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PhenoBlocks: Phenotype Comparison Visualizations 

Michael Glueck, Peter Hamilton, Fanny Chevalier, Simon Breslav, Azam Khan, Daniel Wigdor, Michael Brudno 

Abstract— The differential diagnosis of hereditary disorders is a challenging task for clinicians due to the heterogeneity of phenotypes 

that can be observed in patients. Existing clinical tools are often text-based and do not emphasize consistency, completeness, or 

granularity of phenotype reporting. This can impede clinical diagnosis and limit their utility to genetics researchers. Herein, we present 

PhenoBlocks, a novel visual analytics tool that supports the comparison of phenotypes between patients, or between a patient and 

the hallmark features of a disorder. An informal evaluation of PhenoBlocks with expert clinicians suggested that the visualization 

effectively guides the process of differential diagnosis and could reinforce the importance of complete, granular phenotypic reporting. 

Index Terms—Clinical diagnosis, differential hierarchy comparison, ontology, genomics, phenomics, phenotype

 

INTRODUCTION

In medicine, the clinical differential diagnosis of hereditary disorders 
to determine the disease with which a patient is afflicted is a complex 
and iterative process. This practice involves significant data gathering 
efforts, including reviewing patient and family medical history, 
evaluating environmental exposures, performing physical 
examinations, diagnostic imaging, biochemical investigations, and 
psychological testing [21][32][51]. During differential diagnosis, a 
clinician characterizes a patient by a set of phenotypes, i.e., observable 
and measurable deviations from expected morphology, physiology, 
and behavior [4][51]. The observation of phenotypes is the single most 
important responsibility of a clinician [51], as phenotypes guide the 
development of a clinician’s hypotheses. Such hypotheses are verified 
by additional investigations and analyses, or tracking the effectiveness 
of a course of treatment. The results of such tests provide additional 
patient phenotypes and enable clinicians to build a comprehensive 
characterization of a patient’s phenotypes, one block at a time.  

Prior investigations have reported that recorded phenotypic 
descriptions are often inconsistent, incomplete, or imprecise [51]. 
Existing differential diagnosis database tools, such as London Medical 
Databases [34] or POSSUM [44], allow clinicians to query potential 
disorders associated with observed phenotypes, but current search 
algorithms do not leverage the granularity of phenotype descriptions 
or semantic relationships between search terms [50]. Recent 
initiatives, such as the Human Phenotype Ontology (HPO) [30], 
promote the use of standardized terms for clinical reporting and 
support a framework for semantic matching. Such tools, however, are 
only accessible through text-based interfaces that do not reveal the 
hierarchical context of phenotypes and do little to encourage clinicians 
to improve the quality of their phenotypic reporting. 

We address these shortcomings through PhenoBlocks, a novel 
visual analytics tool that supports clinical differential diagnosis. Using 
the HPO, a differential hierarchy comparison algorithm was 
developed to analyze phenotypes pairwise between patients and 
display the results using Sunburst radial hierarchy layouts [54]. This 

visualization highlights the semantic context of the comparisons, 
uncovering hierarchical relationships that are not apparent in existing 
text-based interfaces (Fig. 1). 

Using linked, differential views [17] organized as small-multiples, 
clinicians can visually compare the phenotypes of an undiagnosed 
query patient to a cohort of diagnosed reference patients who 
exhibited similar phenotypes (Fig. 5) and update the phenotype data 
in-place. Using phenotypes of existing diagnosed patients as baselines 
for comparison could encourage clinicians to improve the quality of 
their own phenotyping while also mitigating errors of probabilistic 
reasoning. Important phenotypes are made visually salient, allowing 
clinical investigations to be prioritized. 

A user-centered approach informed the design of PhenoBlocks. 
First, clinicians were interviewed to understand existing workflows. 
A workflow analysis then identified key tasks and a preliminary 
evaluation elicited areas for improvement that could be aided by visual 
analytics. Addressing these improvements, we implemented 
PhenoBlocks and validated it via a use case scenario and feedback 
from clinicians. As a result, PhenoBlocks is a new visual analytics tool 
for clinical differential diagnosis to address the present and growing 
needs of clinicians and researchers alike. We contribute a differential 
hierarchy structure comparison algorithm, a visual encoding strategy, 
and a differential visualization to compare the structure of hierarchies. 
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Fig. 1. An example of a single differential view in PhenoBlocks, 
comparing the phenotype hierarchies of an undiagnosed query patient 
to a diagnosed reference patient. During differential diagnosis, clinicians 
use shared (green) phenotypes to gauge confidence in their diagnostic 
hypothesis and missing (purple) phenotypes to identify candidates for 
subsequent analysis. 
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1 PHENOTYPES IN MEDICINE 
Within the medical domain a phenotype is an observable and 
measureable deviation of some aspect of a patient from the expected 
manifestation within a population [4][51]. Thus, a phenotype 
describes an abnormality of a patient’s morphology (i.e., structural 
features such as having a broad thumb or low-set ears), physiology 
(i.e., functional features such as cognitive impairment or seizures), or 
behavior (i.e., depression or impulsivity).  

While genetic variations and inheritance could be the primary 
causes of phenotypes, not all phenotypes are present from birth. Onset 
may occur later in life (e.g., hearing loss) or could be due to 
environmental factors (e.g., cancers). Some phenotypes are also more 
likely to occur in males than females (e.g., red-green color-blindness), 
or differ between ethnic populations (e.g., epicanthal folds are more 
common in patients of Asian descent). 

The study of phenotypes seeks a complete and detailed 
understanding of the spectrum of phenotypic abnormalities associated 
with diseases. Phenotypes are the primary data type used by clinicians 
when making a diagnosis [4]. The knowledge of phenotype frequency 
enables clinicians to differentiate a symptom of underlying syndromes 
from an isolated feature, resulting in a diagnosis and course of 
treatment [49]. A rare phenotype occurs in less than 5% of cases of a 
given syndrome, whereas a hallmark occurs in more than 90% [1]. 

1.1 Phenotype Granularity 
Phenotype reports form part of a patient’s Electronic Health Record 
(EHR). Since these entries are written using natural language, many 
notations, abbreviations, and synonymous terms have evolved [51] 
and are reported at different granularities of detail [35]. While 
comparing published results, insufficient granularity can introduce 
uncertainty of the actual observations of the clinician [49]. 

Research trends in phenomics, called deep phenotyping, rely on 
comprehensive patient phenotypes to infer the causality of gene 
variation [4]. Innovative computational approaches promise to deepen 
the understanding of the spectrum of phenotypic abnormalities by 
automating phenotype identification and quantification (i.e., analysis 
of medical imaging and 3D scans of morphology) [51]. Given current 
technologies, it is not practical to fully phenotype each patient. Thus, 
clinicians and researchers stand to benefit from advanced diagnosis 
tools that promote the use of consistent phenotype terminology and 
encourage complete and granular phenotyping in pursuit of next-
generation personalized medicine. 

