
UC Berkeley
UC Berkeley Previously Published Works

Title
View-Dependent Adaptive Cloth Simulation with Buckling Compensation

Permalink
https://escholarship.org/uc/item/79h5740c

Journal
IEEE Transactions on Visualization and Computer Graphics, 21(10)

ISSN
1077-2626

Authors
Koh, Woojong
Narain, Rahul
O'Brien, James F

Publication Date
2015-10-01

DOI
10.1109/tvcg.2015.2446482

Supplemental Material
https://escholarship.org/uc/item/79h5740c#supplemental
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79h5740c
https://escholarship.org/uc/item/79h5740c#supplemental
https://escholarship.org
http://www.cdlib.org/


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015 1

View-Dependent Adaptive Cloth Simulation
with Buckling Compensation

Woojong Koh, Rahul Narain, and James F. O’Brien

Abstract—This paper describes a method for view-dependent cloth simulation using dynamically adaptive mesh refinement and
coarsening. Given a prescribed camera motion, the method adjusts the criteria controlling refinement to account for visibility and apparent
size in the camera’s view. Objectionable dynamic artifacts are avoided by anticipative refinement and smoothed coarsening, while locking
in extremely coarsened regions is inhibited by modifying the material model to compensate for unresolved sub-element buckling. This
approach preserves the appearance of detailed cloth throughout the animation while avoiding the wasted effort of simulating details that
would not be discernible to the viewer. The computational savings realized by this method increase as scene complexity grows. The
approach produces a 2× speed-up for a single character and more than 4× for a small group as compared to view-independent adaptive
simulations, and respectively 5× and 9× speed-ups as compared to non-adaptive simulations.

Index Terms—Physically based modeling, animation, cloth simulation, adaptive remeshing

F

1 INTRODUCTION

C LOTH simulation for visual effects has reached a ma-
ture state where the use of virtual characters wearing

simulated clothing is now widespread. However, cloth simu-
lation remains computationally expensive, particularly when
films require high-quality, realistic results computed at high
resolution. For characters that are far from the camera, or
otherwise less visible in a shot, fine details will not be visible
to the viewer and work spent on computing those details is
wasted. In most film production settings, both the camera and
character motions are known before the simulations are run,
and one could use this information to substitute cheaper low-
resolution simulations on distant or out-of-frame characters.
Unfortunately, manually swapping some characters to low-
resolution simulations is cumbersome, particularly when a
single character’s clothing requires high resolution for some
parts of a shot but not others, yet the cloth motion must
nevertheless appear coherent throughout. For closeup shots
where only part of a character is in frame, savings could
also be realized by reducing the computation devoted to
out-of-frame cloth, so long as such savings do not result in
dynamic artifacts that affect visible parts of the cloth.

In this paper we describe a method for view-dependent
simulation using dynamically adaptive mesh refinement and
coarsening. Instead of using a fixed-resolution simulation
mesh, the mesh undergoes local adaptation based on the
geometric and dynamic details of the simulated cloth. The
degree to which this detail is resolved is adjusted locally
based on the view of the simulated cloth, as shown in Fig. 1.
Areas that appear large in the camera will be refined to

• W. Koh and J.F. OBrien are with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA 94720-1776.
E-mail: {wjkoh,job}@berkeley.edu.

• R. Narain is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN. E-mail: narain@umn.edu.

Manuscript received 4 Nov. 2014; revised 14 June 2015; accepted 4 May 2015.
Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by E. Sifakis and V. Koltun.
Digital Object Identifier no. 10.1109/TVCG.2015.2446482

Fig. 1. The clothing on this character uses view-dependent simulation.
Visible areas (blue) are simulated at high resolution, as measured in
screen-space. Areas not visible to the camera (red) are simulated at
reduced resolution. The first two images show views from the camera’s
perspective. The rightmost image shows an outside perspective with the
camera’s view frustum drawn in black wireframe.

show finely detailed dynamics. Areas that are out of frame,
facing away from the camera, or at a distance will be corre-
spondingly coarser.

The goal of this work is to preserve the appearance of
detailed simulation throughout the animation while avoid-
ing the wasted effort of simulating details that will not be
apparent to the viewer. Further, there should be no visible
dynamic artifacts created due to varying refinement as the
camera and objects move about. Finally, cloth that leaves
and reenters visibility should appear to have coherent and
consistent dynamics.

Our work builds on the publicly available ARCSim frame-
work (http://graphics.berkeley.edu/resources/ARCSim)
which can be used to animate sheets of deformable materi-
als such as cloth, paper, plastic, and metal. ARCSim adap-
tively refines and coarsens anisotropic triangle meshes to
efficiently resolve the geometric and dynamic details of the
simulated objects. Our method modifies the metrics used by
ARCSim so that local mesh visibility is accounted for during

http://graphics.berkeley.edu/resources/ARCSim


2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

refinement. Given the existing framework for adaptivity,
our view-dependent refinement is easy to implement and
has negligible overhead.

