as the size of the data, the disk transfer time, and the network
bandwidth are reduced by the same percentage. As the data size increases and the hardware
improves, our data distribution scheme scales with the new platform by efficiently utilizing
all the SCDs to avoid bottlenecks and to scale linearly.
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network bottleneck. Figure 3.6b illustrates this. The maximum latency to fetch the data

across multiple navigation paths, when navigating through two very large models (Boeing

and City), with the network bandwidth set to 1000 Megabits/sec, is shown in the figure.

The value of c, at which the maximum latency is lowest, indicates the optimal granularity,

and is denoted with cT .

To demonstrate the scalability of this data partitioning scheme, as the network bandwidth,

the size of the data, and the disk access time are decreased in the same proportion, the

maximum latency is plotted against increasing value of c (Figure 3.7). For example, when

the network bandwidth, data size, and disk transfer bandwidth are reduced by 50 percent, the

maximum latency is similar to when they were not throttled. The similarity of these curves

indicates that our scheme scales linearly, in terms of data complexity and hardware, such

that no single one SCD becomes a bottleneck. Note that cT also remains relatively constant

during these proportional changes. From Figure 3.6b, which studies the data distribution

for two models that vary greatly in size and spatial distribution, it is evident that cT is more

dependent on system parameters (like network bandwidth and HDD performance), than the

data characteristics. Therefore, after a limited number of trial and error, an optimal cT can

be easily identified for any particular system.

Comparison to a Close-to-Optimal Greedy Approach

Optimal data load balancing across all SCD nodes is an NP-complete problem, as presented

by Cormen et al. [12]. It has been shown by Graham [24], however, that an approximate

greedy approach exists, which is very close to optimal. In this method, the cells are first

sorted from largest to smallest (in terms of the amount of data it contains). The largest

cell is then iteratively assigned to the least loaded SCD node, as illustrated in Figure 3.9.

This approach is better than other existing approximate methods, however, it does not

consider the spatial coherence of the data and can encounter network bottlenecks for some
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Figure 3.8: This figure compares the variance (top) of the data distribution and the maximum
delay between frames (bottom) of our interleaved data distribution (blue), with respect to a
close-to-optimal greedy approach [24] (red) – for the City (left) and Boeing (right) model.
Our interleaved distribution achieves a data load balancing close to this greedy approach. It
also shows significantly lower maximum delay, benefiting from a spatially coherent layout.
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Figure 3.9: This figure illustrates the interleaved data partitioning method on a 3 × 3 array
of SCD nodes, for a 350 million triangles, 20 GB, Boeing 777 model (bottom), and a 4 GB,
110 million triangles, City model (top). The cells show the spatial partitioning. The height
of the cell denotes the amount of data in that cell. The number in the cell is the SCD id,
whose EM stores the data for that cell. The left column shows the data distribution without
any interleaving (i.e. c = 1,m = 3, n = 3). The center column shows the interleaved data
distribution for c = 3. The right column shows the data distribution using a greedy algorithm.
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Figure 3.10: This illustrates the load, A(i, j), for different values of c across the SCDs, in a
system with m = 3, n = 3, for the Boeing model. Brighter colored cells indicate a larger and
positive difference in the data load. Note that with increasing c, the load balancing is better,
and the data load at all SCDs converge to the average expected load.

of the view frustums. Figure 3.8 shows the difference in the variance of data across the

machines for the greedy approach and for our data distribution approach. It shows that our

method achieves a load balancing close to that of the greedy approach, however, our data

distribution performs better in rendering performance, due to better preservation of spatial

data coherence. Figure 3.8 shows the maximum delay between consecutive frames for our

approach and the greedy approach. For a small c, the greedy approach can still maintain

some semblance of spatial coherence (Figure 3.9) and hence, performs similar to interleaved

partitioning. As c increases, however, especially near optimal cT , the interleaved partitioning

starts to exhibit significantly better performance.

Effect of Memory Hierarchy on Performance

The memory hierarchy has a significant effect on the performance of the system. It is

unconventional, but we propose that the memory hierarchy should prefer the adjacency cache

over the secondary storage, for many common system configurations. In the experiments

that study the effect of the AC, we compare the maximum latency between two consecutive

frames, for different values of c, under three different conditions: (a) the proposed memory

hierarchy is used – LC, AC, and then EM or V EM (Figure 3.11a), (b) if the data are

not found in the LC, the data are directly fetched from the EM or the V EM , without

checking the AC, and (c) the memory size of the AC is changed (Figure 3.11c). The results
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Figure 3.11: Effect of AC on the Rendering Performance. All plots show the maximum
latency between frames for different granularity of data distribution (values of c), different
network bandwidth (Figures a and b), and different size for the AC (Figure c). The maximum
transfer volume for one node per frame is 3 MB, without any throttling. (a) If the data are
in the AC, then they are accessed from there; else, data will be retrieved from the V EM . (b)
If the data are not in the LC, then they are directly fetched from the V EM . (c) Increasing
the AC size does improve the performance, however, only up to a certain value.

of these experiments are shown in Figure 3.11. The first two experiments ((a) and (b)) were

performed with different network bandwidths, ranging between 500–1000 Mbps. In contrast,

the third experiment (c) was performed with different AC size, but the network bandwidth,

data set size, and disk transfer rate, was kept constant.

• Overall, Figure 3.11a’s maximum delay between frames is less than that in Figure

3.11b’s. This is because Figure 3.11b depicts a scenario where there is a cache miss,

and data need to be fetched, in worst-case, from the V EM , without checking the AC.

In this scenario, each level of the memory hierarchy will need to be checked, except

for the AC. In addition, the V EM is based on network bandwidth, and since this

bandwidth is throttled for this experiment, its performance is suboptimal. These two

conditions combined cause the total time spent requesting data on a slow network to

be greatly extended. Therefore, because this problem is not observed in Figure 3.11a,

it can be concluded that the use of the AC, before the V EM , greatly reduces the

maximum latency, thus, validating our proposed memory hierarchy.

• For c greater than cT , the increase in delay between frames is more pronounced in

Figure 3.11b than in Figure 3.11a. This substantiates our contention that the increase
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in latency is due to additional disk seeks in the EM , since when all data are accessed

solely from the EM/V EM and not from the AC (Figure 3.11b), this delay is more

pronounced than in the scenario where the AC is used (Figure 3.11a).

• Figure 3.11b shows that when the AC is not used, the performance stagnates, even

when the network bandwidth is increased. This is due to the fact that, for these

scenarios, disk access time is the performance bottleneck. Therefore, increasing the

network bandwidth will not improve the performance because the bandwidth will not

be completely utilized. This also leads us to conclude that, if the network speed

increases, the role of the AC will become even more critical since it will enable us to

utilize the bandwidth to its full extent, as shown in Figure 3.11a.

• Figure 3.11c shows that the performance of the system does improve with larger AC,

since it will result in fewer cache misses.
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Figure 3.12: This plot shows the maximum frame delay when an SSD is used, in place of a
HDD, for different AC size. The network bandwidth, data set size, and disk transfer rate
remain the same.
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Effect of Data Load Variance on Performance

Our previously proposed interleaved data distribution scheme has a characteristic that im-

pacts system performance: variance. This will be further discussed in the following sections.

To understand how load variance affects performance, we first need to understand why SSDs

were chosen for the experiment. The increase in maximum delay between frames, when

c > cT , as shown in Figure 3.6, was due to large number of disk seeks because of data

fragmentation at high values of c. This was further indirectly verified by the pronounced

increase in delay between the frames due to more disk access (seen in Figure 3.11b when

compared to Figure 3.11a). A direct verification of this hypothesis is also needed. Therefore,

an experiment is conducted using a device that has negligible (or constant) data seek time

as the EM , instead of using HDDs. We chose SSDs for this purpose.

The result of replacing HDDs with SSDs is shown in Figure 3.12 and this explains how SSDs

performs differently than HDDs. The parameters for the experiment are the same as the ones

used to generate Figure 3.11c. Figure 3.12 shows that the maximum delay monotonically

decreases when SSDs were utilized, compared to the high delay shown in Figure 3.11c, where

HDDs were used. This suggests that the increase in maximum delay, for c > cT , is primarily

due to the data seek time in HDDs. Let us discuss the case when the size of the AC is

zero. In this case, all data have to be accessed from EM/V EM since nothing can be cached

locally in the LC, or in the AC, since its size is zero. The curve in Figure 3.11c shows

the behavior of HDDs for this scenario. Notice the difference between this and the curve in

Figure 3.12. The reason for this is because SSDs do not suffer from rotational latency and

seek time, thus, the performance of the system is dependent on the maximum time taken to

transfer the required data from V EM . This maximum transfer time is proportional to the

maximum data serviced by an SCD node.
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Referring back to Figure 3.6a, which shows the variance of data (for the Boeing model) and

the maximum data handled by any SCD node. Notice the uncanny similarity of this curve

with the one shown in Figure 3.12 for AC size equals zero. The reason for this is because

when an SCD node requests data, it will fetch the data directly from the V EM . This process

is dependent on how well-balanced the data are. Well-balanced data imply that more SCD

nodes are available to service data to the requesting SCD node, resulting in a more uniformly

distributed transfer load across multiple nodes, thus, improving performance. This clearly

indicates that when the AC is zero, variance directly affects the system performance.