1.2 Human Phenotype Ontology 
The Human Phenotype Ontology (HPO) is an international project to 
address these shortcomings by standardizing terminology and 
describing the semantic relationships between phenotypes [30]. Each 
entity in the ontology describes a distinct phenotypic abnormality, and 
is arranged in a hierarchical structure representing subclass “is-a” 
relationships. As a phenotype may have more than one superclass, the 
HPO supports multiple inheritance. Thus, the HPO is a highly 
complex directed acyclic graph, following the true-path rule. The 
presence of a specific phenotype implies all ancestor phenotypes (i.e., 
Celiac Disease is a subclass of both Abnormality of the Intestine and 
Abnormality of the Immune System). 

The HPO uses phenotype-disease co-occurrence annotations from 
existing medical databases, such as the Online Mendelian Inheritance 
in Man (OMIM) [40], to calculate an information content score. This 
score quantifies the diagnostic specificity of a given phenotype based 
on how frequently it occurs amongst all known disorders (i.e., 
phenotypes linked to fewer diseases have higher information content). 
Terms closer to the root are also less clinically specific and have less 
informational content than more granular terms farther from the root 
[50]. Since syndromes in OMIM are annotated to HPO terms, 
phenotypes can be used to describe all the signs, symptoms, and other 
manifestations that characterize a given disease. The HPO is an 
ongoing effort that currently includes over 10,000 terms and 50,000 
annotations for over 5,000 known syndromes. 

1.3 Hierarchical Phenotype Data 
Phenotype data are often represented as a list of HPO terms, with each 
phenotype being present (i.e., the phenotype was investigated and 
found) or absent (i.e., the phenotype was investigated and not found) 
in the patient. 

1.3.1 Phenotype Similarity 

A list-based phenotype representation lends itself to calculating the 
cosine similarity between feature vectors, a technique used 
predominantly in existing clinical tools [50]. These searches match 
only exact terms and fail to account for the semantic similarity 
between phenotypes (e.g., the phenotypes Wide Nose, Long Nose, and 
Broad Nose are terms with high semantic similarity). When a patient’s 
phenotypes are considered in context of the HPO, semantic similarity 
searches become possible. Phenomizer [29] and PhenoTips [15] 
demonstrated that semantic similarity scores outperform cosine 
similarity in both finding and ranking similar diseases. 

1.3.2 Patient Phenotypes Comparisons 

The calculation of phenotype similarity scores has benefited from the 
consideration of ontological relationships. However, explicitly 
representing phenotypes within the ontological hierarchy has not yet 
been applied to phenotype comparison visualizations. Representing 
phenotypes in a visual manner can support the discovery of novel 
insights that are not possible when list-based representations are used. 
The nearest common ancestor of two phenotypes, for example, can 
quickly be determined using a visual hierarchy. 

In the present work, we introduce a visual analytics tool that 
supports the comparison of phenotypes between a new, undiagnosed 
query patient and a set of diagnosed reference patients. A database of 
diagnosed patients is searched and the most semantically similar 
patients to the query are used as references. Each visualization then 
depicts the differential hierarchy comparing the query patient and one 
reference patient (Fig. 1). The differential hierarchies are computed by 
converting patient phenotype data into hierarchical data and then 
comparing nodes (Fig. 2). This results in nine possible comparison 
states for each phenotype (Fig. 3). The differential views distinguish 
between shared (i.e., observed as present in both patients or absent in 
both patients), divergent (i.e., observed as present in one patient but 
absent in the other) and missing (i.e., observed in one patient, but 
neither present nor absent in the other) phenotypes. 

Fig. 2. Differential hierarchy computation. (A) For each patient, the 
list of phenotype terms are instantiated in the (B) HPO to create (C) 
hierarchical data. Bold strokes indicate input phenotype terms. (D) To 
facilitate visual comparisons across differential views, we derive a 
shared hierarchical structure as the union of query and all reference 
patient subgraphs. (E) Using the ontological structure, the states of 
relevant ancestor and descendant phenotypes are inferred, i.e., 
Presence in a child implies presence in the parent, Absence in a parent 
implies absence in the children. Nodes in the shared hierarchy without 
data for a patient are marked as Unknown. (F) Finally, we compare 
nodes pairwise between the query and each reference to create the 
differential hierarchies displayed in the visualization. 
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2 CLINICAL DIFFERENTIAL DIAGNOSIS 
To understand the clinical diagnosis workflow, interviews were 
conducted with two expert clinical diagnosticians, E1 and E2, who had 
14 and 28 years of diagnostic experience, respectively. The clinicians 
have reviewed over 8,000 cases between them. The interviews 
introduced hard handles, described existing diagnosis tools, and 
provided a workflow overview. We generalize tasks and highlight 
improvements to the current workflow that informed PhenoBlocks. 

2.1 Hard Handles 
When patients with undiagnosed rare genetic disorders are referred to 
a specialist, the first step of differential diagnosis is to identify the 
most salient phenotypes of a patient, i.e., hard handles. Hard handles 
are highly indicative of specific disorders; they have high information 
content (rare among disorders) and occur with high frequency in 
specific disorders. Hard handles provide the strongest discriminative 
power to reduce the set of plausible diagnoses.  

Clinicians rely on personal experience to identify hard handles: 
over time, they learn which phenotypes are rare or common, which 
combinations are expected or surprising, and so on. This is a 
necessary, but time consuming and error prone aspect of clinical 
diagnosis training. A clinician identifies hard handles by collecting 
data from sources, such as the patient’s EHR or investigating family 
medical history, but primarily from an initial face-to-face consultation 
with the patient. During this consultation, a clinician focuses on 
externally observable phenotypes that present in the face, limbs, and 
extremities (e.g., Low-set Ears or Broad Thumbs). A clinician may 
visually identify dozens of phenotypes in a patient, but only a few 
qualify as hard handles. Factors, such as the patient’s age, sex, and 
ethnicity are all taken into consideration when searching for hard 
handles, compounding the difficulty of diagnosis. 

2.2 Existing Tools 
Many hereditary disorders are rare and a clinician may have limited 
experience with specific cases [15]. There are currently over 8,000 
named diseases and many thousands more yet to be discovered and 
classified [51]. Many tools help clinicians cross-reference phenotypes 
to associated syndromes and prioritize the order of investigation 
during differential diagnosis. The clinicians we interviewed use 
several tools, including textbooks, online databases, and research 
prototypes to support clinical differential diagnosis. 

