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Infill Optimization for Additive Manufacturing
–Approaching Bone-like Porous Structures

Jun Wu, Niels Aage, Rüdiger Westermann, Ole Sigmund

Abstract—Porous structures such as trabecular bone are widely seen in nature. These structures exhibit superior mechanical properties
whilst being lightweight. In this paper, we present a method to generate bone-like porous structures as lightweight infill for additive
manufacturing. Our method builds upon and extends voxel-wise topology optimization. In particular, for the purpose of generating
sparse yet stable structures distributed in the interior of a given shape, we propose upper bounds on the localized material volume in the
proximity of each voxel in the design domain. We then aggregate the local per-voxel constraints by their p-norm into an equivalent global
constraint, in order to facilitate an efficient optimization process. Implemented on a high-resolution topology optimization framework, our
results demonstrate mechanically optimized, detailed porous structures which mimic those found in nature. We further show variants of
the optimized structures subject to different design specifications, and analyze the optimality and robustness of the obtained structures.

Index Terms—Infill, additive manufacturing, trabecular bone, porous structures, topology optimization.
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1 INTRODUCTION

The term infill in additive manufacturing (also known as 3D
printing) refers to the interior structure of an object that is
printed. It often has a regular pattern, which is selected by
the user in the slicing software, along with a specific volume
percentage. The infill pattern and percentage significantly
influence the printing process, as well as physical properties
of the printed object. In general, a higher volume percentage
leads to a print that is more resistant to external loads, while
consuming more material and prolonging the print time.
To assist users in designing lightweight but mechanically
strong prints, it is highly interesting to resort to structural
analysis and optimization to find an optimal layout of the
interior structure, which goes beyond the regular patterns.

Our research regarding optimal infill is inspired by the
architecture of bone. Bone is composed of two types of
structures – compact cortical bone forming its outer shell, and
spongy trabecular bone occupying its interior (see the cross
section of a human femur in Fig. 1). This composite results
from a natural optimization process, during which the bone
adapts itself to the mechanical load (Wolff’s law [1]). As a
consequence of this adaptation, micro-structures of trabec-
ular bone are aligned along the principle stress directions
as illustrated in the second image of Fig. 1. This natural
optimized composition is lightweight, resistant, robust with
respect to force variations, and damage-tolerant [2], [3].
These properties make bone-like structure an appealing
option as infill for additive manufacturing.

• Jun Wu, Niels Aage and Ole Sigmund are with the Department of
Mechanical Engineering, Technical University of Denmark, Lyngby,
Denmark.
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In this paper we present an approach for the generation
of bone-like porous structures. Our approach builds upon
and extends the general, voxel-wise topology optimiza-
tion scheme [6], [7]. It maximizes the mechanical stiffness
by optimizing the distribution of a prescribed amount of
material in a given design domain, under a given set of
external loads. In particular, to generate porous structures,
we propose a formulation to measure local volume fractions,
and then impose constraints on such values in order to
regulate the local material distribution. Additionally, under
the objective function to maximize stiffness, the porous
structures are automatically aligned to accommodate the
mechanical loads in an optimized manner.

The specific contributions of our paper include:

• A novel formulation for generating porous structures
firmly based on structural optimization, and

• Insights into optimal structures from a mechanical
perspective, verified by a detailed parameter study.

The remainder of this paper is organized as follows.
After reviewing related work in Section 2, we present in
Section 3 the problem formulation and the techniques for
solving the infill optimization problem. In Section 4, we
discuss extensions to steer the optimization process. Results
and analysis are presented in Section 5, before conclusions
are drawn in Section 6.

2 RELATED WORK

With the ever-increasing popularity of consumer 3D print-
ers, much research has been devoted to address geometric
and physical modeling problems for computational fabri-
cation, including the toolpath generation [8]. In this section,
we review techniques related to the optimization of mechan-
ical properties. For an overview of geometric and physical
modeling for 3D printing, let us refer to a recent survey
article [9] and a tutorial [10].
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Fig. 1: From left to right: Cross-section of a human femur showing cortical structures on the shell and trabecular structures
in the interior [4]. Illustration of principle stress directions under major mechanical loads [5]. Cross-section of the optimized
porous infill in a 3D bone model. The 3D printed bone model.

To assist users in the design of 3D printed shapes, Stava
et al. [11] presented a system to detect structural deficien-
cies by finite element analysis. A set of correction operations
including hollowing, thickening, and strut insertion, are
proposed to improve the structural soundness. Targeting
specifically for reducing the material usage inside a 3D
model, Wang et al. [12] introduced skin-frame structures as a
composition of the shape interior, and optimized the layout
and size of frames. Lu et al [13] proposed honeycomb-
like Voronoi structures to hollow the interior volume, and
optimized the distribution and size of Voronoi cells. In early
work by Smith et al. [14], the layout of truss structures is
optimized for designing bridges and towers. Manufacturing
constraints regarding the avoidance of overhang surfaces
and small geometric feature size, have been addressed by
Wu et al. [15] via self-supporting rhombic structures for infill
optimization. Manufacturable micro-structures have been
investigated in graphics [16], [17], [18] and in mechanical
topology optimization approaches (e.g., [19], [20], among
others). Our work is inspired by these works and builds
upon topology optimization which doesn’t prescribe the
structural composition a priori and thus does not limit the
design space.

