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Abstract

Visually comparing human brain networks from multiple population groups serves as an important 

task in the field of brain connectomics. The commonly used brain network representation, 

consisting of nodes and edges, may not be able to reveal the most compelling network differences 

when the reconstructed networks are dense and homogeneous. In this paper, we leveraged the 

block information on the Region Of Interest (ROI) based brain networks and studied the problem 

of blockwise brain network visual comparison. An integrated visual analytics framework was 

proposed. In the first stage, a two-level ROI block hierarchy was detected by optimizing the 

anatomical structure and the predictive comparison performance simultaneously. In the second 

stage, the NodeTrix representation was adopted and customized to visualize the brain network 

with block information. We conducted controlled user experiments and case studies to evaluate our 

proposed solution. Results indicated that our visual analytics method outperformed the commonly 

used node-link graph and adjacency matrix design in the blockwise network comparison tasks. We 

have shown compelling findings from two real-world brain network data sets, which are consistent 

with the prior connectomics studies.
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1 Introduction

The study of human brain networks stands at the heart of brain connectomics, an 

increasingly prominent field of computational neuroscience to understand the landscape of 

neural connections in our brain [37]. In this paper, we focus on the macroscopic brain 

network defined by high-level Region Of Interests (ROI), versus the microscopic brain 

networks composed of cells, synapses and voxels [4] [15]. The structural brain network in 

the macroscopic level is typically constructed in two steps. First, magnetic resonance 

imaging (MRI) is used to accurately segment the human cortex into ROIs1, which serve as 

nodes in the brain network. Second, diffusion MRI or Diffusion Weighted Imaging (DWI) is 

conducted to capture the water diffusion along white matter pathways on the cortex, which 

detects weighted edges (i.e., fiber connections) among ROI nodes on the brain network.

One of the most interesting questions in brain networks relates to the anatomical difference 

in connectivity that may be influenced by subject-level characteristics, such as age, gender, 

genetic profile and disease status. For instance, among Alzheimer’s disease (AD) patients, 

the connectivity level in areas related to the memory center of the brain, is significantly 

lower than those in the matched healthy controls [11]. Extracting and understanding these 

discriminative connectivity features can significantly boost our understanding of the brain, 

and the application in disease prediction, gene engineering and many others. Although much 

progress has been made, the detection and validation of discriminative brain connectivity 

features remains a daunting task. First, there is still a need for large-scale and high-quality 

brain network measurements. Connectivity features that describe the network among brain 

regions can be very high-dimensional, i.e., consisting of thousands of individual 

connections. The studies that use advanced methods can cause overfitting when the number 

of subjects is small, possibly leading to less reliable results. Second, it is costly to validate 

numerous computational models proposed in sophisticated brain network studies for which 

subject-matter experts are required.

Visualization tools are important for addressing some of these challenges to compare high-

dimensional connectivity patterns in the brain. On one hand they provide an interactive 

platform to fuse multiple sources of brain networks and measurements to test various 

computational models and parameters. On the other hand, the visual interface allows domain 

experts to work seamlessly with the data sets, analysis algorithms and comparison results for 

efficient evaluation of the data. A natural question arises regarding which visual 

representation works the best for comparing human brain networks. The pioneering work by 

Alper et al. [5] contributed towards answering this question. They found that the node-link 

representation, though popular in illustrating social and information networks, is not the best 

1ROIs are highly specialized brain regions. In this work, we apply the Desikan-Killiany parcellation [14] by FreeSurfer to define 68 or 
70 ROIs on the brain cortex. Other popular cortex parcellations include Desikan-Killiany-Tourville Protocol (62 ROIs) and Destrieux 
Atlas (148 ROIs).
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choice to visually compare weighted brain networks. Meanwhile an adjacency matrix design 

performs better in low-level brain network comparison tasks such as finding connectivity 

patterns and neighboring elements. In this work, we implement some of their user studies on 

real-world brain networks (versus the synthetic data set in Alper et al. [5]). While most of 

our results align well with Alper’s in that the matrix design outperforms the node-link graph, 

it is critical to notice that on real brain networks, both methods bear very low task accuracies 

and high completion times (e.g. < 72% and > 34s in Table 2). We argue that this is because 

the human brain network is dense and might be quite similar among population groups 

(Section 3.1). It can be infeasible, or at least difficult, to ask users to visually compare dense 

and homogeneous human brain networks with respect to their weighted connectivity 

patterns.

In this paper, we describe a new way to visually compare human brain networks. Instead of 

directly comparing the traditional ROI-based brain networks, we exploit the inherent block 

structure of the human brain by considering the blockwise brain network comparison 

problem (Section 3.2). The rationale behind the blockwise comparison can be explained as 

follows: from an anatomical standpoint, the human brain is composed of multiple blocks – 

meaning that ROIs can be divided into left and right hemispheres, and can be further broken 

down into several cerebral lobes, often linked to highly specialized brain functions. For 

example, the temporal lobe is responsible for forming long-term memory, while the insula is 

involved in human consciousness. Furthermore, due to the physical block structure, domain 

users generally compare brain network connectivity patterns in relation to this anatomical 

breakdown. It has been shown that Alzheimer’s disease may lead to alterations in fiber 

connectivity in the temporal and parietal lobes primarily, predominantly in the left 

hemisphere [40]. More blockwise comparison studies in clinical practice are surveyed in 

Section 3.2. Computationally, we show in Section 4.2 that incorporating the block structure 

of ROIs can improve the predictive performance in classifying human brain networks while 

not interfering with the extraction of comparative patterns. In summary, the contribution of 

this work can be described as follows.

• We propose the blockwise brain network comparison problem over the ROI-

based network comparison studied previously (Section 3.2), and present an 

integrated visual analytics framework to address this new problem (Section 3.3). 

The effectiveness of our framework is demonstrated through case studies over 

two real-world data sets: one comparing the average brain network of a group of 

AD patients with that of healthy controls; another comparing between two 

groups of normal people with high and low creativity scores (Section 6).

• In this framework, we introduce an adaptive clustering algorithm on the ROIs of 

human brain networks to maximize the predictive classification performance 

with the resulting blockwise connectivities (Section 4). The key challenge is to 

overcome local maxima in optimizing the feature selection process.