Smith's Recognizable Patterns of Human Malformation (Smith’s) 
[24] is a popular reference textbook. The appendix lists syndromes 
associated with phenotypes and annotates the rate of co-occurrence as 
“frequent” or “infrequent”. 

The OMIM is a comprehensive online compendium of Mendelian 
(hereditary) disorders under development since the 1960s [40] and is 
the standard for naming and referencing disorders. Descriptions of 
diseases are regularly updated with the latest research results. 
Commonly associated phenotypes and genes are included, however, 
OMIM does not contain phenotype frequency information, does not 
integrate with the HPO, and only supports keyword search. 

LMD is a differential diagnosis database system that identifies 
associated diseases based on lists of phenotypes and includes 
reference photos of example cases [34]. LMD and similar databases, 
such as POSSUM [44], are the de facto standard in clinical medicine. 
However, E1 noted that searches require exact phenotype terms be 
specified and searches with too many phenotype terms, or very 
granular phenotype terms, may not result in relevant matches. It is 

often necessary to perform multiple searches using increasingly 
general phenotype terms, or even try different combinations of terms. 

Recent research projects aim to improve the availability of 
phenotype frequency data to clinicians. Orphanet [45] catalogs 
published research results, updating base-rate frequencies between 
phenotypes and associated syndromes. This project remains an 
ongoing initiative due to the difficulty of finding sufficiently large 
cohorts of patients, particularly for rare disorders. Phenomizer [29] 
directly leverages the HPO and supports robust semantic searching, 
meaning the more complete and specific the phenotypes in the query, 
the better the results of search results. PhenoTips [15] provides a 
standardized and structured workflow to enter phenotype data using 
HPO terms. It also allows clinicians to share patient phenotypes and 
automatically suggests similar cases within the system. Unfortunately, 
such systems have not been broadly adopted in clinical settings. 

2.3 Existing Workflow 
In the literature, clinical diagnosis is characterized as an iterative 
process of hypothesis generation and testing [10][11][58]. A clinician 
typically follows five steps: (1) identify relevant clinical information 
about a patient; (2) interpret the meaning of the data; (3) generate 
hypotheses supporting a coherent explanation in light of the data; (4) 
test and refine the hypotheses through further data collection; and (5) 
establish a working diagnosis [10]. During our interviews, both 
clinicians described similar processes, but provided details specific to 
differential diagnosis of rare hereditary diseases. 

Using identified hard handles, the clinician compiles a list of 
likely syndromes. The more hard handles unique to a syndrome, the 
more likely the syndrome is implicated by the observed phenotypes. 
Both E1 and E2 used several software tools during this process, 
including OMIM, LMD, Orphanet, and PhenoTips, as well as 
reference textbooks, such as Smith’s. They noted that while each has 
advantages and disadvantages, each tool plays an important role in the 
process. Currently, no single tool provides all the needed information, 
so considerable effort is expended to manually compile, cross-
reference, and compare data sources. 

The identified disorders form an initial set of possible diagnoses, 
which must be iteratively evaluated and refined. Next, the clinicians 
search for phenotypic evidence that disconfirms any diagnosis. If a 
hard handle for a specific syndrome is absent in the patient, this 
provides some evidence against that diagnosis; the greater the number 
of absent hard handles, the stronger the disconfirming evidence. As 
not all phenotypes are externally visible, phenotypes requiring 
medical testing or imaging are then considered. Invasive testing is 
generally deferred until necessary due to cost and patient comfort.  

By identifying the hard handles for each disorder, additional 
patient phenotypes can be prioritized for investigation. “No one has 
time to work out the full phenotype for every patient. This is why 
experience is so necessary to make quick and accurate diagnoses. At 
a certain point, there’s diminishing returns” (E1). E1 explained that 
this process continues until she has reached a working diagnosis that 
explains the presence and absence of all phenotypes. 

2.4 Tasks 
Integrating the findings of the interviews and literature review, a set 
of high-level tasks informed the design of PhenoBlocks. 

2.4.1 Collect Initial Data (T1) 

Both clinicians identified that clinical differential diagnosis is a 
challenging undertaking that relies on the experience of a clinician, 
which is echoed in the literature [58]. More experienced clinicians 
may be able to make quicker differential diagnoses since they know 
that certain combinations of phenotypes, such as Developmental 
Delay and Broad Thumbs, are exemplary of a small number of 
syndromes. A less experienced clinician may only focus on the face, 
and note Developmental Delay and Long Eye Lashes. While these are 
still hard handles, they would return more results than the prior list, 
and thus more effort and time to cull at a greater cost and 

Fig. 3. Differential comparison of phenotypes yields nine states, 
which can be classified as shared, divergent, missing, and unknown. 
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inconvenience to the patient. Thus, clinicians must engage in a cost-
benefit analysis, identifying a minimal set of hard handles that provide 
high enough discriminative power to select the most likely diagnosis. 

2.4.2 Generate Hypotheses (T2) 

Hypothesis generation is akin to a breadth-first search, where several 
competing hypotheses are considered concurrently with the ultimate 
goal of reducing the set through disconfirming evidence [3]. In this 
domain, the hypotheses are diagnoses, a logical competitor set [11] of 
plausible diseases with similar presentations but differing underlying 
causes. Effective diagnosticians use data-driven, forward reasoning. 
Backward reasoning increases the chance that contradictory evidence 
is considered anomalous and is often used by novices. The experience 
of a clinician is the primary factor determining the quality and 
diversity of hypotheses and typically continues until at least one 
potentially severe outcome is included [58]. On average, four 
hypotheses are considered at a given time by clinicians during 
hypothesis testing [10][58]. 

2.4.3 Seek Disconfirming Evidence (T3) 

Failing to seek disconfirming evidence or incorrectly discounting 
observed disconfirming evidence are hallmarks of inefficient analysis 
methods [22]. Both forward reasoning and seeking disconfirming 
evidence require sufficient relevant knowledge of the problem 
domain. While generalized knowledge is sufficient to generate 
hypotheses, specialized knowledge is necessary for effective 
evaluation [3]. This is precisely a scenario where visual analytics tools 
can excel: combining the strengths of human and electronic processing 
into an interactive process that extracts knowledge from data [28]. 

An impediment to quick differential diagnosis lies in the 
identification of additional hard handles. In both initial phenotype 
collection and seeking disconfirming phenotypes, the lack of 
frequency information forces clinicians to rely on their own 
experience. Since all phenotypes occur with some frequency, it is 
possible that a patient with a specific disorder will not present with all 
hallmark features. Based on experience alone, this disorder may be 
prematurely discounted due to representational biases of the clinician 
and investigations of related phenotypes may not take place. 