Topology optimization Topology optimization is based
on a volumetric element-wise parametrization of the design
domain. This general formulation does not prescribe the
topology a priori, but allows structures to appear and adapt
during the iterative optimization process. For a thorough
review of topology optimization techniques, let us refer to
recent survey articles [21], [22]. Our work is based on the
density approach, which is known as Solid Isotropic Mate-
rial with Penalization (SIMP) [23]. The method is related
to the length scale problem in the literature of topology
optimization, where the interest is to control the minimal
and/or maximal structure size for manufacturability [24],
[25]. In particular, we follow the idea of the projection fil-
ter [26], [27] in our implementation to impose local volume
constraints. Different from exact length scale control, we
propose a projection method in an approximate manner
which facilitates fast numerical solution. In our work we
employ the potential of numerical multigrid schemes to
enable topology optimization at high resolution and effi-

ciency [28].
Approaching bone-like structures While we approach
bone-like porous structures for their superior mechanical
properties by using topology optimization, we note that
other directions—considering different aspects of bone—
exist for generating such structures. One such direction is
material reconstruction. For instance, Liu and Shapiro [29]
proposed to reconstruct 3D micro-structures from 2D sam-
ple images using example-based texture synthesis [30], such
that the synthesised structures preserve statistical features
of the given sample.

Another direction is the simulation of bone tissue adap-
tation using a biological model. For instance, Huiskes et
al. [31] proposed a biological model to simulate the process
of bone resorption and formation under given mechani-
cal stimuli, following Wolff’s bone re-modeling theory [1].
Numerical modeling of bone adaptation has been further
studied in computational mechanics by applying two-scale
simulations (e.g., [32], [33], [34]), which date back to the
seminal work by Bendsøe and Kikuchi [6]. The two-scale
approach combines a fine scale with predefined optimal, sin-
gle or multi-scale micro-structures which are mechanically
characterized by numerical or analytical homogenization,
with a coarse scale guided by finite element analysis and
topology optimization. Besides the challenge of obtaining
continuous micro-structural details between neighbouring
cells, the generated structure is typically a regular repeti-
tion of (a limited amount of types of) cells. In contrast to
such approaches which strictly separate local and global
scales, we propose to control local details by embedding
geometric constraints into a unified simulation and opti-
mization scale, similar to the approach by Alexandersen et
al. [20]. In contrast, however, our approach provides higher
geometrical flexibility. As a result, the resultant structure
varies smoothly across the entire domain, and its geometric
features are not restricted to a set of prescribed cell types.

3 INFILL OPTIMIZATION

We start by formulating a discrete optimization problem to
generate porous structures, then introduce relaxations for
numerically solving the problem, followed by a summary
of the algorithm. Following the techniques, we present a 2D
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example to demonstrate and explain the consequences of
this formulation for the resulting structures.

3.1 Discrete Formulation
Our formulation is based on a regular hexahedral discretiza-
tion of the design domain Ω that is covered by a given shape.
For each volumetric element (i.e., voxel) e in the discretized
model, a boolean value ρe ∈ {0, 1} is assigned to indicate a
solid voxel (ρe = 1), or an empty one (ρe = 0). This leads to
a binary field ρ representing the material distribution in Ω.

We define ρe to quantify the (local) material distribution
in a neighbourhood surrounding the voxel e. In particular,
ρe measures the percentage of solid voxels over all voxels in
a prescribed neighbourhood Ne, i.e.,

ρe =

∑
i∈Ne

ρi∑
i∈Ne

1
. (1)

Ne is the set of all surrounding voxels with a centroid that
is closer than a given influence radius Re to the centroid of
voxel e, i.e.,

Ne = {i| ||xi − xe||2 ≤ Re}, (2)

where xi and xe are the centroids of the voxels. The posi-
tions and lengths are measured in the unit of voxel. A local
volume percentage ρe = 0.0 (resp. ρe = 1.0) means that all
voxels in the defined neighbourhood are empty (resp. solid),
and a value between 0.0 and 1.0 means that both empty and
solid voxels exist.

With ρ and ρ defined, the optimization problem is given
as

min
ρ

c =
1

2
uTKu, (3)

s.t. Ku = f, (4)
ρe ∈ {0, 1}, ∀e, (5)
ρe ≤ α, ∀e. (6)

The objective is to minimize the compliance, measured by
the strain energy c, with u being the displacement vector,
and K being the stiffness matrix. The displacement vector
u is obtained by solving the static elasticity equation Eq. 4
under the external force vector f . Eq. 5 restricts the design
variables to take discrete values 0 (empty) or 1 (solid).

The novel part in our formulation is Eq. 6. This con-
straint restricts the local material accumulation. For in-
stance, α = 0.6 means at most 60% of voxels in Ne are
solid, while the other 40% are empty. Note that while
this constraint restricts the percentage of the solid/empty
voxels, it does not prescribe which specific voxels are solid
or empty: Determining the specific solid and empty voxels
is left to the optimizer, under the goal of reducing the
objective function. The rational behind this constraint is that
it prevents material from being accumulated to form large
solid regions, and as a consequence, the material will be
distributed more evenly over the domain. This is in line
with what we observe in nature when looking at porous
structures such as trabecular bone.

We note that additional constraints such as a maximum
total volume known from classical topology optimization
can be integrated into this formulation as well. Its influence
on the resulting structures, as well as the influence of other
parameters will be discussed in Section 4.

3.2 Relaxations

The optimization problem given in Eq. 3-6 is a discrete
optimization problem, with up to millions of variables (cf.
per-voxel design variable in Eq. 5) and up to millions of
constraints (cf. per-voxel constraint in Eq. 6) in some of
the test models. In the following, we present relaxations to
approximate this problem and facilitate numerical optimiza-
tion.

3.2.1 Constraint Aggregation
The per-voxel local volume constraint (Eq. 6) gives rise to a
large number of constraints. These constraints are equiv-
alent to max

∀e
(ρe) ≤ α, which reduces the large number

of constraints into a single constraint. However, it is not
differentiable, and thus not directly applicable to numerical
optimization schemes. To overcome this problem, we use
the p-norm function to approximate the max function,

max
∀e

(ρe) ≈ ||ρ||p = (
∑
e
ρpe)

1
p . (7)

As p goes to infinite, ||ρ||p becomes equivalent to max
∀e

(ρe).