In cases where only a single character is being modeled,
our approach realizes modest savings of roughly a 2.4×
speed-up in comparison with ARCSim’s default adaptive
simulation. These savings are due to coarsening out-of-view
and back-facing parts of the character’s clothing. For small
crowd scenes, the savings are larger, up to 4.5×, as back-
ground and out-of-view characters are automatically coars-
ened. Compared to a non-adaptive simulation, the speed-
up is more than 9×. For massive crowd scenes with thou-
sands of agents, we expect that even greater savings could
be realized with our approach.

2 RELATED WORK

Adaptive discretizations have been found to give signifi-
cant performance and scalability benefits for a number of
computationally intensive simulation tasks. In fluid simula-
tion, detailed liquid surfaces can be animated efficiently by
refining the spatial resolution near the surface using octrees
[1], adaptively sampled particles [2], tall-cell grids [3], or tet-
rahedral meshes [4], [5], [6]. Adaptive refinement and
simplification techniques have also been proposed for mass-
spring systems [7], articulated bodies [8] and finite element
models [9]. Most relevant to our work are techniques for
adaptive cloth simulation [10], [11], [12], [13], [14], which
use remeshing to resolve detailed wrinkles and folds. The
approach of Narain et al. [14] has also been extended to
efficiently model plastic deformation and sharp creases [15]
as well as complex fracture patterns [16]. However, all
those techniques are view-independent and element sizing
is controlled only by geometrical and dynamical properties
of the simulated system.

For animation applications, a number of techniques
have also been proposed that take into account the current
viewpoint and attempt to expend less computational effort
in regions that are visually less important. One approach,
known as simulation level of detail, is to switch between
dynamical models of varying degrees of simplification,
depending on the viewpoint. Carlson and Hodgins [17]
introduced such a method for real-time animation of large
groups of legged creatures. Their approach required the
user to manually design the simplified models for each
level of detail. Subsequent work has sought to generate
approximated models automatically, for example for particle
systems [18], plants [19], and hair [20]. Chenney and Forsyth
[21] took a different approach, culling out-of-view objects by
not solving their equations of motion, and using knowledge
of the statistics of the motion to predict their plausible states
when they reenter the view.

Alternatively, one can modify the simulation resolution
based on the viewpoint without changing the underlying
model. Barran [22] performed fluid simulation on a non-
Cartesian grid based on cylindrical coordinates centered at
the viewer, thus directly taking the distance from the viewer
into account in the discretization. Viewpoint information has
also been used to vary simulation resolution in traditional
adaptive discretizations for fluids, such as octrees [23], [24]
and adaptive particles [25].

In our work, we take inspiration from geometric level
of detail techniques, such as those for real-time render-
ing of terrain [26], [27] or complex scenes like architec-
tural walkthroughs [28] and polygonal CAD models [29].
These techniques inform our understanding of the impor-
tant view-dependent criteria for representing geometrical
details. Hoppe [30] used surface orientation and screen-
space geometric error as refinement criteria. Xia et al. [31]
further propose the use of local illumination gradients,
projected lengths of edges in screen space, and silhouette
boundaries.

3 METHODS

Our view-dependent adaptive remeshing scheme builds on
ARCSim, the adaptive anisotropic remeshing framework
described by Narain et al. [14]. We introduce a new view-
dependent refinement strategy that complements their use
of dynamical and geometrical refinement criteria. This
approach realizes significant speed improvements by
extending the domain of adaptive remeshing to include
perceptual properties as well as physical ones.

The method of Narain et al. defines a sizing field that
specifies the desired spatially varying resolution of the
simulation mesh, taking into account various geometric
and dynamic criteria such as local curvature, velocity gra-
dient, compressive strain, and obstacle proximity. It is rep-
resented as a 2 × 2 symmetric tensor field M which is
first computed on faces and then transferred to vertices via
area-weighted averaging. Once the sizing field is defined,
an edge between vertices i and j is considered valid if its
size with respect to M,

s(i, j)2 = uT
ij

(
Mi +Mj

2

)
uij , (1)

does not exceed 1, where uij = ui−uj is the vector between
the two vertices in material space. If s(i, j)2 > 1, the edge is
deemed invalid and must be split. The remeshing algorithm
proceeds by splitting all invalid edges, collapsing as many
edges as possible without introducing new invalid edges,
and flipping edges to maintain an anisotropically Delaunay
triangulation. This procedure produces a mesh that is as
coarse as possible while containing no invalid edges and
remaining Delaunay in the non-Euclidean space of the metric.

We modify their algorithm so that, rather than using
purely physical and geometrical criteria to determine the
mesh resolution, we vary the desired degree of refinement
over space and time based on visual importance relative to
a specified camera motion. We implement this variation by
modifying the sizing field M so that the resolution of the
mesh is no more than what is needed to resolve visually
important features. This modification reduces computational
effort in regions that are less visible from the camera, bringing
about a more efficient simulation without losing significant
visual details.