• We adapt a hybrid visualization design, aka NodeTrix by Henry et al [20] as 

shown in Figure 1, to optimize the blockwise network visual comparison task, 

which takes the ROI block structure into account when displaying the human 

brain network (Section 5.1). To further improve the performance of NodeTrix in 
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real-life comparison tasks, we propose to apply force-directed edge bundling 

algorithms according to the block representation of brain networks (Section 5.2). 

The NodeTrix visualization is evaluated in the user study by comparing to the 

classical node-link and adjacency matrix visualization on blockwise brain 

network comparison tasks.

2 Related Work

Brain network (aka the connectome) visualization is a popular interdisciplinary research 

topic. In the neuroscience community, Margulies et al. summarized three classes of 

visualizations based on the various steps in their data transformation pipeline [31]. On the 

low-level DWI data, in particular Diffusion Tensor Imaging (DTI), tensor glyphs in different 

shapes were invented to display the rich data dimensionality. For example, the latest design 

by Prčkovska et al. [34] augmented spherical polar ploy glyphs [21] with optimized shape 

and color scheme. Their design can highlight multiple maxima in order to make the “peaks” 

of glyphs more distinct in the visualization. On the streamline reconstructed by tractography 

[25], traditional visualizations display a deterministic fiber tract without considering its 

uncertainty and dimensionality. Berres et al. [8] introduced nested surface layers to visualize 

probabilistic tractograms which can indicate the connectivity score between voxels. On the 

connectome constructed from whole-brain fiber tracts, which is more related to our work, 

both graph, matrix and chordmap [32] metaphors have been applied for visualization. For a 

more extended literature review on connectome visualization, we refer to this survey [31].

Most recently in the visualization community, Al-Awami et al. proposed Neurolines [4], a 

novel visual metaphor to examine the neuronal connectivities at nano-scale. Neurolines 

designed a multiscale subway-like visualization which can be interactively rendered and 

scaled up to display thousands of neurites for the detailed analysis of neuronal structures and 

their connectivity. Everts et al. [15] studied the visual abstraction of brain fiber tracts from 

Diffusion Tensor Imaging (DTI) data. Through arranging the fiber tracts by their local 

similarity at multiple scales, the global white matter architecture inside the brain can be 

constructed from fiber tracts, with less visual clutters than previous approaches. Overall, 

these compelling methods on the visual abstraction of brain connectivity mostly work at the 

microscopic level of human brains, e.g., the neuron-level [4] or the voxel-level [15]. On the 

comparison of human brain networks across population groups, the difference at the 

microscopic level can be less significant, due to their higher uncertainty, than the 

macroscopic connectivities, i.e., the ROI-level brain networks.

The task of visually representing and comparing high-level brain networks is relatively less 

explored, though the general topic of visual comparison has been a focus of the information 

visualization research [19] [30]. Bach et al. presented Matrix Cube [6], an effective 3D cube 

visual representation to display the functional brain networks. Their focus is on the dynamic 

pattern of brain networks, but not on the comparison between groups of average brain 

networks. The work by Alper et al. [5] might come closest to our study. They evaluated the 

effectiveness of the node-link and matrix representation in weighted graph comparison. 

Their results favored the matrix design with an overlaid comparison method. In this work, 

we study the same research topic on visual comparison, but consider a new problem of 
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blockwise brain network comparison after a survey of neuroscience literature on their high-

level human brain connectivity analysis requirement. Notably, we introduce the 

computational method for the ROI clustering and integrate this method into a coherent visual 

analytics framework that can guide the effective discovery of brain network biomarkers 

across population groups.

3 Overview

3.1 Preliminary User Study

We start from a controlled user experiment to compare two basic visualization designs for 

the brain network comparison: the node-link graph and the adjacency matrix. In addition, we 

consider two visual comparison methods: the overlaid comparison [5] and the 

straightforward side-by-side comparison. When combined, we study four candidate 

interfaces: node-link overlaid (NO), matrix overlaid (MO), node-link side-by-side (NS), 

matrix side-by-side (MS).

Alper et al. [5] first conducted this comparative study on NO and MO visualizations over a 

group of synthetic brain networks. In contrast, our study is carried out on real-world brain 

networks, comparing 42 AD patients with 50 healthy controls. Real-world brain networks 

have two significant differences from synthetic networks that can affect the user study result. 

First, high network density. For instance, the brain network of each of 92 subjects in our 

data set has 454~1021 edges (i.e., fiber connectivity with nonzero strength) between 68 ROI 

nodes, leading to a network density of 0.2~0.45, whereas the synthetic network in [5] has a 

5% or 10% density. Second, similar network topology across subjects. We have built a 

Pearson’s correlation coefficient matrix by the weighted topology vector of 92 subjects in 

our data set, each has a vector length of 2278. More than 90% pairs of subjects have a 

weighted topology correlation greater than 0.8, and the average correlation is close to 0.9.

Our experiment result with 12 subjects over the real brain network data set is summarized in 

Table 1 (Trend task) and Table 2 (Connectivity task). The task design follows those in Alper 

et al. and the implementation details are the same with our second user study explained in 

Section 6.1. There are two observations with respect to the results by Alper and colleagues 

that motivate our follow-up research. First, the comparison between MO and NO methods 

leads to the same outcome: when the overlaid method is applied, the matrix design is 

significantly better in accuracy and completion time when compared to the node-link 

visualization, with the exception of the completion time in the Trend task. However, the 

actual task accuracy deteriorates greatly on the real data set: on the Trend task, it drops from 

0.96 (MO) and 0.85 (NO) in Alper et al. to 0.86 and 0.50 in our study; on the Connectivity 

task, it drops from 0.90 (MO) and 0.71 (NO) to 0.72 and 0.33. The completion time measure 

has a similar pattern. These effects can be attributed to the dense and homogeneous nature of 

real brain networks in the ROI level, which prevents users from accomplishing visual 

comparison tasks. Our second finding, the side-by-side comparison design, though not 

considered in the previous study, leads to comparable performance to the overlaid design 

when the network density is high. This is especially true judging from subjective ratings. 

The scores for the node-link side-by-side design in user experience and usability (3.83 and 

3.92 in the 7-point likert scale, higher is better) are only slightly below those of the matrix 
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overlaid design (4.07 and 4.08). Note that the side-by-side comparison bears an additional 

advantage in much shorter training time than the overlaid comparison for ordinary users.

3.2 Blockwise Brain Network Comparison

The preliminary user study result indicates that it may not be effective to visually compare 

real brain networks solely at the macroscopic ROI level. The cortical connectivity at that 

level is adversely dense and little visual difference is presented between individual subjects. 

