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Learning Inverse Rig Mappings
by Nonlinear Regression

Daniel Holden Jun Saito Taku Komura
University of Edinburgh Marza Animation Planet University of Edinburgh

Abstract—We present a framework to design inverse rig-functions - functions that map low level representations of a character’s pose
such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes
using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and
geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through
raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of
state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level
representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation
sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate
the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process
regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data
available for training. We show our framework applied to various examples including articulated biped characters, quadruped
characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion
synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D
animation, while retaining the flexibility and creativity of artistic input.

Index Terms—animation rig, character animation, regression

F

1 INTRODUCTION

P ROFESSIONAL animators design character movements
through an animation rig. This is a system in the 3D

tool that drives the mechanics of the character, e.g. joints,
constraints, and deformers. In the production pipeline, an-
imation rigs are designed by specialists called riggers who
are responsible for building a rig that is as productive and
expressive as possible so that it intuitively covers all the
poses and expressions the animators may want to create.
For a complex rig there may be hundreds of rig control pa-
rameters. For example, our quadruped rig in the examples
has six hundred degrees of freedom.

Yet, most character animation research and technology uses
raw, low-level structures such as articulated skeletons or 3D
polygon meshes as the representation. This makes them dif-
ficult to adopt in the pipeline of animated film production.
After data such as motion data or deformable surfaces are
captured, synthesized or edited in the raw representation,
the motion has to be mapped to the animation rig for the an-
imators to edit the results. However, there are often no clear
correspondences between the rig controls and the skeletal
representation. Previously, complex rig-specific scripts have
been created individually for each character and rig. How-
ever, these are not general, and require revisions every time
new characters and/or rigs are introduced.

We propose several frameworks to map the state of the
character’s kinematics to the state of some character rig.
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Given a set of animator-constructed examples, the joint
positions as well as the corresponding rig parameters can
be extracted. Our system then learns the mapping from the
3D motion data to the rig parameters in an offline stage,
employing nonlinear regression techniques.

We examine and compare two types of nonlinear regres-
sion techniques: In addition to the Gaussian process re-
gression [1] (GPR), proposed in the earlier version of this
paper [2], we also present results using feedforward neural
networks. While Gaussian process regression is suitable
when there is not much training data, it can suffer from
memory and computation issues when the volume of the
training data gets larger. The feedforward neural network
has excellent runtime performance, can handle larger vol-
umes of training data, and additionally, can achieve higher
accuracy than Gaussian process regression even for a small
training data set by providing extra training data using
super-sampling.

The rest of this paper is structured as follows. After de-
scribing about the related work, we discuss in detail about
the nature of animation rigs, and show how the problem
of retargeting some joint positions or joint angles can be
equivalent to the inversion of some rig function. Next we
demonstrate this rig function, its behaviours, and present
the techniques we use for approximating the inverse of it.
Finally, we evaluate our method, presenting a number of
applications including full body motion editing and synthe-
sis, facial animation, and 3D shape deformation. Finally we
explain our results.
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Fig. 1. Results of our method: animation is generated in the rig space for several different character rigs including a quadruped character, a
deformable mesh character, a biped character, and a facial rig. This animation is generated via some external process yet because it is mapped to
the rig space remains editable by animators.

The contribution of this paper can be summarized as fol-
lows:

• a method to invert any character rig function to
generate accurate rig attributes from joint positions
in real-time,

• a framework to use Gaussian process regression to
map the joint positions to rig attributes,

• a framework to use feedforward neural networks to
map the joint positions to rig attributes, and

• improving the accuracy of the inverse rig-mapping
with the neural network by super-sampling the data.

2 RELATED WORK

In this section we first briefly review research related to
data-driven animation where mesh surfaces are produced
by controlling the blending weights of some example data.
We then review techniques that learn the mapping between
parameters in the task space (i.e. joint positions, landmark
positions) and the control parameters. Finally, we review the
work related to animation rigs.

Animation by Blending Example Data: Data-driven ap-
proaches are known to be effective for controlling the fine
details of characters, which are difficult to produce by
simple analytical approaches. Facial animation is one of
the main areas that makes use of data-driven approaches
as the degrees of freedom of the system are too high to be
entirely modelled by the animators [3], [4]. Traditionally, the
desired expressions are produced by blending the geometry
of different expressions which are either captured by optical
cameras or are manually designed by animators. In this
case the blending weights are the control parameters. Such
data-driven approaches are also applied for other purposes
such as skinning; Pose-space deformation [5] maps the joint
angles to the vertex positions using radial basis functions.
Sloan et al. [6] extends this approach to arbitrary types of
mesh deformation. These methods are used to produce a
forward mapping from control parameters to surfaces. We
attempt the inverse of this mapping.

Inverse Mapping of Control Parameters: As directly pro-
viding the control parameters can be inconvenient in many

situations there is a continuing interest in the inverse map-
ping. Here the control parameters are estimated from some
output parameters, such as the joint positions or the vertex
positions of the mesh. One example is inverse kinematics.
Required are the control parameters (joint angles) that real-
izes the task, such as moving the hand to the target location.
Classic methods include techniques such as task priority
methods [7], singularity robust inverse [8], and damped
least squares [9], originating in robotics research [10], [11],
[12].