Our implementation considers two visibility criteria. In
regions that are not visible from the current camera posi-
tion, that is, those that are out of frame or facing away
from the camera, we uniformly coarsen the mesh by



KOH ET AL.: VIEW-DEPENDENT ADAPTIVE CLOTH SIMULATION WITH BUCKLING COMPENSATION 3

Fig. 2. An example of spatial smoothing. Cyan edges indicate out-of-view
faces under spatial smoothing, and green edges indicate out-of-view
faces far from the view frustum.

scaling the sizing field with constants. In regions that are
visible, we control the sizes of elements in terms of their pro-
jected lengths in screen space so that distant or foreshortened
elements are coarser. This approach is roughly equivalent to
adaptivity based on screen-space metrics. However, to avoid
artifacts that would occur due to fast-moving cameras or cuts
between views, our algorithm applies conservative spatial
and temporal smoothing to the sizing field.

3.1 Coarsening of non-visible regions

For non-visible regions, we seek to uniformly coarsen the
mesh relative to the original view-independent sizing field.
To do so, we define a scalar νi ≤ 1 for every face i, which we
call the view factor, and modify the per-face sizing field M
before transferring to vertices as

M̃i = ν2iMi. (2)

As the sizing criterion (1) is quadratic, this scaling increases
the target edge lengths by a factor of ν−1i .

In general, we would like to use high resolution (νfront)
for faces that are visible in the current view, and low reso-
lution for back-facing and out-of-frame faces based on user-
specified parameters νback and νout both of which are less than
νfront. However, simply defining ν in a piecewise-constant
fashion in both space and time causes severe artifacts because
of the discontinuous change in the sizing field. First, the
discontinuity in sizes at the boundary between in-frame and
out-of-frame faces leads to noticeable motion artifacts such as
popping due to the influence of spurious forces from the out-
of-frame region. Second, rapid camera movements and jump
cuts can cause previously coarse regions with inaccurate
geometry to suddenly become visible. To eliminate these
discontinuities and obtain artifact-free results, we define the
view factor in a way that is continuous over both space and
time.

3.1.1 Spatial smoothing

Instead of using a spatially discontinuous field, we enforce
a continuous falloff of the view factor between in-frame
and out-of-frame faces. For a given mesh face i, let di be its
distance from the view frustum in world space. We define the

spatially smoothed view factor ν̃i by linearly interpolating
to νout over a user-specified margin length m:

ν̃i =


νfb if di = 0,

νfb − di
m (νfb − νout) if 0 < di < m,

νout if di ≥ m,
(3)

where νfb is νfront or νback depending on the direction of the
face normal. Thus, we have ν̃ = νfront or νback for in-frame
faces and ν̃ = νout for out-of-frame faces far from the view
frustum, with a continuous transition region in between, as
Fig. 2 shows.

There is still a discontinuity on the boundary between
front-facing faces and backward-facing faces. While it is
tempting to use the direction of the face normals to create
a smooth transition, we find that normals can vary too
rapidly across silhouettes to offer any useful smoothing that
way. Instead, we address this discontinuity with a different
approach, described later in Section 3.3.

3.1.2 Temporal smoothing and anticipation

We use temporal smoothing to avoid visibly discontinuous
changes in mesh size due to camera motion, which may cause
noticeable popping artifacts. We include anticipation that
ensures the cloth gets refined to sufficient resolution before it
appears in the frame, preventing undesirable transients.

For any given face, we can treat the view factor before
temporal smoothing ν̃ as a function of time, holding the face
fixed and considering the prescribed motion of the camera.
We smooth ν̃ over a time interval [t, t + T ] based on the
current time t as follows. Define a temporal window function
w(τ) which satisfies w(0) = 1 and falls off to zero at τ = T .
The temporally smoothed view factor is

ν(t) = max
τ∈[0,T ]

w(τ)ν̃(t+ τ). (4)

This is analogous to dilation by a non-flat structuring element
in mathematical morphology. In our implementation, we use
w(τ) = 1− τ/T .

Unlike smoothing by, say, moving averages, our approach
is conservative in that ν(t) ≥ ν̃(t); in particular, visible
regions always have ν = νfront. Further, in the presence of
discontinuities such as jump cuts, ν increases continuously
from νout to νfront or νback over a time period T in advance of
the jump. This anticipatory refinement allows enough time
for the system to settle into a feasible high-resolution state
before becoming visible, as shown in Fig. 3.

3.2 Screen-space resolution of visible regions

In non-visible regions, it is sufficient to uniformly coarsen
the mesh resolution as above. However, for visible regions,
we wish to preserve the geometrical and dynamical detail
resolved by the original sizing field as much as possible,
only coarsening when such detail would not be visually
important, as illustrated in Fig. 4.