In fact, from the domain expert’s view (neuroscientists, e.g., co-authors of this paper; 

doctors, our collaborators), rarely do they examine the brain network difference only from 

the ROI level between individual subjects. In this work, motivated by the inherent block 

structure of human brains (e.g., left/right hemispheres, anatomical lobe classifications), we 

consider a new problem of blockwise network comparison over the existing ROI-based brain 

network. At the ROI block level, the abstracted connectivity pattern can be more salient in 

visual comparison and far more useful for domain experts.

To validate the importance and characterize user tasks on the new problem, we did a 

literature review of 33 neuroscience studies on the comparison of human brain networks 

(aka the white matter connectivity) between diagnostic groups (AD, Schizophrenia, genetic 

disorders). We examined each study by the criterion that whether or not the comparison 

analysis had detected significant patterns in the ROI block level, rather than only detected 

between particular ROIs. The representative literature is given in Table 3 and a full list is 

documented in the supplemental material. In summary, 22 out of 33 studies (66.7%) in the 

review met our criterion. Dating back to the 19th century, Wernicke described the 

disconnection syndrome as a loss of connectivity between the sensory speech and the motor 

speech areas in the left hemisphere [42], which was among the first block-level connectivity 

studies. On the group-based comparison studies between AD patients and controls, we 

examined 12 relevant studies cited by Daianu et al. [12]. Eight studies meet our criteria, 

details can be found in Table 3. On the comparison study of Schizophrenia (SZ) patients, we 

reviewed 7 highly cited papers on the white matter deficiency - 6 of which reported results 

based on higher-order brain subnetworks [33], aka block-level networks considered here. We 

also reviewed 12 brain network studies related to genetics, cited by Thompson and 

colleagues [39], 6 of which fitted our criterion.

Based on the literature review, we conclude that the ROI block level difference among 

diagnostic groups are crucial for the classification and prediction of certain disease or 

symptom. We summarize a set of blockwise brain network comparison tasks based on the 

practice in the literature and feedbacks from domain experts.

B1: Given one ROI block, identify noticeable changes of its local connectivity between 
diagnostic groups.

B2: Given one ROI block, identify noticeable changes of its global connectivity (i.e., 
between the ROIs of the current block and the ROIs in other connected blocks) between the 
diagnostic groups.
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B3: Identify ROI blocks that have local/global connectivity changes between the diagnostic 
groups.

B4: Identify pairs of ROI blocks that present connectivity changes between the diagnostic 
groups.

3.3 Visual Analytics Framework

Consider the design space for the blockwise comparison task defined above. The user study 

result in Section 6.1 shows that applying the classical node-link or matrix design leads to 

poor visual comparison performance, especially on the inter-block connectivities. In a few 

ROI definitions, two ROIs within the same block can be geometrically separate in the 

projected brain cortex, making it difficult for users to visually compare the block-level 

connectivities.

In this work, we propose a visual analytics framework to integrate the algorithmic ROI block 

generation with the interactive visualization to help identify and analyze blockwise brain 

network connectivity differences. As shown in Figure 2, in the first stage, we apply 

clustering algorithms to detect a two-level ROI block hierarchy (Section 4). In the top level, 

the functional blocks divide all ROIs based on an anatomical or functional classification 

(e.g., the lobe classification); and in the bottom level, each functional block is partitioned 

into several comparison blocks, in a way to maximize the group-level difference in the 

network comparison. In the second stage, the raw ROI connectivity and its hierarchical 

block structure are integrated and represented by a hybrid NodeTrix visualization (Section 

5). The functional blocks are shown as matrices, the comparison blocks are shown as 

merged rows/columns inside the matrix, and each ROI is represented by the individual row/

column. To optimize the inter-block connectivity comparison across diagnostic groups, we 

introduce the force-directed edge bundling algorithm to visually aggregate the connections 

on the same pair of ROI blocks.

4 ROI Clustering

The top-level ROI hierarchy is composed of functional ROI blocks. In this work, we adopt 

the cerebral lobe classification that partitions each hemisphere into six lobes: frontal lobe, 

parietal lobe, occipital lobe, temporal lobe, limbic lobe, and insula. Other functional cortex 

parcellations are also applicable, depending on the targeted comparison task. In the second-

level ROI hierarchy, we apply clustering algorithms to detect comparison blocks that best 

reveal the connectivity difference among diagnostic groups. The main idea is to link the 

accuracy in the predictive analysis, i.e., the classification of brain networks into diagnostic 

groups, with the visual comparison performance among groups of brain networks. The 

problem of optimizing the blockwise brain network visual comparison is converted to 

finding the best ROI clustering that maximizes the brain network classification accuracy.

4.1 Brain Network Classification

The brain network classification problem is defined as predicting the label of a subject 

(outcome) using the features on the subject’s brain network. Here the label indicates the 

diagnostic group. Throughout this paper, we consider the binary classification, i.e., the label 
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has two levels, e.g., diseased or healthy subject. The brain network features are limited to the 

set of connectivity strengths, i.e., the number of fibers going through each pair of ROIs. 

These connectivity strengths become the edge weight in the brain network, so we also call 

them edge features interchangeably.

The formal notations in this definition are listed in Table 4. We consider N subjects and their 

brain networks, denoted by G1,…, GN. Each brain network has n nodes (i.e., ROIs) and p 
edges (i.e., fiber connections) between pairs of nodes, denoted by e1, … , ep. The edge 

weight (i.e., connectivity strength) is defined by the variable . On Gi, the network of the ith 

subject, the edge weights are denoted by the vector Xi = (xi1, …,xip)′. At the network level, 

each subject is associated with a binary outcome variable  (i.e., subject label). The value of 

 on N subjects is denoted by the vector Y = (y1, … , yN)′. Using a basic logistic regression 

model, the objective function to best fit the model given data is written as minimizing the 

Negative Log Likelihood (NLL).

(1)

where W = (w1, … ,wp)′ denotes the weight vector for all p edge features. The edge with a 

larger weight means that it has a higher influence on the outcome.

When classifying brain networks, it is known that using all the edge features for training can 

lead to severe overfitting, which downgrades the classification accuracy in the testing set. 

The general approach is to apply feature selection that only picks the most informative 

features to predict the label. Here we adopt the lasso model [41] which adds a L1 

regularization term (║W║1, i.e., L1 norm of the weight vector W) for the edge feature 

selection. The objective function of the lasso model is given by

(2)

where the parameter λ > 0 controls the degree of overall model sparsity. A larger λ will lead 

to less selected edge features. The weight vector W determines the feature selection result. 