Researchers in computer graphics propose to directly map
the joint positions to the joint angles using radial basis func-
tions [13], [14], Gaussian processes [15] and GPLVM [16].
Similarly in facial animation, researchers compute the
blending weights of different expressions from a number
of landmark positions. This allows animators to control the
face as if it were controlled by inverse kinematics [4], [17],
[18], [19]. Xian et al. [20] proposed an optimisation based
method for the inverse mapping specific to Example Based
Skinning. Previous studies assume certain articulation or
deformation models such as articulated joint skeletons or
blend shapes while our method is agnostic to the underlying
rig mechanism.

Animation Rig: Character rigging is the process in a
professional animation pipeline where the static geome-
try of a character is manipulated via various animation
mechanisms, such as skeletal structure, constraints, and
deformers. These are then wrapped in intuitive controls
for animators. Controls exposed to animators often drive
underlying mechanics with custom expressions and chains
of graph-structured computation nodes. This makes the rig’s
behaviour non-linear and difficult to formulate in general.
In this paper, we refer to this general mapping of the user-
exposed control parameters to the result of the underlying
animation mechanics (more specifically, joint positions) as
the rig function, and the space defined by it as rig space.
The rig functions includes all the parameters involved in the
control of the character, including but not limited to those
of forward kinematics, inverse kinematics, blend shape
weights, etc.

Only a few papers treat the production animation rig as a
system with complex controls and layers of arbitrary under-
lying driving mechanisms. Hahn et al. [21], [22] introduced
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Fig. 2. Typical setup of rigged character, showing animation rig, under-
lying skeletal structure, and mesh.

the idea of the rig function, which is a black-box mapping
from user-defined controls to mesh vertex positions. In this
case black-box means that only the forward mapping in
provided by the system, and there is no analytical inverse
mapping available for computing the rig parameters. The
major bottleneck in performing this inverse mapping of
such black-box rig function via conventional techniques, as
discussed in [21], [22], is computing the Jacobian by finite
difference, which involves thousands of calls to evaluate
a complex rig customized on a 3D software package. For
arbitrary and complex rigs this becomes intractable. Seol et
al. [19] is one of the few papers other papers treating the
face rig as a black-box. Their objective, however, is on re-
targeting plausible human expressions to virtual characters,
not inversely satisfying positional constraints. Our work is
motivated by speeding up such computations such that the
inverse mapping can be obtained at interactive rates.

In summary, we propose an approach to produce an inverse
mapping from the output of the animation pipeline to the
rig parameters. Although there are methods to produce such
inverse mapping for rigs consisting of simple skeletons or
blendshapes, there has not been a framework that handles
arbitrary types of black-boxe rig functions that can compute
the inverse at interactive rates.

3 RIG FUNCTION

In this section we first explain about how the rig is used
to determine the posture of a character and then describe
about the requirements of the inverse of the rig function.

3.1 Rig Description

Although our approach does not rely on a specific rig,
or 3D tool, to give more specific details we describe our
experimental set up with an example character - a dog
character as set-up in Maya.

Fig. 2 shows the rig of the character, the underlying skeletal
structure, and the mesh. This character’s rig consists of ma-
nipulators. These are the colourful controls, which animators
can translate, rotate, or scale in 3D space. These manipulators
move the skeletal structure, which in turn deforms the
mesh. The skeleton itself cannot be moved manually by the
animators, nor can the mesh.

Whenever a rig attribute is changed, Maya propagates the
values to connected components in the scene. This causes
Maya to recalculate a new configuration for the character
skeleton. After this skeletal configuration is found, the char-
acter mesh is deformed. In this sense the setup is like a one

way function going from rig attributes, to skeletal joints, and
finally to the character mesh.

3.2 Rig Function & Inversion

We now describe about the mathematical characteristics of
the rig function, and the requirements of its inversion.

Given a vector representing a rig configuration y and a vec-
tor representing the corresponding skeletal structure config-
uration x, the rig computation, performed internally inside
Maya for each frame of the animation, can be represented as
the function x = f(y).

We represent the skeletal configuration of the character
using a vector of the global joint positions, relative to the
character’s centre of gravity x ∈ R3j where j is the number
of joints. The advantage of this representation is that the
euclidian distance between two poses closely matches the
visual distance between those poses. Additionally, unlike
joint angles, each pose in this representation cooresponds to
only a single numerical encoding (there is no double-cover).
The downside of this representation is that it loses the twist
information of joints and the orientation of the end effectors.
We see no reason why our approach could not alternatively
be applied to the joint angles of the skeletal configuration
but in this paper we only discuss the use of joint positions.

Our interest in this research is in the inverse computation
y = f−1(x), where we compute the rig values given the
skeletal posture. This is rather difficult due to the following
characteristics of f , and the requirements that need to be
satisfied as a tool-kit for animation purposes.

The function f is not one-to-one. For any skeletal pose
there are several possible rig configurations that could create
it. This is intuitively apparent from the fact that IK and FK
controls can be used in conjunction on the same section
of character. Some user-defined controls can manipulate
multiple joints and constraints at the same time through
custom expressions and chains of computational nodes.
When inverting f we should not just pick a correct y, but
also the y which an animator would naturally specify.

The function f is relatively slow to compute. Evaluation
of f in our setup requires interaction with Maya which has
a fairly large fixed overhead associated [21]. But in any
3D package, a complex rig will also contain non negligi-
ble computation in its evaluation. It may contain several
complex systems working in conjunction, which may be
computationally intensive.

The solutions to the inversion of f must be accurate. If the
result requires too much manual correction by animators it
may be discarded. Any inversion should be able to find an
accurate solution that satisfies the equation.