The modified sizing field M̃ gives the mesh resolution
needed to accurately capture the dynamics of all cloth
features. From the camera’s perspective, however, wrinkles
and folds that are very distant or foreshortened will appear



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

Fig. 3. A sequence of frames with a jump cut, showing a dress simulated
with temporal anticipation (above), and without (below). Blue edges
indicate faces visible in the current view. Temporal anticipation allows the
cloth to reach the correct high-resolution state before it becomes visible.

extremely small in the final image. Such features are not
likely to affect the visual appearance of the cloth and need
not be represented accurately; they can simply be coarsened
away. On the other hand, features that appear large in the
image should remain accurately represented at the resolution
determined by the original sizing field.

In the previous work of Narain et al. [14], the allowed
edge lengths were constrained to a range [`min, `max] in
material space by clamping the eigenvalues of the sizing
tensor to fall between `−2max and `−2min. As a result, features
that are extremely small in absolute geometrical size are
coarsened, while larger ones remain unaffected. In our work,
we take the same approach, but apply it to the projected
lengths of edges in screen space: edges that appear too small,
relative to the viewer, are coarsened. To do so, we transform
the sizing tensor M̃ to screen space, apply the bound on
the shortest allowable edge length, and transform it back to
material space.

For a given configuration of the sheet, consider the
function from material-space coordinates of points to their
screen-space coordinates. On a visible face, this function is
locally invertible and its Jacobian S is a full-rank 2×2 matrix
that can be computed from the screen-space coordinates of
the three vertices. As the sizing tensor M̃ acts as a quadratic
form acting on vectors in material space, the corresponding
tensor that acts on screen-space vectors can be obtained via
the transformation

S(M̃) = S−TM̃S−1. (5)

We require the minimum change to the screen-space
sizing tensor S(M̃) such that edges of screen-space length
`min will not be refined further. This change can be achieved
by modifying the eigendecomposition of S(M̃) so that its

Fig. 4. As the distance between the camera and each character increases
from right to left, the simulation mesh becomes progressively coarser
(below). However, the minimum edge length measured in screen-space
remains roughly constant. As a result the figures shown in the rendered
image (above) have a uniform level of visual detail.

eigenvalues do not exceed `−2min:

S(M̃) = Q

[
λ1 0
0 λ2

]
QT, (6)

λ̂i = min(λi, `
−2
min), (7)

M̂ = Q

[
λ̂1 0

0 λ̂2

]
QT. (8)

We transform this modified screen-space tensor back into
material space to obtain the final sizing field we use for
remeshing visible regions, Mvd = S−1(M̂) = STM̂S.

3.3 Transferring sizing field from faces to vertices

The sizing field defined by the procedures above is repre-
sented as a metric tensor on each face. This tensor field
must be resampled onto mesh vertices so that it can be used
in the sizing criterion (1). Previous work [14] has used a
simple area-weighted averaging procedure. However, we
have found that the approach tends to lose detail in regions
with rapid variation in the sizing field, such as at silhouettes
where the view factor changes from νfront to νback. The issue is
exacerbated because coarser regions, which have larger faces,
are given higher weight, leading to excessive coarsening at
boundary vertices.

In order to handle this discontinuity in view factors,
we first resample per-face view factors before the simple
area-weighted averaging procedure. If the values of ν differ
by more than a specified threshold across any edge, we
do simple averaging between two adjacent view factors,
and assign the averaged value to one of the faces as
shown in Fig. 5. As we do not want to change the view



KOH ET AL.: VIEW-DEPENDENT ADAPTIVE CLOTH SIMULATION WITH BUCKLING COMPENSATION 5

⌫back

⌫back + ⌫front

2

⌫back + ⌫front

2

⌫back

⌫back

⌫back

⌫back ⌫back

⌫back

⌫back

⌫front

⌫front

⌫front

⌫front

⌫front

⌫front

⌫front

⌫front

⌫front

⌫front

Fig. 5. Locally interpolating discontinuous view factors at silhouettes to
ensure smooth silhouettes.

factors of the visible faces from νfront, we always assign the
averaged view factor to a non-visible face.

This approach ensures that silhouette boundaries are
refined to the same extent as other visible regions of the cloth,
improving the appearance of silhouettes. This change affects
the simulation mesh only in a limited area near silhouette
boundaries, so it does not hinder overall performance.

3.4 Interpenetration handling

Remeshing invariably produces changes in the geometry
of the cloth mesh, and can introduce interpenetrations
of the cloth with itself or with obstacles. We found that
the simple approach for interpenetration handling used in
previous remeshing work [14] does not always converge
to an interpenetration-free configuration in the presence
of the aggressive coarsening we perform in non-visible
regions. Instead we use the approach of intersection contour
minimization proposed by Volino et al. [32], which we found
to be robust to large and complex interpenetrations.

3.5 Coarse-scale buckling compensation

Real cloth materials typically have a relatively high resistance
to in-plane compression, but a relatively low resistance to
out-of-plane bending. As a result, cloth will often drape in
configurations that would be non-developable at coarse scale,
but where fine-scale wrinkles and folds take the place of
coarse-scale compression. These fine wrinkles and folds not
only allow commonly observed draping, but also responsible
for giving specific materials their distinctive appearances.