2.4.4 Evaluate and Refine Hypotheses (T4) 

A successful working diagnosis integrates all available data into a 
single, cohesive explanation for a case [3] and relies on abduction 
[25]. These explanations disconfirm competing hypotheses in light of 
all available information [58]. The major cause of misdiagnosis is the 
failure to integrate clinical data properly, meaning that although all 
relevant data was collected and correctly interpreted, there was a 
failure to combine it into a coherent explanation [16]. Expert analysts 
require only minimal information to make an informed decision as 
they focus on fewer dominant factors that have the biggest influence, 
not more data. Thus, investigation towards these critical factors should 
be promoted [22]. These steps continue until all evidence can be 
integrated into a single explanation for the phenotypes of the patient. 

2.5 Workflow Improvements 
Conceptualizing phenotypes and their relationships is thus not a trivial 
task. Existing clinical tools provide text-based interfaces to phenotype 
data, requiring clinicians to consider many relationships abstractly in 
their minds. Visualization can alleviate this burden by explicitly 
representing phenotypes within the broader ontological context 
afforded by the HPO. After addressing the shortcomings of existing 
tools and the tasks elicited, a proof-of-concept visualization was 
designed and preliminary feedback was collected from clinicians. 

2.5.1 Concurrent Investigation and Evaluation (G1) 

Clinicians rarely access diagnostic databases concurrent with patient 
consultations, resulting in increased diagnosis durations because 
clinicians need to continually consult databases and then reevaluate 
the patient, i.e., “If data can be entered at the time of seeing a patient, 
it could allow for quicker and more complete phenotyping” (E1). This 

parallelism of investigation and evaluation is described in Wheaton’s 
multi-phasic model of intelligence analysis and has also been 
empirically observed [26]. A tighter coupling of phenotype 
observation and evaluation could help clinicians identify phenotypes 
to investigate more efficiently (T1). 

2.5.2 Structured Externalizations (G2) 

Clinicians often record investigations through ad hoc, hand-written 
notes. From a distributed cognition perspective, insight is an emergent 
property of interaction with externalized representations of 
information [33]. This mirrors Pirolli & Card’s schemas [42] and 
Heuer’s structured externalizations [22]. Interactive visualizations 
could thus benefit hypothesis generation by externalizing the thought 
process and help in the evaluation of competing hypotheses by 
offloading abstract comparisons to concrete visual representations. 

Compared to novices, expert diagnosticians generate hypotheses 
that account for a wider range of potential medical outcomes [3] and 
with higher granularity due to their learned sensitivity to the expected 
base-rates of disorders [58]. Visualizations thus act as a record of the 
phenotypes investigated during a successfully diagnosed case. This 
could help novice clinicians learn by example and support expert 
clinicians when they have limited personal experience in a rare case 
(T4). In both cases, visualizations can suggest additional phenotypes 
to investigate (T3). 

2.5.3 Availability of Frequency Information (G3) 

Given the current workflow, clinicians spend significant time 
integrating information from multiple data sources. It is valuable to 
know whether a phenotype is hallmark and/or rare given a specific 
disorder (T1, T2, T3, T4). Clinicians use their knowledge of 
phenotype frequency to disconfirm diagnoses where these features are 
rare and highlight diagnoses where they are hallmarks. With such 
visualizations however, “you no longer need to have first-hand 
experience if the system can provide you with a better picture through 
concrete examples of what potential combinations are” (E1). 
Knowledge of phenotype frequency also enables a clinician to better 
prioritize the order of investigation; hallmark phenotypes should be 
investigated before lower frequency phenotypes. 

2.5.4 Phenotype Completeness and Granularity (G4) 

When provided with exhaustive lists of detailed phenotypes, existing 
diagnostic tools do not always return better results. This may 
inadvertently discourage complete and granular phenotyping. 
Presenting clinicians with examples of diagnosed cases provides a 
benchmark of the quantity and quality of phenotyping required for a 
given diagnosis. Moreover, exposure to an actual rare case of a 
diagnosed disorder could mitigate errors of probabilistic reasoning by 
concretely representing a case where some hallmark phenotypes are 
missing. Thus, visual analytics tools can provide better assistance to 
clinicians when they are shown examples of complete and granular 
data (T4). Since a major barrier to phenotyping is a lack of time, 
minimizing the cost of entering phenotype data into a system could 
encourage phenotype completeness and granularity and should be 
standard practice for clinicians.  

3 RELATED WORK 
PhenoBlocks builds upon a variety of prior visualization techniques 
from several domains: bioinformatics, healthcare, and ontology and 
hierarchy comparison. 

3.1 Visualization in Bioinformatics 
Interest in the domain of computational bioinformatics drove the 
application of algorithmic approaches to improve our understanding 
of the human genome [8][23]. Following this trend, many 
bioinformatics visualization tools support the exploration of genomic 
data, including genome browsers (e.g., Savant2 [13]),  visualizations 
of genome sequence assemblies (e.g., ABySS-Explorer [39]), 
visualizations of genome comparison (e.g., Circos [31], MizBee [36]), 
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and tools for gene variant analysis (e.g., Variant View [12]). See Arndt 
[2] and Nielsen et al. [38] for reviews in this area. These tools do not 
typically focus on visualizing patient phenotypes. 

The increasing availability of low-cost, high-throughput genome 
sequencing techniques has motivated research into disease genesis and 
evolution. New tools allow one to investigate the causality of gene 
variation on phenotypes (e.g., Arena3D [52], PheWAS [9], PheWAS-
View [41], among others [5]) and rely on Manhattan plot 
visualizations of statistical analysis results or use machine learning to 
visualize complex associations between genes, proteins, and 
phenotypes. Such tools are integral to understanding how genes and 
phenotypes differ across disease cohorts. Our focus, however, is to 
visualize a specific patient’s phenotype data against a cohort for 
healthcare purposes. 

3.2 Visualization in Healthcare 
A wealth of visualization tools have been developed to explore patient 
EHRs. Most efforts focus on patient medical histories in a time-
oriented context, including monitoring a single patient’s overall 
condition (e.g., LifeLines [43], VisuExplore [47]), analyzing a 
patient’s response to a treatment (e.g., IPBC [7], CareCruiser [18]), 
and aggregating multiple patient records in a cohort as a baseline to 
compare a specific individual’s evolving symptoms (e.g., Lifelines2 
[57], LifeFlow [59]). See Rind et al. [46] and Shneiderman et al. [53] 
for reviews in the area. These tools are helpful decision-making aids 
for clinicians when determining a course of treatment for acute or 
chronic patient problems. To account for the range of problems that 
could present, these visualizations often focus on the complete EHR. 
In contrast, little attention has been devoted to specifically visualizing 
phenomic data in the context of diagnosing rare hereditary syndromes. 