The function f must be invertible at interactive rates.
Animation is an interactive task which requires a feedback
loop between the tools and the animators. Any synthesis
tools that rely on this system should have its parameters
editable in real-time, so animators can view and edit the
results in conjunction with the rest of the scene.
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Fig. 3. Method Overview. We learn an approximation of the inverse of the
rig function and its derivative and use this to accurately find rig attributes
that match some corresponding joint positions.

4 INVERSE RIG MAPPING BY GAUSSIAN PRO-
CESSES

In this section, we review our original technique [2] that
applies Gaussian processes regression (GPR) to the inverse
rig problem. We first describe how to learn the inverse
rig function and its derivative by GPR. We then describe
how to refine the mapping using the learned derivatives
during run-time. The summary of our method is shown in
Algorithm 1.

4.1 Gaussian Processes Regression

Here we describe the mathematical framework of GPR from
the viewpoint of applying it to the inverse rig mapping. A
good introduction of Gaussian processes can be found in
Rasmussen and Williams [1].

Given a dataset of rig configurations denoted as Y =
{y1,y2, · · · ,yn} and the corresponding joint positions de-
noted as X = {x1,x2, · · · ,xn}, we are interested in predict-
ing the rig parameters y∗ at arbitrary configuration of joint
positions x∗.

We start by defining the covariance function, k(x,x′) using
the following multiquadric kernel (see Discussion), where
θ0 is the “length scale” parameter found via optimisation
(see Section 4.1.1):

k(x,x′) =
√
||x− x′||2 + θ0

2 (1)

Using the covariance function, we can define the following
covariance matrix:

K =


k(x1,x1) k(x1,x2) ... k(x1,xn)
k(x2,x1) k(x2,x2) ... k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) ... k(xn,xn)

 , (2)

K∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)],K∗∗ = k(x∗,x∗). (3)

It is then possible to represent each dimension i of the
output y∗ as a sample from a multivariate Gaussian dis-
tribution N : [

Yi

yi∗

]
∼ N

(
0,

[
K Kᵀ

∗
K∗ K∗∗

])
, (4)

where Yi is a vector of the i-th dimension of the data points
in Y, and yi∗ is the i-th dimension of y∗. The likelihood
of some prediction for yi∗ is then given by the following
distribution:

yi∗|Yi ∼ N(K∗K
−1Yi,K∗∗ −K∗K

−1Kᵀ
∗) (5)

To compute our final prediction of yi∗, we take the mean of
this distribution subject to Tikhonov regularization.

yi∗ = K∗(K + θ1I)−1Yi (6)

Where θ1 is the “regularisation” parameter and can be set to
some very small value such as 1× 10−5.

4.1.1 Length Scale Optimisation

The “length scale” parameter θ0 needs to be set effectively
to ensure good interpolation by the Gaussian Process. Be-
cause this is a single scalar value we perform a simple line
search to find it’s optimum value. We regularly take values
from from the range [1 × 10−4, 1 × 102] and perform cross
validation on the model. For 10 iterations we randomly
remove half of the samples from the full data set, train on the
remaining data and validate against the samples removed.
We take the average error over the iterations to decide which
value of θ0 is best. In our case, for the quadruped character
shown in the evaluation, we found a value of 0.0225 was
optimum.

4.2 Subsampling

In general, the more data supplied to GPR, the more accu-
rately it will perform. But memory usage increases quadrat-
ically with the number of data points, so we perform a
greedy active learning-based algorithm to subsample the
data if it grows too large.

Given the full data set X,Y we aim to construct a sub-
sampled data set X̂, Ŷ. We start by including the rest post
X̂ = {x0}, Ŷ = {y0} and then heuristically picking several
points to include in our subsampled data set. We iteratively
pick the sample in the full data set furthest from all the
included samples in the subsampled data set, and move it
from the full data set to the subsampled data set. After some
small number of iterations we terminate.

xi = arg max(min(||xj − xi||) | xi ∈ X,xj ∈ X̂) (7)

X̂← X̂ ∪ {xi},X← X \ {xi} (8)

Ŷ ← Ŷ ∪ {yi},Y ← Y \ {yi} (9)

We then construct a Gaussian Process conditioned on our
subsampled data. We regress each of the remaining data
points in the full data set and look at the error of the result.
The data point with the highest error is then moved from
the full data set to the subsampled data set.



5

yi = arg max(||yi − yi∗|| | yi ∈ Y,yi∗ ∈ GPR(X|X̂))
(10)

X̂← X̂ ∪ {xi},X← X \ {xi} (11)

Ŷ ← Ŷ ∪ {yi},Y ← Y \ {yi} (12)

This step is repeated until we’ve reached the required num-
ber of samples.

4.3 Learning the Derivative

The derivative of the rig function (denoted here as J, where
J = ∂x

∂y ) can be used in conjunction with gradient descent
to further improve the precision of the mapping.

At runtime, given a new target posture x∗, a corresponding
Jacobian J (calculated as explained in Section 4.4), and the
rig values y∗ computed using GPR, we can evaluate the
rig function for the given rig controls to get the associated
posture of the character x = f(y∗). Assuming there is some
error in this prediction x 6= x∗, and we can find the differ-
ence between the target posture x∗ and the actual posture of
the character x given by ∆x = x∗−x. This difference can be
used to compute the change in rig parameters that should
be applied to further minimize the error in positioning:

∆y = (JᵀJ + λ2I)−1Jᵀ∆x (13)

To ensure stability around singularities we use some damp-
ing constant λ. This can be tuned by hand, or automati-
cally selected by examining the error using the SVD of the
pseudo-inverse. For more information see [12] [23]. This
process is repeated until ∆x is below a threshold or some
maximum number of iterations is reached.

