
Dynamic Path Exploration on Mobile Devices

Item Type Article

Authors Birsak, Michael;Musialski, Przemyslaw;Wonka, Peter;Wimmer,
Michael

Citation Birsak M, Musialski P, Wonka P, Wimmer M (2018) Dynamic
Path Exploration on Mobile Devices. IEEE Transactions on
Visualization and Computer Graphics 24: 1784–1798. Available:
http://dx.doi.org/10.1109/TVCG.2017.2690294.

Eprint version Post-print

DOI 10.1109/TVCG.2017.2690294

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal IEEE Transactions on Visualization and Computer Graphics

Rights (c) 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 2024-04-24 00:32:42

Link to Item http://hdl.handle.net/10754/627475

http://dx.doi.org/10.1109/TVCG.2017.2690294
http://hdl.handle.net/10754/627475

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 1

Dynamic Path Exploration on Mobile Devices
Michael Birsak, Przemyslaw Musialski, Peter Wonka, Member, IEEE, and Michael Wimmer

Abstract—We present a novel framework for visualizing routes on mobile devices. Our framework is suitable for helping users explore
their environment. First, given a starting point and a maximum route length, the system retrieves nearby points of interest (POIs).
Second, we automatically compute an attractive walking path through the environment trying to pass by as many highly ranked POIs as
possible. Third, we automatically compute a route visualization that shows the current user position, POI locations via pins, and detail
lenses for more information about the POIs. The visualization is an animation of an orthographic map view that follows the current user
position. We propose an optimization based on a binary integer program (BIP) that models multiple requirements for an effective
placement of detail lenses. We show that our path computation method outperforms recently proposed methods and we evaluate the
overall impact of our framework in two user studies.

Index Terms—Tourist Guide, OpenStreetMap, Exploration, Binary Integer Program

F

1 INTRODUCTION

D UE to their low price and immense versatility, mobile devices
(e.g., smartphones, tablets) have become a central element in

our daily lives. We not only use them for making phone calls or
messaging, but also for gaming, taking photos and for navigation.

When investigating an unfamiliar region of a city, users may
additionally use the data connection of their devices and tourist
applications (apps) like Yelp or TripAdvisor to find out about
points of interest (POIs) in their environment. To this end, these
apps usually allow limiting the search result to some preferred
categories, e.g., restaurants or sights, and present the found POIs in
ascending order with respect to the distance to the current position.
After an interesting POI is chosen, the mobile device is used as a
navigation system to find the shortest path to the chosen POI.

We see two drawbacks with this common approach that we
would like to improve on: (1) It is not guaranteed that also the
path itself to the POI is interesting, while there might be another
path with a slightly longer distance providing places which are
worth seeing; and (2) in recent work the destination selection and
navigation were strictly separated and done sequentially. However,
often the user does not know in advance which POIs will be the
destination, but she is more interested in exploration.

In this work, we present a novel framework to overcome the
mentioned limitations:
• In order to address problem (1), we compute an interesting

path through a whole set of POIs instead of computing the
probably uninteresting shortest path to one particular POI. To
this end, we query the rating values of all POIs and seek a
path to an initially undefined POI that maximizes the sum of
quality values of visited POIs while at the same time staying
below a maximum path length. Alternatively, the user can set
a fixed destination POI (e.g., a sight) and use the system to
find a path to this POI that is close to POIs of other categories
(e.g., restaurants). We discuss the details in Section 4.

• Given an interesting path and a set of POIs, we address
problem (2) by focusing on the environment of the path

• Michael Birsak, Przemyslaw Musialski, and Michael Wimmer are with
TU Wien. E-mail: {birsak, musialski, wimmer@cg.tuwien.ac.at}

• Peter Wonka is with Arizona State University and King Abdullah University
of Science and Technology. E-mail: peter.wonka@asu.edu

by improving the map cutouts that represent the moving
viewport onto the map within a dynamic visualization. This
visualization is presented to the user as the final output of
our system. We find the positions of the map cutouts by
computing another path that describes the smooth motion of
the map cutouts during the visualization and seek a solution
that emphasizes the environment of the first path, thereby
showing essential information about the surrounding POIs
in rectangular entities called detail lenses. We discuss the
computation of the path for the map cutouts in Section 5 and
the optimized detail lens placement in Section 6.

Figure 1 shows a common use case of our system. We evaluate
the preference for our visualization techniques and the acceptance
rate of our system in two user studies and present the results in
Section 9. Finally, we show several results of our framework and
also discuss its limitations in Section 10.

2 RELATED WORK

We tackle a variety of problems in our framework. In detail,
our approach is related to path computation and map generation
techniques. This section presents the related work partitioned into
these categories.

Path Computation. While the classical shortest path problem
can generally be solved efficiently [1], finding a high-quality
path under a possible maximum distance constraint is substan-
tially more challenging and is directly related to the longest
path problem that is known to be NP-hard [2]. Quality is an
application-dependent metric, e.g. determined by the analysis of
photo locations in proximity to the paths [3], [4], [5], [6] or the
retrieval and weighting of ranking values according to the distance
to surrounding POIs [7]. Due to the computational complexity of
finding the optimal high-quality path, researchers came up with a
variety of methods to compute an approximative solution.