3.3 Ontology and Tree Comparison Visualization 
An ontology formalizes domain knowledge by describing concepts 
and their interrelations, and often results in a hierarchy of multiple 
inheritance represented as a directed acyclic graph. Selecting an 
appropriate visualization technique can be challenging due to the 
complexity of the interrelations and the importance of representing 
leaf nodes. In their comparative survey, Katifori et al. [27] assert that 
hierarchical space-filling visualization techniques are good candidates 
for visualizing ontologies, with Treemaps, Icicle plots and Sunburst 
visualizations [54] as the most widespread examples. PhenoBlocks 
uses Sunburst visualizations to display the HPO as the radial layout 
equalizes the size of both ancestor and leaf nodes and has been 
successfully applied within other healthcare tools. 

As the goal of PhenoBlocks is to facilitate comparison between 
multiple Sunburst visualizations, three categories of visual techniques 
are relevant to compare hierarchical visualizations, i.e., side-by-side 
views (e.g., TreeJuxtaposer [37], DaViewer [60], among others [6]), 
differential views (e.g., TreeVersity [19], among others [55][56]) and 
animation [48]. See Graham et al.’s survey [17] for a broader review. 
Consensus trees have been used to summarize the agreement of 
topological features across multiple trees [37][60]. The approach in 
PhenoBlocks differs in that not only are shared features computed, but 
we also explicitly account for dissimilar features and visually encode 
the source of the difference. These differential views provide specific 
pairwise comparisons between the phenotype hierarchies of two 
patients. Unlike prior work, where differential views highlight 
changes in node value within hierarchies [19][55][56], this work 
focuses on both topological and value differences between hierarchies. 

4 PHENOBLOCKS TOOL DESCRIPTION  
PhenoBlocks follows a clinician’s workflow when diagnosing a new 
patient. This undiagnosed patient is the query patient. The clinician 
enters phenotypes for the query patient and PhenoBlocks searches its 
database for existing diagnosed patients with similar phenotypes. The 
results of this search are reference patients and are grouped by disease 
and ordered by semantic phenotype similarity. The number of diseases 

and number of patients per disease are configurable parameters in the 
system. The clinician then uses the visualizations to prioritize 
phenotype investigations with the query patient, and enters new 
phenotypes interactively until a diagnosis is reached. 

4.1 Patient Phenotype Data 
The prototype system uses a database of 47 patients across six genetic 
disorders, with between 3 and 11 patients per disorder. As part of the 
FORGE Canada Consortium [14], phenotype data for each patient was 
digitally transcribed from published research investigating cohorts of 
patients with diagnosed diseases. 

x Floating Harbor Syndrome, SRCAP, 136140, PMID: 22265015 
x MFDM, EFTUD2, 610536, PMID: 22305528 
x MICCAP, STAMBP, 614261, PMID: 23542699 
x Chudley-McCullough Syndrome, GPSM2, 604213, PMID: 22578326 
x Hajdu-Cheney Syndrome, NOTCH2, 102500, PMID: 21681853 
x Joubert, C5orf42, 614615, PMID: 22425360 

The database consists of a list of present and absent HPO terms 
for each patient. Complete and granular phenotype data of diagnosed 
patients are becoming available through research prototypes (i.e., 
PhenoTips [15]). Alternatively, a clinician can enter custom data into 
the system to visualize comparisons of specific patients. 

4.2 Sunburst Visualizations 
To visualize the differential hierarchy of patient phenotypes (Fig. 2), 
we first convert the data into a tree by way of duplicating nodes with 
multiple inheritance. A typical differential hierarchy is attributed 10-
20 phenotypes and the depth of the converted tree is around 10 levels 
deep, containing between 30-75 nodes. 

PhenoBlocks displays the tree structure using a space-filling 
hierarchical visualization approach. The Sunburst layout was used as 
its radial shape makes the best use of display space and, unlike 
Treemaps, all nodes of the hierarchy are represented simultaneously. 
This is important for structure-based comparisons, such as identifying 
the nearest common ancestor of two phenotypes. In contrast to Icicle 
plots, leaf nodes are also afforded more space in the layout. 
Phenotypes around the periphery of the chart are critical to differential 
diagnosis as they are the most granular description of an abnormality. 

Each Sunburst visualization represents a differential hierarchy 
between the query and a reference. Phenotypes are color-coded based 
on their state, with intensity communicating a hard handle score. This 
weighted score represents both the rareness of the phenotype among 
all disorders and the likelihood of occurring in the reference disorder, 
making potential hard handles visually salient. Phenotypes are 
grouped into high-level categories (e.g., Abnormality of the Head and 
Neck), defined by the children of the root HPO node. These categories 
visually divide the Sunburst into distinct regions. Working with 
clinicians, a set of icons were designed to representation each category 
in the visualization (Fig. 4). 

In the Overview, the comparisons are displayed as small-multiples 
that are grouped by disorder and arranged into rows (Fig. 5A). 
Disorders are ordered by greatest similarity from top to bottom. 

Fig. 4. Working with the clinicians, we developed a set of icons to 
represent the high-level categories of phenotypic abnormalities. 
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Comparisons within disorders are ordered by greatest similarity from 
left to right. A Detail View shows a larger and more detailed version 
of a single comparison, selected in the Overview (Fig. 5B). The Detail 
View is the primary user interaction area. It supports details-on-
demand through hover feedback, filtering of the hierarchy, and in-
place modification of data. An interactive legend identifies the nine 
possible states for a phenotype (Fig. 5E). 

4.3 Differential Views using Small-Multiples 
To facilitate the pairwise comparison of the query patient with that of 
each of the reference patients, PhenoBlocks employs differential 
views using small-multiples in the Overview. Hence, the strengths of 
differential views are leveraged, as comparisons within a disease share 
the same structure, but with different visual encodings. When one 
hovers over a phenotype in the Detail View, the details of that 
phenotype within each small-multiple are displayed underneath, 
including the phenotype state and hard handle score (Fig. 5C).  

These differential views allow for a concurrent breadth-first 
comparison of the query to several references across multiple 
disorders. Clinicians can quickly look over the range of potential 
disorders to guide their phenotypic investigations. 

4.4 Details-on-Demand 
The interface supports immediate feedback to the clinician. First, 
linked updates to the Overview reveal the phenotype state and hard 
handle score under each small-multiple comparison (Fig. 5C). Second, 
hovering over phenotypes in the Detail View displays an indented list 
of ancestors and descendants (Fig. 5D). Interactively exploring the 
comparisons may encourage a deeper analysis of what phenotypes 
could be important to their patients, including some less obvious 
phenotypes. Reporting on these phenotypes would improve the 
completeness and granularity of phenotype reporting (G4). 