4.4 Learning the Jacobian

We treat the rig function as a black-box, so no analytical
form of the Jacobian is available. Therefore, we use finite
differences to compute an approximation of the Jacobian of
the rig function at some given pose.

Due to the large number of interactions with Maya required,
the calculation of the Jacobian in this way is extremely
slow, particularly when there are a large number of rig
parameters [21]. This process becomes intractable for large
sequences of animation. Therefore, we additionally learn a
function to predict the Jacobian alongside the rig values,
again using GPR.

The formulation of learning the Jacobian is almost exactly
the same as learning the rig values. After computing the
Jacobian at each example pose, we flatten each Jacobian
matrix Ji to create a single vector ji, and substitute it in
the place of yi.

Some of the rig attributes are not used by the animators,
yet taking the pseudo inverse may lead to these attributes
being modified. Instead, we removed any rig attributes not
used by the animators from the Jacobian matrix. This results

Algorithm 1 Inverse Rig Mapping
1: procedure PRE-PROCESSING
2: Sub-sample the given animation data.
3: Calculate Jacobian for each pose in the sub-sampled

data
4: Learn f−1 using GPR.
5: Learn ∇f using GPR.
6: end procedure

7: procedure RUNTIME
8: Predict Rig Attributes y∗.
9: Predict Jacobian J∗.

10: Initialise rig attributes with predicted values y∗.
11: Repeatedly calculate ∆x and integrate y.
12: end procedure

in a gradient descent during the refinement only changing
controls which are present in the data.

5 INVERSE RIG MAPPING BY FEEDFORWARD
NEURAL NETWORKS

In this section we propose the use of a feedforward neural
network for the inverse rig function. We first discuss the
motivation of using the neural network for the inverse rig
mapping and then describe our methodology.

5.1 Motivation

Although GPR is suitable for the inverse rig mapping when
there is not much training data, in many situations the
amount of the training data required to cover the rig space
becomes large. The memory usage in GPR grows O(n2)
with the number of samples which can cause issues with
large data sets. Additionally, when the precision of the
initial guess is low this approach can require the use of
iteration using the predicted Jacobian. Because this involves
interacting with the Maya scene this considerably slows
down the process of the inverse rig mapping.

Neural networks can learn from very large sets of training
data. By supersampling the example training data we can
construct a much larger dataset and ensure the precision of
the computed results is high for many locations near the
animator supplied data.

5.2 Supersampling

Without a lot of data neural networks are susceptible to
overfitting and poor generalisation. Due to this, before train-
ing, we generate an expanded data set by sampling many
rig control configurations from the rig space and evaluating
the rig function. This allows us to gather more data than just
that provided by the animators.

For a small rig function it may be possible to exhaustively
cover the rig space with this technique, effectively fully
computing the rig function, but most often the rig space is
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Algorithm 2 Sampling Points by PCA for NN, where the
choice function returns a random row from the given ma-
trix.

1: M← PCA(Y)
2: X′ ← {}
3: Y′ ← {}
4: while |X′| < n do
5: g ∼ N
6: y′ ←M−1(M choice(Y) + g)
7: x′ ← f(y′)
8: Y′ ← Y′ ∪ {y′}
9: X′ ← X′ ∪ {x′}

10: end while
11: Y ← Y ∪Y′

12: X← X ∪X′

high dimensional, which makes the sampling process very
challenging. For a small rig with just 5 parameters, a regular
sampling of 10 samples on each axis would require 100000
samples. For a rig vector of 200 degrees of freedom this
jumps to 10200 - which clearly makes a regular sampling
intractable. For this reason it is important to adapt a smart
sampling method which samples rig control configurations
the animators are likely to use in future.

To do this we perform PCA on the data given by artists and
sample around the given data points in the PCA manifold
space. This allows us to sample more frequently on axes of
the data with the largest variance, and therefore gather more
natural samples which might be poses the animators would
themselves produce in the future. The algorithm for this is
shown in Algorithm 2.

Using this algorithm we sample an extra 100000 data points
from the rig function for training the neural network. This
process takes approximately 1 hour and greatly inceases the
accuracy of the neural network regression.

In Section 6.2 we evaluate our sampling method against
several other sampling methods including Uniform, Uni-
variate Gaussian, Multivariate Gaussian, and Gaussian Mix-
ture Model. Our evaluation is both qualitative and quanta-
tive by visualising the rig poses produced by the sampling
and comparing the relative errors.

5.3 Training a Feedforward Neural Network

Given the training data produced by sampling, which is
denoted by X as in the previous sections, we want to pro-
duce a regression that maps to the corresponding rig values
Y. Here we construct a neural network with parameters θ
defined as Y = Φ(X; θ).

Experimentally we found it is possible to effectively perform
the regression using only a small neural network with a
single hidden layer. Using a small network ensures training
time does not take too long given the large amount of data
produced via supersampling. A deeper network may be
required if it is suspected the inverse function has many
highly non-linear components. We define the forward func-
tion of the neural network Φ as follows:

Φ(x) = W1ReLU(W0x + b0) + b1, (14)

where the weights and biases are defined as θ = {W0 ∈
Rh×3j ,b0 ∈ Rh,W1 ∈ Rc×h,b1 ∈ Rc}, j is the number of
joints, c is the number of rig controls, and h is the number
of hidden units in the network (in our work set to 2048).