To account for the difference between max
∀e

(ρe) and ||ρ||p
when the value of p is not infinitely large, we write the
consolidated constraint max

∀e
(ρe) ≤ α by

(
∑
e
ρpe)

1
p ≤ (

∑
e
αp)

1
p , (8)

which can be rearranged to

( 1
n

∑
e
ρpe)

1
p ≤ α, (9)

where n is the number of elements. A larger p more strictly
enforces the per-voxel constraints, while increasing the non-
linearity of the problem. In our examples we choose p = 16.

3.2.2 Continuous Design Variable, Filtering, and Projection
The discrete design variable (Eq. 5) necessitates expensive
integer programming. To facilitate efficient gradient-based
numerical optimization, we follow the study in [35] and
introduce a per-voxel design variable φe which is allowed
to take a scalar value continuously varying between 0.0 and
1.0,

φe ∈ [0.0, 1.0]. (10)

The field of design variables φ is first smoothed via a
convolution filter. The filtered field φ̃ is then projected to
get the material distribution ρ. These two steps involve
only local operations, and are called filtering and projection,
respectively.
Filtering φ → φ̃ The purpose of the filtering φ → φ̃ is
to remove checkerboard patterns (i.e., regions of alternating
solid and void voxels) resulting from numerical instabili-
ties [36]. In particular, the local filter calculates a weighted
average of the neighbouring values,

φ̃e =

∑
i∈Me

ωi,eφi∑
i∈Me

ωi,e
, (11)

where Me is the set of voxels close to voxel e, defined by

Me = {i| ||xi − xe||2 ≤ re}. (12)
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Here, re defines the filter radius. This filter size is different
and smaller than the radius Re in Eq. 2. The weighting
factor ωi,e linearly depends on the distance between the
considered voxels,

ωi,e = 1− ||xi − xe||2
re

. (13)

Projection φ̃ → ρ The purpose of the projection φ̃ → ρ
is to ensure a 0-1 solution. An intermediate value between
0.0 and 1.0 is thresholded at the value of 1

2 to a discrete 0/1
value by

ρe(φ̃e) =

{
1 if φ̃e ≥ 1

2 ,
0 otherwise.

(14)

For numerical optimization, we relax ρe to a scalar threshold
function, and approximate this non-differential function by

ρe(φ̃e) =
tanh(β2 ) + tanh(β(φ̃e − 1

2 ))

2 tanh(β2 )
. (15)

The parameter β controls the sharpness of the threshold
function, as illustrated in Fig. 2. An infinite β leads to a
strict binary classification as in Eq. 14. Instead of directly
applying a large β value, which results in highly non-linear
equations, we start with β = 1 and double its value after
a certain number of iterations. This process is known as
parameter continuation, which is a common technique for
improving convergence behaviour [35].

Fig. 2: The projection function Eq. 15 for various β values.
As β increases, the function approaches the discrete function
Eq. 14.

Material Interpolation With ρe being relaxed via Eq. 15
to a scalar, the Young’s modulus corresponding to a voxel
with continuous material distribution ρe is interpolated by

Ee(ρe) = Emin + ργe (E0 − Emin). (16)

Here E0 is the stiffness of the solid voxels, Emin is a very
small stiffness assigned to empty voxels, in order to prevent
the global stiffness matrix from becoming singular, and γ
is a penalization factor (typically γ = 3). Assuming a fixed
Poisson’s ratio, the stiffness matrix of intermediate voxels
then becomes

Ke = Ee(ρe)k0, (17)

where k0 is the element stiffness matrix for a voxel
with unit Young’s modulus. This interpolation scheme is
known as the modified Solid Isotropic Material Penalization
(SIMP) [37].

3.3 Relaxed Formulation

With the above relaxations, the optimization problem be-
comes

min
φ

c =
1

2
uTKu, (18)

s.t. Ku = f, (19)
φe ∈ [0.0, 1.0], ∀e, (20)

g(φ) =
( 1
n

∑
e ρ

p
e)

1
p

α
− 1.0 ≤ 0.0. (21)

Here, the design variable is the continuous variable φ. This
continuous optimization problem is solved iteratively by us-
ing gradient-based optimization schemes. In each iteration,
three major steps are performed sequentially:

1) solve the state equation Ku = f for the unknown
displacement vector u,

2) do sensitivity analysis to get the derivatives of the
objective and the constraint function with respect to
the design variable φ, i.e., ∂c∂φ and ∂g

∂φ , and
3) update the design variables by a numerical opti-

mization solver.

These three steps continue until the change of design vari-
ables in successive iterations falls below a prescribed thresh-
old ε, or the number of iterations exceeds a maximum value
Itmax. For the numerical optimization solver in step 3) we
use the method of moving asymptotes (MMA) [38], [39].

We detail the optimization process in Algorithm 1. The
algorithm takes as input the prescribed local volume frac-
tion α, and outputs the density field ρ which represents the
material distribution.

Algorithm 1 Infill optimization

Input: Local volume fraction α
Output: Density field ρ

1: Design variable φ = α
2: Iteration index i = 0
3: Design change ∆ = 1.0
4: Projection parameter β = 1.0
5: while ∆ > ε and i ≤ Itmax do
6: i = i+ 1
7: φ̃← φ via Eq. 11
8: ρ← φ̃ via Eq. 15
9: K ← ρ via Eq. 16 & 17

10: u via solving Ku = f
11: c← (u,K) via Eq. 18
12: ρ← ρ via Eq. 1
13: g ← (ρ, α) via Eq. 21
14: ∂c

∂φ & ∂g
∂φ as in Appendix

15: φ←
(
c, g, ∂c∂φ ,

∂g
∂φ

)
via the MMA solver [39]

16: ∆ = max
∀e

(|φie − φi−1e |)
17: if mod(i, 40) == 0 or ∆ < ε then
18: β = 2β
19: ∆ = 1.0
20: end if
21: end while
22: Compute φ→ φ̃→ ρ
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Fig. 3: (a) Illustration of the design domain, boundary conditions, and the local volume measurement region indicated by
the size of the white disk. (b) Structure optimized by the proposed topology optimization with local volume constraints,
i.e., the scalar field of ρ. (c) Structure optimized by classical topology optimization with a total volume constraint. The
compliance of (b) and (c) is 76.86 and 57.13, respectively, meaning that the structure considering local volume constraints
is somewhat less stiff. (d) Visualization of the stress tensor field in the initial solid design domain. (e) The scalar field of
local volume fraction ρ. (f) The histogram of the obtained material distribution ρ. The values converge to a 0-1 solution. (g)
The histogram of the local volume fraction ρ. Most values fall below the prescribed local volume limit 0.6.