The ith edge feature will be selected if wi ≠ 0, and unselected if wi = 0. To determine the 

sparsity parameter λ, we iterate over a list of logarithmically spaced parameter choices 

within the feasible range for nonzero weight vectors. The best λ is chosen as the one leading 

to the highest classification accuracy in 10-fold cross-validations.

The lasso model is popular because of its effectiveness to achieve good classification 

accuracy. However, lasso does not capture the interaction effect among features, nor does it 

take the feature group information as indicated by the block structure in our work. In our 

final classification model, we apply a recent variant of lasso, namely the sparse group lasso 

(SGL) [36] which incorporates feature grouping information to optimize the classification. 

These edge feature groups can be directly linked to the ROI clustering in that when network 
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nodes are grouped, their edges are aggregated correspondingly. The objective function of the 

SGL model is defined by

(3)

where M denotes the number of feature groups, W(m) is the partial weight vector of the mth 

feature group. The parameter α controls the the group-wise sparsity. The remaining question 

is to determine which ROI clustering provides the best feature grouping information for the 

brain network classification.

4.2 Optimal ROI clustering

We start from a trivial setting of n ROI clusters, i.e., one cluster per ROI. In this setting, the 

objective function of the SGL model (Eq. (3)) degenerates to that of the basic lasso model 

(Eq. (2)) because . Any nontrivial k-ROI-clustering (k < n) can be seen 

as a k-partition of the n initial clusters. The number of possible nontrivial ROI clusterings 

amounts to the Bell number [7]. Therefore, finding the best ROI clustering that yields the 

highest classification accuracy leads to an NP hard problem requiring O(nn) computation 

time, when the exhaustive search on all possible ROI clusterings is applied.

The search-based solution can be improved by only combining ROIs within each functional 

block, but the complexity is still exponential. A more feasible approach is to apply the 

greedy search by clustering ROIs in an agglomerative manner. An illustration of this 

process, i.e., the search tree, is given in Figure 3(a). In this tree, each node represents an ROI 

clustering setting and the node label indicates the classification accuracy when this ROI 

clustering is applied, i.e., a0 for the initial clustering and aij for the jth feasible clustering in 

the ith step. The directed link indicates the process to merge two ROI clusters into a new 

cluster, moving from one clustering setting to another. The search starts from the root of the 

tree where the trivial n-ROI-clustering is applied. In the next step, all feasible binary 

combinations of trivial ROI clusters are examined by classifying with the SGL model under 

the new clustering. These clusterings are represented as the nodes in the second hierarchy. 

The greedy search scheme will pick the clustering setting leading to the highest accuracy in 

each step, e.g., in this figure, the clustering that combines ROI cluster {#3} and {#4} which 

yields a classification accuracy of a14 ≥ a1j. After that, the search process is repeated one 

step further and combines the ROI cluster {#3,#4} with {#5}. In n – 1 steps, all ROIs are 

combined into one cluster and the search process terminates.

The greedy search scheme leads to a cubic computational complexity assuming the SGL 

solver has a constant cost, which is feasible for computation because the number of ROIs (n) 

is small. However, due to the non-concave and combinatorial nature of the search space, the 

greedy search is highly likely to get stuck in the local maxima. To address this issue, we 

propose an improved greedy search scheme by adding roll-back operations. As shown in 

Figure 3(b), instead of using the classification accuracy as the search heuristic, we turn to 
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maximize the accuracy improvement from the last step, denoted by Iij for the jth 

combination in the ith step. This allows us to introduce a slope constraint S. In case the best 

accuracy improvement in certain step of the greedy search falls below S, e.g., I23< S in 

Figure 3(b), we drop this search branch by overriding the accuracy improvement of its upper 

node (i.e., I14) to I23. This branch will not be searched any more because I14 < S. The search 

process restarts with a roll-back one step further, i.e., to the root node in this figure. As the 

previous best choice of I14 has been dropped, the second best clustering indicated by the 

improvement I12 is picked and the greedy search continues from this new branch. Except for 

the slope constraint S, we control another two parameters to keep the search process going: 

the maximal roll-back depth Dmax and the slope constraint step ΔS. When the search rolls 

back more than Dmax hierarchies consecutively, we loosen the slope constraint by 

subtracting one step of |ΔS| from S. This also fits the actual curve of the accuracy 

improvement. As shown in Figure 4, the best accuracy appears in the middle of the 

clustering process, and after that drops almost monotonically.

The greedy search with roll-back scheme can lead to significantly increased computational 

complexity as more than one path on the search tree can be traversed. We introduce the 

caching strategy to reduce the computation requirement. As shown in Figure 3(b), the same 

ROI cluster combination can appear in different steps of the search tree, e.g.,  and 

. The strategy is to assume the accuracy improvement by the same combination does 

not change much across search steps. Under this assumption, every new search in later steps 

can first fetch the accuracy improvement from the cache established in earlier steps. This 

greatly reduces the cost in repeating SGL modelings for every new clustering.

We have applied the greedy search and the roll-back scheme in the 113-subject high-CCI v.s. 

low-CCI brain network data set. The performance curves are depicted in Figure 4. The ROI 

clustering will mildly increase the classification accuracy before a half of the ROIs are 

grouped together, while the number of features selected remains constant. This demonstrates 

that the inherent block structure of human brain networks can be leveraged in its 

classification to better abstract, but not undermine, the comparison pattern, if only an 

adequate number of clusters is specified. When the clustering proceeds to generate over-

simplified block structure, the classification accuracy will drop quickly and it is hard to 

discover good blockwise comparison patterns any more. We have integrated the 

classification accuracy measure during the search process into the visualization interface to 

guide the interactive visual comparison of brain networks.

5 Visualization Design

We consider two design goals for the brain network visualization in our scenario: 1) 

optimize the user performance in the visual comparison of brain networks; 2) incorporate the 

two-level ROI block hierarchy into the visualization for blockwise comparisons. It has been 

shown in [5] that the node-link representation is not the best choice for visual comparison. 