Previously published methods tackle the high-quality path
computation problem using dynamic programming [3], adapting
a shortest path algorithm [6], and genetic algorithms [8]. We will
compare against these three methods in Section 9.1.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 2

Fig. 1: Dynamic Path Exploration on demand. (left) Our system
automatically retrieves a set of points of interest (POIs) in the
environment of the user and computes an interesting path through
these POIs (shown in black) as well as a separate path for
the map cutouts representing the motion of the viewport during
the visualization (shown in orange). (middle) The path and the
POIs are then presented within a dynamic visualization based on
the previously computed map cutouts, and using so-called detail
lenses to show essential information about the POIs. (right) The
user can click onto the detail lenses to get more information.

Map Generation. We structure the related work in map
generation into two categories. Static methods produce printable
results and dynamic methods target output devices with a display.

Static Methods. Although we present a dynamic method that
targets mobile devices, many of the principles that motivated
our design decisions were developed for a static output. For
example, finding an optimal placement of detail lenses is related
to the classical map labeling problem. Current methods usually
try to follow some approved guidelines (e.g. avoidance of mutual
overlap of labels or overlap of map features) to find a coherent
layout. Two representative papers in this field are from Imhof [9]
and Hirsch [10] who did pioneering work in the direction of design
guidelines for map labeling and automating the labeling process.

Subsequently published methods proposed to tackle the map
labeling problem using simulated annealing [11] or gradient de-
scent methods [12]. Our method is most related to the work by
Zoraster [13], [14] and Birsak et al. [15] who proposed an integer
programming approach. Our proposed approach can be seen as an
extension of previous work to dynamic maps, including a novel
splitting technique to accelerate the computation.

There are multiple other interesting problems for static map
generation. One problem is the simplification (abstraction) of
cartographic data. For example, previous work studied abstractions
for route maps [16], tourist maps [7], or destination maps [17].

More recently, Birsak et al. [15] proposed a system for the
generation of customized tourist brochures that contain rout-
ing information for multiple destinations, which try to find a
compromise between path-length and clarity of the navigational
instructions in a static brochure. Additionally, they also utilize the
concept of detail lenses to display additional information about
POIs. In this work we continue the idea of detail lenses that are
used to amplify particular points of interest on the map.

Another branch of research focused on the problem of auto-
matic generation of multi-destination paths combined with concise
and convenient visualization of such information in order to

make it compact and usable. For instance, Karnick et al. [18]
introduced a system to visualize routes using local detail lenses
placed automatically on a map canvas. Zheng et al. [19] proposed
a system for trip planning along routes with sightseeing qualities.
Their system produces routes that are enriched by nearby POIs.

Dynamic Methods. While static maps are aimed for printout,
dynamic maps are usually displayed on a digital screen and adapt
the shown content according to the interaction of a user. For
example, Been et al. [20] compute a dynamic map labeling for
a pannable and zoomable map. They assign priority values to the
labels and present a method that avoids mutual overlaps during
interaction by omitting a placement of labels that cause overlaps
with other labels of higher priority. While our method follows a
very similar goal to present information about map features in
a dynamic way, we avoid a mutual overlap of detail lenses by
utilizing the chronological dimension to show them at the same
position but in different periods of time.

Another method for interactive labeling has been proposed by
Götzelmann et al. [21], which is based on heuristic optimization
using so-called layout agents. This method also maintains coher-
ence across frames in a dynamic setup.

Fekete and Plaisant [22] explored the capability of “excentric
labels”. Their method allows the investigation of features within a
user-defined neighborhood without extensive use of zoom opera-
tions which makes a retrieval of information more efficient.

Our approach is particularly related to the work by Chittaro
[23] since we also tackle the presentation problem of mobile
devices. We present a new approach for this problem and propose
a system that shows details in an area that is too large to be shown
on the screen within a coherent dynamic visualization. To this
end, we resort to a grid-based mathematical optimization similar
to Birsak et al. [15] and Rylov et al. [24].

Recently, Wang et al. [25] introduced a system for automatic
generation of hierarchical structures for route maps that help users
to move back and forth across multiple views with different scales.

In general, in this paper we propose a fully automatic method
driven by binary-integer optimization which only needs a weak
specification of the actual routing goal. In fact, the user can only
specify a high-level semantic description of the desired activity
(e.g., dining), and perhaps the longest walking distance (e.g., 500
meters), and the system tries to find a path with the maximal
walking quality. This path is then presented to the user within an
appealing dynamic visualization.

3 SYSTEM OVERVIEW

The input to our framework is the current position of the user p(0)
and a set of POIs P = {P1, . . . ,Pn}. Optionally, one of these POIs
can be designated as destination. Our system produces as output:

1) An interesting path p(t) leading to a specific POI that is either
chosen by our method or by the user (Section 4).

2) Another path m(t) that describes the camera motion in the
visualization and that is designed to emphasize interesting
regions in the environment of the path p(t) (Section 5).