However, extremely coarse mesh regions do not have
the resolution required to form fine wrinkles or folds, and
furthermore those coarse regions tend to suffer from element
locking that suppresses bending and wrinkle formation. As a
result, when out-of-view regions are heavily coarsened, they
often exhibit behavior that is dramatically different from that
of more refined regions. In particular, coarse regions have
a tendency to balloon out in an undesirable manner that is
atypical of real cloth, as shown in Figs. 3 and 10.

Because extreme coarsening mainly occurs for out-of-
frame cloth regions, this undesirable behavior is generally
not observable by the viewer. Additionally, our temporal
smoothing causes cloth regions to be refined before they are
visible, allowing transient artifacts to settle out. Nevertheless,
the incorrect motion of out-of-frame regions may cause
undesirable side effects that affect the behavior of the visible
part of the cloth.

Fig. 6. A comparison of no buckling compensation (left), non-adaptive
buckling compensation (middle), and adaptive buckling compensation
with k = 10 (right).

We can avoid this artificial stiffening by switching coarse
faces to a material model that permits compression in lieu of
sub-element buckling [33], [34]. However, simply removing
compression resistance for all out-of-view faces would also
create undesirable artifacts, as shown in Fig. 6 (middle).
Instead, we allow compression adaptively based on each
face’s area in material space as follows.

The Green strain tensor of face i is

Ei =
1

2
(FT
i Fi − I), (9)

where Fi is the deformation gradient. We reduce the face’s
compression resistance by simply reducing the amount
of compressive strain that the constitutive model sees.
Specifically, for each out-of-frustum face, we compute the
eigendecomposition of its strain tensor Ei to obtain principal
strains λ1 and λ2. We replace each principal strain with

λ̂j =

{
λj if λj ≥ 0,

αiλj if λj < 0,
(10)

with area-based compression factor αi,

αi =

(
Amax −Ai
Amax −Amin

)k
, (11)

where Ai is area of face i in material space, Amax and
Amin are the areas of the largest and smallest out-of-
frustum faces, and k ≥ 1 is a parameter controlling the
amount of compensation. Because this compression factor
increases with material-space area, the degree of allowed
compression changes adaptively: the bigger the triangle, the
more compressible it is. This behavior approximates the fine-
scale buckling that would otherwise have occurred in the
cloth represented by the coarse element, leading to a more
plausible behavior in coarse regions as shown in Figs. 6 and
7.

We note that this approach to approximating the coarse
effects of fine-scale buckling is not specific to view-dependent
adaptivity, and it could be applied to other adaptive al-
gorithms suffering from similar artifacts. The compression
factor α is unrelated to the view factor, as buckling is purely a
physical phenomenon independent of the viewing direction.
Therefore, we have defined the compression factor entirely
in terms of the area of faces and a user-defined parameter k.



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

Fig. 7. No buckling compensation (top) and adaptive buckling compensa-
tion with k = 10 (bottom) in Multiple Dancers example.

4 RESULTS AND DISCUSSION

We have implemented the methods described in this paper
as an extension to the ARCSim simulator. These extensions
will be integrated into a future release of the software.

To test the utility of the proposed methods, we ran
comparisons with adaptive and non-adaptive simulations
on several examples. All simulations were run on a machine
with an Intel Xeon E5-2680 v2 processor and 16 GB RAM
using 4 execution threads. The constants for view-dependent
refinement that were used for these examples are νfront = 1,
νback = 0.2, m = 0.4 m, T = 5 frames, and νout = 0.01.
However, for the example shown in Fig. 1, we used larger
νout = 0.1 to avoid intersection problems with the layered
garments.

Fig. 1 shows a character wearing a layered outfit con-
sisting of three interacting garments. As the accompanying
video shows, the character’s clothing exhibits complex
dynamic motion with detailed wrinkles. As the camera

100 200 300 400 500 600 700 800
Frame

0

50

100

150

200

Ti
m

e
/

Fr
am

e
(s

ec
on

ds
)

Adaptive (total)
Adpative
Ours
Ours (total)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

To
ta

lt
im

e
(s

ec
on

ds
)

Fig. 8. A comparison of view-independent and view-dependent adaptive
simulations for the example of Fig. 1 in terms of per-frame and cumulative
simulation times.

Fig. 9. A solo dancer is shown from the camera’s perspective (left, middle)
and from an external perspective with the camera’s view frustum drawn
in black wireframe (right).

Fig. 10. A group of multiple dancers is rendered from the camera’s
perspective (top), while an external view showing the camera’s view
frustum is shown below. Characters completely outside the view frustum
are simulated at very low resolution.

moves continuously or transits between cuts, the simulation
mesh is updated to maintain a constant level of visible detail
while out-of-view regions are aggressively coarsened. Fig. 8
plots the time per frame and total cumulative computation
time for this example for both the basic adaptive simulation
and our view-dependent adaptive version.