Figure 3.12 also shows that when the AC is small, it cannot hold all the data that are

rendered in the local SCD; therefore, even if the view frustum did not change, there will be

cache misses, resulting in data transfer on the network. The maximum delay between frames

for this scenario is inversely proportional with the AC size. After the size of the AC grows

beyond the size required to hold the locally rendered data, however, only a view frustum

change can trigger cache misses. This requires the SCD nodes to fetch the same amount of

data across the network, irrespective of the size of the AC. Therefore, the maximum delay

between frames is identical to each other. This is obviously shown in Figure 3.12, where

the curves form a cluster, when the AC size is greater than 2000 MB. This indicates that

when the AC is large, relative to the model size, variance has little impact on the system

performance.

In conclusion, when the AC size is zero, the variance in data load distribution is an im-

portant parameter that dictates the system performance. While the variance is important,

spatial coherency of the data assigned to the same SSD node is also important, as shown

by Figure 3.8. A modification of the interleaved data distribution algorithm, which will

allow for further reduction of the variance, while maintaining spatial coherency, exists. Such

algorithm will further improve the system performance, and is presented in the next section.
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3.4.2 Variance Reducing Scene Adaptive Data Partitioning

For any given model, the proposed interleaved partitioning scheme does not take into account

the spatial non-uniformity of model. The proposed scheme uses a fixed cell size and a cyclic

interleaved assignment of cells to machines, resulting in a load balance that still deviates

from the optimal solution, as shown in Figure 3.8. In this section, we present a method

to further balance the load by relaxing the size constraint of the cells by allowing them to

overlap across the boundaries of the adjacent cells, as illustrated in Figure 3.13. This allows

the cells to grow and shrink, based on the density of the data in each cell, to achieve a better

load distribution. We also constrain the extent of cell shrinkage and growth, to maintain

a high spatial coherence and still have cyclic interleaved assignment. Further, although we

allow cell boundaries to change, we do not allow for data duplication, to maintain a strict

data partition.

Figure 3.13, left, illustrates the initial bounding boxes. The data contained in these four

bounding boxes can be mapped to a 2x2 cell of SCD nodes. The amount of data contained in

these boxes need not be the same. After performing our proposed method, the bounding box

of each cell would either grow or shrink to reflect the distributed data. The new bounding

boxes, as shown in Figure 13 right, will either contain more or fewer primitives than before,

and when these data are mapped to 2x2 SCD nodes, we achieve better data balancing

across nodes. Figure 14, illustrates the entire algorithm that has four iterations of the above

processing shown in Figure 13, but on a 3x3 array of SCD nodes.

Let the interleaved-partitioning data, that was generated from the method shown in section

4.1, be the input into the this proposed data partitioning scheme. Our iterative data bal-

ancing procedure processes as many non-overlapping 3× 3 grids of cells (called metacells) in

parallel, as possible. These non-overlapping metacells are spaced to be at least one row and

one column apart, as shown in Figure 3.14. Each iteration of our load balancing procedure

40



Figure 3.13: In scene adaptive load balancing, cells are allowed to grow or shrink in a con-
strained manner (to retain most of the spatial coherence), while overlapping with their ad-
jacent neighbors to achieve better data load balancing. The left shows four different colored
cells (containing primitives of the same color), each assigned to a different machine. Note
that the red one is the most loaded machine, while the blue one is the least loaded. The right
figure shows the bounding boxes, and the triangle in each machine, after applying the scene
adaptive balancing scheme. The bounding boxes have grown or shrunk and now are overlap-
ping one another. Data are still partitioned across the machines without any duplication, but
they are more uniformly distributed across machines than before.
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has four steps. The metacells chosen in each step will overlap with two metacells processed

in the previous step. This constraint ensures that all of the metacells will be covered in the

four steps of each iteration. The processing that is done in each step is described below.

Let each cell in a metacell be denoted by pi, 1 ≤ i ≤ 9, and the amount of data be A(pi). The

goal is to reduce the variance for the load (the A(pi)) of the cells in each metacell, in order

to make the load distribution more uniform. We define a scale factor f , which is a factor up

to which an underloaded cell can expand its bounding box to include more primitives. Let

M denote the average load of all cells in the metacell. Let pm be the cell with the maximum

load among the cells in the Lc. The amount of extra load pm has can be calculated using the

formula Em = |A(pm) −M |. Our greedy approach to load balancing allows the bounding

box of the primitives in each cell to grow or shrink, to include or exclude primitives from and

to its neighboring cells, within the scale factor. The process starts with each cell having a

list of cells, Lc, which are the cells currently involved in the load balancing process. Initially,

this list includes all nine cells. A cell will take itself out of the process when there is no

neighbor capable of sharing its load, or when the cell has grown or shrunk by f . The process

ends when this list is empty.

Firstly, every cell communicates its load to all of the other cells in the metacell. If pm does

not have any neighbor whose load is less than M , then it does not have a neighbor capable of

sharing its load. In that case, pm broadcasts a message to all of the other cells and removes

itself from the Lc. If pm has a non-zero number of neighbors with load less than M , it starts

sharing its load with its neighbors. Starting with the least loaded neighbor pl, it shares the

load by expanding and shrinking the bounding boxes of pl and pm, respectively, along their

boundary. It can only expand or shrink its bounding box up to a factor of f , or when the

amount of data transferred is at most El = |M − A(pl)|, or Em, whichever happens first.

Following this, the new load of pm and pl are communicated to all the other cells in Lc. Next,

pm recalculates the Em to find the remaining load to be shared. The process then moves to

42



1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1st Step 2nd Step 

3rd Step 4th Step 

Figure 3.14: A 3 × 3 array of machines, with interleaving of c = 5, resulting in 15 × 15
cells. This figure shows the different metacells processed, in parallel, for each step of the
scene-adaptive balancing scheme. The cells not covered by a metacell in any of the previous
steps is shown in white. Note that in four steps, all cells are processed.
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Figure 3.15: The variance in the data load is reduced over multiple iterations of the scene-
adaptive balancing scheme. This figure shows the change in the variance for different values
of c, and for the bounding-box scale constraint of f = 0.5 (left), and f = 1 (right), for
the Boeing Model. Note that as f increases, relaxing the spatial coherence constraint, the
variance in the load is further reduced.
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Figure 3.16: The variance of the data load, resulting from the scene adaptive data balancing
scheme (in bolded green lines), is much smaller than the interleaved approach (in bolded blue
line), both for the City (left) and the Boeing (right) model. Note that, by design, the variance
for the scene adaptive balancing scheme cannot be worse than the interleaved approach.
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Figure 3.17: This figure shows the effect of the scene adaptive data balancing scheme for
different f (f = 0.5, 1.0, and 2.0), compared to the maximum delay between frames, for the
City (left), and Boeing model (right).

Figure 3.18: This figure is a pictorial representation of the amount of data in each cell for
c = 5, for a 3 × 3 system, where the amount of data is represented by a gray scale value.
From left to right, we show the results after 0, 1, 5 and 23 iterations, respectively. Since
the variation in the data size across different cells is large, we use a log scale conversion to
gray values between 0 and 1. The top row shows this result for f = 0.5, and the bottom for
f = 1. Note that for the former, the shrinking and growth in the bounding boxes are much
less than the latter. The zoomed-in views show the data partition in the same small region
of the scene, at the junction of the two red lines, and illustrate the growth and shrinkage of
the bounding boxes, which are allowed to overlap, to achieve this load balancing.
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the next underloaded neighbor of pm for further load sharing. This process continues until

either Am = M , until the process runs out of neighbors to share the load with, or until all

of pm’s neighbors’ bounding box have grown to the maximum possible extent. When this

process stops for pm, it communicates to all of the other nodes and takes itself out of the Lc.

The process then moves to the cell with the next highest A in the Lc. This continues until

Lc is empty. Note that since the data only travel from more loaded cells to less loaded cells,

and the process converges as the load of each cell reaches M , no cell can ever shrink to zero.

The pseudocode of this scene adaptive data distribution scheme is detailed in Algorithm 1.

Algorithm 1 Scene Adaptive Data Balancing

StepCount← 4
BLK ← Blocks inside grid
D ← Maximum distance between cell
NC ← Number of cells in block
for all StepCount do

for all BLK do
Sort cell by data size
T ← total data size of all cells
AV GSIZE ← T/NC
DELTA← A non-negative number (∼ 5% of the AVGSIZE)
while not All cells visited do
C ←cell with the least amount of data
OC ←all other cells with more data than C
CLOAD ←data size of C below AVGSIZE - DELTA
if CLOAD < 0 then

for all OC do
if OC’s distance from C < D then
OCLOAD ←data size of OC above AVGSIZE + DELTA
if OCLOAD > 0 then
MIN ← minimum of |(CLOAD, OCLOAD)|
Re-allocate MIN amount of data from OC to C

end if
end if

end for
end if
Remove C from list of cell to visit

end while
end for

end for
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Figures 3.15-3.17 presents the results for this scene adaptive data distribution scheme. Figure

3.15 shows the variance of the data distribution, after each iteration, for different values of c.