The activation function used is the rectified linear activation
ReLU(x) = max(x, 0). This introduces non-linearity into
the mapping. The rectified linear operation has been shown
to have good performance as general purpose activation
function by Nair and Hinton [24]. This network is trained
using stochastic gradient descent with respect to the follow-
ing cost function.

Cost(x,y, θ) = ‖y −Φ(x))‖22 + α ‖θ‖1 (15)

In this equation ‖y − Φ(x)‖22 measures the squared re-
gression error and ‖θ‖1 is a sparsity term that ensures
the minimum number of network parameters are used to
perform the regression. This term is controlled by some
small scalar α, which in this work we set to 0.1.

Before training all data is normalized by subtracting the
mean and dividing by the standard deviation. We train
the network by taking random minibatches of size 8 from
the enlarged data set X, and using derivatives calculated
automatically using Theano [25] we adjust the network
parameters θ. To increase the speed and quality of the
training we use the adaptive gradient descent algorithm
Adam [26]. Training is performed for 20 epochs and takes
approximately 4 hours and 20 minutes on a 4 core Intel i7-
4600U 2.1Ghz CPU.

6 EVALUATION

In this section, we evaluate our method by comparing the
error (described below) and the performance with other
existing solutions. We then show results of our technique
using animation of quadruped, biped, deformable and facial
rigs.

6.1 Performance

In this section we compare our technique to existing meth-
ods of approaching this problem. Presented methods in-
clude a rig specific script constructed in Maya, and several
variations of our own method. As interpretation of the
numerical errors is difficult, for more qualitative results
with visualisation of the errors please see the supplementary
video.

Comparisons are done using the quadruped character, and
biped characters shown in the results. The quadruped char-
acter has 78 joints, resulting in 234 degrees of freedom in
the joint space. It has 642 degrees of freedom in animation
rig, but only 218 are used in the animation data so we limit
our system to only consider these. The biped character has
48 joints, resulting in 144 degrees of freedom in the joint
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space. It has 804 degrees of freedom in the animation rig,
but only 204 are used in the animation data so we only
consider these.

A set of animation sequences of the quadruped and
biped character produced by an animator each using 200
keyframes are provided as the training data. We train the
Gaussian Process using 750 subsampled data points ex-
tracted from the data set including frames that are produced
by interpolating the keyframes, and train the neural net-
work on the full dataset with additional samples found via
supersampling as explained in Section 5.2.

The rig-specific Maya script, to which we compare our
method, is constructed using several of Maya’s built-in
tools. This script is specific to the quadruped character and
is intended to represent existing approaches that have been
used for rig retargeting. Primarily it makes use of positional
and rotational constraints to place the main rig controls
at corresponding joint positions, oriented in the correct
directions. These constraints work by traversing the scene
hierarchy to calculate transforms for the controls such that
they are either placed in a specified location, or oriented in
a specified direction. Many of these scripts work in a similar
fashion and have to be written manually for every new rig
making them labour intensive.

We apply each method to three short animation clips. These
clips are from a different data set to the training data, chosen
such that the character is making large, fast, or extreme mo-
tions. This ensures there exists some poses not found in the
training data, and that the retargeting task is difficult. For
the quadruped these clips include a motion where the dog
is running around, jumping and playing, a motion where
the dog is galloping and making various sharp turns, and a
motion where the dog is begging in an excited way. For the
biped these clips involved a short motion of the character
making a variety of random movements, a swing dance
motion, and a tai-chi motion. To evaluate the performance
of each approach on each clip we make two comparisons.
First we compare the resulting rig attributes found by the
approach to those set by the animators. This we call the
Ground Truth Error. Secondly we apply these rig attributes
to the rig function to get joint positions and compare these
to the target joint positions given as the original input. This
we call the Joint Error.

Joint Error shows the mean squared error of the difference
between the method’s resulting joint positions, and those of
the target. This is the visual error of the method, and also
represents the amount of manual correction an animator
may have to perform on the result. We regard this error
as the most important as it says how closely the character
follows the target positions.

Ground Truth Error shows the mean squared error of the
difference between the rig attributes found by the method,
and those set by the animators. For rotational rig attributes
this is measured in radians and normalized to a simi-
lar range as the translational controls by dividing by the
standard deviation. This error represents the naturalness of
the key-frames produced by the method, and shows how
comfortable the animators might be to use the results. But

Method Joint Error Ground Truth Error
No Extra Samples 0.235 1.196
Uniform 0.057 0.915
Univariate Gaussian 0.049 0.517
Multivariate Gaussian 0.085 1.366
Gaussian Mixture Model 0.077 0.992
PCA & Unit Gaussian 0.044 1.482

TABLE 2
Comparison of sampling methods.

because there are multiple ways to configure a rig, and be-
cause doing comparisons in the rig space may be unreliable,
this error may not be indicative of a bad result - it can be
considered a secondary objective of the mapping.

We now explain the results shown in Table 1.

Maya Script - This method has the largest joint error.
Because the script is a heuristic method, it does not try to
find an exact solution, and so small errors accumulate over
frames, even if the general shape of the character is accurate.

GPR - Using the approximate inverse rig function is very
fast because there is no interaction with the Maya scene but
has some residual joint error because the mapping is not
exact.

GPR & Learned Jacobian - Using the approximate inverse
rig function and then additionally learning an approxima-
tion of the Jacobian performs two to three times as fast
as computing the Jacobian at each frame, and results in
significantly less joint error than just using the approximate
inverse rig function. But this approach is still somewhat
slow compared to GPR alone, as each iteration of gradient
descent requires evaluation of the difference in joint posi-
tions, which means interaction with the Maya scene.