4.5 Interactive Filtering 
The visualizations can also be interactively filtered. First, interactive 
legends can be used to filter phenotypes of a certain state (Fig. 5E). 
Second, the first level of phenotypes define general categories, such 
as Abnormality of the Skeletal System. These categories can be 
collapsed or expanded by clicking on their icons to filter unwanted 
information or reduce visual clutter (i.e., if a clinician wants to focus 

on a particular category of abnormalities). Third, the Collapse Button 
in the Toolbar reduces the visual complexity of the hierarchy by 
removing redundant intermediary phenotypes (i.e., phenotypes with 
only a single child) (Fig. 5F). In all cases, smooth animated transitions 
maximize change awareness. 

4.6 Adding and Editing Query Phenotypes 
Several mechanisms allow clinicians to add and edit the phenotypes 
of the query interactively. First, the Edit Phenotypes button in the 
Toolbar displays a modal window to edit the present and absent 
phenotype terms (Fig. 5F). Tokenized, auto-completing dropdown 
lists allow one to search for specific phenotypes using HPO names or 
IDs. Second, clicking on a phenotype in the Detail View supports in-
place data editing, modifying the state of the phenotype from unknown 
to present or absent. Third, an Advanced Panel can be displayed and 
used to edit the underlying data in JSON format directly (Fig. 5G). In 
all cases, the visualization immediately updates (G1). By supporting 
multiple methods of quickly editing a patient’s phenotypic data, we 
hope to encourage more complete phenotyping (G4). 

4.7 Example-Based Comparisons and Frequency 
At the core of PhenoBlocks are comparison visualizations of query to 
similar references in multiple disorders. Unlike existing clinical tools, 
these comparisons are displayed visually and in the context of the 
relevant subgraph of the HPO (G2). These visualizations act as an aid 
to externalize the thought process of the clinician and can be used as 
a visual record of the diagnosis process. 

Since the frequency of phenotypes within disorders is paramount 
to diagnosis, we take the approach of displaying example-based 
comparisons to existing diagnosed cases (G3). In addition to the hard 
handle scores visualized in the comparisons, these concrete references 
provide exemplars of the hard handles considered by other clinicians 
in their diagnoses. References can also highlight outlier cases that are 
similar to the query, which can alert a clinician not to discount a 
diagnosis prematurely. As probabilistic reasoning can be difficult 
even for experts [22], explicitly presenting an example of a diagnosed 
case where a hallmark phenotype is absent can be helpful. 

Seeing examples of complete and granular diagnosed patient 
phenotypes may encourage clinicians to provide a similar level of 
reporting completeness and granularity (G4). 

Fig. 5. PhenoBlocks user interface. (A) Overview of differential views using small-multiples. (B) Detail View of highlighted comparison in 
Overview. Hovering over a phenotype displays details under small multiples and indented list. (C) Details under small multiples include hard handle 
score and phenotype frequency. (D) Indented list of ancestors and descendants. (E) Interactive legend. (F) Toolbar. (G) Advanced panel. 
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to diagnosis, we take the approach of displaying example-based 
comparisons to existing diagnosed cases (G3). In addition to the hard 
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4.8 Visual Encoding 
The visual encoding scheme was designed to highlight potential hard 
handles and identify how the phenotypes of patients differ. Finding an 
optimal visual encoding strategy for the dataset was difficult as there 
were nine ordinal states to differentiate and the hard handle ratio score. 
Although one could use the divergent-divergent color scheme 
proposed by Harrower & Brewer [20], the colors were too disparate, 
making interpretation tedious, and requiring frequent legend 
consultations. What was needed was to confer a semantic meaning to 
groups of colors. We wanted to group based on the states of 
phenotypes into shared, divergent, missing in query, missing in 
reference, and unknown (Fig. 3). What complicated matters was that 
we also wanted to differentiate whether a present or an absent 
phenotype was involved in the comparison. We could not find an 
existing color palette that met all three of these needs. 

Absent phenotypes do not occur as frequently as present 
phenotypes in the data, likely because it is more difficult to confirm 
the absence rather than presence of a feature. This was confirmed 
during our conversations with clinicians. To differentiate between the 
key phenotype states, represent a ratio value, and confer presence and 
absence, a novel palette based on Brewer’s two-pair categorical scale 
was developed (Fig. 6). The darker color variant was used for present 
phenotype comparisons, and the lighter variant for absent phenotypes. 
A fully saturated absent phenotype would never be as salient as a fully 
saturated present phenotype, but since absent phenotypes are less 
prevalent and they tend to be more granular, they stand out in contrast 
as islands within larger areas of darker, present comparisons. This 
provides aesthetically pleasing results while not hindering the 
interpretation of the visualization. 

Shared Phenotypes (Greens): Shared phenotypes between the 
query and reference are the primary indicator of overlapping traits. 
These shared phenotypes can be present in both, or absent in both. 
Patients may not always share the same granularity of phenotypic 
abnormality description; however, by investigating the nearest 
common ancestor, a decision can be made regarding the similarity of 
the two traits. These are represented by shades of green with purple 
and orange descendants. 

Potential Hard Handles (Purples): Phenotypes that are missing 
in the query, but present in the reference are good indicators of 
potential hard handles. These are represented as shades of purple. 

Divergent Phenotypes (Blues): In some cases, there is a clear 
difference between the phenotype of the query and the reference; the 
phenotype is present in one and absent in the other. 

Missing Reference Phenotypes (Oranges): Sometimes, a query 
will present with a phenotype that is unknown in the reference. These 
suggest areas where a difference may exist, but there is a lack of 
supporting data. If these phenotypes have high hard handle scores, 
they may indicate a mismatch of the query patient to that disorder, or 
provide a starting point to seek additional information from the 
clinician of the reference patient. 

Input Data: The actual phenotypes entered into the system are 
represented using a black dot. These provide landmarks indicating 
where the clinician has already investigated. 

 

4.9 Comparison Algorithms 
All the scores represented in the PhenoBlocks visualization are based 
on a phenotype’s information content [29]: 

𝐼𝐼𝐼𝐼(𝑛𝑛) =  − log (
# 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝑤𝑤𝑑𝑑𝑎𝑎ℎ 𝑛𝑛

# 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) 

Information content is proportional to the rarity of HPO term, n. 
As information content correlates with diagnostic value, it is non-
decreasing when traversing from parents to children. 

Similarity Score: The similarity score ranks similar reference 
patients in the database based on the phenotypes of a given query 
patient. We calculate similarity using the PhenoTips algorithm [15], 
but account for absent terms (i.e., sharing absent phenotypes is also a 
similarity). The similarity score algorithm is interchangeable with any 
other method with corresponding inputs and outputs. 