Each iteration progressively reduces the variance, and it converges in just two iterations. Note

that as the spatial coherence constraint is reduced with a higher f , the data load variance

is reduced even further. Figure 3.16 shows that data balancing using the scene adaptive

data management is always better than the one achieved by interleaved data distribution.

For any given f , note that as the cell size decreases (c increases), the bounding box gets

smaller, and the amount of data change allowed in the bounding box also reduces. For

models with non-uniform distribution of data, such as the Boeing model, this small change

in the bounding box is not enough to balance the data load. Therefore, as the value of c

increases, the variance in the data load also increases, especially for models with non-uniform

spatial distribution of data.

In terms of actual system performance of the walk-through rendering application, Figure

3.17 shows that the scene adaptive data balancing scheme’s maximum delay between frames

is lower than that of the fixed interleaved partitioning scheme, for different values of f . First,

note that the maximum delay between frames after scene adaptive balancing is always lower

than that from the interleaved data distribution, irrespective of the value of f . Next, similar

to the preferred value for c for lowest delay between frames, this graph shows a preferred

value for f . For example, for Boeing model, the maximum delay is minimal for f = 1. For

f = 0.5, the data load is not well-balanced. For f = 2.0, the spatial coherence of the data

is not adequately maintained. f = 1 provides the preferred combination of a balanced load

and spatial coherence, yielding the best performance. The effect of f is much more dramatic

for the Boeing model (with non-uniform data distribution) than for the City model (with

almost uniform data distribution). For the City model, the initial data distribution is almost

uniform, hence the effect of the scene adaptive data balancing yield similar results for each f .

Note that f = 2 overlaps with f = 1 for c = 1 to c = 20. From this we find that there exist a

sweet spot in f , which balances spatial coherence with similarity in load, to achieve optimal
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performance. Finally, as expected, the effect of changing f on the system performance is

much more dramatic for a non-uniformly distributed model (the Boeing model) than for a

uniformly distributed model (the City model), due to the much lower variance in the data

distribution with a larger f .

Figure 3.18 shows the gray scale visualization of the amount of data in each cell, for different

iteration count, when the scene adaptive data balancing scheme is applied on the Boeing

model. It is evident from the decreasing contrast of the visualization that the load is itera-

tively more well-balanced. This is shown for two different values of f . With a higher f , the

load is better balanced, but has less spatial coherence. Since there is no data duplication, f

affects the spatial coherency of the data by controlling the spatial range in which the data

can be moved from its original interleave partition. For example, in Figure 3.17, a value of

f = 2.0 would allow the data block to move up to a maximum of two unit blocks away from

its original interleave partition.

3.5 Navigation and Modification

Based on the results of the scene adaptive data load balancing scheme, data are distributed

to individual SCD nodes and stored in their EM . During the virtual navigation through

the scene, the view frustum is changed based on the user’s input and this view frustum is

broadcast to all SCD nodes. Each SCD node would compute the part of the view frustum

it is responsible for, as shown in Figure 3.4, and fetch the required data for this partial view

frustum from the fastest level of the memory hierarchy, where the data are present.

After the initial data distribution is finished, a meta file is used to locate the required data.

A look-up table is generated that consists of the object ID, the object’s bounding box, all

of the page IDs that contain the object data, and the SCD node’s ID, for which the pages
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Figure 3.19: The cells affected by the scene adaptive balancing scheme, following a data
modification for two differently sized view frusta
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reside in (for the V EM). In addition to the look-up table, the meta file also contains the

geometry of the interleaved grid that was used to distribute the data. At run time, if an

SCD node’s view frustum intersects a grid cell (bucket), the SCD node will fetch all data

pages associated with that grid cell and store it in its LC for rendering. If the amount of

data that needs to be fetched exceeds the LC, out-of-core algorithms are used, which will

negatively impact the rendering performance. Information about the object’s bounding box

may be used to compute the image-space projection-error, in order to choose the appropriate

object level of detail (LOD) that has to be rendered.

Interactive editing applications expect users to continuously modify and interact with the

model. In addition to operations such as addition and deletion of objects, our proposed

system supports many edit operations such as scaling, translation, rotation, and shearing.

Such modifications are assumed to occur at the object level, which are well supported by

a page-based data layout [48]. When the user performs a delete operation on the selected

data, data are removed from all the nodes that have this data. Similarly, during an insert

operation, new data are inserted, in an interleaved manner, based on their object space

location, to all of the relevant nodes. Note that only the objects that are displayed can be

edited. So by design, if an object is selected for editing, all page blocks associated with that

object would be in the memory (LC) of SCD nodes that are displaying the object, or being

streamed using out-of-core techniques. Any edit operation done will be updated across all

SCDs. Once the object has been deselected, the SCD node that currently renders the edited

object (and the one with smallest id, if there are multiple nodes rendering the object), would

commit the change to the V EM , and a message is sent to all SCD to invalidate the object

in their LC. The updated object must then be fetched from the V EM . Transformation

parameters are sent to all SCD nodes rendering the object. With every insertion or deletion,

the data can change considerably – both in terms of their size and their spatial organization.

Therefore, through interleaved distribution, data are inserted to, or deleted from, the data

management system first, followed by the scene adaptive data balancing. The distribution
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achieved by using this approach is almost identical to the one achieved for modified data

detected during system startup.

As a system design principle, the scene adaptive data balancing step is performed during

the idle cycles, to minimize the impact on the users’ interaction. To make the process more

efficient, the re-balancing step is run only on the cells which belong to the metacells included

in, or adjacent to, the metacells in the view frustum (Figure 3.19). Since the constraints of

the growth and shrinkage of the bounding box keep the data local, and since it is reasonable

to assume that data edits primarily occur within the view frustum, having this restriction

results in a fast re-balancing.

Our proposed system treats any data modification (e.g. translation, scaling) as a deletion

of the existing object, followed by an insertion of the modified object; however, these edit

operations may take multiple frames to balance. For example, for scaling, the user has

to select the object and scale it to the desired size, over multiple frames. Similarly, for

translation, the user has to select the object and move it to a different location, over multiple

frames. Instead of committing multiple deletions and insertions for each frame, upon the

object selection, the pages in each EM are marked. When the user is performing the

operation, each SCD node will render the modified data using the transformation parameters.

Once the user is done with the modification, indicated by releasing the object, the marked

pages are deleted, followed by an insertion of the modified object. This strategy has two

advantages. First, the user continues to get interactive feedback of his modifications while

he is performing the edit. Second, the network and EMs are not taxed with excessive data

movements, only those necessary for the modification to be committed.
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Chapter 4

System Analysis

We will now analyze the proposed data management scheme on a 3 × 3 multi-projector

display. Note, that since the technique proposed is for distributed data load balancing and

data management, the technique will work on other configurations, regardless of its display

technology. We have applied the technique to various configurations ranging from a 2 × 2

multi-projector display to a 5× 5 multi-tiled lcd based display. Although our implemented

system includes parallel rendering aspects, the proposed method is not a rendering load

balancing technique.

System Infrastructure: Our distributed interactive navigation and modification paradigm

has been implemented on a 3× 3 grid of SCD nodes, projected from a 3× 3 multi-projector

display, in our lab (Figure 3.5). Each SCD node consists of a 1024× 768 Epson and Canon

presentation projector, of 3500 lumens brightness, and an Intel i5 3.3GHz PC. Together,

they form a 8′ × 6′ display. All of these PCs are connected over a gigabit LAN. Each PC

is equipped with an nVidia GeForce 560 GPU (1 GB), and 8 GB RAM. In order to test

our architecture and associated methodologies, and in order to simulate the effects of having

significantly smaller main memory than the size of the model, the main memory was limited,
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based on the size of the model. For example, the PCs were limited to 500 MB RAM per

PC for the 4 GB City model, and 2 GB RAM per PC for the 20 GB Boeing model. In

the prototype, textures were not considered; however, our architecture does not have any

inherent limitation that would prevent it from being extended to textured models. For the

registration of geometry and color, existing techniques, presented by Bhasker et al. and

Sajadi et al. [3, 51], were used.

The application is written in C++ using OpenGL graphics library. All prioritized com-

munication route were implemented in software. Out-of-core rendering for the GPU was

utilized to stream the updated data to the GPU. All the data primitives are triangles. For

editing tasks, all objects that can be edited are identified by an ID, and edit operations are

performed on the object, using the object’s ID.

Data Layout on EM: The secondary storage uses the page-based data structure data

layout proposed by Sajadi et al. [49] to store the data in a cache-coherent manner, on the

disk. In this approach, the geometric data stored in a disk-page (of size determined by the

operating system) is self-contained. For example, for each triangle stored in a page, all of its

vertex information are also stored in the same page. The group of triangles stored in a page

are all related: for example, they may belong to the same LOD of the same object, or they

may be spatially close and hence may belong to the same cluster. A disk-page hierarchy is

built by clustering the primitives of the scene in terms of their spatial proximity, and laying

them linearly on the disk in multiple pages. A K-d tree is generated for the bounding boxes

of the primitives for each disk page. The leaf nodes of the K-d tree have pointers to the

disk-pages, and not individual triangles. This K-d tree is stored as a metadata in each SCD

node, and is used by the data-access sub-system middleware in order to easily locate, and

fetch, the required object data in the V EM . The rendering system, when it has to fetch data

from the V EM , will interface with the data access subsystem by requesting specific pages of

data. A page-based data layout utilizes the properties of the physical disk to efficiently read
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and write data between main memory and secondary storage. The page size used is equal

to that of the hard disk’s block size, based on how the hard disk is formatted. Thus, each

page can be read in its entirety from a single hard disk block. If the page size is not aligned

with the hard disk’s block size, a page may reside in multiple blocks, thus, introducing more

I/O overhead.
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Figure 4.1: System performance when c is set to the optimal value of 20 and f is set to
1. (a): Maximum and average delay between frames when system parameters are at their
default values. (b): Resource utilization. (c): System performance with different network
bandwidths. (d): System performance with different HDD transfer speeds.