GPR & Computed Jacobian - Using the approximate in-
verse rig function, and calculating the Jacobian manually at
each frame is the most accurate approach using GPR, with
the smallest joint error. But this approach is also the slowest
variation of GPR, resulting in only one to two frames per
second.

NN - Using neural networks to approximate the inverse rig
function is very fast because there is no interaction with
the Maya scene. It is more accurate than GPR, even with
iterations using the Learned Jacobian. On average using
neural networks also produces lower Ground Truth Error
than GPR.

NN & Computed Jacobian - Using neural networks as
an initial guess for the Jacobian iterations can increase the
accuracy of the result further. This approach consistently
gets the lowest joint error of all of the approaches.

These results were collected on a Windows 7 Laptop using
a Intel Core i7 2.7Ghz CPU with 16GB of RAM.

6.2 Sampling Comparison

In this section we compare different supersampling tech-
niques used for training the neural network. We compare
our approach of PCA & Unit Gaussian sampling against
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Fig. 4. Examples of samples from various methods. From Top to Bottom: Uniform, Univariate Gaussian, Multivariate Gaussian, Gaussian Mixture
Model, PCA + Unit Gaussian.

Uniform sampling, Univariate Gaussian sampling, Multi-
variate Gaussian sampling, and Gaussian Mixture Model.
The joint error and ground truth error when using each
sampling method for training the neural network are shown
in Table 2. For a visual comparison of the samples please
see Fig. 4.

For simple models such as Uniform sampling and Uni-
variate Gaussian sampling, the correlation between the rig
controls are not considered, and therefore the generated
samples appear extreme and unnatural (see Fig. 4 first and
second row). Despite such visual appearance, the Joint and
Ground Truth Error of the sequences produced by the neural
network trained by the samples are rather low. We can
assume this is due to the samples covering a wide range
of rig space, allowing the system to produce postures very
different from the original example data provided by the
animators.

We find more complex models such as Multivariate Gaus-
sian sampling and Gaussian Mixture Model sampling (25
multivariate Gaussians) actually perform worse than the
simple models. Although they produce visually more nat-
ural samples (see Fig. 4 third and fourth row), we assume
they overfit to the example data provided by the animators,
and as a result produce samples that do not generalize well.

In our experiments, PCA + Normal Gaussian sampling
performed the best. Here we first perform PCA on the
example data set and then sample around each of the data
points given by the artist using a sample from the Unit
Gaussian distribution. As with the Multivariate Gaussian
approach, this captures the covariance between rig controls,
but also ensures dense sampling around all of the artist
given data. The samples produced for training the neural
network appear visually natural (see Fig. 4 bottom row),
and the joint error is also low, despite the fact the Ground
Truth Error is relatively large.

6.3 Results

In this section we present results of applying our system to
characters such as quadrupeds, bipeds, deformable charac-

Training Frames Rig DOFs Joint DOFs
Quadruped 750 642 234

Biped 750 697 144
Facial 300 49 18

Squirrel 500 36 3375
TABLE 3

Numerical characteristics of the rigs used in the experiments.

Fig. 5. Result of Rig-space Full Body IK. From seven end effectors
placed at four feet, head, hip, and tail, the optimal rig attributes are
approximated by GPR and the solution is further refined by gradient
descent. The animators can interactively pose the character using seven
end effectors while the rig attributes are updated in real time.

ters and facial rigs. The readers are referred to the supple-
mentary video for the details. Numerical characteristics of
the characters and the training data are shown in Table 3.

In Fig. 5 we apply a full body inverse kinematics system to a
character using our technique. Given some user-positioned
end effectors we move a copy of the characters underlying
skeleton using Jacobian full body inverse kinematics toward
the end effectors. We extract the global joint positions from
the full body IK system and input them into our method to
generate corresponding rig parameters. The generated rig
parameters accurately follow the skeleton state.

In Fig. 6 we show an example of using an inverse mapping
where the inputs are only the foot positions. Instead of
learning the mapping using all of the joint positions we
learn it from just the four foot positions. A trajectory of
the foot positions is then generated from a dog dancing
sequence and is fed into the system to compute the rig
parameters. It can be observed that our system produces
sensible prediction of the full body motion compared to the
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Fig. 6. The posture of a dog predicted from the foot positions (left) and
the ground truth designed by the animator (right).

Fig. 7. Result of Motion Editing. Joint positions are synthesized by gen-
erating a locomotion animation, bending it along a curve, and projecting
it onto terrain. For all the edited poses, rig attributes are found that match
the new joint positions accurately.

ground truth motion designed by the animator.

In Fig. 7 we show the application of motion editing using
our technique. We synthesize some locomotion using anima-
tor supplied data and use Spatial Descriptors [27] to edit the
result. This advanced motion editing technique expresses
an animation in terms of its environment which allows an
animation to be naturally deformed to follow some terrain.
First we generate a long locomotion clip in a straight line.
Then we generate Spatial Descriptors on the floor, which
we bend into a curve and project onto some terrain. After
projecting the descriptors, we integrate them to get the new
joint positions deformed to fit the terrain. This is performed
for each frame. Once we have the final joint positions our
method accurately updates the character rig attributes to
match these new joint positions.