3) The optimal placement of rectangular entities called detail
lenses inside the map cutouts. The detail lenses show the
most essential information about the POIs (Section 6).

4) A dynamic visualization using the previous steps, which is
presented to the user on a mobile device like a smartphone or
tablet (Section 7).

Figure 2 shows an overview of our system.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 3

p(0)

p(1)

M(0)

M(1)

Cell Domain M1

M66

M41

Path Computation Map Cutout Optimization Detail Lens Placement Visualization

Fig. 2: Overview of our system. (left) After the POIs are queried from an online database (e.g., Yelp) we compute an interesting path
p(t) (shown in black). The grey dots along the path refer to the positions of the nodes pi. (middle-left) Taking the POIs P and the path
p(t) as inputs, we compute another path m(t) (shown in dark orange) for the map cutouts M(t) (shown in light blue). The red dots on
m(t) refer to the set C of control points, the blue dots on p(t) are the corresponding set of foot points F. (middle-right) We partition
the map into a Cartesian grid, denoted as C and aim for a dynamic placement of rectangular entities, which we call detail lenses. (right)
The output of our framework is shown on a mobile device within a dynamic visualization in order to give guidance to the user.

4 PATH COMPUTATION

The pedestrian path p(t) we seek should meet the following
requirements: (1) It should be interesting, which we model similar
to the work by Grabler et al. [7] by closeness to high-quality POIs.
(2) The walking distance should stay below a threshold that is
chosen by the user, e.g. 20% more than the distance of the shortest
path between the current position and the dedicated destination.

In order to compute a path with these requirements, we
consider the road-network graph G = (V,R) with nodes vi ∈ V
and road segments ri, j ∈ R representing the edges of the graph
and seek a path from a source node s to a destination node d. We
denote q(vi) to be the quality value of vi and δi, j to be the walking
distance of the road segment ri, j. For easier notation, we refer to
the nodes of G by using just the index, e.g. i, and to the edges by
using the incident nodes, e.g. {i, j}. In our optimization, we seek
a path that maximizes the sum of quality values of visited nodes
while at the same time staying below a maximum distance.

We start with a computation of the areas which are influenced
by the POIs (Section 4.1). After that we identify the nodes
corresponding to the POIs within the road-network graph as well
as a destination POI with high rating which is located in an area
that is influenced by many POIs (Section 4.2).

Finally, we compute a piecewise linear pedestrian path p(t)
that prefers road segments which are incident to nodes with a
high quality value (Section 4.3). The path consists of a sequence
of nodes P =

(
p(0) = p1,p2, . . . ,pnP−1,pnP = p(1)

)
, and is

parameterized according to the normalized distance for 0≤ t ≤ 1.

4.1 POI Area of Influence

Given the current position of the user p(0) and the set of queried
POIs P, we first define an area of influence by assigning a 2d
Gaussian Gi to each of the POIs Pi, whose location is defined
by Mercator-projected coordinates denoted by Merc(Pi). We set
the center µi = (xi,yi) of Gi to be at Merc(Pi) and the amplitude
Ai = Gi(µi) to represent the rating (the higher, the better) of Pi.
The rating, which we denote by q(Pi), usually ranges from 1 (bad)
to 5 (excellent) and is retrieved in our framework from Yelp.

4.2 Source Node and Destination Node

For each POI we identify the corresponding node in the graph,
which is either the node k ∈ V for which the distance between
k and the position of the POI is minimal, or a new node that
is found by perpendicularly projecting k onto the closest edge
{i, j}, thereby splitting it into two edges {i,k} and {k, j}. The
source node s is identified similarly. We denote the set of vertices
corresponding to the POIs as VP ⊆ V , re-enumerate all vertices
v ∈ V for easier notation such that vk corresponds to the POI Pk
and assign the quality values q(vk) = q(Pk).

The destination node d can optionally be chosen by the user.
The more interesting case, however, arises when the choice is
left to our system. In this case, we do not randomly take one
highly rated POI since this could provide a POI in an uninteresting
surrounding region with sparsely positioned POIs. In fact, we only
consider the subset of highly ranked POIs, which we denote by
Vd , but instead of a random choice we take the POI that lies in the
region which is most influenced by other POIs, or formally:

d = argmax
k∈Vd

{
n

∑
i=1

Gi
(
Merc(Pk)

)}
.

Note that this formulation does not prevent the destination
d to be located in the vicinity of the source node s. Although
we could not observe any problems with this formulation in our
experiments, it could be easily extended to only consider POIs
with a certain minimum distance to s. Alternatively, the threshold
defining the maximum walking distance can be set to a big value
to compute a reasonable long pedestrian path whose source and
destination are close to each other. We refer the interested reader to
the supplementary materials for an example in which the distance
between the user position and the destination is very small.

4.3 Best Path Estimation

Similar to Kachkaev and Wood [6] we want to find a high-quality
path that does not exceed a maximum walking distance and define
the quality of a path q(p) as the sum of rating values of visited

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 4

POIs. We denote the distance of the shortest path by δmin and the
maximum walking distance by δmax.