3.4 Example

To demonstrate the effects of the proposed changes to
classical topology optimization, a simple 2D example is
used in the following. Fig. 3 (a) shows a rectangular 2D
design domain. The left edge of the design domain is fixed,
meaning that the displacements of the vertices along this
edge are constrained to zero. On the right edge an external
force is applied to the mid point. The design domain is
discretized into a 400 × 200 uniform grid. A local volume
fraction of α = 0.6 and an influence radius of R = 6 are
prescribed.

Fig. 3 (b) shows the optimized structure, where black in-
dicates solid elements and white indicates empty elements.
This structure has several distinctive features. First, com-
pared to classical topology optimization with a prescribed
volume constraint (Fig. 3 (c)), the material distribution does
not evolve towards large solid and empty parts. The reason
is that in the proposed formulation at most 60% of all voxels
in each local neighbourhood are set to the solid state.

Second, the structure is dominated by crossing elongated
sub-structures. These sub-structures largely follow principal
stress directions as shown in Fig. 3 (d) where the stress
tensor field in the initially solid design domain is visualized
via ellipsoidal glyphs. The axes of the ellipses encode the
principal stress directions and magnitudes at every voxel
center. In addition, the colour of the axes indicate compres-
sion (red) or tension (green). While crossing sub-structures
appear almost everywhere in the domain, single separated
elongated structures can be found at the top and bottom of
the left boundary. In theses regions the stresses are highly
anisotropic (Fig. 3 (d)), and the material distribution has
evolved primarily along the largest principal stress direc-
tion.

Third, the material is distributed across the entire design

domain. This results from the objective to minimize compli-
ance. If the constraint on material volume is not enforced,
the minimization of compliance leads to a completely filled
solid. Since local volume constraints are imposed, the op-
timizer tends to place material at every location up to the
maximum allowed volume (60% in this case). The local
volume values ρ is shown in Fig. 3 (e), and the histogram
showing the frequency of occurrence of values is given in
Fig. 3 (g). It can be seen that the majority of local volume
values is below the prescribed limit 0.6. The p-norm approx-
imation does not represent the max function accurately. At
a few places the prescribed local volume limit is exceeded.
These values are mostly located in regions where the stress
is very large.

The local volume constraint is parametrized by two
values, the local volume limit α, and the influence radius
R. The effect of both parameters on the optimized structure
is examined in Fig. 4. It can be seen that the local volume
limit controls the local porosity, while the influence radius
controls the empty space between substructures. As the
influence radius increases, the locality constraint becomes
less strict, leading to stiffer structures. If the influence radius
becomes larger than the size of the design domain, the local
volume constraints become equivalent to a total volume
constraint, resulting in the stiffest structure as in classical
topology optimization.

4 EXTENSIONS

To provide further control over the optimized structures, we
present several extensions to the infill optimization formu-
lated by Eq. 18-21 (referred to as the basic formulation in the
following), and analyze the resulting infills in comparison to
those resulting from the basic formulation.
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Fig. 4: From left to right, the local volume limit α deceases from 0.6 to 0.4. This leads to increasing porosity and a natural
increase in the compliance value thereof. Structures in the bottom row were generated using a larger influence radius
R, resulting in a less strict locality constraint and increasing stiffness of the structures thereof. In all examples, the same
boundary conditions as illustrated in Fig. 3 (a) were applied.

Fig. 5: In addition to a local volume limit of α = 0.6, limits of αtotal = 0.5 (middle) and αtotal = 0.4 (right) were imposed on
the global material distribution. The compliance increases due to the use of less material. The applied boundary conditions
are shown in Fig. 3 (a).

4.1 Total Volume Control
By prescribing a maximum value for the total material
volume, the user can control the expected cost of a print.
Representing the voxel volume by ve, which is constant in
the regular discretization, the solid volume normalized by
the volume of the design domain is

ρavg =

∑
e
ρeve∑
e
ve

. (22)

The local volume constraint g (Eq. 21) implicitly imposes
an upper bound on the total volume. In fact, the local upper
bound α is a good indicator for the ratio of total volume
ρavg , i.e., if ρe = α,∀e, we get ρavg = α. However, since
the density values ρe are set to either 0 or 1, and due to
the domain boundaries, the resultant ρavg is smaller than
α. For instance, in the 2D test example, α = 0.6 leads to
ρavg = 0.56.

To support direct control over the total volume, we
integrate the following total volume constraint into the
optimization problem:

g1 = ρavg − αtotal ≤ 0.0, (23)

where αtotal is a user-selected limit on the total volume
ratio. The integration of this constraint into Algorithm 1 is

Fig. 7: Illustration of the influence region of a 2D isotropic
filter (left) and two orthogonal anisotropic filters (right).

straightforward. The constraint value g1 and the value of its
derivative ∂g1

∂φ are calculated and fed into the optimizer, to-
gether with their counterparts controlling the local volume,
i.e., g and ∂g

∂φ .