Meanwhile, the adjacency matrix can be better than the node-link design in user 

performance, but it is difficult to embed multiple ROI block hierarchies into the matrix 

design while highlighting the blockwise comparison patterns. In this work, we explore the 
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hybrid approach, that uses the NodeTrix representation to visualize the blockwise brain 

network connectivity for comparison between population groups. The NodeTrix metaphor 

was invented by Henry et al [20] to display social networks having inherent clustering 

nature. In their design, the dense social communities can be represented by matrices, while 

the sparser inter-community connections are drawn in the node-link diagram. We echo the 

same design rationale on brain networks. The weighted graph clustering result (k=12) on our 

brain network data set shows a very close structure to the 12-lobe brain parcellation: 46 out 

of 68 ROIs have the same membership in the graph clustering and the lobe classification. 

This demonstrates that the intra-lobe connectivity is on average denser than their inter-lobe 

counterpart, which advocates the use of the NodeTrix design.

5.1 NodeTrix Representation

Figure 5 depicts an example of using NodeTrix to display the block-wise brain network 

comparison in a side-by-side design. For each brain network, the high-level visual 

representation is composed of several matrices, each corresponding to a functional block in 

the brain, i.e., one of the anatomical lobes in our setting. Each row/column in the matrix 

represents a single ROI whose index is drawn as labels on the border of the matrix, e.g., the 

largest frontal lobe contains 11 ROIs in each hemisphere. The rows and columns can be 

combined together to represent the comparison blocks in the ROI clustering hierarchy, as 

shown in Figure 1. Inside each matrix, the entries drawn as color-coded cells indicate the 

intra-lobe ROI connections. The red hue is selected as the default fill color, while the color 

saturation is used to represent the fiber strength of each ROI connectivity. The more 

saturated the color, the higher connectivity strength. The detailed strength–color mapping is 

indicated and controlled by the color map slider in the center of the control panel in Figure 

5. User interactions are supported to tune the color map and optimize the visual comparison 

(Section 5.3). Note that the diagonal cells in each matrix are greyed out as the fiber loops on 

each ROI are unimportant for the comparison of brain networks. For the inter-lobe ROI 

connections, curved edges are drawn between the matrices where the two endpoints are on 

the brim of the source and target ROI column/row. Both the edge thickness and color 

saturation indicate their connectivity strength.

Our design supports three comparison views by different projections of the brain network: 

sagittal view (Figure 9), axial view (Figure 5), coronal view (supplemental video). They are 

also distinguished by separate background brain sketches. On the layout of each view, we 

consider optimizing both the topographical proximity and the performance for visual 

comparison. The matrices representing the functional blocks are placed in the center of their 

anatomical lobes. The ROIs within each functional/comparison block are initially ordered by 

their ROI indices. We also provide an interaction to reorder ROIs according to their 

magnitude of difference in the comparison.

5.2 Brain Connectivity Edge Bundling

The brain connectivities between ROI blocks are drawn as B-spline curves between 

matrices. These edges are bundled together by selecting appropriate control points for each 

curve. We propose two edge bundling algorithms for separate objectives: the semantic 
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bundling to optimize the visual comparison and the geometric bundling to reveal the 

physical routing path of the underlying fiber pathways.

Semantic edge bundling—In this method, the objective is to reduce the visual clutter 

raised by the dense ROI-level connections while preserving the blockwise connectivity 

patterns. We achieve this by a three-step force-directed edge bundling algorithm.

In the first step, we cluster all the ROI connectivity edges into groups according to their 

blockwise semantic information. The edges connecting the same source and destination 

matrices are grouped together and share the same set of control points. In other words, edges 

will be bundled to represent blockwise connectivities. In the second step, we determine the 

initial placement of control points in each edge bundle. To keep their original connectivity 

structure, the control points are uniformly sampled from the straightline connecting the 

center of their source and destination matrices. In the third step, we apply the force-directed 

edge bundling algorithm to adjust these control points to further alleviate visual clutter. The 

basic idea is to move the control points of all edge bundles towards each other to reduce the 

number of spatially distributed control points. In more detail, all control points are 

considered as nodes in a proximity graph. Then the force-directed layout [17] is conducted 

on this graph to refine the placement of all control points. The key choice is to decide the 

optimal distance (i.e., proximity) between each pair of control points. We apply Holten and 

Van Wijk’s algorithm in [23]

(4)

here Dist0 denotes the initial distance between the two control points. Ca, Cs, Cp indicates 

the adjustment based on the angle, length and proximity of the matrix connection lines of 

these two control points.

Geometric edge bundling—In another method, we start by aligning the brain network 

connectivity with the fiber tracts reconstructed through tractography. These fiber tracts can 

be geometrically clustered into bundles [26] where each bundle represents the connectivity 

between several ROI blocks. The control points for each blockwise connection can be 

selected from these bundles to reveal the geometric routing of fibers in the human brain.

In more detail, we introduce a two-step algorithm to compute the control points on each 

fiber track bundle. In the first step, a streamline is extracted from every track in the selected 

fiber bundle by uniform sampling. Then we use the sampled points in all tracks to compute a 

centerpiece streamline. The fiber track staying closest to this centerpiece streamline is 

selected to represent the entire fiber bundle. The second step is to re-sample the 

representative fiber track to extract a small number of control points for the edge bundling. 

Each fiber track is composed of a large number of points. We start from the first point and 

keep track of the accumulative curvature in iterating all the points, which is known as the 

winding angle. Once the winding angle is larger than a threshold, the current point is 

sampled and the winding angle is reset to zero. In the final algorithm, we choose a winding 
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angle threshold of 360 degrees according to Tao et al. [38]. In case the winding angle does 

not reach the threshold after scanning the entire track, we apply uniform sampling. 

Mathematically, the curvature ki at point pi of a fiber track streamline is computed by

(5)

here pi−1 and pi+1 are neighboring points of pi on the streamline.

5.3 Interaction for Visual Comparison

Following the visualization design, we support basic network interactions as well as a suite 

of customized interactions to facilitate the user’s visual comparison task on brain networks. 

At the ROI level, we design an interactive color map, as shown in the range slider of the 

central panel in Figure 5. The left range selector controls the edge filtering. All the edges 

below a specified strength threshold will be removed in the display. The right range selector 

controls the maximal edge strength. The edges above this maximum will be drawn in the 

largest color saturation. The edges with strength inside the range will have a linear mapping 

to the color saturation spectrum. When the binary mode is selected, the range selector 

becomes the point selector. All remaining edges after the filtering will be drawn in the same 

maximal color saturation. At the ROI block level, we introduce a matrix reorder interaction. 