Fig. 9 shows a character wearing a simple dress, showing
a degree of view-dependent refinement and coarsening
similar to Fig. 1. A group of ten such characters is shown
in Fig. 10. Note that while these characters are all perform-
ing the same actions in the same type of dress, they are
simulated individually with different resolutions depend-
ing on their location relative to the camera. In practical
applications, multiple characters in a crowd would likely
have different garments and distinct movements, and would



KOH ET AL.: VIEW-DEPENDENT ADAPTIVE CLOTH SIMULATION WITH BUCKLING COMPENSATION 7

TABLE 1
Statistics and timing numbers for the examples. Non-adaptive simulations use a fixed high-resolution mesh. Adaptive simulations use the unmodified

scheme implemented in ARCSim. View-dependent simulations use the method described in this paper. The adaptive simulations are used as a
baseline for comparison. The non-adaptive mesh resolution was selected to match the visual quality of the adaptive simulations.

Num. Faces Num. Vertices Time / Frame (seconds) Speed-up
min max mean min max mean min max mean

Karate
Non-adaptive 123,790 123,790 123,790 63,889 63,889 63,889 136.47 288.01 161.44 0.49×
Adaptive 25,785 71,142 41,973 14,135 37,199 22,358 31.41 184.39 79.04 1×
View-dependent 5,223 39,139 21,501 3,142 20,770 11,670 5.52 83.29 33.02 2.39×

Solo Dancer
Non-adaptive 43,710 43,710 43,710 22,736 22,736 22,736 27.31 58.09 29.27 0.54×
Adaptive 12,030 21,763 18,041 6,593 11,535 9,659 7.78 22.00 15.80 1×
View-dependent 730 15,951 9,638 560 8,599 5,314 0.83 13.81 7.55 2.09×

Multiple Dancers
Non-adaptive 437,100 437,100 437,100 227,360 227,360 227,360 273.13 580.85 292.73 0.47×
Adaptive 119,515 184,340 161,028 65,505 98,630 86,897 79.97 178.24 136.99 1×
View-dependent 11,216 102,945 36,339 7,619 56,285 21,228 12.02 82.54 30.76 4.45×

therefore also have to be simulated individually even with-
out view dependence.

Timings for these three examples are reported in Table 1.
The single character examples realize a speed-up between
2.1× and 2.4×. This speed-up becomes more substantial for
the group of ten characters where it is roughly 4.5×. The
greater speed-up occurs because when a single character fills
the screen, requiring full adaptive resolution, other characters
tend to go out of frame which then switch to low resolution
and generate substantial savings. In order for all characters
to be visible, the camera must be fairly far back which yields
savings across all characters. These same factors would hold
more strongly for larger groups. Accordingly we hypothesize
that massive scenes involving thousands of characters would
likely realize speed-ups substantially larger than those we
have observed for small groups.

Remeshing does introduce small amounts of motion that
might be visible if the character is otherwise still. As shown
in the video, however, this motion does not manifest as
visible popping because the dramatic remeshing generally
happens off screen. The motion that appears on screen is
only gentle swaying that looks fairly natural. If the subject
is moving, then this gentle motion is completely masked by
the normal motion of the cloth. Even with a still subject, the
artificial motion can be hard to detect due to the movement
of the camera.

5 CONCLUSIONS

The methods we have described provide a simple way
of achieving computational savings for cloth simulation.
For scenes involving multiple characters or large crowds,
these savings can be substantial. We have demonstrated
our approach in simulations of clothing, but believe that it
could equally well be applied to other objects that can be
simulated in an adaptive framework, including materials
that can crumple [15] or fracture [16].

The main limitation of our method is that it requires
an adaptive framework. However, once that framework is
in place, view-dependent adaptivity is relatively simple to
implement. For the group of dancers, our view-dependent

adaptive simulation is nearly 10× faster than an equivalent
non-adaptive simulation. We believe that such large perfor-
mance gains outweigh any costs associated with changing
mesh topology. We also believe that our approach would
scale very well to massive scenes with thousands of actors,
where it would produce even larger savings.

As mentioned in the introduction, our method targets
high-quality offline simulation, and there would be addi-
tional challenges in applying it to interactive animation. In
particular, our temporal smoothing requires a prescribed
camera motion, so it may not be possible to apply it in inter-
active settings where camera motions are not predetermined.

Our technique for buckling compensation rests on the
core idea of modifying the constitutive model to account for
unresolved sub-element detail. Such an approach could be
useful in a much broader context, for example to improve
simulation fidelity in resource-constrained applications, or
to improve the correspondence between coarse preview
visualizations and the final high-resolution computation. We
hope to explore such avenues in future work.