Fig. 5 shows the result when different limits on the total
material volume are used for optimizing the infill of the test
shape in Fig. 3 (a). In all cases, a local volume limit α = 0.6 is
imposed. In Fig. 5 (middle), as the total volume is controlled,
structures disappear in regions of lower stresses (cf. the
stress visualization in Fig. 3 (d)). In Fig. 5 (right), as the total
volume is further reduced, the material distribution shrinks
from low stress regions and evolves towards the structures
that are generated by classical topology optimization (cf.
Fig. 3 (c)).
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Fig. 6: Comparison of 2D structures optimized with isotropic and anisotropic filters. (a) Illustration of the design domain
and boundary conditions. (b) The structure optimized with an isotropic filter, the size of which is indicated by the blue
disk. (c) The structure optimized with anisotropic filters. The compliance and the total volume of (b) and (c) are 22.6 with
59.8% volume, and 34.6 with 51.7% volume, respectively.

Fig. 8: Comparison of 3D structures optimized with isotropic and anisotropic filters. (a) Illustration of the design domain
and boundary conditions. (b) The structure optimized with an isotropic filter. (c) The structure in (b) viewed from top, with
a cut-plane parallel to the xy-plane. (d) The 3D density field is projected onto a 2D xy-plane, visualizing the distribution of
averaged densities along rays parallel to the z-axis. (e,f,g) The structure optimized with anisotropic filters. The compliance
and the total volume resulting from isotropic and anisotropic filters are 79.4 with 27.9% volume, and 125.6 with 23.8%
volume, respectively.

4.2 Anisotropic Filter

In the basic formulation, we define the local volume fraction
in a circular neighbourhood, and treat all elements in this
neighbourhood the same. However, since the stress distribu-
tion at some locations can be highly anisotropic, in such re-
gions the material will accumulate along the major principal
direction, while leaving the other direction weakly or barely
connected. This can be seen in the top and bottom left parts
of the 2D object shown in Fig. 3-5. To further demonstrate
the effect of anisotropy in the stress distribution, we show
in Fig. 6 (a) a situation where the left edge of the cantilever
is fixed, while uniformly distributed horizontal forces are
applied to the right edge. Due to high uni-axial tension
along the horizontal direction, the optimized structure is
almost solely composed of horizontal bars (see Fig. 6 (b)).

To distribute the material along all directions, and thus
to simulate natural bone remodelling, we suppress unidi-
rectional growth by using anisotropic filters for defining the
local volume fractions. Two and three such filters are used
in 2D and 3D, respectively, with a 2D example shown in
Fig. 7. Here, 90◦ degree orientations were used, yet other
configurations can be used as well. For instance, one could

use 60◦ oriented filters to obtain a higher degree of isotropy,
or the filter axes could be oriented automatically along the
principle stress direction determined by the finite element
analysis of the initial shape. In 3D, the isotropic local volume
measure ρe is substituted by three local volume measures
corresponding to three different filter orientations,

ρe,s =

∑
i∈Ne,s

ρi∑
i∈Ne,s

1
, s ∈ {x, y, z}, (24)

where Ne,s is the set of elements in the anisotropic influence
region. Consequently, the constraint ρe ≤ α,∀e is replaced
by

ρe,s ≤ α,∀e, s ∈ {x, y, z}. (25)

Fig. 6 (c) shows the resulting structures when optimizing
the structure in (a) using two anisotropic filters. It can be
seen clearly that the horizontal bar-like structures are broken
up, and instead the optimization process tries to connect
short horizontal and vertical sub-structures.

In Fig. 8, the effects that can be achieved by us-
ing anisotropic filters in 3D are demonstrated. When the
isotropic filter is used (top row), there are only a few con-
nections along the y-axis, since the stresses in the xz-plane



WU et al.: INFILL OPTIMIZATION FOR ADDITIVE MANUFACTURING 8

Fig. 9: As the minimum thickness increases from left to
right, more truss-like structures appear, replacing wall-like
structures.

are larger than those along the y-axis. When anisotropic
filters are used (bottom row), more bridge-like connections
between the planes parallel to the xz-plane are generated.

4.3 Truss- vs. Wall-like Structures

The local volume constraint suppresses the emergence of
large solid domains. Two types of sub-structures can emerge
primarily from such a constraint, thin walls and trusses. A
mix of both types is visible in 3D examples (see Fig. 1). In
the following, we discuss the parameters used to control
the type of sub-structures, and propose reformulations to
prioritize or suppress certain types.

It has been shown recently [40], that thin-walls are the
most effective 3D structures for stiffness optimization, as
opposed to truss-like structures. Nevertheless, truss-like
structures do appear very often in structural optimization,
which is primarily due to an insufficient resolution of the
underlying simulation grids. The spatial discretization im-
plicitly requires the walls, if they exist, not to be thinner
than one simulation element (and more if filtered). If the
local material allowance is not sufficient for creating wall-
like structures, holes are formed in the (not yet developed)
walls. Given a higher resolution discretization, wall-like
structures connecting the truss-like structures from a low
spatial discretization emerge.

While from the perspective of solid mechanics closed-
walled structures are more optimal, truss-like structures
are found to dominate in trabecular bone. This can be
attributed to the involved biofluid mechanics [41], i.e., truss-
like structures allow unblocked interaction between the
solid structures and the surrounding fluid environment.
Truss-like structures are also preferable for their superior
manufacturability, i.e., reducing the possibility of trapped
powders in the post-processing of printed models. Since
wall-like structures below the minimum feature size will
fall apart into truss-like structures, the idea is to prescribe
a larger minimum feature size (or alternatively a smaller
maximum local volume) and, thus, to explicitly enforce the
breakdown of closed-walled structures. The minimal feature
size can be controlled by the filter radius r in the projection
φ→ φ̃, as thoroughly studied in [26], [35].

Fig. 9 compares the optimized structures with different
minimal feature sizes: r = 2 (left), and r = 3 (right). It can

be seen that as the feature size increases, some walls are
substituted by a sparse set of trusses. Along with the break-
down of closed-walled structures, we observe a decrease of
stiffness by a factor of up to 20%.