Importance Score: The similarity score for a phenotype is based 
on combining the similarity scores of its descendants. While useful to 
calculate an overall similarity score, it is insufficient to identify hard 
handles, where attention should be drawn to specific intermediary 
phenotypes and not necessarily their ancestors. To account for this, an 
importance score based on phenotype state was developed (Fig. 3). 

Similar in Both: When a phenotype is common in two patients, we 
can use the information content score of that phenotype, directly. The 
most important shared phenotypes are always the most specific. 

Missing in a Patient: When a phenotype appears in only one 
patient, the importance score is calculated as the information content 
of that phenotype reduced by the highest information content among 
all shared ancestors of that phenotype. This results in a lower 
importance score for phenotypes that share a closer nearest common 
ancestor, while increasing importance score for phenotypes where the 
nearest common ancestor is farther, to highlight larger differences. 

Absent Phenotypes: Absent phenotypes complicate the calculation 
of the importance score. Unlike present phenotypes, absence is 
inherited by descendants, not ancestors, implying that more general 
absent phenotypes (e.g., Abnormality of the Skeletal System) have 
greater discriminatory power than more specific phenotypes (e.g., 
Abnormality of the Finger). Thus, in states involving absent 
phenotypes, the importance score is calculated as the complement of 
the information content of that phenotype. 

Frequency Score: Using frequency annotations from Orphanet 
[45], we calculate a frequency score based on the reference patient’s 
disorder. If no frequency information exists for a phenotype, it is 
assigned the highest frequency among its annotated descendants. If no 
annotated descendants exist, it is assigned the average frequency of all 
annotations. If no frequency information exists, the computed average 
frequency of all phenotypes (0.51) is used. 

Hard Handle Score: The hard handle score is the average of the 
importance and frequency scores for a given phenotype. 

5 CLINICAL USE CASE SCENARIO 
PhenoBlocks was designed to be used by clinicians during all phases 
of differential diagnosis. In this section, we detail how concrete tasks 
can be completed using PhenoBlocks. While the dataset does not 
currently include a full range of disorders, we illustrate use through a 
simplified, hypothetical example. 

5.1 Collecting Phenotypes and Generating Hypotheses 
Consider an undiagnosed patient who is referred to a specialist for 
consultation. Immediately, two striking features stand out: they are 
unable to speak and have short stature. These terms are entered into 
PhenoBlocks and these phenotypes are visualized, along with similar 
reference patients from different disorders. The search results are 
limited to three similar disorders, with five references each (Fig. 7). 

The three disorders are listed, ordered by similarity score: 
Floating-Harbor (FLHS), Microcephaly-Capillary Malformation 
(MCMS), and Chudley-McCullough (CMCS). Looking at the small-

Fig. 6. In PhenoBlocks, the color communicates the state of a 
phenotype comparison. The intensity of the color indicates the strength 
of the hard handle score. 
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multiples, the darker green FLHS comparisons indicate more 
important phenotypes are shared between the query and references 
(Fig. 7A). First, we investigate the highest ranked comparison. 

Immediately, we notice the deep green of Short Stature, which 
signifies it is a likely hard handle (Fig. 7B). Hovering over this 
phenotype displays details under each small-multiple (Fig. 7EF). We 
notice that Short Stature is present in all FLHS references and that it 
is a hallmark (FR 90%) of the disorder (Fig. 7E). The details of both 
MCMS and CMCS indicate with orange that this phenotype is missing 
in the reference (Fig. 7F). In MCMS frequency information indicates 
this phenotype is rare (FR 5%), so this is not a hard handle for MCMS. 
All CMCS patients are missing Growth Abnormalities, indicating this 
may not be an important feature, but too early to discount completely. 

Next, we turn to Absent Speech. While this phenotype is missing 
in the reference we note the direct ancestor, Delayed Speech and 
Language Development, has a deep green color (Fig. 7C). This 
indicates semantically similar terms are used in the reference patient, 
and suggests related phenotypes to investigate. When comparing 
across disorders, we note Delayed Speech and Language Development 
is shared by all FLHS references but only by one CMCS reference. 
This is additional evidence against CMCS. 

In summary, there appears to be moderate evidence for FLHS, but 
further investigation is necessary. In this first step, we collected initial 
phenotypes (T1), started generating hypotheses (T2), and 
demonstrated the value of frequency information (G3). The use of 
visualization has helped us understand the similarities and differences 
between disorders (G2). 

5.2 Identifying Disconfirming Hard Handles 
Now that we have a plausible diagnosis (i.e., FLHS), we want to 
identify potential hard handles that can help differentiate the disorders. 
For this, we look for deep purple areas in the comparisons. There are 
many, so we focus on specific categories that are different in size 
between disorders. For example, Abnormality of the Skeletal System 
is large in both FLHS and MCMS, but small in CMCS; Abnormality 
of the Head and Neck has many features for FLHS, and not the others. 

Looking at the skeletal abnormalities of FLHS and MCMS, across 
the small multiples, most references (4/5) share Abnormality of the 
Fingers. We can quickly view all descendants of a phenotype with the 
indented list view (Fig. 7GH). In FLHS, these abnormalities are Broad 
Fingertip, Broad Thumb, and Fifth Finger (Fig. 7G). Most MCMS 
references (4/5) share Short Distal Phalanx of Finger (Fig. 7H). 
Investigating head and neck abnormalities, we see that in FLHS 
references these are limited to the face, while in CMCS references 
they are limited to skull size. This information is quickly parsed using 
visual encodings; traditional methods would involve cross-referencing 
textbooks and databases. 

These observations lead us to look more closely at the hands and 
face of our patient to try and identify more hard handles. We find that 
our patient has a triangular face, with a long, wide nose, and also 
confirm presence of Fifth Finger Clinodactyly. However, we find no 
broad thumbs or fingertips. After further investigation, we generalize 
the absence of Abnormality of the Phalanxes of Fingers and 
Abnormality of Skull Size. Broader absences are more discriminative. 

By investigating where phenotypes of the query patient differ 
from the references, we are able to prioritize an investigation of 
disconfirming hard handles (T3). This process can be done 
interactively during a patient consultation (G1). By comparing to 
diagnosed references, granular present phenotypes, such as Fifth 
Finger Clinodactyly, and general absent phenotypes such as no 
Abnormality of Skull Size (G4) can be indicated. 