In general, simulations used for physically based anima-
tion in graphics have been designed so that they capture
visible phenomena for realistic appearance. These simula-
tions typically avoid the type of error analysis that one
finds in most engineering contexts because it is difficult
to quantify a measure of perceptual error that would be
relevant to graphics simulations. The work we’ve presented
here explicitly drives adaption according to a heuristic
measure of visible error. Future work in this area could
more explicitly take perceptual error into account so that
reduced resolution could be used where masking effects due
to motion, complexity, or other phenomena cause humans to
be less sensitive to apparent detail.

ACKNOWLEDGMENTS

The authors thank the other members of the Visual Com-
puting Lab at UC Berkeley for their valuable advice and
help. This work was supported by NSF grants CNS-1444840
and IIS-1353155, an AWS in Education Grant award, and
gifts from Intel, Pixar, and Qualcomm. Woojong Koh was



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

supported by a Samsung Scholarship. This project was built
using the ARCSim framework developed at UC Berkeley,
and the images in this paper and video were rendered with
the Mitsuba renderer by Wenzel Jakob.

REFERENCES

[1] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and smoke
with an octree data structure,” ACM Trans. Graph., vol. 23, no. 3, pp.
457–462, Aug. 2004.

[2] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively
sampled particle fluids,” ACM Trans. Graph., vol. 26, no. 3, pp.
48:1–7, Jul. 2007.

[3] N. Chentanez and M. Müller, “Real-time Eulerian water simulation
using a restricted tall cell grid,” in ACM SIGGRAPH 2011 Papers,
ser. SIGGRAPH 2011, 2011, pp. 82:1–82:10.

[4] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien,
“Fluid animation with dynamic meshes,” in Proc. of ACM SIG-
GRAPH 2006, Aug. 2006, pp. 820–825.

[5] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R.
Shewchuk, “Liquid simulation on lattice-based tetrahedral meshes,”
in ACM SIGGRAPH/Eurographics Symp. on Computer Animation 2007,
Aug. 2007, pp. 219–228.

[6] R. Ando, N. Thürey, and C. Wojtan, “Highly adaptive liquid
simulations on tetrahedral meshes,” ACM Trans. Graph., vol. 32,
no. 4, pp. 103:1–103:10, Jul. 2013.

[7] D. Hutchinson, M. Preston, and T. Hewitt, “Adaptive refinement
for mass/spring simulations,” in 7th Eurographics Workshop on
Animation and Simulation. Springer-Verlag, 1996, pp. 31–45.

[8] S. Redon, N. Galoppo, and M. C. Lin, “Adaptive dynamics of
articulated bodies,” ACM Trans. on Graphics (SIGGRAPH 2005),
vol. 24, no. 3, 2005.

[9] E. Grinspun, P. Krysl, and P. Schröder, “CHARMS: A simple
framework for adaptive simulation,” in Proc. of the 29th Annual Conf.
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH 2002,
2002, pp. 281–290.

[10] J. A. Thingvold and E. Cohen, “Physical modeling with B-spline
surfaces for interactive design and animation,” SIGGRAPH Comput.
Graph., vol. 24, no. 2, pp. 129–137, Feb. 1990.

[11] L. Li and V. Volkov, “Cloth animation with adaptively refined
meshes,” in Proc. 28th Australasian Computer Science Conference,
vol. 38, 2005.

[12] J. Villard and H. Borouchaki, “Adaptive meshing for cloth anima-
tion,” Eng. with Computers, vol. 20, no. 4, pp. 333–341, 2005.

[13] T. Brochu, E. Edwards, and R. Bridson, “Efficient geometrically
exact continuous collision detection,” ACM Trans. Graph., vol. 31,
no. 4, pp. 96:1–96:7, Jul. 2012.

[14] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive anisotropic
remeshing for cloth simulation,” ACM Trans. on Graphics, vol. 31,
no. 6, pp. 147:1–10, Nov. 2012.

[15] R. Narain, T. Pfaff, and J. O’Brien, “Folding and crumpling adaptive
sheets,” ACM Trans. Graph., vol. 32, no. 4, pp. 51:1–8, Jul. 2013.

[16] T. Pfaff, R. Narain, J. M. de Joya, and J. F. O’Brien, “Adaptive tearing
and cracking of thin sheets,” ACM Trans. on Graphics, vol. 33, no. 4,
pp. 1–9, Jul. 2014.

[17] D. A. Carlson and J. K. Hodgins, “Simulation levels of detail for
real-time animation,” in Proc. of the Conf. on Graphics Interface ’97,
1997, pp. 1–8.

[18] D. O’Brien, S. Fisher, and M. Lin, “Automatic simplification of
particle system dynamics,” in The Fourteenth Conf. on Computer
Animation, 2001, pp. 210–257.

[19] J. Beaudoin and J. Keyser, “Simulation levels of detail for plant
motion,” in Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp.
on Computer Animation, ser. SCA ’04, 2004, pp. 297–304.

[20] K. Ward, M. C. Lin, J. Lee, S. Fisher, and D. Macri, “Modeling
hair using level-of-detail representations,” in Proc. of the 16th
International Conf. on Computer Animation and Social Agents (CASA
2003), ser. CASA ’03, 2003, pp. 41–47.