The relation between the minimal feature size and the
structural types can be derived analytically. Consider a
location xe in the design domain. The influence region of
an isotropic filter with radius R has a volume of Vsphere =
4
3πR

3. A wall with a thickness of 2r takes a volume of
Vwall = 2πrR2 − 2

3πr
3. To suppress the emergence of the

wall, the allowed volume ratio α should be smaller than the
required volume fraction, i.e.,

α <
Vwall
Vsphere

. (26)

This equation leads to the lower bound of the radius r under
a prescribed volume allowance of α, and interchangeably,
the upper bound of volume ratio α under a prescribed
feature size r.

The above analysis is based on the assumption of strictly
enforced local volume constraints, which is computationally
prohibitive to realise. In our implementation, since we ap-
proximate the local volume constraints by a global p-norm,
the actual volume fraction at locations where the stress
is extremely high can be larger than the prescribed limit.
Consequently, at such locations wall-like structures may still
emerge.

4.4 Passive Elements
To fix a thin shell below the surface of an input 3D model,
we prescribe elements close to the surface mesh as passive,
and denote the remaining elements as active. To this end, we
compute a distance field in the design domain Ω, represent-
ing the shortest distance from the centroid of each element
to the surface mesh. Elements with distances that fall below
a prescribed layer thickness t are identified as passive. The
thickness value can be adjusted by the user. In our examples,
we typically prescribe a thickness of 2 in terms of voxels.

The passive elements are excluded from the design up-
date step – The passive elements maintain ρe = 1.0. These
solid elements are considered in the finite element analysis,
since they can sustain forces as well. Passive elements are
also excluded from the calculation of local volume fraction
for active elements. This is realised by augmenting the set
of neighbouring elements, Ne in Eq. 2, by

Ne = {i| ||xi − xe||2 ≤ Re, i 6∈ Ωs}, (27)

where e refers to an active element, and Ωs is the set of
passive elements.

5 RESULTS AND ANALYSIS

We have implemented the proposed infill optimization
method in 2D based on the Matlab code provided in [37],
and in 3D based on the high-performance multigrid solver
for topology optimization detailed in [28]. In 3d, a surface
mesh is constructed from the optimized scalar density field
via the Marching Cubes algorithm [42] in a post-process,
and this mesh is smoothed via Taubin smoothing [43] to
eliminate staircase artefacts. In the following, we present
and discuss a number of additional infills that have been
generated by our method.
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Fig. 10: Topology optimization in a 2D femur-shaped design
domain. Left: Classical topology optimization with a total
volume constraint. Right: Proposed topology optimization
with local volume constraints.

Fig. 11: Visual comparison of a cubic sample taken from the
optimized infill in Fig. 1 and a real bone sample from CT
scans (Image courtesy of R. Müller [44]).

5.1 Bone Models
To verify that the proposed formulation leads to infills with
a similar structure than trabecular bone, we prescribe a 2D
femur-shaped design domain as shown in Fig. 10, and run
the optimization with a total volume constraint (left), and
local volume constraints (right). The porous infill on the
right clearly follows principal stress directions as depicted
in Fig. 1.

As already indicated by Fig. 1, the 3D results are also
very promising. The femur model is simulated with a res-
olution of 280 × 185 × 364, leading to a total of 5.56 mil-
lion finite elements. The femur model with the optimized
infill was fabricated by using selective laser sintering. The
selected material is a strong flexible plastic. The physical
replica has a dimension of 12.32 cm× 5.85 cm× 16.00 cm.

Fig. 11 compares a cubic sample taken from the opti-
mized infill (left) and a sample from a human femur CT
scans (right). It can be seen that both samples are composed
of sparse trusses and a few walls.

5.2 Robustness
With respect to material deficiency An advantage of
distributed porous structures is their damage tolerance, i.e.,
the infill is still stiff even if parts are broken. In practice,
the structures are subject to local damage, for instance, due
to accidental collisions or manufacturing errors. To simulate
the effect of damage on a structure’s compliance, we employ
a simplified local damage model [45]. Here it is assumed
that a quadrilateral region of a fixed size is damaged, and

Fig. 13: Change in compliance with respect to a constantly
relocated damage region for the three designs in Fig. 12. The
bone-like porous infill (green) has a smaller variation, and a
small worst-case compliance.

that this region can be placed everywhere in the design
domain. It is desired that in case of damage a high stiffness
can be maintained.

We test the damage tolerance of different structures
generated for the half MBB-beam at a grid resolution of
200 × 100 (see Fig. 12). We first optimize with respect
to local volume constraints using a local volume limit of
α = 0.4 (middle). The influence radius is selected based on
the assumed damage size, effectively controlling the amount
of empty space between porous structures. The resulting
volume (αtotal = 0.368) is then considered in a second
optimization with respect to the total volume constraint
(left). A regular grid (right) with the same volume serves
as a reference. To exactly match the prescribed volume, the
thickness of the horizontal bars is slightly enhanced at the
bottom.

To simulate damage, we remove the material in a cer-
tain region—indicated by the orange squares in Fig. 12—
from the optimized structures. The damaged shapes are
then compared with respect to their compliance. While the
total volume constrained infill (left) has a compliance of
101.4 before and 1763.8 after damage, the local volume
constrained infill (middle) has a compliance of 132.6 before
and 187.3 after damage. This suggests that the infill that was
optimized with respect to the total volume is very sensitive
to material damages – The compliance changes by a factor of
17.4, while it changes only by a factor of 1.4 for the porous
infill.

To consider the sensitivity of the structural compliance to
the applied damage, we vertically move the damage region
downwards and consecutively evaluate the compliance. The
curves in Fig. 13 show the resulting changes for all three
test structures. It can be seen that the bone-like infill (green
curve) exhibits only small variations in the compliance
values. The total volume constrained structure undergoes
large changes under some damage conditions. The regular
infill, even though it also shows only minor variations, the
compliance values are about 4 times larger than those of the
bone-like infill.
With respect to force variations The second benefit of
porous structures is their robustness with respect to force
variations. In practical use cases of consumer products, the
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Fig. 12: Illustration of local material damage. Without damage, the structure constrained to a total volume (left) has the
smallest compliance c of the three structures, but when damaged as indicated by the orange square its compliance becomes
worst. The middle structure was generated by constraining the local volume limit. A regular grid structure (right) serves
as reference.