We formulate the problem of finding a path with the mentioned
requirements as a binary integer program (BIP). The main moti-
vation to choose integer programming instead of using simulated
annealing [11] or an evolutionary algorithm [8] are the advantages
of BIP compared to these methods. It is exact and we can make
use of a lot of research optimizing BIP solvers to our benefit, e.g.,
there are standard solvers like Gurobi that are highly optimized.
The problem is still challenging and exact solvers, e.g. building
on branch-and-bound, can hit a wall and they are not suitable
when the problem gets too large. Then either an approximate BIP
solver has to be used, or an alternative approximation technique,
e.g. shortest path [6] or dynamic programming [3]. In our problem
instance we can observe that the solution quality of approximate
solvers degrades significantly, while BIP is still able to compute
solutions quickly (cf. Section 9.1).

We introduce a binary variable xi, j for each road segment ri, j
where xi, j = 1 when the path contains the road segment {i, j} and
xi, j = 0 otherwise. Additionally, we introduce a binary variable yi
for each vertex i ∈ V where yi = 1 when i is visited and yi = 0
otherwise.

We further formulate the objective function as

max
yi

∑
i∈VP

q(Pi)yi

and introduce the following hard constraints:

C1: Both s and d are incident to one edge of the path.

∑
j∈N(s)

xs, j = 1, ys = 1 and ∑
j∈N(d)

xd, j = 1, yd = 1

C2: Each vertex (except s and d) is incident to 0 or 2 edges.

∑
j∈N(i)

xi, j = 2yi; i ∈V\{s,d}

The variables yi act as control variables and guarantee that
the sum corresponding to the incident edges of a vertex i is
either 0 (yi = 0) or 2 (yi = 1) but can not be a different value.

C3: The walking distance must stay below δmax.

∑
{i, j}∈R

δi, jxi, j ≤ δmax

C4: The problem of separate closed circles that was subject in
recent work concerning the traveling salesman problem [26]
is addressed in our framework by the introduction of a so-
called lazy constraint. To this end, the routine that starts the
process of finding a solution is passed a function pointer.
Each time a solution subject to the constraints C1 to C3 is
found, this function is called and the solution is analyzed if
it consists any edge cycles. If this is the case, an additional
constraint is added which every upcoming proposed solution
has to meet. To give a short example, let O be the set of
|O| edges forming an edge cycle within a proposed solution.
Then the following constraint is added:

∑
{i, j}∈O

xi, j < |O|

4.4 Process of finding a Solution
We solve the optimization problem of finding an interesting pedes-
trian path using the Gurobi library, a specialized (mixed) integer
programming solver, which leverages a linear-programming based
branch-and-bound algorithm to find a good feasible solution.
We use a default value of 1 · 10−4 for the Gurobi parameter
MIPGap, which defines the maximum difference between the
lower and upper objective bound at termination. This ensures that
the delivered solution is close to optimal.

In Figure 3, a comparison of the path p(t), that is computed
with our method, and the shortest path is shown. All paths shown
in this paper were computed optimally in less than 5 seconds. Note
that the path with δmax = 1.5 · δmin shown rightmost in Figure 3
corresponds to the highest quality although the path only crosses a
small part of the region of highest POI density that is indicated by
the heat map. However, the heat map only shows the values of the
sum of Gaussians Gi while the quality of the paths is not defined
by the line integral under the Gaussians but is defined by the sum
of ranking values of actually visited POIs.

q(p) = 34 q(p) = 47.5 q(p) = 60.5

Fig. 3: Comparison of paths which were computed by our system
(black) and the shortest path (dotted) to a destination that was
chosen by the user. The three shown solutions (from left to right)
correspond to maximum walking distances 1.1 ·δmin, 1.3 ·δmin and
1.5 ·δmin respectively. The shortest path has a quality of 8.5.

5 MAP CUTOUT OPTIMIZATION

Regular path visualizations typically place the user position in
the middle of the screen. In our system, we want to make better
use of screen estate to show important surrounding areas. We do
this by adjusting the map cutouts used for the visualization. In
particular, we compute a separate path m(t), which describes the
motion of map cutouts M(t). We define the map cutout M(t0)
as the rectangular region in the Mercator-projected map (e.g.,
Bing Maps) that corresponds to the visible map area during the
visualization on screen at time t0.

In order to identify a suitable structure of map cutouts, we
experimented with different zoom levels in an early phase of
our framework. The implications of changing zoom levels and
strategies to handle overlapping map labels were presented by
Been et al. [20]. Their labels occupy a fixed size on the screen
which makes a removal of unimportant labels during a zoom-
out necessary. However, they mainly penalize a mutual overlap of
labels but not an overlap of important map content. The occluded
map area would increase proportional to the increasing distance to
the map representing the zoom-out. Such important map content
could be vital for proper navigation as it is the case in our system
and should therefore not be occluded.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 5

Therefore, we propose to use labels, or in our case detail
lenses, which do not correspond to a fixed size on screen but
to a fixed map region. One consequence of this design choice,
however, is the apparent shrinking of labels during a zoom-out.
We therefore propose to optimize the labeling (cf. Section 6) for
a suitable zoom level and to use different levels of detail for the
labels. Since one particular zoom level implies a constant width
and height of all map cutouts M(t), we can refer to these fixed
values by W and H respectively. We could empirically identify a
zoom level of 0.694 meters per logical pixel to bring satisfying
results and justified our design choice by receiving very positive
response from the users of our system (cf. Section 9.3).