Performance analysis: Using the optimal value of c(20) along with the bounding box scale

constraint f(1), we performed a series of test to determine how the system parameters affect

the overall system performance. The system parameters are: LC, network bandwidth, and
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hard disk speed. Figure 4.1 shows how the LC size and the network bandwidth can affect

the maximum delay between frames. Graph (a) shows the effect of the LC size on the system

performance. Graph (b) overlays the average LC load with the average network utilization

and average hard disk utilization. Note how the average LC load remains constant through

out all LC size. This is due to the fact that he LC size is less than the data set size, therefore,

the SCD node would try to cache as much data as its LC can hold. Graph (c) measures the

impact of the network bandwidth on the system. When the network bandwidth is limited

to 50 MB per second, the delay between frame is almost double the typical value in the

previous graph for each LC size. Therefore, the network bandwidth is crucial to the overall

system performance. The hard disk transfer speed graph also shows a similar behavior.

Frame Synchronization: We use a simple distributed algorithm to achieve frame syn-

chronization across multiple SCD nodes. One SCD node acts as the main controller and

broadcasts a series of timed messages to all other nodes. The other nodes will measure

and compensate their delay from the main controller upon receipt of these messages. This

achieves a synchronization up to at most one frame (i.e. 32 milliseconds) difference, con-

sidering standard projector refresh rate. According to Shneiderman [54], a system response,

to any user interaction, within 80 milliseconds is perceived to be instantaneous by humans.

Our system can respond to any user input within 32 milliseconds. It may take up to an addi-

tional 32 milliseconds for the frames to be synchronized. Therefore, the maximum response

time for the system is 64 milliseconds, which is well within Shneiderman’s tolerance level;

hence, it is imperceivable. The rendering system can operate in two synchronization modes:

blocking and non-blocking. In blocking mode, all SCD nodes will announce when they are

ready to swap the framebuffer. Once all SCD nodes have acknowledged that they are ready

to swap their framebuffer, they will all perform the operation at the next synchronized time.

In non-blocking mode, each SCD node will swap its framebuffer, independent of the other

SCD nodes. After this action, it will wait for the next synchronized time. If a better syn-

chronization method is desired, one can use an expensive hardware based solution, like the
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Genlock (as in ATI FirePro S400) or G-Sync (Nvidia). G-Sync makes it possible for the

display refresh to be synchronized with the GPU render rate, thereby solving the problem

of synchronizing the system display output with the display’s screen refresh rate.

Model Processing: Our method is specifically geared towards massive models. Therefore,

it holds significant benefits for very large environments. Using our 9 SCD nodes system, the

Boeing model can be navigated, and objects can be interactively modified, at an average

frame rate of 45 fps, even when each SCD’s RAM is limited to 2 GB. On any given SCD

node that has 4 GB of usable RAM, the entire City model can be loaded into that machine’s

RAM, however, the best frame rate achieved is 5 fps. This indicates that the main bottleneck

is due to the rendering of the model. When using the model on our 9 SCD nodes, since the

model is much smaller than that of the Boeing’s, the RAM is limited to 500 MB, but it can

be navigated and modified at an average frame rate of 57 fps. This clearly demonstrates the

advantages of our distributed techniques. The one-time pre-processing, including the page

based data layout (using the technique proposed by Sajadi et al. [49]), the interleaved data

partitioning, the pre-edit model adaptive data balancing, and the movement of the data

to different SCD nodes, takes around 150 minutes for the Boeing model, and 45 minutes

for City model. A 4K page size was used for the page based layout. Interactive rendering

rates are still maintained, even after dynamic balancing is performed following any edits.

Our implementation does not use levels-of-detail (LODs), however, the distributed data

management technique does not depend on the use of LODs. Each LOD of the entire scene

can be distributed independently to all SCD nodes using the same method described in

previous section. It is important to note that our method distributes the data spatially;

therefore, all the LODs of an object that occupies the same space, will be stored within the

same cell. The rendering node can decide on the appropriate LOD to render, and fetch the

required data from the nearest storage location in our memory hierarchy. Consistency of the

choice of the appropriate LOD, for the same model, for any given viewpoint, across different

56



SCD nodes, is guaranteed because the same code that is running on each SCD node is the

same code that is running in our distributed data management and rendering platform.

Rendering vs. Data Management: Most existing systems focus more on the parallel

rendering, leaving the data management to the application developer. Our distributed data

layout and management system is complementary to all prior parallel rendering method. In

other words, any parallel rendering system can use our distributed data layout and manage-

ment system. Figure 3.17 shows the results of one simple parallel rendering system, in which

our system achieved an average frame rate of 30 fps for 350 million triangles. In comparison,

Equalizer gets around 2.5 fps for a 225 million triangle model (refer to Figure 24 of [16],

although it should be noted that the machines and GPUs used in that work is older and

slower). We believe that the performance of parallel rendering systems, such as Equalizer,

can be improved, by using our data management system.

Compression: It may be argued that data compression can be used to reduce the stor-

age requirements, which will reduce the need for distributed storage, network data transfer

time, and even out-of-core processing and rendering. While compression does reduce storage

requirement, decompression of data for each page, however, will increase the latency and be-

comes a bottleneck for real-time rendering and interaction. As illustrated in Table 4.1, the

decompression time for a small block of data – even when using a bitstream Huffman encod-

ing, best known for its fast decompression – is so large that it prohibits real time rendering.

If a transfer volume of 3 MB were fetched from the V EM for a particular frame, using 4K

page size, it would take approximately 352 milliseconds to decompress. On a gigabit LAN, 3

MB take approximately 30 milliseconds to transmit. If the data were compressed by a factor

of 2, it would take approximately 15 milliseconds to transmit the data over the LAN, and

an additional 352 milliseconds to decompress the data. Therefore, the gain in reduced data

transfer time is overshadowed by the overwhelming cost to decompress the data page.
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Page Size Compressed Size Decompression Time
4K 1.8K 470 µs
8K 3.61K 811 µs
16K 7.18K 1411 µs
32K 14.3K 2296 µs
64K 28.5K 4351 µs

Table 4.1: This table shows the compression size and decompression time, for different page
size.
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Chapter 5

A Collaborative SAR Workspace for

Modeling of Massive 3D Data

Today’s trend is to get rid of personal offices and create large expansive work-areas where

multiple individuals are placed in cubicles. The goal of such an environment is to foster

a higher degree of collaboration and dialogue, which is not possible in an environment of

closed door personal offices. Though, tools to interact with our personal data in our small

personal world has exploded in the past few years, there are hardly any collaborative tools

that can match the scale and modality of interactions that such work spaces can ideally

trigger. There have been a growing body of CSCW and HCI work exploring the questions of

creativity and collaboration to accomplish complex work, primarily in the area of technologies

aiding collaboration methodologies [22, 11], yet all we see in such workspaces today are long

stretches of white boards which hardly offer the digital tools and capabilities as we are used

to in our personal environment.

We present a collaborative spatially augmented reality (SAR) workspace that is designed

specifically for the evolving multi-user workspaces of today. This is a workspace where the
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transition between personal work environment and shared work environment is minimized,

thus enabling users to collaborate more comfortably. In this workspace, one does not need

to huddle in front of a desktop, but has the freedom of using the huge amount of wall space

(with or without whiteboard) available to him along with a plethora of interaction modalities

(e.g. keyboard, mouse, laser pointer, gestures) to interact with other users and data. We

show that the backbone of such a system can be achieved by utilizing multiple machines

(maybe via clustering of all the machines used by the users in this workspace) to provide

a very powerful computing environment. However, this work specifically focuses on how

to use these machines in an efficient manner to provide a rich interactive and collaborative

environment that is transparent to the user. This allows the user to use the displays as

mediums of collaboration with the data and other users via any input modality suited for

the particular situation and scenario. To demonstrate this capability, we use the example of

collaborative modeling of 3D massive data. The rationale behind choosing this application

is many fold.

1. A massive 3D model is impossible to interact with using a single computer. A backbone

of a conglomeration of computers is essential to do anything collaborative or interac-

tive with such models. This provides us an opportunity to justify using a complex

computing backbone and demonstrate the critical capability of making it transparent

to the user.

2. A 3D modeling environment provides us with enough visual and interactive complexity

that would easily encourage multiple users to use the full capability of the collaborative

SAR system that can provide a rich set of tools for interaction of and with the different

number of displays.

3. Finally, today’s 3D models are getting exponentially large and complex with no collab-

orative tools to match its scale and complexity so that multiple users can work easily
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with such models. Therefore, there exists an opportunity for the methods proposed to

be readily adopted in such applications.