Fig. 14: The structures are optimized with respect to the force condition as indicated by the dashed grey arrows. Under
alternative forces (solid blue arrows), the local volume constrained structure (middle) is 1.3 times stiffer than the total
volume constrained structure (left). The regular grid with the same amount of volume on the right serves as a reference.

Fig. 15: The compliance with respect to changed force di-
rections for the 2D femur model (Fig. 14). The bone-like
porous infill (green) is less sensitive to large changes in
the force direction, and has a smaller worst-case compliance
compared to the total volume constrained structure (red).

external forces are often not constant in direction and/or
magnitude and are subject to changes.

We test the structure performance under such uncertain

force conditions for the 2D bone example, as illustrated in
Fig. 14. The structures are optimized with respect to the
forces indicated by the dashed grey arrows, under a total
volume constraint (left) and the local volume constraints
(middle). We then rotate the forces by π

4 as represented
by the solid blue arrows, and re-calculate the compliance
of the structures under the new force condition. The total
volume constrained infill is very sensitive to this change of
direction – The compliance changes from 30.54 to 45.83. In
contrast, the local volume constrained version only changes
from 36.72 to 36.23.

To examine the sensitivity of compliance to varying force
directions, we consecutively rotate the force directions out of
an initial start configuration. Fig. 15 shows the compliance
values depending on the rotation of force direction. For
all four infill configurations, the compliance values change,
and each forms a valley-shaped curve. The regular infill
(blue, top) and the fully solid infill (cyan, bottom) serve as
references. At the rotation angle of zero, for which the struc-
tures are optimized, both the total volume (red) and local
volume (green) constrained structures have a compliance
close to that of the solid structure, with the total volume
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constrained structure performing even better. At rotation
angles up to about 20◦, the red curve remains below the
green one, indicating a somewhat higher stiffness of the total
volume constrained structure. Beyond 20◦, the red curve
exceeds the green one, indicating the superiority of the
local volume constrained structure as well as the sensitivity
of total volume constrained structure to large directional
changes. At the rotation angle of 90◦, both structures show
their worst-case compliance.

This test verifies the robustness of the local volume
constrained structure. This effect agrees with the formation
of porous structures in bone. In fact, the mechanical load
applied to the bone is not static, but varies during our daily
lives. The bone undergoes dynamical natural optimization,
and produces porous structures accounting for all different
load conditions.

5.3 Convergence & Performance

Convergence We analyze the convergence of the nu-
merical optimization scheme on the 2D cantilever model
in Fig. 16. The horizontal axis is the number of iterations,
while the vertical axis (left) represents the compliance value,
i.e., the objective in Eq. 18, and (middle) represents the
constraint in Eq. 21. It can be observed that the compliance
value gradually decreases during the optimization process,
meaning that the structure becomes stiffer. The constraint
value is maintained below 0.0, while a few jumps happen
when the β value is doubled every 40 iterations. This
β-continuation is introduced to convert the intermediate
values into a strict 0-1 solution cf. earlier discretization.
We define sharpness to measure how close the continuous
density field is to a binary field [46],

s =
4

n

∑
e

(ρe(1− ρe)), (28)

where n is the number of elements. When the density values
are converged to a strict 0-1 solution, the sharpness factor
becomes 0.0, while if all elements take a value 0.5, the
sharpness value is 1.0. The third plot in Fig. 16 shows
the evolution of sharpness during the optimization process.
On its right, three example structures are displayed, which
correspond to the density field at iterations 79, 159, and 279,
respectively. As the optimization progresses, the structure is
becoming more discrete. Even though the optimization can
be stopped before converging to a discrete design—a com-
mon practice when using classical topology optimization in
industry—this bears the risk of computing a misinterpreted
topology.
Performance Table 1 reports the complexity of the used
3D simulation models as well as timing statistics for dif-
ferent parts of the optimization process considering the
local volume constraints. All experiments were run on a
standard desktop PC equipped with an Intel Xeon E5-
1650 v3 processor (12 cores) running at 3.50 GHz, 32 GB of
RAM, and an NVIDIA GTX1080 graphics card with 8 GB
memory. We break down the computing time into three
parts: FEM, sensitivity analysis and data preparation for
MMA, and MMA. The computations involved in all stages
consist predominantly of matrix and vector operations, and
thus are highly parallelizable. The FEM analysis, which

Model Resolution # Ele. Per iteration [s] # Iter. Total
FEM Sens. MMA [min]

Femur 280×185×364 5.6e6 6.85 5.44 2.52 500 121.2
Kitten 218×198×334 4.6e6 5.45 4.54 1.91 120 23.8
Cantilever 200×100×100 2.0e6 1.98 2.11 0.95 120 10.1

TABLE 1: Performance statistics for different models.

Fig. 17: Comparison between the honeycomb structure [13]
(left, model courtesy of Lu et al.) and structures generated
by topology optimization with a total volume constraint [28]
(middle) and with local volume constraints (right).

is the performance bottleneck, is accelerated via a highly
efficient geometric multigrid solver and GPU paralleliza-
tion [28]. The multigrid solver is terminated at a residual
reduction of 10−4. For the sensitivity analysis, we execute
the convolution operator with a larger R on the GPU, and
the other matrix operators with OpenMP. The MMA solver
is parallelized with OpenMP as well, following [39]. The
design optimization is an iterative process using a fixed
number of iterations.