Similar to p(t), m(t) should satisfy a number of requirements:
1) It should be smooth in order to avoid discontinuities in the

movement of the map cutouts.
2) It should pass through regions with high POI density.
3) The movement of the cutout should in general follow the

movement of the user (i.e., no backward-movement while
the user moves forward). We choose to formalize this by
restricting m(t) to lie on a line orthogonal to p(t).

We start by computing the POIs that are close enough to
p(t) to be theoretically visible in at least one map cutout M(t).
Next, we identify regions (called hot spots) with a high density of
potentially visible POIs and compute a cubic spline that touches
the hot spots. Finally, we choose a parametrization for m(t) that
satisfies requirement 3. The details about the computation are
given in the following paragraphs.

5.1 Potentially Visible POIs
We start the map cutout optimization by finding those POIs which
have a high probability of being visible in the final visualization.
Due to the design of our optimization approach, it is not possible
to tell immediately which POIs will be visible and which will not.
We therefore identify the set of potentially visible POIs, which
we denote by Pv ⊆ P. To this end we project each POI p ∈ P
orthogonally onto the closest point on p(t) to identify the point
pp. We only add p to the set Pv if we can find a map cutout that
allows visibility of both p and pp. This can be easily discovered
by testing if the difference of the x-values of p and pp is ≤W and
the difference of the y-values is ≤ H (cf. Figure 4).

Fig. 4: The set of POIs P is reduced to the set Pv of potentially
visible POIs. We identify elements of Pv by finding those POIs
that have a certain proximity to the path (shown in black).

5.2 Map Cutout Path
With the potentially visible POIs at hand, we now seek the path
m(t) that describes the motion of the map cutouts M(t). We start
by taking the sequence of nodes P along the path p(t) and also
identify the parameters tpi of the nodes pi with pi = p(tpi).

We tackle point (1) of the mentioned requirements by defining
m(t) as a cubic spline, with control points C = (c1, . . . ,cnC).
Point (2) is considered by positioning these control points at
the POI hot-spots near p(t). With hot-spots we refer to points
in the environment which provide a local maximum of the sum
of Gaussians Gi. The requirement mentioned in point (3) is
satisfied only approximately for simplicity reasons. In particular,
we enforce it only at the control points ci.

For the computation of the cubic spline representing m(t),
we do not directly set the location of the control points C, but
initially determine a set of regularly distributed points fi along the
path p(t). There is, however, an inherent connection between the
points fi and the control points ci, since each fi has – after the
locations of the control points ci are determined in the next step –
its corresponding control point ci and defines the parameter t that
is assigned to ci.

We position the points fi on the path p(t) such that fi = p(i∆t)
and choose a regular parameter interval ∆t between two points fi
and fi+1 that yields a walking distance of about 40 meters, which
we found to be a good trade-off between control and providing
enough freedom to the cubic spline. Since the number of points
fi equals the number of control points ci, the parameter interval
∆t between the points fi defines the number of control points
nC = 1 + 1/∆t.

After the evaluation of the points fi, we calculate the control
points ci. At each point fi = p(i∆t) we identify the ancestor node
p j = p(tp j) with tp j = max{tpk | tpk ≤ i∆t} and descendant node

p j+1 and denote the normal to the path at fi as ni =
(p j+1−p j)

⊥

‖p j+1−p j‖ .
Next, we restrict the control point ci that corresponds to fi to
lie on the line li(λ) = fi + λni with λ ∈ R, thus respecting
requirement (3) for this control point. Since each control point
ci is connected to its corresponding point fi perpendicularly to the
path, we refer to the points fi as the foot points F = (f1, . . . , fnC).
Since the position of the user should be visible at any frame of
the visualization, we further restrict the parameter λ to be inside
the interval

[
λ min

i ,λ max
i

]
, where λ min

i and λ max
i correspond to the

minimum and maximum value of the parameter λ respectively
such that the user position at p(i∆t) is still visible inside the map
cutout M(i∆t). To identify the best location for ci corresponding
to the POI hot spot on the line segment li(λ), thereby considering
requirement (2), we define a quality measure qi(λ) as

qi(λ) = ξ

n

∑
j=1

G j(li(λ))+(1−ξ)Gfi(li(λ))

where ξ ∈ [0,1] is a weighting parameter (usually set to 0.8)
to define the importance of the map cutout offset towards the POIs
in the environment, and Gfi is a 2d Gaussian centered at fi which
acts as a counterpart to the POI Gaussians G j and forces the map
cutout to have the user position in its center at sections of the path
where there are no POIs in the environment. We then position ci
at the point on li(λ) that corresponds to the biggest quality value:

ci = li(λ ∗i)withλ
∗
i = argmax

λ

{
qi(λ)

}
;λ ∈

[
λ

min
i ,λ max

i

]
.