5.1 Challenges in SAR Workspace

We present the first complete spatially augmented reality (SAR) workspace that prompts

collaboration – a model workspace that can be easily deployed and would allow natural

collaboration modalities. Users can create separate workspace to work on their own and

create a shared workspace whenever collaboration is needed. We present a flexible distributed

architecture that can be easily adapted to numerous visualization and collaboration needs

by adding different modules to the base architecture.

Using modeling of massive 3D modeling as an example application, we demonstrate the

following.

1. How a collaborative SAR workspace can be build over a complex multi-machine archi-

tecture?

2. How it can offer key capabilities of reconfiguring displays to multiple numbers, shapes

and size to foster multi-group interaction in a large multi-user workspace?

3. How it can offer key capabilities of interacting with the data and other users via the

displays (e.g. committing an edit operation or checking out a small 3D object from

the entire massive model) and a large number of input modalities like lasers, gestures,

keyboard and mouses?

4. How such a collaborative SAR environments can be used for many different collabora-

tive needs?
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5. Finally, we point out through a discussion how most aspects of this collaborative SAR

system is easily generalized to other applications thus providing a rich set of tools for

future researchers to develop such collaborative applications.

5.2 Related Work

Tiled multi-projector displays have been used in VR and visualization environments for a long

time [13, 5]. However, they tend to be large inflexible systems driven by a centralized server

and hence maintained by a crew of trained professionals. Different distributed rendering

frameworks have been proposed to use them effectively for visualization of large data [44, 16,

26, 2, 29]. More recently, the work by Raskar et al.[41] proposes the idea of using immersive

displays in office environments to create completely immersive 3D worlds where telepresence

can be achieved in the truest sense. However, limited resources (e.g. network bandwidth)

and imperfect methodologies (e.g. real-time 3D reconstruction of large scenes, holographic

displays) has inhibited the progress of this grand vision. Our vision stands in between these

two. We envision interactive high-resolution displays to be presented all around the user

making them available to the user ubiquitously. Moreover, we envision them to be used as

interaction medium to interact with data and other users in a shared collaborative workspace.

We consider a distributed network of projector-camera systems mounted on pan-tilt units

(PTU) connected to a backbone of PC clusters to create a new paradigm of collaborative

spatially augmented reality (SAR) workspace to realize this vision.

Various form of augmented reality (AR) systems, where integration of virtual entities in

the user’s physical environments, have been proposed [31]. Single static projector-camera

unit, lighting a large static surface (either wall mounted or on top of a table), has been

explored to create multi-user interactive displays [27, 55]. The work by John Underkoffler

[58], titled Luminous room, is a partially immersive spatially integrated environment that
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uses a single projector to generate 2D images on static flat surfaces in a room to enhance the

user’s environment. In the domain of multiple projector-camera units illuminating a static

planar surface creating large display walls, Bhasker et al presents a distributed network

of projector-camera systems and associated distributed registration methodologies[3] that

can help the user to repurpose the shape and size of a large display wall by changing the

number of projector-camera units and their rectangular array configuration to adapt to

different sizes and form factors of different visualizations (e.g. a 16:9 aspect ratio for a

map visualization and 4:3 aspect ratio for biological visualization). Roman et al presents a

distributed interaction paradigm for interacting with 2D applications (e.g. multi-user graffiti,

emergency management, digital bulletin board, interactive collaborative map annotations)

on such a display formed by a network of projector camera systems[46]. Some systems have

merged synthetic images with real scenarios for a static user or view point. The work by

Dorsey et al provides a useful framework in the realm of theater set design [15]. In this work,

a pre-distorted image from multiple devices appears correct when projected onto a static

curved backdrop of the theater. Finally, Illumiroom from Microsoft uses multiple projector-

kinnect units to generate images on the static 3D world (e.g. furnitures) surrounding the

gaming console (usually a TV) to create a greater sense of immersion. Note that 3D cameras

are used here instead of 2D cameras in all the other aforementioned works.

The concept of projecting using a single dynamic projector-camera system on static envi-

ronments has also been explored in the past. [38] created the first wall or ceiling mounted

steerable display using a single projector-camera unit. This unit augmented interfaces on

static, mostly planar, 2D objects/environments [37] to providing a novel interaction modal-

ity. [40] presented multiple uses of hand-held single projector systems augmenting real world

physical objects and [8, 7] showed how multiple users can interact with each other on a

large virtual space using their personal mobile hand held projector-camera units. The work

by Sueishi et al [56] explores the use of a motorized mirror to move the display output of

a single projector around to light moving objects. This work focuses on tracking moving
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objects in the real world and orient the mirror such that the object is always illuminated by

the projector.

For this work, we still operate in the domain of a static environment and demonstrate the

power of having multiple dynamic (or steerable) projector-camera units. Further, we bring

in the idea of using such dynamic units to dynamically change the association between the

users personal workspace and a shared collaborative workspace. This flexible reassociation

of different devices brings in an hitherto unseen flexibility for users to segment or merge

personal displays from and to shared displays respectively. This enables the creation of a

novel collaborative SAR workspace where a plethora of dynamic display units are easily

available as a resource to connect these displays personally or in a group and interact with

the data and other users (local or remote) through the available displays.

CD 

AD 

Camera View 

Figure 5.1: Left: This shows an active display node (ADN) with the projector, camera and
a pan-tilt unit (PTU). Right: The projection of the ADN here is indicated by the green
boundary. A conglomeration of ADNs called a conglomerate display (CD), is indicated by
the red boundary. The orange view frustum indicates what an ADN’s camera would see on
the wall. Note that the ADN’s camera field of view is larger than that of its projector as is
common in commodity devices.
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5.3 System Overview

Our collaborative spatially augmented reality (SAR) system consists of a conglomeration of

active display nodes (ADNs) mounted on the ceiling of the workspace. Each ADN consists

of a projector and a camera, mounted on to a pan-tilt-unit (PTU). All the ADNs are then

mounted on rails that extend from the ceiling of an office (Figure 5.1 and 5.2). Each ADN

is connected to a computer (can be the PC of one of the users in the shared workspace)

and more than one ADN can connect to the same computer. This conglomeration of ADNs

are connected via a network. Therefore the backbone architecture of collaborative SAR is

very simple, a conglomeration of ADNs driven by a PC cluster (Figure 5.3). Each ADN

is capable of movement, which is achieved by the PTU. The projector that is mounted on

the PTU is analogous to a flashlight in a person’s hand. The PTU can orient itself in any

configuration thereby pointing the projector at any place in the office. Thus a display can

be placed anywhere in the workspace to create a display space. When an ADN is positioned

contiguous to others, the system can create a larger seamless display by aggregating all

spatially contiguous ADNs, effectively increasing the size and resolution of the display. We

call this grouping of ADNs a conglomerate display or CD (Figure 5.1). With this capability,

users are able to move the ADNs around to form smaller individual workspace or to join the

ADNs together to create one or more CDs of different size and form factor. Our collaborative

SAR workspace is shown in Figure 5.2.

5.3.1 Interaction for Display Reconfiguration

Displays in personal computing environments (e.g. PC, tablet, phone) today are becoming

of such small form factors that they cannot be used in an ergonomically comfortable and

functionally efficient manner for long collaborative sessions. On the other hand, people are

comfortable sharing a larger physical space (e.g. a meeting room, or a table surrounded
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Figure 5.2: This shows our SAR collaborative workspace made of four ceiling mounted ADNs
creating two CDs each with two ADNs.

by chairs in a big workspace) for collaborative dialogue and discussions using devices of

much larger form factor like white boards and smart boards. So, it is imperative that if

the users are provided with the capability of bringing such a larger form factor display

anywhere in their shared physical space, they will be encouraged to use this for collaborative

purposes. We therefore provide interaction capabilities by which the user can move the ADNs

using gesture or a laser, and connect them together in different configurations by a simple

mechanism of placing them in a spatially contiguous fashion. These different configurations

include changing the number, position and configuration of the ADNs forming the CDs that

changes their size, resolution and form factors accordingly. This allows users to have a set

of displays that can change over time based on the specific need of their application.
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Figure 5.3: Our architecture is a general one that consists of each ADN connected to a
computer which are connected by a communication network.

For example, a few users may be using a large display of 4K resolution to visualize a large

3D model. When they each want to check out a different part of the model for editing,

they can segment the display into three: (a) one of 2K that still shows the whole model;

and (b) two other displays, each of 1K size can be segmented away from the 4K display

to create two smaller environments for the users to edit the respective model parts they

have checked out. Once they are done with editing, merging the personal 1K displays with

the 2K shared workspace commits the changes to the main model and brings back the 4K

shared display. Such interactions are only possible when the user has extreme flexibility to

reconfigure the multiple ADNs into different number of differently sized and shaped displays
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Figure 5.4: The top row shows the ADN placement before registration. The bottom row
shows the grouping of the ADNs to create the CDs, with various configurations. Some exam-
ples of such configurations are: (a) one CD, made up of 2x2 projectors; (b) one panoramic
CD, made up of 1x4 projectors; (c) two panoramic CDs, each made up of 1x2 projectors;
(d) one CD using 3 projectors in a non-rectangular fashion, and another CD made up of a
single projector; (e) one CD made up of 2x1 projectors, and two CDs made of a single ADN
each.

as shown in Figure 5.4. The different colors indicate the system identifying the different CDs

by their conglomeration via spatial contiguity. This is what we call interactions for display

reconfiguration.