All ROIs inside each lobe are first sorted by the difference between the two compared 

groups of networks. The ROI with the largest difference is placed in the matrix center and all 

ROIs are arranged from the center to the border by this order. At the network level we design 

a network contrast interaction which, when applied, each connectivity strength in the 

network is subtracted by the minimal strength of the two networks in comparison. 

Subsequently, only the connectivity difference is shown after this interaction.

6 Evaluation

6.1 User Experiment on Blockwise Comparisons

We conducted a controlled experiment to understand the effect of visual designs on the 

user’s performance in blockwise brain network comparison tasks. We compared three 

visualizations: node-link networks, adjacency matrices, and the proposed NodeTrix design 

(Figure 5). NodeTrix applies a one-level blocked structure mapping brain lobes to the 

matrix. Within each lobe, the comparison blocks are not used because in our pilot study, 

users need additional time and training to locate the best clustering parameter. In all three 

designs, the side-by-side comparison is adopted.

Experiment design—We recruited 16 subjects (10 male, 6 female) who were all 

computer science graduate students and have experience with data visualization. The 

experiment applied a full-factorial within-subject design that every subject was tested on 

including all visualization methods. The experiment was divided into the training session 

and the test session for each visualization. In the training session, users warmed up by 

completing the same suite of tasks on a much easier setting (e.g., less nodes and edges in the 

Yang et al. Page 13

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain network to compare). The organizer checked the result of each training task and 

addressed all questions before proceeding to the next step.

Task—All four tasks listed below were conducted on the brain networks from 92 subjects 

(including controls vs. AD patients) to compare differences at anatomical network level.

T1 (Local connectivity): does the overall edge weight within the right frontal lobe 

subnetwork decrease or increase in controls when compared to AD patients?

T2 (Lobe-Lobe connectivity): does the overall edge weight between the right frontal and the 

right temporal lobe decrease or increase in controls when compared to AD patients?

T3 (Lobe-ROI connectivity): does the overall edge weight between the frontal lobe and all 

other ROIs decrease or increase in controls when compared to AD patients?

T4 (Lobe connectivity retrieval): identify one lobe-lobe pair whose connectivity has the 

largest overall edge weight difference between brain networks of the two diagnostic groups?

Note that for each task × visualization pair, each user was tested on three difficulty levels by 

controlling the difficulty for detecting differences in the group comparison. This level is 

shuffled for different users and visualizations to eliminate learning and ordering effect. For 

each task, we recorded the subject’s answer and completion time. The task completion time 

was measured after the subject had read the question, so that the reading skill variation was 

excluded. On T1 through T3, the relevant lobes in the task were highlighted using color 

coding in the matrix (node) outline of each visualization. On T4, all lobe names are labeled 

on the visualization. This was done to minimize the visual search time for the lobe in the 

task. During the test session, subjects were also asked to respond to three subjective 

questions immediately after they completed all the tasks for each visualization. Answers 

were selected from a 0~6 Likert scale (larger is better).

Q1 (Usability): How much does this visualization help you in completing the tasks and 

finding the correct answers?

Q2 (Cognitive Performance): How much does this visualization help you to understand the 

brain network data?

Q3 (User Experience): How would you rank your experience with this visualization design?

Result—Experiment results were analyzed separately for each task. Significant level was 

set at 0.05 throughout the analysis.

Task Accuracy: The user’s accuracy in completing each task is summarized in Figure 6(a). 

For T1, the intra-lobe local connectivity task, all three visualizations led to rather high 

accuracies on average (Node-Link: 0.93, Matrix: 0.88, NodeTrix: 0.91), and there were 

small differences in between. For T2, the lobe-lobe connectivity task, NodeTrix (0.93) had 

better accuracy than Matrix (0.86) and Node-Link (0.67). A repeated-measure ANOVA test 

on their average task accuracy (normality and sphericity held, the same below) shows that 

there were significant group-level differences (F(2,26) = 8.943, p = 0.001). Post-hoc test 
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using the Bonferroni correction reveals a significant difference between Node-Link and 

NodeTrix (p = 0.001), but the difference between Node-Link and Matrix was not significant 

(p = 0.078). For T3, the lobe-ROI connectivity, Node-Link (0.91) and NodeTrix (0.91) have 

better average accuracy than Matrix (0.76), but the difference was not significant (p = 0.12). 

For T4, the lobe connectivity retrieval task, most subjects failed to complete it using the 

Node-Link visualization deisgn, so we only compared Matrix and NodeTrix designs. In 

average, NodeTrix (0.98) had a much higher accuracy than Matrix (0.36), and the difference 

was significant based on a paired samples t-test (t(13) = −13.0, p < 0.001).

Completion Time: The user’s completion time in each task is summarized in Figure 6(b). 

For T1, the intra-lobe local connectivity task, Matrix (5.31s) and NodeTrix (5.17s) took 

slightly shorter time than Node-Link (6.01s) to complete, but the difference was not 

significant (p = 0.27). For T2, the lobe-lobe connectivity task, again Matrix (5.43s) and 

NodeTrix (5.12s) took shorter time than Node-Link (7.75s). A repeated-measure ANOVA 

test (normality and sphericity held, the same below) showed a significant group-level 

difference (F(2,26) = 6.598, p = 0.005). Post-hoc tests using the Bonferroni correction 

revealed a significant difference between Node-Link and NodeTrix (p = 0.045), but not 

between Node-Link and Matrix (p = 0.057). For T3, the lobe-ROI connectivity, all 

visualizations took a similar amount of time: Node-Link (4.96s), Matrix (5.62s), Node-Trix 

(5.18s), and the differences were not significant (p = 0.53). For T4, the lobe connectivity 

retrieval task, NodeTrix (8.87s) had a much shorter completion time than Matrix (20.21), 

and the difference was significant under a paired samples t-test (t(13) = 4.11, p = 0.001).

Subjective Questions: The user’s subjective scores are summarized in Figure 7. It is shown 

that Node-Link and NodeTrix have better average scores than Matrix in all three subjective 

measures. We then applied the Friedman test to analyze their group-level difference, which 

does not require a normality assumption. Results indicate that while there was no significant 

difference in the usability score (p = 0.41, the average score, Node-Link: 4.36, NodeTrix: 

4.36, Matrix: 3.79), the cognitive performance and user experience were significantly 

different across groups. On the cognitive performance, Node-Link (4.93) and NodeTrix 

(4.79) were significantly better than Matrix (4.21) under the Friedman test (χ2(2) = 9.46, p = 

0.009). The post-hoc Wilcoxon signed rank test results were p = 0.004, 0.046. On user 

experience, Node-Link (3.79), NodeTrix (4.36) and Matrix (3.21) have significant group-

level difference by the Friedman test (χ2(2) = 9.33, p = 0.009), but the post-hoc Wilcoxon 

signed rank test only detected significant difference between NodeTrix and Matrix (p = 

0.004).