5.4 Comparison

Comparison to honeycomb structures Fig. 17 compares
the compliance-minimized structures subject to local and
global volume constraints to the volume-minimized hon-
eycomb structure subject to a critical stress [13]. The three
models are optimized with the same material properties
and boundary conditions. From the stress distribution (left),
it can be observed that the forces applied at the top of
the kitten model are transmitted mostly through the neck
and the tail to the bottom, which is fixed. This results in a
straight structure connecting the top and the bottom when
using classical topology optimization (middle). Since in the
new formulation the local volume is controlled, the vertical
structure splits into multiple curved structures (right). The
compliance values are normalized against the compliance of
a fully solid shape. The values indicate that the porous infill
is 1.5 times stiffer than the honeycomb structure, and has a
maximum von Mises stress that is 72.5% of the maximum
stress in the honeycomb structure.
Comparison to rhombic structures In Fig. 18, we show
a comparison to the self-supporting rhombic infill struc-
tures [15]. This example employs the same boundary condi-
tions as in Fig. 17, but uses a larger volume percentage in or-
der to allow the rhombic wall to be thicker than three voxels
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Fig. 16: Convergence plots of the compliance (left), the constraint (middle), and the sharpness of the density field (right)
over the iterative optimization process. The density field, shown at three different stages on the right, gradually converges
to a 0-1 solution by using β-continuation in Eq. 15, which explains the discontinuity in the plots at every 40 iterations.

Fig. 18: Comparison between self-supporting rhombic in-
fill structures [15] that are refined adaptively (left) and
uniformly (middle), and the structure generated by local
volume constrained topology optimization (right).

in a stable finite element analysis. The optimized rhombic
infill (left) supports the forces by an adaptive refinement
in the vertical region. The uniformly refined infill (middle)
serves as a reference. The bone-like porous infill (right)
exhibits a similar trend as in Fig. 17 (right). The values
show that the porous infill is 1.14 times stiffer than the
optimized rhombic structure, with comparable maximum
stresses. Both optimized versions perform better than the
uniform grid.

5.5 Discussion
Robustness We have tested bone-like infills under differ-
ent robustness criteria. Natural materials seem to suggest
that structural robustness comes with organized complexity
in shape and topology [3]. The local volume constraint
serves this purpose by encouraging a structural organiza-
tion of micro-structures to support the prescribed external
forces. The very typical approach to ensure robustness to
uncertain loads in topology optimization is to optimize with
respect to multiple or worst case loading scenarios. This
is a wide spread concept (c.f. [47], or some quite recent
examples [48], [49], [50], [51]). However, such approaches
require some a priori knowledge of the positions of these
uncertain loads; anti-optimization problems may have to be
solved to identify worst cases; and many load cases (c.f.
expensive finite element analyses) must be performed to

ensure a reasonable coverage of the uncertainties. To achieve
low sensitivity to loading positions and detailed structures
as shown in our work, dozens (if not hundreds) of loads
with varying location and direction would be necessary. In
contrast, our formulation involves only one (or possibly a
few) finite element analysis in each iteration. This makes the
new formulation more practical for processing the massive
models as we see in 3D printing.
Manufacturability While additive manufacturing enables
the fabrication of complex shapes, it still poses a few con-
straints, e.g., regarding feature size, enclosed voids, and
overhang surfaces. Ideally such constraints shall be incor-
porated into the optimization process. Otherwise a post-
process might become necessary, and this process can coun-
teract optimality. In our work, we have taken into account
the minimum feature size by the well-established projection
method [26], [35]. Concerning the enclosed voids which
might trap unsintered powder in SLS (Selective Laser Sin-
tering), in Section 4.3 we have analyzed parameters which
influence the formation of wall-like structures. Neverthe-
less, a rigorous formulation to guarantee enclosed-void-free
is currently out of reach. Regarding overhang avoidance,
impressive progress has been made recently by embedding
corresponding constraints into the density-based topology
optimization [52], [53], [54]. These methods are compatible
to our formulation, yet we leave the integration as future
work.

To verify the manufacturability of bone-like infills, we
have fabricated the femur model using the SLS process (see
Fig. 1) and three additional models using more affordable
FDM (Fused Deposition Modelling) printers (see Fig. 19).
When using FDM printers, the models were printed without
supports for the infill, since, in general, the bone-like infills
show small overhang areas that are within the tolerance in
FDM printing. The absence of supports leaves a few visual
artefacts and unguaranteed mechanical property.

6 CONCLUSION

We have presented a structural optimization method for
obtaining stiffness optimized porous structures. These nu-
merically optimized structures visually resemble trabecular
bone, which is lightweight and robust with respect to ma-
terial deficiency and force variations. This makes the opti-
mized interior structures an ideal candidate for application-
specific infill in additive manufacturing.
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Fig. 19: FDM printed replicas of some models generated by
our formulation.

APPENDIX

In numerical optimization, the gradient of the objective c
and the constraint g with respective to the design variable φ
is needed. It is calculated using the chain rule as follows

∂c

∂φe
=
∑
i∈Me

(
∂c

∂ρi

∂ρi

∂φ̃i

∂φ̃i
∂φe

)
, (29)

∂g

∂φe
=
∑
i∈Me

∑
j∈Ni

(
∂g

∂ρj

∂ρj
∂ρi

)
∂ρi

∂φ̃i

∂φ̃i
∂φe

 . (30)

The derivative ∂c
∂ρi

is calculated using the adjoint analysis

∂c

∂ρi
= −γργ−1i (E0 − Emin)uTi k0ui. (31)

The other components can be derived as

∂ρi

∂φ̃i
=
β(1.0− tanh2(β(φ̃i − 1

2 )))

2 tanh(β2 )
, (32)

∂φ̃i
∂φe

=
ωe,i∑

k∈Mi

ωk,i
, (33)

∂g

∂ρj
=

1

αn

(
1

n

∑
e

ρpe

) 1
p−1

ρj
p−1, (34)

∂ρj
∂ρi

=
1∑

k∈Nj

1
. (35)
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