In order to make sure that the footpoints indeed correspond
to the control points in the animation, we assign the parameter
values i∆t to the control points ci so that m(i∆t) = ci and evaluate
the now fully defined cubic spline m(t). The values λ ∗i are found
by a linear search. Figure 5 illustrates the computation of m(t).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 6

As already mentioned, it is not guaranteed that all the POIs
which were initially added to the set Pv of potentially visible POIs
are also visible in at least one map cutout M(t). Those POIs whose
corresponding map pins are not fully visible in at least one map
cutout M(t) are removed from the set Pv. The resulting set of
remaining POIs to be used in the next section is denoted as P∗.
For ease of notation, we re-index the remaining POIs in P∗ such
that P∗ = {P1, . . . ,Pn∗}.

fi-1

ci-1

ci=m(i∆t)

ci+1
ci+2

fi=p(i∆t)

fi+1

fi+2p(t)

m(t)

ni

M(i∆t)

Fig. 5: Computation of the map cutout path m(t) whose purpose is
to emphasize interesting regions in the environment of p(t) during
the dynamic visualization.

6 DETAIL LENS PLACEMENT

With the computed paths p(t) and m(t) at hand, we can already
present a dynamic visualization to the user that emphasizes regions
of high POI density by shifting the midpoint of the viewport
corresponding to the current map cutout towards those regions,
while at the same time making sure the user position remains
visible. This visualization, however, does not give any information
about the POIs (e.g. name, category, rating), which is important to
give the user a clue whether or not the POIs should be visited.

We therefore enhance this visualization with rectangular enti-
ties which we call detail lenses. Each POI corresponds to exactly
one detail lens, which – in our implementation – contains the name
of the POI as well as a photo and a rating value. Technically,
we cast the problem as an optimization task based on a binary
integer program (BIP). The goal is to find a dynamic layout in
which the detail lenses are positioned as close as possible to the
corresponding POIs, occlusions of important areas are avoided,
and the time span in which the information is visible is maximized.

6.1 Path Discretization
To simplify the optimization approach for the detail-lens place-
ment, we discretize the path m(t) by splitting it into consecutive
parts of equal arc length. We usually choose this arc length to be
about 40 meters and denote the resulting sequence of nodes along
the curve m(t) as M =

(
m(0) = m1, . . . ,mnM = m(1)

)
with

corresponding map cutouts
(
M(0) = M1, . . . ,MnM = M(1)

)
. We

further evaluate the parameter values tmτ
such that mτ = m(tmτ

)
and refer to the index τ as the frame number (or shortly just frame)
in the discrete optimization. τmax = nM is the last frame.

6.2 Cell Domain
To allow an easier and structured placement of detail lenses, we
follow the design guidelines of recent work (see [15] and [24])
and partition the map into a 2d Cartesian grid and choose the side
length of the cells so that a small integer number of cells results

in well-visible detail lenses. We identified a value of about 40
meters to deliver good results. To keep the following optimization
problem as compact as possible, we do not consider an infinite
extent of the Cartesian grid but identify the set of those cells that
are relevant to the visualization. To this end, we first identify the
rectangular blocks of connected cells that are completely visible
inside each discretized map cutout Mτ , which we denote by Cτ . We
further denote the x- and y-coordinate of one particular cell c as xc
and yc respectively. The whole cell domain consisting of the union
of all visible cells considered in the optimization is denoted by C
(cf. Figure 2).

6.3 Detail Lenses
After the cell domain has been identified, we choose a layout for
the detail lenses that allows an easy match to the structure of the 2d
Cartesian grid. To this end, we restrict the detail lenses to have a
side length that corresponds to an integer multiple of cells. We call
WL and HL to the number of cells along the horizontal and vertical
axis respectively. Usually, we use square detail lenses by defining
their size to be 2 cells both along the horizontal and vertical axis
(WL = HL = 2). In combination with our standard values for the
cell size (40m by 40m) and a zoom level of 0.694 meters per
logical pixel, this yields a visible side length on the iPhone 6+
of about 20mm, which we found to be a good trade-off between
readability and space consumption. We also evaluated our design
choice in a user study (cf. Section 9.3).

We create one detail lens Li for each Pi ∈ P∗. The placement of
a lens Li at a grid cell c ∈C with coordinates (xc,yc), also written
as Li(xc,yc), is defined so that the lower left corner of Li coincides
with the lower left corner of the cell c.

6.4 Binary Integer Program
We formulate the problem of optimized detail lens placement
as a binary integer program. Our design choice to use integer
programming is mainly motivated by similar arguments as were
presented in Section 4.3. We introduce a set of binary variables
vτ,i,xc,yc , where vτ,i,xc,yc = 1 when the detail lens Li is visible at
frame τ and placed at grid cell c and vτ,i,xc,yc = 0 otherwise.