This interaction is enabled by the camera on each ADN that provide visual input to trigger

movements of the PTU to move the display around. Users can use a laser pointer or hand

gesture to achieve the movement and hence the reconfiguration. To alleviate the user from

situations of making complex decision like (a) are the displays connected or segmented with

or from each other; or (b)do they have enough overlap to create a nice seamless display;

the system provides intuitive visual feedback. When the user selects an ADN to move, it

is highlighted as white. When the user starts moving an ADN, the boundaries of all other

ADNs are highlighted with red. As the user moves the ADN, its white projection allows

tracking of the ADN. Once the ADN enters another ADN, it can compute its overlap with

the moving ADN well defined by its red highlight. Once this overlap is beyond a threshold,

the boundary of this ADN turns green to indicate to the user that enough overlap has been

68



achieved (Figure 5.5). Once the user has reached the desired configuration, the system runs

an automated registration to identify and register the imagery coming from multiple ADN

units into one or more seamless CDs. Please see the video to see these interactions in action.

Figure 5.5: This shows the placement feedback given by the ADNs to assure that the users
have enough overlaps when creating their CDs. The moving ADN is highlighted in white.
The ADNs of the CD with which it is merging is turned green to say that the overlap is
adequate to create a seamless display. Note that one of the ADNs are still red indicating
not enough overlap with it. To merge with this display, that user has to make sure that all
the ADNs in the CD that overlaps with the moving ADN should be turned green.

5.3.2 Interaction for 3D Manipulation

The first capability of a collaborative system is to allow users to connect to the shared display

easily. We have developed an application by which one or more users can connect to a CD

and port the whole or part of their desktop on the CD. The position of their desktops on the
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Figure 5.6: This shows three different desktops created using our collaborative SAR frame-
work.

conglomerate display can be easily moved around using a laser pointer or a control interface.

This is illustrated in Figure 5.6 and 1.

In a walkthrough 3D environment, the user can use various types of inputs to navigate

through the environment. We have implemented a laser pointer based interaction mode

defining three types of movement: forward/backward, rotate left/right, and pan up/down,

and tied them to different laser-based gestures. To move forward/backward, the user creates

a straight line from the bottom to the top portion of the CD and vice versa. To rotate

left/right, the user creates a straight line from the left to the right portion of the CD and

vice versa. To pan up/down, the user creates a diagonal line, where a line direction between

20 degree and 70 degree is interpreted as a pan up and a line direction between 200 and

250 degree is interpreted as a pan down. These movement operations would allow the user
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to fully explore the 3D data set. However, such interactions can be designed for this and

any other application as per the users’ specifications using the interface modality (e.g. hand

gestures instead of laser based gestures) he chooses. Please see the video to see these in

action [28].

We also allow a display driven data operations like data check-out, edit and commit step for

shared 3D data manipulation to avoid data inconsistencies. The user can trigger checking

out of a part (e.g. engine of a plane) of a bigger 3D model being visualized collaboratively

via a few blinks from the laser pointer. This part then can be moved to a smaller part of the

display which can be segmented out from the bigger display using the same mechanism for

repositioning the AD thus allowing the user to edit the part of the model on his own without

disturbing the shared model visualization. Once done with his edits, the user moves the

segmented display back towards the bigger display triggering both a merging of the displays

and a commit to apply his changes in the data which shows up in the shared collaborative

visualization. This is illustrated in Figure 5.7. The same paradigm allows the user to treat

his own desktop display as a extension of his shared CD and make changes there which are

reflected in the wall-top CD as shown in Figure 5.8.

5.4 Front End Processes

Several front end processes work together to achieve the interaction for display configuration

and for 3D data manipulation. In this section we describe them in details.

5.4.1 Interaction for Display Reconfiguration

We consider the ADN’s as a set of active agents who are working together to create the

collaborative SAR. Therefore, we develop completely distributed methodologies for grouping
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Figure 5.7: (a) The user selects the F-16 using a laser pointer and selects the lower left
screen as the destination to check out the model. (b) The F-16 model is now in a separate
context on the lower left screen. (c) The user uses ADN reconfiguration mechanism to move
it away – segmented from the display. (d) The model can now be edited without affecting the
original data set. Here the model has been changed by rotating it 180 degrees. (e) The user
moves the personal ADN back into the shared larger CD. (f) The changes to the model are
now committed to the original data set. (g) Calibration is performed. (h) The calibrated CD
with the latest changes.
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Figure 5.8: A desktop extension of the CD. Left: The user starts with the model on the
desktop and performs a scaling. (b) The desktop changes and the change is reflected on the
wall-top CD.

and regrouping of the ADN’s to create the conglomerate displays (CDs). This allows easy

addition and removal of the ADNs to the collaborative SAR. The output for this process is a

configuration file for each ADN, that any application can use to understand the configuration

of the CD. Each configuration file contains its IP address, a list of the ADN’s neighbors and

their IP addresses, and the geometric transformation to warp the 2D image from the ADN

into the display space. With each reconfiguration, the configuration file of the affected ADN

is changed. An API is available for developers to create their own applications that can be
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integrated with the system. A user can query the system for the configuration information

from each ADN.

When the system starts up, the position, orientation and ID of each ADN is unknown. In fact,

each ADN does not even know the number of total ADNs in the system. The ADNs have to go

through a process of making them known to the system. For this purpose we plan to use the

distributed registration technique used in [46] for registering a single tiled display made of a

rectangular array of projector-camera units projecting on a planar display. An SPMD (single

program multiple data) algorithm runs on each unit that starts with the assumption that

it is the only unit in the environment. Then it performs a configuration identification step

that goes on to discover all the other units, its own location and the location of its neighbors

in the rectangular array. Finally, in a registration step a SPMD method achieves seamless

registration of all the images from the multiple units. This method assumes rectangular

overlaps of roughly fixed widths and achieves the configuration identification and registration

via QR codes placed on these similarly sized overlaps.

Though the algorithm in [46] extends well to our scenario of multiple CDs, our collaborative

SAR system is still significantly different than the system in [46] due to the following reasons.

(a) Since we deal with projections from ceilings, they show considerable keystoning that

cannot assure rectangular overlaps. (b) Since we give the user complete freedom to overlap

ADNs with each other as they please, neither can we assure similar sized overlaps nor can

we assure overlaps to be strictly to the left, right, top and bottom of each unit. (c) Finally,

if the user does not provide adequate overlap, the system needs to guide the user to provide

adequate overlap. To allow for these additional flexibilities we have added three steps before

the configuration identification and registration steps in [46] can take over. These steps for

each ADN are (a) Overlap Discovery; (b) Placement Feedback; (b) Conflict Free QR code

placement. We assume that the camera field of view (FOV) in an ADN is reasonably larger
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than the projector FOV. This assumption is derived from the common FOVs available in

commodity cameras and projectors.

Overlap Discovery

The goal of this step is for each ADN to identify the overlap regions around its boundary,

their size and shape so that it can achieve a conflict-free QR code placement. For this, as

soon as each ADN is powered on, it projects a white image and observes it. Note that if none

of the ADN’s overlapping neighbors project at the same time, the larger field of view of the

ADN would be able to see its one white display surrounded by an dark or dimly lit (if some

ambient light is present) region in all directions. Further, when any of its neighbors projects

the white, it should be able to observe it through the larger field of view camera to detect

the overlap, its shape and size. It assigns the overlap to be a left, right, top or bottom one

(as is required by [46]) based on the largest number of pixels present in its four quadrants.

For e.g. If the overlap has more pixels in its top right than bottom right quadrant, it is

assigned as a overlap on the right of the ADN. In order to handle conflicting projections

from multiple ADNs at the same time we propose an algorithm akin to the Carrier Sense

Multiple Access/Collision Detection (CSMA/CD) method in the network domain. In this,

any ADN trying to project at any time first senses if a neighboring ADN is projecting via the

visual input from the camera. This is easily detected by the a white area which shares the

boundary of the ADN. The ADN projects only if another ADN is not projecting in its area.

Otherwise, it waits a random amount of time and retries. This continues until all ADNs

construct their overlap areas and label them as left, right, top or bottom. Finally, each ADN

computes a rough homography that relates itself to the different ADNs having overlaps with

it. This is achieved as a two step process. First the ithe ADN discovers the four corners of its

own projection in its camera space to find the homography HPi 7→Ci
from its projector space to

the camera space. Next, it finds the four corners of the overlap with a neighbor j to find the
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homography between the camera in the ith ADN and the projector in the jth ADN, given by

HCi 7→Cj
. These two homographies are then concatenated to provide an homography between

the projectors of the ith and jth ADNs, i.e HPi 7→Pj
= HPi 7→Ci

HCi 7→Cj
. These homographies

are approximate since they are computed using only four correspondences.

Placement Feedback

For interaction for display manipulation, we need to provide a mechanism for the user to

move displays around. This can be done by a laser-based or hand gesture (open palm).