In Fig. 8 we show an example of importing motion capture
data and mapping it to a biped character by our method.
The character follows the joint positions well, the resulting
trajectories of the rig controllers are smooth and continuous
and ready for further edits by an animator.

In Fig. 9 we show an example of applying our system to a
deformable mesh character. A specialized rig that deforms
the entire surface of a squirrel character is prepared in this
example. Using the rig, the posture of the squirrel can be
adjusted and the entire shape of the squirrel is deformed in
a cartoonish way. The rig is designed such that collisions are
avoided when the deformation happens, i.e., the neck part
sinks when the neck bends forward so that the teeth do not
penetrate the body. Various example poses of the squirrel are
designed by the animator and used as examples for training.
Next, a deformable model of the squirrel is automatically
produced from the default pose of the squirrel using the
Maya nCloth functionality and its deformation is simulated.
We place joints at all mesh vertices, pass their positions
to our system and the rig parameters are computed using

Fig. 8. Application to Biped. Our approach is generalizable across all rig
types. Given data, it immediately works on a character with a different
rig, and unique controls.

Fig. 9. A snapshot of a deformable character whose movements are
computed by physics simulation (left). The vertex positions of the mesh
are used as the input for the inverse mapping and the rig animation is
produced (right). The rig is carefully designed such that the teeth do
not penetrate the body; this effect can be observed in the animation
produced by the rig.

the learned inverse mapping. The poses of the squirrel are
produced which match the deformation, but also express
characteristic features of the rig as can be observed in Fig. 9
- the teeth do not penetrate the body when it is squashed.

Finally, an example of applying our method to facial ani-
mation is shown in Fig. 10. Facial rigs have very complex
structures that are composed of multiple controllers includ-
ing shape deformers and blend shapes. Here, we present the
results in a form of FaceIK. This is comparable to [4], [18]
except that it is not limited facial rigs using the blendshapes
deformation model. Joints are placed at a few facial feature
points and the user specifies the desired location of these
joints. The facial expression that satisfies these constraints is
automatically computed.

The strength of our method is that it is highly general and
can be applied to various types of characters controlled by
different types of rigs. Specialized scripts for each type of
character can be written, but they are not applicable once
the rig structure changes. In contrast, our method can be
applied under the same principle, irrespective of degrees of
freedom of the model.

7 DISCUSSION

In this section, we first discuss about the framework that we
have chosen. We then briefly discuss the applications of our
system.

7.1 Framework

Regression Methods for Inverse Mapping
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Fig. 10. Application to facial model in a FaceIK fashion. The user moves
the control points and the rig parameters of the face are computed to
satisfy the constraints.

Fig. 11. Purely optimisation based techniques can result in the joints
technically ending up near their targets, but the results are unusable
due to rig controls drifting along manifolds in the rig space, away from
valid values the animators might set.

Among the methods that we tested, feedforward neural
networks produce the highest precision when no fine tuning
is applied using the Jacobian iteration. The output is precise
enough for practical usage and so it is not necessary to
further fine tune the results. The ground truth error is also
smaller than GPR. The only disadvantage of feedforward
neural networks is the cost of producing more training
data via supersampling and a much longer training time
compared to GPR.

Sampling Methods for the Neural Network

In our experiments the proposed sampling method (us-
ing PCA with a Normal distribution) produced visually
meaningful poses and the lowest numerical error. Although
complex models such as multivariate Gaussians and GMMs
which consider the covariance of the rig controls may ap-
pear like they should be better, the precision of the results
produced by them are lower. This can potentially be due
to overfitting. One possibility to improve the results from
complex models is to optimize the meta parameters such
as the number of Gaussians for GMM. However, such
parameters will vary according to training examples and
the nature of the character rig. We find our solution here
based on PCA + Uniform Gaussian is a good compromise,
as it is simple and requires no complex parameter tuning.

Multiquadric Kernel for GPR

We find the performance of the multiquadric kernel that
we have adopted is better than other kernels including
Gaussian, Linear and Polynomial kernels. Other kernels
perform poorer in terms of interpolation and extrapolation,
often resulting in instability and large error even after opti-
mizing kernel parameters. The reason that the multiquadric
kernel performs the best can be considered as follows:
When interpolating with lots of data present, the multi-
quadric kernel is smooth and approximates the popular
squared exponent kernel, which has proven effective for
many machine learning tasks. Yet, when there are large gaps
between data points, or the function is extrapolating, the
squared exponent kernel results in the interpolated value
tending toward zero. The multiquadric kernel on the other
hand begins to approximate a linear kernel, producing a
result more similar to a piecewise linear interpolation of the
data points. Due to the high dimensionality, and sparsity
of our data, there are often irregular gaps and spacing.
Using a squared exponent kernel would therefore result in a
landscape with large peaks and troughs when it irregularly
drops to zero. The multiquadric kernel instead results in a
stiffer landscape, and therefore extrapolates more accurately.
The multiquadric function is conditionally positive definite
rather than positive semi-definite, and thus is not strictly
speaking a valid covariance - but the increasing nature of the
kernel is what results in the behaviour similar to a piecewise
linear interpolation.

Inverse Rig Function Derivative

When using GPR for the inverse mapping, we approximate
the inverse rig function, and the rig function derivative
separately, before taking the pseudo-inverse of the predicted
Jacobian. It can be observed that it should be possible to take
the first derivative of the approximate inverse rig function
instead.

We predict the Jacobian separately because kernel based
methods such as GPR or RBF are known to approximate the
0th order derivative (the actual function values) much more
accurately than they approximate 1st, 2nd, or following
derivatives [28]. This is something we confirmed in our
initial experiments.