We further formulate the objective function as

max
vτ,i,xc ,yc

τmax

∑
τ=1

n∗

∑
i=1

∑
c∈C

qτ,i,xc,yc vτ,i,xc,yc

where qτ,i,xc,yc is the quality value (the higher, the better) for
placing the detail lens Li at frame τ at cell c. We follow approved
guidelines proposed in [9] and intend to place detail lenses close
to their corresponding POIs, but avoid obstructing important map
detail. For this, we define the quality value as

qτ,i,xc,yc = d(Li(xc,yc),Pi)
−1(1−o(Li(xc,yc)))

e

where d(Li(xc,yc),Pi) is the Euclidean distance between the
midpoint of Li placed at grid cell c and the POI Pi, both in meters
with respect to the Mercator-projected map, and o(Li(xc,yc)) is
a function returning a value ∈ [0,1] referring to the amount of
occlusion of important map content when Li is placed at cell c.
With important map content we refer to roads which are crucial
for navigation and emphasize the penalization of the occlusion of
such areas by introducing the exponent e, which we usually set to
10. We refer the interested reader to the supplementary materials
to obtain details how to compute o(Li(xc,yc)).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 7

In order to enhance the performance of the process of finding
a solution, we exclude all variables from the definition of the
BIP which are known to be 0. In detail, we exclude variables
that would lead to an overlap of important information (pedestrian
position pin or POI pin) by a lens and variables that would lead
to a placement of detail lenses which are (partially) outside of
the screen. For all the presented results we rigorously make use
of variable exclusion since we observed a significant performance
boost when the number of variables was kept as low as possible.

6.5 Hard Constraints

We introduce the following hard constraints for our optimization
problem. Notice that some variables which are referenced in the
definition of the hard constraints may not exist due to the variable
exclusion. Those variables are then simply ignored.
C1: Each detail lens Li is shown at most once at a time.

∑
c∈C

vτ,i,xc,yc ≤ 1; τ ∈ [1,τmax] ; i ∈
[
1,n∗

]
C2: No two detail lenses may overlap.

n∗

∑
i=1

xc

∑
x=xc−WL+1

yc

∑
y=yc−WL+1

vτ,i,x,y ≤ 1

τ ∈ [1,τmax] ; c ∈Cτ

With the ∑
τmax
τ=1 |Cτ | hard constraints of type C2 we avoid an

overlap of any pair of detail lenses. This goal is achieved by
allowing at most one variable vτ,i,xc,yc that is affecting a grid
cell c at frame τ to be 1. Note that it is not sufficient to restrict
only the variables directly referring to c, since lenses which
are bigger than 1×1 can affect a grid cell also when they are
placed in a neighbor cell. Therefore we have to restrict the
whole area of neighbor cells in which a placement of a lens
Li would occupy the grid cell c.

C3: To avoid jumps between different positions, each detail lens
is shown at just one position on the map.

τmax

∑
τ ′=τ+1

∑
c′∈C\c

vτ ′,i,xc′ ,yc′
−M · (1− vτ,i,xc,yc)≤ 0

M = τmax · |C|; τ ∈ [1,τmax−1] ; i ∈
[
1,n∗

]
; c ∈C

With the (τmax− 1) · n∗ · |C| hard constraints of type C3 we
ensure that if a detail lens Li is shown at frame τ at cell c,
thereby setting vτ,i,xc,yc = 1, it is restricted to stay at c and
can therefore not be shown at any cell c′ ∈C\c for any future
frame τ ′. For this definition we introduce a big constant M
that helps us to achieve the desired goal: When a detail lens
Li is shown at frame τ at cell c, thereby setting vτ,i,xc,yc = 1,
the term including M becomes 0, thereby forcing all the other
variables in the sum to be 0 in order to meet the constraint.
When vτ,i,xc,yc = 0, the constraint is always met.

C4: To avoid any flickering artifacts caused by permanent ap-
pearance and disappearance, each detail lens is shown in
just one contiguous block of frames. To meet this constraint,
we have to introduce a set of new binary variables dτ,i,xc,yc ,
which represent the absolute value of differences between
neighboring variables vτ,i,xc,yc and vτ−1,i,xc,yc with respect to
the time axis. Further, we have to introduce the following
constraints to the BIP:

vτ−1,i,xc,yc − vτ,i,xc,yc ≤ dτ,i,xc,yc ≥ vτ,i,xc,yc − vτ−1,i,xc,yc

i ∈
[
1,n∗

]
;τ ∈ [2,τmax] ;c ∈C

With these new variables at hand, we can introduce the actual
constraints. A more detailed derivation of the hard constraints
of type C4 are given in the supplementary material.

v1,i,xc,yc +
τmax

∑
τ=2

dτ,i,xc,yc + vτmax,i,xc,yc = 2

i ∈
[
1,n∗

]
; c ∈C

The BIP can be solved using the presented hard constraints in
order to get a satisfactory result for the placement of the detail
lenses. We can however accelerate our approach significantly by
the introduction of two strategies which will be presented in the
next two sections.