Once the ADNs are powered ON, the user can use gestures to position them the way he

wants to create the CDs. Every ADN has a designated hot-spot-switch area. If a gesture

is detected in this area, the ADN switches to reconfiguration mode. The user starts with a

gesture in this switch-hot-spot area of the ADN he desires to move. The ADN turns white

to indicate its status of being chosen to be moved. A broadcast message lets all the other

ADNs know of the existance of a moving one and they turn their boundaries red. When

the user moves the selected ADN, the white projection allows continuous tracking of the

moving ADN via updated HPi 7→Ci
. As this moving ADN enters the field of view of any other

ADN, it can track the overlap easily due to the red boundary and computes the amount

of overlap in the projector space using HPi 7→Ci
. If this overlap is above a threshold, the

observing ADN turns it boundary green to indicate enough overlap. Therefore, user has to

make sure that whenever he is merging, all the ADNs he is merging with should turn green.

While segmenting the display, visual feedback is of less use since all the user needs to do is to

make the moving ADN spatially disconnected from the existing CD. Once the user finishes

moving the ADN, another gesture in the same switch-hot-spot area moves him out of the

reconfiguration mode. Since relative position of the projector and the camera in a single

ADN does not change with movement, the location of the hotspot remains the same across

this movement.
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Note that for moving the ADNs intuitively, the projected area from the ADN should move

along with the user gesture. This demands a fast and simple interaction recognition and

tracking. For laser based interaction, we use a simple and fast image processing to detect

the laser highlight and move the ADN quickly with it. The steps of this method are as

follows. (a) Point the laser to switch-hot-spot area to switch mode; (b) a red circle appears

on each ADN; (c) select the ADN by holding the laser on this red circle of the desired ADN;

(d) the selected ADN turns white and the other ADNs display red boundaries; (e) move the

ADN using the laser and stops the movement when the ADN(s) with which it is merging

turns their boundaries green indicating sufficient overlap to create a seamless CD; (f) point

to the switch hot-spot to switch out of the reconfiguration mode.

However, note that achieving the movement of the ADN with the hand gesture is computa-

tionally very demanding since gesture detection is still not real-time process. Since the user

is not engaged in any work on the displays during this phase of configuring the conglomera-

tion, we use the hotspot-based gesture recognition technique proposed by Chiu [10] for this

purpose. This greatly increases the accuracy of gesture recognition at a very low latency

allowing the ADN to move along with the user. The steps of this method are as follows.

(a) Change from display mode to reconfiguration mode by placing palm on switch-hot-spot

area. (b) Project blob pattern in the display space. (c) Identify the open hand gesture used

to select the desired active display. (d) Track the movement using hotspot-based tracking

and move the active display to a different region. (e) If there are no movement for more

than 3 seconds, identify that as the culmination of the reposition operation, and deselect the

active display switching out of reconfiguration mode. This is illustrated in Figure 5.9.

Conflict-Free QR Code Placement

In [46] the registration is achieved by first presenting a QR code by each projector in their

overlap region that encodes its IP address, port number, and ID into the QR code. Note
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that the overlaps are all trapezoidal due to keystoning and can be differently shaped and

sized. This leads to two issues. (a) A rectangular QR code in the projector coordinate

system results in a trapezoidal QR code on the display which cannot be detected using

standard QR code detectors due to severe resolution compression in some of its regions. (b)

Second, a standard placement of QR codes as in [46] can overlap or conflict with the QR

code from another ADN. So, we introduce two steps to alleviate this situation. First, we use

the approximate homography HPi 7→Ci
computed in the previous step to apply a pre-warp

to the QR codes so that when projected it looks rectangular. Second, we choose the size

and placement of the QR code using the SPMD method shown by Algorithm 2 to achieve a

conflict-free placement. The effect of this algorithm is shown in Figure 5.10.

Algorithm 2 Generate QR Code per ADN

for all ADN do
H = homography from projector to display.
KT = keystone correction transformation calculated from H
OL = Number of overlaps with other ADN.
for all OL do

If (Two ADNs overlap an area (this ADN and a neighbor ADN))
{Find maximum rectangular overlap area. Mark area as safe.} Else if (More than two
ADNs overlap an area)
{Mark area as hazard.}

end for
for all Safe Area do

Generate QR code, maximize size with consideration to overlap s.t. the size is less
than half of the safe area’s longest dimension
P = Determine position of the overlap (Top, Bottom, Left, Right)
If (P == Top {Place QR code with a weight toward the left edge of the safe area}
Else If (P == Bottom {Place QR code with a weight toward the right edge of the
safe area}
If (P == Left {Place QR code with a weight toward the bottom edge of the safe area}

If (P == Right {Place QR code with a weight toward the top edge of the safe area}
end for
I = Image containing all placed QR code
CI = Apply KT to I
CI is used in the registration phase

end for
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Once the QR codes are detected, each set of ADNs that are spatially contiguous form a CD

and get to know each other’s IPs to talk to each other via the network communication. They

use this dialogue to find the ADN with the largest number of neighbors using the largest

amount of overlapping pixels as a tie breaker to decide on the reference ADN for each CD.

Once the reference is decided, the cascading homography method in [46] takes over to label

them, find their configuration and achieve seamless registration. Note that though the entire

system can have n ADNs, the labels of ADNs in each CD will be no more than m which is

the number of projectors present in that specific CD. Since multiple CDs can exist, ADNs

in different CDs can have the same label. The application querying the system finds out the

number of CDs in the display. A CD before and after registration is shown in Figure 5.11.

5.4.2 Interaction for 3D Model Manipulation

Once the CDs are created, and the personal displays are connected to a CD (described in

Section 3.1), gesture based interactions are used to navigate or edit the models in collabo-

ration or alone. We use laser based interactions since they seem to be ergonomically most

appropriate when dealing with large displays and people are quite used to using distal in-

teraction devices like remotes and laser pointers today. The gesture data is composted of a

list of 2D points, that represents the position of the laser in the CD. Further, unlike hand

gestures recognition, which are susceptible to environmental lighting conditions (e.g. when

content is projected onto the hand) laser is more robust and resilient to environmental con-

ditions. Since the light intensity of a laser pointer is very high, it is very easy to threshold

the visual input to accurately find the laser point. This can be done regardless of the content

that is being projected. Furthermore, different laser colors can be used to denote multiple

users in a collaborative environment.
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Note that it is possible for a gesture (panning by movement of laser) to span multiple ADN

in a CD where each ADN sees only a portion of the gesture. Or, it is possible for an ADN not

to see any gesture at all, but be expected to react to the gesture (when the gesture is confined

to a part of the CD not seen by an ADN). To assure appropriate hand-off of gestures and

handling of race conditions, we adopt the distributed interaction paradigm proposed in [46].

Each ADN runs the distributed SPMD (single program multiple data) gesture management

and reaction management technique presented in [46]. With each gesture, the CD reacts

using the backend processes described in the next section. Check the video to see these

interactions live. The gesture information is also provided through the API. The user can

use the gesture information to define new gestures specifically for their application.

5.5 Back End Processes

In this section we describe all the back end processes that makes collaborative SAR for

massive 3D modeling a reality.

5.5.1 Data Management

A major bottleneck in modeling of very large models that cannot be instantly fit into the

RAM of a single machine is the data management without creating duplicates so that data

consistency can be maintained easily. [29] uses the same architecture as shown in Figure

5.3 in a sort-first rendering architecture to propose an interleaved data partitioning along

with associated methodologies that can achieve a load balanced (both in terms of storage

and rendering) data management using a PC cluster in the back end. We use this data

management technique to achieve modeling of massive 3D data. This method assumes a

static number of machines in the PC cluster and proposes a data partitioning preprocessing
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which is then adaptively repartitioned in real-time with any edits that add, delete or move

data during runtime. Figure 5.12 shows a 20GB Boeing model being partitioned on a 9 PC

cluster using this method.

In our work, since the conglomerate display (CD) on which the data is shown can have mul-

tiple configuration during a work session, it is difficult to reprocess the data for partitioning

on a different subset of machines every time a reconfiguration happens. To alleviate this

problem, we consider the data backbone of the system to be comprising of all the ADNs, i.e.

all the PCs present in the shared workspace. This allows us to achieve the display reconfig-

uration on a subset of machines only in the front end for the purpose of user interface and

shared processing the rendering load, while all the machines in the workspace share the load

of data management in the back end. This assures that data requests coming from any CD

is guaranteed to be available in the system. Having a larger number of PCs in the back end

also assures better performance in terms of data access and management. To accommodate

any reconfiguration, we use the calibration data to identify who are the neighbors of each

ADN with respect to their current position to create a lookup table that compensates for

the change of neighborhood information that was calculated during the preprocessing phase.

Figure 5.13 shows the comparison of 20GB Boeing model being partitioned to the subset of

two ADNs or all the four ADNs when creating a 2x1 CD. Note that the load is much better

balanced for the latter which increases performance as observed in [29].

We also compared the performance in maximum frame delay (measures the maximum stall

that can be faced by the user) and average frame rate (measures the average interactivity)

of the Boeing model rendered by the subset of ADNs which form the CDs versus having

more ADNs involved in the back end data management. The results are presented in Tables

5.1 and 5.2. The rows indicate different display configurations: (a) a single display (1x1);

(b) the whole display including all 4 ADNs (2x2); (c) 1 CD made of a 2x1 ADNs; and (d) 2

CDs each made of a 2x1 ADNs. The columns indicate the number of ADNs involved in the

81



data management in the back end. The emboldened numbers are the configurations where

the number of ADNs rendering matches the number of ADNs managing the data in the back

end – the configuration proposed in [29]. The other numbers indicate the performance of

configurations enabled by our extension of the work. Since by definition, the number of data

management nodes should be at least as much as the rendering nodes, the configurations

where the rendering nodes are smaller than the data management nodes are not applicable.