5.3 Hypothesis Evaluation 
These new phenotypes are added directly into the visualization by 
clicking on the respective phenotypes and selecting the new state, thus 
receiving immediate feedback as the visualization is updated (Fig. 8). 
We see many more shared phenotypes across FLHS references, and 
note that the green color reaches the periphery, indicating specific 
shared features (Fig. 8A). This contrasts MCMS references where 
shared phenotypes are more central. The presence of orange highlights 
differences between the patient and the MCMS references (Fig. 8B). 
By exploring the details of the updated visualization, hypotheses can 
be further evaluated (T4). 

Fig. 8. Updated view. (A) Green phenotypes reach the periphery in 
FLHS, indicating specific features are shared, in contrast to (B) MCMS 
where only central general features are shared and granular 
phenotypes are purple or orange. 

 

Fig. 7. Initial view. (A) Deeper green implies more important shared 
features. (B) Short Stature is a shared phenotype in FLHS. (C) Absent 
Speech is missing (orange), but its direct ancestor is shared (green). 
(D) Possible hard handles appear in deep purple. (E, F) Hovering over 
Short Stature allows comparison of phenotype details between 
differential views. (G, H) Hovering over Abnormality of Skeletal 
Morphology yields an indented list of all children, supporting quick 
overview of granular phenotypes across all differential views. 
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(Fig. 7A). First, we investigate the highest ranked comparison. 

Immediately, we notice the deep green of Short Stature, which 
signifies it is a likely hard handle (Fig. 7B). Hovering over this 
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interactively during a patient consultation (G1). By comparing to 
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6 INFORMAL EVALUATION 
PhenoBlocks was presented to the clinicians consulted in follow-up 
interviews. First, we explained the visual encoding strategy and the 
calculation of the hard handle score. Second, we described the 
interface and interactions. Finally, we walked through the usage 
scenario described above to elicit general feedback about the tool and 
to reflect on its use in their existing workflow. 

Overall, the clinicians were excited by the ability to visually 
compare patient phenotypes, “it is amazing to be guided by what the 
biggest differences are [… for example,] one that has a specific eye 
phenotype and the other two don’t. The clear next step is to input the 
phenotype for the patient’s eye. This helps me focus on the diagnosis, 
not searching databases […] I think that's the main difference between 
this and any of the other tools that I've seen” (E1). 

Realistic Usage Scenario: The use case scenario focused on using 
PhenoBlocks from the very beginning of the differential diagnosis 
workflow, entering phenotypes one at a time. We were cautioned this 
is unlikely, as clinicians are trained to quickly filter through possible 
disorders while collecting initial phenotypes. However, the power of 
the tool lies in investigating details, “[PhenoBlocks] comes in to be 
helpful as soon as you […] enter [all the phenotypes]. Then you start 
to think ‘ok, what do I need to look specifically for, that I haven't 
necessarily checked for?’” (E1). 

One clinician commented that ideally PhenoBlocks could be used 
in conjunction with PhenoTips to create a “diagnostic hub” that would 
“take over the functionality of the LMD database from the point of 
view of inputting the phenotypes” (E1). LMD would still be useful as 
a reference tool for clinical descriptions and reference photographs.  

Importance and Frequency: The clinicians noted the hard 
handle score was the most important part of this tool for both 
hypothesis generation and evaluation. Because it is a “composite of 
information content and OMIM frequencies [it provides] a way to 
visually interpret both scores simultaneously” (E2), which is currently 
not possible. E1 stated, “if my patient had a phenotype that was really 
uncommon in a particular syndrome or was absent in a syndrome I 
was looking at and I thought the phenotype was really important […] 
then that would lead me away from that particular syndrome.” 

This score also provides guidance in prioritizing the next tests to 
run, “I don't want to go x-ray a [patient] for short phalanges if that's 
only present in 2% of [cases] because that isn't going to help me. But, 
if 100% of [patients] with this condition have an abnormal thumb on 
x-ray, that's the type of thing that would make you push for that 
particular investigation” (E1).  

Moreover, the clinicians agreed that seeing an outlier case was 
more powerful than knowing the frequency alone, “you could have a 
patient with [a disorder], but without the hallmark features. If you’re 
presented with an example of [that disorder] that lacks these features 
[…] it helps to ground the probability in a concrete example. So, it’s 
really helpful to see that in a graphical representation” (E1). 

Absent phenotypes: With respect to the underrepresentation of 
absent phenotypes in the dataset, E2 commented, “in my own 
experience, absences are notes of an explicit evidence trail that a 
hypothesis was tested.” Even though they are more discriminative, 
general absences are seldom reported because the time they take to 
investigate does not align well with hypothesis-driven testing. 

Other Application Areas: One clinician commented that this 
style of visualization could be applied to general clinical diagnosis 
scenarios, “I still think this is a really, really interesting way of 
thinking about diagnosing. Not just for genetics but for any area of 
medical specialty […] If somebody comes in with chest pain, what you 
really want are those conditions where chest pain is typically the 
presenting feature” (E1). 

While using PhenoBlocks during our first interview, one clinician 
quickly noticed, none of the reference patients of Floating-Harbor 
Syndrome exhibited one of the hallmark features, which was highly 
atypical. Upon further investigation, we found some phenotypes were 
omitted from the data set during transcription. PhenoBlocks could thus 
also be helpful in validating new data against existing examples. 

7 FUTURE WORK AND CONCLUSIONS 
PhenoBlocks was well received by the clinicians we interviewed and 
they saw that it could improve their existing diagnosis workflow. We 
are interested in integrating PhenoBlocks with PhenoTips, as 
suggested in our feedback. We also want to extend the features of 
PhenoBlocks to also account for additional patient features such as 
age, sex, and ethnicity. These would be additional inputs that could 
personalize the importance score for a given patient, e.g., an adult-
onset phenotype could be given less weight when the query patient is 
a child. Lastly, we are interested in a longitudinal study with 
clinicians, to investigate how their workflows are affected when given 
access to the tool in a real-world usage scenario. 

PhenoBlocks is a novel visual analytics tool to aid clinicians 
during differential diagnosis of rare genetic disorders. A user-centered 
approach was used and the informal evaluation suggested that visually 
comparing new patients to diagnosed cases can lead to insights not 
currently supported by existing text-only tools. These visual analyses 
can also help clinicians to quickly generate and evaluate hypotheses, 
as well as prioritize clinical investigations with patients. Potential also 
exists to use PhenoBlocks in a genetics research to visualize 
phenotypic variation between patients of a gene variant cohort. The 
visualization design and visual encoding used by PhenoBlocks could 
also be applied more generally to non-genetic clinical diagnosis. 

OPEN-SOURCE RELEASE 
PhenoBlocks will be released as a publically accessible tool and the 
source code will be made available on GitHub: 

www.phenoblocks.org 
www.github.com/mgdgp/phenoblocks 
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