One common way to reduce this error is to incorporate
gradient constraints into the GP formulation. This results
in having to invert a matrix which is of the order O(N2D2)
where N is the number of samples and D is the dimen-
sionality of the input space. In our problem, where D
can be as large as 250 this quickly becomes intractable.
In this sense, interpolating the Jacobian independently has
remarkable performance, because although (when flattened)
it can be 50000 dimensions in size, the matrix to invert is
only proportional to the number of data samples.

Rig Function Ambiguity

There are many possible ways to set the rig controls to
construct the same pose, but lots of these configurations
are undesirable because they are not how an animator
would naturally animate. Using purely optimisation-based
approaches results in the rig controls drifting along man-
ifolds which technically result in accurate joint positions,
but have terrible rig values. This is shown in Fig. 11. Using
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machine learning we can solve this implicitly as from the
animator supplied data we additionally learn what are
“valid” or “sensible” rig control settings. Even if we perform
a small amount of gradient descent, using an initial guess
generated from animator data ensures the error in the rig
does not get too high to make the result unusable.

7.2 Applications

Our work has a large number of applications in key-
framed animation environments, as it allows for the bet-
ter use of character animation research and technology
on rigged characters. Primarily it means that data-driven
animation techniques can be effectively combined with an-
imator artistry to save time and cost in the production of
animated entertainment.

Our work allows animators to use Motion Capture, Motion
Warping, and Motion Editing techniques on the motions
they construct for characters. For example our work could
be used in conjunction with Motion Layers [29], Motion
Warping [30], Full-Body Inverse Kinematics [8], and Re-
lationship Descriptors [27]. Because our approach is real-
time it allows for a tight feedback loop between these tools
and animator edits. This greatly increases the speed and
efficiency at which animators can work.

8 CONCLUSION

We present a link between a character rig, and its underlying
skeleton in the form of a rig function f . We show our
method for inversion of this rig function, and evaluate
it against potential alternatives. The resulting ability to
quickly and effectively invert this rig function has broad
applications in key-framed animation environments as it
allows for a tight feedback loop between animators, and
animation tools that work in the space of joint positions.
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Character/Motion Method Joint Error Ground Truth Error Total Time (s) Frames per Sec

Quadruped - Jumping & Playing

Maya Script 3.566 1.406 2.79 25.04
GPR 0.153 3.877 0.21 315.06
GPR & Learned Jacobian 0.147 3.877 10.73 6.42
GPR & Computed Jacobian 0.071 3.864 41.24 1.67
NN 0.087 2.604 0.21 319.44
NN & Computed Jacobian 0.050 2.597 40.63 1.69

Quadruped - Begging Excitedly

Maya Script 0.161 0.424 2.68 30.95
GPR 0.022 0.565 0.24 340.24
GPR & Learned Jacobian 0.020 0.566 11.51 7.12
GPR & Computed Jacobian 0.007 0.56 32.75 2.50
NN 0.011 1.005 0.28 283.73
NN & Computed Jacobian 0.005 1.002 33.02 2.48

Quadruped - Turning & Galloping

Maya Script 1.023 0.972 1.27 29.13
GPR 0.041 1.547 0.18 195.65
GPR & Learned Jacobian 0.039 1.547 6.29 5.71
GPR & Computed Jacobian 0.023 1.537 23.86 1.50
NN 0.036 0.839 0.17 208.09
NN & Computed Jacobian 0.020 0.836 24.29 1.48

Quadruped - Average

Maya Script 1.583 0.934 2.24 28.38
GPR 0.072 1.996 0.21 283.65
GPR & Learned Jacobian 0.068 2.000 9.51 6.41
GPR & Computed Jacobian 0.033 1.987 32.61 1.89
NN 0.044 1.482 0.22 270.42
NN & Computed Jacobian 0.025 1.478 32.64 1.88

Biped - Range of Motion

Maya Script 10.833 3.143 9.40 14.46
GPR 0.460 0.214 0.22 608.10
GPR & Learned Jacobian 0.326 0.215 22.75 5.93
GPR & Computed Jacobian 0.121 0.206 53.74 2.51
NN 0.339 0.157 0.25 527.34
NN & Computed Jacobian 0.052 0.151 60.58 2.22

Biped - Swing Dance

Maya Script 8.871 2.852 4.56 14.23
GPR 0.133 0.051 0.15 426.66
GPR & Learned Jacobian 0.089 0.051 11.56 5.53
GPR & Computed Jacobian 0.037 0.048 24.45 2.61
NN 0.198 0.076 0.17 357.54
NN & Computed Jacobian 0.044 0.073 29.18 2.19

Biped - Tai chi

Maya Script 8.198 3.091 13.94 14.33
GPR 0.361 0.233 0.30 656.76
GPR & Learned Jacobian 0.282 0.233 37.26 5.34
GPR & Computed Jacobian 0.083 0.227 85.71 2.32
NN 0.183 0.125 0.30 646.10
NN & Computed Jacobian 0.031 0.122 89.88 2.21

Biped - Average

Maya Script 9.300 3.028 9.3 14.34
GPR 0.318 0.166 0.22 563.80
GPR & Learned Jacobian 0.232 0.166 23.85 5.6
GPR & Computed Jacobian 0.080 0.160 54.63 2.48
NN 0.240 0.119 0.240 510.32
NN & Computed Jacobian 0.042 0.115 59.88 2.20

TABLE 1
Comparison of different methods.