Some interesting observations can be made from these tables. First note that for a single

ADN rendering, when the data management is done on multiple ADNs instead of one, the

maximum frame delay increases. This indicates that the overhead for data processing is

higher than the benefits provided by the partitioning. However, the average frame rate

remains almost the same indicating that this impacts the performance only in the worst

case. Further, since the performance is already very poor (about 1 fps), this impact is

probably inconsequential. The more interesting data is offered by the third and fourth row

which shows that when more machines are involved in the back end, performance improves

both in terms of the stall faced by the user and the average frame rate experienced, being

the best when all the ADNs are used in the back end. Finally, when using two CDs from 4

ADNs versus 1CD from 4 ADNs, the latter shows almost double the performance in terms

of frame rate and marked improvement in terms of maximum frame delay. This can be

attributed to the use of the cache of spatially adjacent ADNs, termed as the adjacency cache

in [29]. The adjacency cache is much better utilized in the latter due to the spatial coherence

offered by a single CD and therefore the superior performance. Note that our testbed is a

small system with just 4 ADNs. As analysis shows in [29] performance goes up faster as the

number machine are increased further.
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Table 5.1: Maximum Frame Delay in milliseconds

Configuration 1 ADN 2 ADN 3 ADN 4 ADN
1 x 1 1656 2008 2255 2380
2 x 2 na na na 85
1 CD (2 x 1) na 160 144 119
2 CDs (2 x 1 each) na na na 125

Table 5.2: Average Framerate in frames per second

Configuration 1 ADN 2 ADN 3 ADN 4 ADN
1 x 1 1.0 1.0 0.9 0.9
2 x 2 na na na 25.0
1 CD (2 x 1 each) na 11.0 12.0 14.0
2 CDs (2 x 1 each) na na na 13.0

5.5.2 Desktop connection to a CD

One of the critical capability in our collaborative SAR environment is for a desktop to

connect to a CD so that the user can run any application from his desktop on the wall-

top shared display. In order to achieve this each ADN has a dedicated channel to accept

external image data. A simple protocol is used to send image data to the ADN. In order

to communicate with the ADN, a device needs to be on the communication network. Using

the configuration information, a client can identify each ADN and send the corrected image

data. For receiving image data, the system can operate in two modes: client-centric mode,

and ADN-centric mode. In client centric mode, the client uses the configuration information

to partition and correct the image for each ADN and send each ADN their respective image

data according to their display space. Since the separation and image correction can be

computationally expensive for a device, when the number of ADN is large, the system can

also accept full image data, this is called ADN-centric mode. In this mode, the client sends

the entire image data to all ADN in the CD. Each ADN will partition the image data and

transform the image to the display space. Since the complete image data is sent to all ADN

in the CD, each ADN will receive data that it doesn’t need. Therefore, the network will

be saturated with duplicated data. This will severely limit the number of video streams.
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So, we tend to operate our system in the client-centric mode unless we have a very fat data

bandwidth. However, as the network capacities in workspaces continue to increase, this may

turn out to be an non-issue.

5.5.3 Multiple Desktops on a CD

To stream multiple desktops, each desktop needs to have a client. The ADN separates the

number of sources based on the originating host address. Each source will be allocated an

image data buffer to store the incoming data and make it available to the renderer. Using

the configuration information, each client identifies where it wants its content to displayed

on the CD. The client captures its desktop and sends the partitioned and corrected image

data to the appropriate ADN in the CD. The same operation is used when a user wants

change his desktop position or size on the CD. As described in the previous subsection, the

system can operate in two modes in this case too.

5.5.4 Interacting with Data Via Display

We introduce a new modality for interacting with data by rearranging the ADNs. One of

the fundamental challenge when sharing resources is version mismatch, where multiple users

work on outdated version of a resource and hence conflicts arises when the resources are

committed back into the repository. Since this system enables users to collaborate and work

in a shared environment, we propose a version control mechanism using the display. The

mechanism supports two operations: checkout and commit. When a resource is checked

out, it is locked and no one else will be able to checkout that resource. Once a resource is

committed, the resource is unlocked and is available for checking out. We demonstrated this

mechanism on a 3D model.
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As per [29] when the initial data distribution is done, a meta file is created which is then

shared with every ADN. This meta-file contains the information of each data block and in

which ADN each data block is stored and where. This is file that is updated during runtime

redistribution. To implement the data checkout, the specified ADN(s) forming the personal

CD will take over the object, as indicated by the user, and create a local copy of the object

rendering only that object. When a user selects a portion of the model, the system will group

all the data blocks into an object in the model. Each ADN in the CD will mark the objects

data block as locked in the meta-file which is then broadcast to other ADNs as well. The

personal CD switches context to an independent CD, and no longer associates itself original

shared CD. Note, that this effectively removes the personal CD from being neighbors with

the other ADNs in the shared CD and therefore, the adjacency cache of this CD is no longer

available. Once this dissociation is achieved, the user needs to reposition this personal CD

such that it does not overlap with the shared CD – essentially the personal CD segments out

from the shared CD. The user can modify the local copy of the object in the personal CD

and it will not affect the original data due to the lock on the metafile. Data redistribution

due to the edits will be limited to the personal CD. When the user wants to commit the

changes back into the original data set, the user repositions the personal CD to overlap with

the shared CD. Through the visual input, the shared CD can detect an intention to join from

another CD. The system recalibrates itself and the personal CD containing the modified data

will unlock the data in the meta file which is then broadcast to all the ADNs. Once this is

achieved, the next redistribution triggered by the edit will use all the ADNs to achieve the

redistribution and hence a better load balancing of rendering and data.
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Figure 5.9: (a) User places hand over desired active display he wants to reposition. (b) The
active display is selected. (c,d) User moves the active display to a different position. (e)
User deselects the active display. (f) The active display is now repositioned.86



Figure 5.10: The QR codes when placed without reshaping and resizing created conflicts
(left). The reshaped and resized QR codes are placed without conflicts (right). The 4
projectors making the CD is shown by the red projector boundaries.

Figure 5.11: This shows a four projector CD before and after registration.
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Figure 5.12: 3D data of a Boeing 737 model is partitioned across nine computing units as
presented in [29].

(a) (b)

Figure 5.13: This shows the data load on each machine of a cluster of 2 machines (left) andf
4 machine (right) after interleaved partitioning is used on a 20GB Boeing model. Note that
better load balancing is achieved for higher number of machines which has been shown to
improve performance in multi-displays in [29].
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Chapter 6

Conclusion

In summary, we have presented a distributed architecture for data management, for interac-

tive navigation and modeling of large environments. The first main contribution of our work

is the proposed distributed memory hierarchy that includes the local main memory (local

cache - LC), the main memory of the adjacent nodes in the tiled display (adjacency cache

- AC), the local external memory (EM) and the external memory of all the other nodes

in the distributed system (virtual external memory - V EM). The second contribution is

the interleaved data partitioning and distribution method that reduces variance in the data

load, while maintaining the spatial coherency scene data, stored in the same storage node.

Building upon the proposed distributed architecture we present a framework of multiple

steerable projector-camera unit to create a paradigm of collaborative spatially augmented

reality (SAR) workspace. We use the application of modeling of massive 3D data to demon-

strate the different collaborative interactions and modalities such a workspace can provide.

This opens up the possibility of using such collaborative SAR applications in any workspace

shared by multiple users, as is becoming more and more common today.
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We presented a specific application of modeling of massive 3D data using our collaborative

SAR environment. Note that the front end processes we discussed are responsible for in-

teraction inputs, calibration and display movement. These can be generalized to any other

applications especially through the query system that allows users to build a library of ges-

tures to accommodate their needs and application. Further, our front end processes lets

application developer query information about the configuration of the system, control of

the PTU, and receival of input information. We used the front end process to position the

ADN and detect visual input. However, one can use the same processes to achieve other

tasks such as tracking and following objects around the room as in the surveillance system,

or even as a stereo input device where each ADN looks at an object from different angle and

together constructs a 3D model. The back end processes are responsible for the handling

and processing of application specific tasks like synchronization and rendering. We used

the back end processes towards specific tasks of navigating and interacting with large 3D

model. However, one can use the same back end processes to create a display wall or a

bulletin board where content from may be arriving from different sources (remote or local)

and display them on the CD. Such a system can be used for command and control or other

applications where visualization technology for monitoring and decision making is crucial like

military, law enforcement and public safety, manufacturing, transportation systems, security

and surveillance.

Our work opens up the opportunity to pursue multiple different directions in collaborative

workspaces in the future. However, it is important to study how users would adopt and

use such workspaces? What kind of interaction modalities are more commonly used than

others? What kind of new interaction paradigms can this enable and encourage amidst

novel and expert users? This work has been focused on the technology aspects of creating

such workspaces. However, we hope that multiple application will be designed using such a

workspace to study some of the above mentioned questions in the future.
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