Discussion—The user study results show that, on the block-block connectivity tasks for 

both low-level examination (T2) and high-level retrieval (T4), the NodeTrix design performs 

significantly better than the Node-Link design, and better than the Matrix design, for both 

task accuracy and performance time. Especially for the high-level retrieval task of T4, 

NodeTrix was significantly better than Matrix. This demonstrates the superiority of the 

NodeTrix design in revealing the block-level brain network structure, which is extremely 

important in exploratory tasks (like T4) where noisy data is present. On the localized single-

block tasks (T1 and T3), while the completion time is close because of the low difficulty 
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level, NodeTrix achieved a similar task accuracy to the Node-Link design, and both were 

better than the Matrix design, though not significantly. This indicates that the hybrid block 

representation (NodeTrix) does not affect the local connectivity retrieval, while a full block 

design (Matrix) could downgrade the local comparison performance when no customized 

technique (e.g., overlaid design) is applied. For the user’s subjective rating, we noticed that 

all users disliked comparing matrices side-by-side. Though the Matrix design can still work 

(no significance in usability), user’s cognitive gain and experience were significantly poorer 

than NodeTrix and Node-Link design. This can be attributed to the counter-intuitive nature 

of the adjacency matrix. NodeTrix compensates this deficiency by keeping a high-level 

node-link representation.

6.2 Case Study

We evaluated the NodeTrix visualization design on two sets of real-life brain networks. The 

first is on Alzheimer’s Disease patients. More recently, as studied in Thompson et al. [40] 

and Daianu et al. [12], the AD patient’s brain network tends to degenerate in an asymmetric 

fashion predominantly in the left hemisphere. Furthermore, the meta-analysis in [9] from 

five studies of 1138 subjects showed a converged effect of AD to the posterior cortical 

regions in the left hemisphere (mainly in the parietal lobe).

We analyzed the data set from ADNI – a publicly available AD Consortium [2], and applied 

NodeTrix to reproduce the above brain network patterns. The ADNI data we used for this 

study contained DWIs from 202 subjects - 50 healthy controls, 72 with early mild cognitive 

impairment (eMCI), 38 with late mild cognitive impairment (lMCI) and 42 AD patients. The 

participants underwent whole-brain MRI at 16 different site across North America [12] and 

their ages ranged between 55 to 90 years. For each subject, an ROI-level network was 

computed using an automated segmentation method, FreeSurfer [3] based on the Desikan-

Killiany atlas [14]. The edge weights among ROIs described the fiber density between pair 

of ROIs (the number of fibers passing through a pair of ROIs). To focus on the alterations 

patterns in the network, we greyed out the connections from each ROI to itself (i.e., the 

diagonal cell in the adjacency matrix). We started the analysis by comparing the average 

brain network of 42 AD patients with those of 50 controls. The initial view was rather 

cluttered because of the high number of edges and complexity of the average brain networks 

(Figure 5). Therefore, we focused on the network differences by manipulating the edge color 

map slider. First, we applied filters to eliminate many low-density connections that 

overwhelm the network view. Then we switched to the binary color mapping mode to only 

compare the unweighted connectivity controlled by a predefined density threshold. The 

result was illustrated in Figure 8(a). It can be quickly identified that the high-density fiber 

connectivity network is more symmetrical (between left and right hemisphere) in the control 

group than in the AD group. The AD patients have relatively sparse connectivity in the left 

hemisphere (the right part of the AD network in Figure 8(a) due to the projection method). It 

appears that the connectivity of the left parietal lobe breaks down the most. We further 

confirmed this hypothesis by using the network contrast interaction. As shown in Figure 

8(b), most of the large differences between the two population groups were located in the 

intra- or inter-parietal lobe connectivity subnetworks. A matrix reorder operation was also 

applied to place the ROIs with the largest differences in the center of each lobe matrix. This 
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became clearer when we switch to the left sagittal view (Figure 9(a)). Another observations 

was that the AD patients appeared to have thicker connectivity pattern between the right 

insula (ROI #36) and the right parietal/frontal lobes, though this finding needs to be 

validated from a statistical standpoint (Figure 8(b), Figure 9(b)).

In the second case study, we deployed our visualization on the 113-subject brain networks 

from the Open Connectome project [1]. The raw brain networks were also defined using 70 

ROIs in FreeSurfer based on the Desikan-Killiany atlas. Due to the higher resolution DWIs 

and possibly, difference in the processing methods, both the scale and distribution of the 

connectivity patterns appeared different from those in the ADNI data set (which is 

expected). In this case, we compared the subject’s brain network using their Composite 

Creativity Index (CCI), which assesses the creativity of subjects in ten different domains 

(e.g., visual arts, music, etc.) through a questionnaire. The CCI score is normally distributed 

in population and we classified the scores into two classes for the comparison tasks: the high 

class with CCI higher than or equal to 100 (the average across populations) and the low class 

smaller than 100. Our goal was to validate the results from the seminal work by Flaherty 

[16] who showed that the frontal and temporal lobes are important areas involved in creative 

thinking and expression. Again, we started the analysis by displaying the brain networks of 

the CCI high vs. low population groups. The comparison view is further optimized by 

applying the network contrast and matrix reordering operation. As illustrated in Figure 10, it 

is visible that the frontal and temporal lobe connectivity patterns are stronger in the high-

CCI group than in the low-CCI group.

In recent work [27] [13], scientists found linkage between the pre-frontal lobe and the 

creative mind and problem solving tendency. We reproduced this discovery by incorporating 

the optimal ROI clustering into the visualization design. As shown in Figure 1, the sub-

cluster corresponding to the prefrontal lobe in the frontal matrix reveals much stronger 

connectivity vs. the other lobes in the contrast view.

7 Conclusion and Future Work

In this paper, we have presented an integrated visual analytics method for comparing 

blockwise brain network differences among population groups, a highly relevant task for 

clinical research aimed at visualizing the network of human brains. Existing visual 

representations such as node-link graph and adjacency matrix suffer from low accuracy 

when comparing real-life brain networks that are homogeneous and densely interconnected. 