[21] S. Chenney and D. Forsyth, “View-dependent culling of dynamic
systems in virtual environments,” in Proc. of the 1997 Symp. on
Interactive 3D Graphics, ser. I3D ’97, 1997, pp. 55–58.

[22] B. A. Barran, “View dependent fluid dynamics,” Master’s thesis,
Texas A&M University, 2006.

[23] J. Kim, I. Ihm, and D. Cha, “View-dependent adaptive animation
of liquids,” ETRI Journal, vol. 28, no. 6, pp. 697–708, Dec. 2006.

[24] R. Bunlutangtum and P. Kanongchaiyos, “Enhanced view-
dependent adaptive grid refinement for animating fluids,” in Proc.
of the 10th International Conf. on Virtual Reality Continuum and Its
Applications in Industry, ser. VRCAI ’11, 2011, pp. 415–418.

[25] B. Solenthaler and M. Gross, “Two-scale particle simulation,” ACM
Trans. Graph., vol. 30, no. 4, pp. 81:1–81:8, Jul. 2011.

[26] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein, “ROAMing terrain: Real-time opti-
mally adapting meshes,” in Proc. of the 8th Conf. on Visualization ’97,
ser. VIS ’97, 1997, pp. 81–88.

[27] H. Hoppe, “Smooth view-dependent level-of-detail control and its
application to terrain rendering,” in Proc. of the Conf. on Visualization
’98, ser. VIS ’98, 1998, pp. 35–42.

[28] T. A. Funkhouser and C. H. Séquin, “Adaptive display algorithm
for interactive frame rates during visualization of complex virtual
environments,” in Proc. of the 20th Annual Conf. on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’93, 1993, pp. 247–254.

[29] D. Luebke and C. Erikson, “View-dependent simplification of
arbitrary polygonal environments,” in Proc. of the 24th Annual Conf.
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’97,
1997, pp. 199–208.

[30] H. Hoppe, “View-dependent refinement of progressive meshes,” in
Proc. of the 24th Annual Conf. on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’97, 1997, pp. 189–198.

[31] J. C. Xia, J. El-Sana, and A. Varshney, “Adaptive real-time level-
of-detail-based rendering for polygonal models,” IEEE Trans. on
Visualization and Computer Graphics, vol. 3, no. 2, pp. 171–183, Apr.
1997.

[32] P. Volino and N. Magnenat-Thalmann, “Resolving surface collisions
through intersection contour minimization,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 1154–1159, Jul. 2006.

[33] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” ACM Trans.
Graph., vol. 21, no. 3, pp. 604–611, Jul. 2002.

[34] H. Wang, J. O’Brien, and R. Ramamoorthi, “Multi-resolution
isotropic strain limiting,” ACM Trans. Graph., vol. 29, no. 6, pp.
156:1–156:10, Dec. 2010.

Woojong Koh is a third-year Ph.D. student in
Computer Science at the University of California,
Berkeley. He received his B.S. in Computer Sci-
ence and Engineering from the Seoul National
University, Seoul, South Korea.

Rahul Narain is an Assistant Professor in the
Department of Computer Science & Engineering
at the University of Minnesota. He received his
Ph.D. in Computer Science from the University of
North Carolina at Chapel Hill and was a postdoc-
toral scholar at the University of California, Berke-
ley. His research interests lie in physics-based
animation and numerical simulation, particularly
focusing on adaptive techniques for modeling
complex multiscale phenomena.

James F. O’Brien is a Professor of Computer
Science at the University of California, Berkeley.
His primary area of interest is computer anima-
tion, with an emphasis on generating realistic
motion using physically based simulation and
motion capture techniques. He has authored
numerous papers on these topics. In addition to
his research pursuits, Prof. O’Brien has worked
with film and game companies on integrating
advanced simulation physics into games and spe-
cial effects. His methods for destruction modeling

have been used in over 70 feature films and AAA game titles. In 2015
the Academy of Motion Picture Arts and Sciences recognized his work
in destruction modeling with an Award for Technical Achievement. He
received his doctorate from the Georgia Institute of Technology in 2000,
the same year he joined the faculty at U.C. Berkeley. Professor O’Brien
is a Sloan Fellow and ACM Distinguished Scientist, has been selected
as one of Technology Review’s TR-100, and has been awarded research
grants from the Okawa and Hellman Foundations. He is currently serving
as ACM SIGGRAPH Director at Large.


	1 Introduction
	2 Related Work
	3 Methods
	3.1 Coarsening of non-visible regions
	3.1.1 Spatial smoothing
	3.1.2 Temporal smoothing and anticipation

	3.2 Screen-space resolution of visible regions
	3.3 Transferring sizing field from faces to vertices
	3.4 Interpenetration handling
	3.5 Coarse-scale buckling compensation

	4 Results and Discussion
	5 Conclusions
	References
	Biographies
	Woojong Koh
	Rahul Narain
	James F. O'Brien