We tackle this problem by proposing: 1) a greedy ROI clustering algorithm driven by the 

predictive classification performance; 2) an improved NodeTrix design for displaying the 

block-wise brain network connectivity patterns; and 3) a suite of customized interactions to 

accelerate the visual comparison between groups of interest. Visual clutter reductions and 

the linkage to the underlying fiber tract data are achieved by two edge bundling algorithms 

considering the separate semantic and geometric information. We demonstrate the 

effectiveness of our method in blockwise brain network visual comparison by both 

controlled user experiment in contrast to state-of-the-art visualization methods, and case 

studies on real-world brain networks.
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Despite the success of our method in visually comparing brain networks within the studied 

scope, there are several unsolved challenges due to the enormous complexity and uncertainty 

of real-world human brain networks. First, the current NodeTrix design supports up to two 

levels of network hierarchy, while the high-resolution human connectome can carry many 

more hierarchies, ranging from block and ROI level to voxel and neuronal level. One aspect 

of our future work is to explore new visualization and interaction designs to address this 

practical challenge. Second, in this work we only consider the pairwise side-by-side 

comparison of brain networks. In fact, many diagnostic classes are not bilateral, and 

comparisons are conducted among more than two groups. We plan to study how the 

proposed method can be extended to work with a multiple-comparison scenario. Finally, our 

method can be extended to support the visual comparison of many other geospatial networks 

(e.g., dynamic traffic and migration networks), on which there are inherent blockwise 

connectivity patterns and the network node positions are geospatially fixed.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
NodeTrix visual comparison between the brain network of high v.s. low Composite 

Creativity Index (CCI) group. Significant difference is found on the connectivity of 

prefrontal lobes bilaterally. Diagonal cells (intra-block edges) are greyed out.
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Fig. 2. 
Visual analytics framework for blockwise brain network comparison.
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Fig. 3. 
Tree search in the agglomerative clustering of ROIs. Each node represents an ROI clustering 

setting where the node label gives the resulting classification accuracy. Each link indicates a 

feasible binary combination of two ROI clusters.
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Fig. 4. 
ROI clustering performance by the roll-back greedy scheme.
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Fig. 5. 
The NodeTrix visualization design for blockwise visual comparison of brain networks.
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Fig. 6. 
The user performance distribution of three visual designs.
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Fig. 7. 
Subjective scores for three visual designs in the user study.
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Fig. 8. 
AD case: (a) The brain network asymmetry is shown; (b) When the contrast interaction is 

used, detailed lobe differences are revealed.
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Fig. 9. 
Sagittal views in the AD case: (a) Left; (b) Right.
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Fig. 10. 
CCI case using the contrast interaction.
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Table 1

Results on the Trend task (blue = best outcome).

Measure
Acc. Sig. Time Sig.

Method

Node-Link Overlaid (NO) 0.50 <0.001 25.63 >0.05

Matrix Overlaid (MO) 0.86 27.16

Node-Link Side-by-Side (NS) 0.92 24.02

Matrix Side-by-Side (MS) 0.81 24.61
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Table 2

Results on the Connectivity task (blue = best outcome).

Measure
Acc. Sig. Time Sig.

Method

Node-Link Overlaid (NO) 0.33 <0.001 62.65 >0.05

Matrix Overlaid (MO) 0.72 34.93

Node-Link Side-by-Side (NS) 0.56 56.92

Matrix Side-by-Side (MS) 0.72 70.15

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 33

Ta
b

le
 3

L
is

t o
f 

co
m

pa
ri

so
n 

st
ud

ie
s 

us
in

g 
br

ai
n 

ne
tw

or
ks

; b
lu

e 
te

xt
 in

di
ca

te
s 

th
e 

an
al

ys
is

 r
es

ul
t r

el
at

ed
 to

 th
e 

bl
oc

k 
st

ru
ct

ur
e 

on
 h

um
an

 b
ra

in
s.

P
ap

er
To

pi
c

D
at

a 
&

 S
ub

je
ct

M
et

ho
d

A
na

ly
si

s 
R

es
ul

ts
G

S 
#C

it
e

W
er

ni
ck

e 
18

74
 [

42
]

ap
ha

si
a

10
 s

ub
je

ct
s

cl
in

ic
al

14
29

G
es

ch
w

in
d 

19
65

 [
18

]
D

is
c.

an
im

al
s 

an
d 

m
an

cl
in

ic
al

31
46

H
or

w
itz

 1
98

7 
[2

4]
A

D
42

 s
ub

je
ct

s 
(2

1
A

D
, 2

1 
co

nt
ro

l)
PE

T
15

7

B
uc

kn
er

 2
00

5 
[9

]
A

D
76

4 
su

bj
ec

ts
 (

5
st

ud
ie

s)
m

ix
ed

11
38

D
ai

an
u 

20
13

 [
12

]
A

D
11

1 
su

bj
ec

ts
 (

83
A

D
, 2

8 
co

nt
ro

l)
3T

 M
R

I,
D

T
I

40

H
o 

20
03

 [
22

]
SZ

96
 s

ub
je

ct
s 

(7
3

SZ
, 2

3 
co

nt
ro

l)
M

R
I

49
9

K
ub

ic
ki

 2
00

5 
[2

8]
SZ

47
 s

ub
je

ct
s 

(2
1

SZ
, 2

6 
co

nt
ro

l)
D

T
I,

 M
R

I
35

6

O
la

bi
 2

01
1 

[3
3]

SZ
17

95
 s

ub
je

ct
s

(2
7 

st
ud

ie
s)

M
R

I
17

7

C
hi

an
g 

20
09

 [
10

]
G

en
e

92
 tw

in
s

4T
 D

T
I

28
1

Sc
ot

t 2
01

0 
[3

5]
G

en
e

71
 c

hi
ld

re
n

fM
R

I
12

5

L
iu

 2
01

0 
[2

9]
G

en
e

57
 s

ub
je

ct
s

fM
R

I
72

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 34

Table 4

Notations for the brain network classification.

SYMBOL DESCRIPTION

N, Gi # of subjects and their brain networks

n, p, ej # of nodes, # of edges, each edge in the network

, X, xi, xij edge weight variable, weight matrix on all sub-
jects, weight vector on Gi, the component on ej

, y, yi outcome variable, its value on all subjects and Gi
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