6.6 BIP Simplification

Although the goals of all the presented hard constraints are needed
to get the desired result, it is possible to simplify the whole binary
integer program by merging the majority of the constraints. In
detail, it is possible to merge the hard constraints C1, C3, and C4:

∑
c∈C

(
v1,i,xc,yc +

τmax

∑
τ=2

dτ,i,xc,yc + vτ,i,xc,yc

)
= 2; i ∈

[
1,n∗

]
The merge arises from the hard constraints C4 by defining

one constraint for a detail lens Li not per grid cell c, but to have
just one constraint per detail lens by taking the sum over all the
left-hand sides of C4 corresponding to Li, and keeping the result
on the right-hand side of the equation to be 2. A proof of the
equivalence of the individual and merged constraints is given in
the supplementary material.

Note that merging the hard constraints of type C1, C3, and C4
does not influence the complexity of the problem or the accuracy
of the solutions. However, we could observe a significant boost
concerning the runtime and therefore present all the timings in
this paper with respect to the merged definition.

6.7 Incremental Approach

There is still room for improvement since we can divide the
whole problem into a sequence of small problems with boundary
constraints. This not only decreases the computation time for
the whole problem, it is further possible to present solutions of
subproblems to the user before all subproblems are solved. The
division into subproblems particularly makes sense if not the
whole solution is needed immediately, but it is sufficient to provide
a partial solution corresponding to the beginning of the path first,
and then to gradually provide solutions to the following parts.

We use an incremental approach and start with a subdivision
of the sequence of nodes M into a sequence of nI subsequences
of nodes

MnI = ((m1, . . . ,mK1),(mK1 , . . . ,mK2), . . . ,(mKnI−1 , . . . ,mτmax))

such that the last node in each subsequence is the first node in
the next subsequence and denote the indices K1 to KnI−1 to be the
key frames. Usually, we choose the number of subsequences nI to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 8

be about 4 to 8 and the key frames such that the number of nodes
in each subsequence is approximately the same.

Then we initially create a BIP, which we denote as BIP1,
similar to the definition proposed in Section 6.4, but only include
variables and hard constraints which correspond to the frames
τ ∈ [1,K1]. The solution, which can be evaluated much faster due
to the smaller complexity of BIP1, can then be directly presented
to the user. While this part is visualized, we create and solve BIP2
for the second part corresponding to frames τ ∈ [K1,K2]. This
process is then continued until a solution for BIPnI for the last
part corresponding to the frames τ ∈

[
KnI−1,τmax

]
is found.

Since the end of one part and the beginning of the next part
must perfectly fit in order to avoid any visualization artifacts in the
transition, we have to introduce a few more hard constraints for
all BIPk with k > 1 to get a smooth transition between the results
of two consecutive binary integer programs BIPk and BIPk+1:
C5: If Li is visible in the last frame of BIPk, due to the one-frame-

overlap it must be visible in the first frame of BIPk+1.

if vKk ,i,xc,yc = 1 in BIPk

then vKk ,i,xc,yc = 1 in BIPk+1

k ∈ [1,nI−1] ; i ∈
[
1,n∗

]
;c ∈C

Note that this is not an informal description of a hard
constraint including an if-statement, since this constraint is
set for BIPk+1 depending on the outcome of BIPk.

C6: If a detail lens Li is not visible in the last frame of BIPk but
was already visible in any frame of any BIP j for 1 ≤ j ≤ k,
then it will remain invisible for all BIP j for j > k.

if vKk ,i,xc,yc = 0 in BIPk and ∃τ ≤ Kk−1
∣∣vτ,i,xc,yc = 1

then vτ,i,xc,yc = 0 in BIP j for j > k and τ > Kk

k ∈ [1,nI−1] ; i ∈
[
1,n∗

]
;c ∈C

6.8 Process of finding a Solution
Again, we solve the optimization problem of placing the detail
lenses using the Gurobi library (cf. Section 4.4). When a solution
for the BIP is found, the resulting layout ensures that each detail
lens Li is shown as long as possible and as close as possible to
its corresponding POI Pi, thereby avoiding any mutual overlaps or
occlusions of any map pins.

7 VISUALIZATION

In our current implementation, we number the map pins w.r.t.
the appearance time of the corresponding lenses and always fade
in and fade out each corresponding pair (map pin and lens)
simultaneously. However, in the future we want to explore the
impact of different numbering orders, e.g. according to geographic
coordinates or in the chronological order in which the POI posi-
tions get visible.

For the final visualization, the viewport defined by the map
cutout layout follows the path m(t), while the user position is
shown at p(t) using a standard map pin. The parameter t is either
defined by the real position of the user who follows the path p(t),
or it is automatically increased by our system according to a user-
chosen speed function s(t). In our experiments we usually choose
a constant speed function s(t) = c to resemble a uniform walking
speed (e.g., c = 5 m

s). However, our framework could be easily
extended to allow non-uniform speed functions s(t) that allow a
slow-down in interesting regions and a speed-up in sparse regions.

To visualize the detail lenses, the values of the binary variables
as they are delivered by the BIP are taken into account. Let
Li be a detail lens whose visibility at grid cell c is evaluated
between frames τ and τ + 1. The trivial case is when both
vτ,i,xc,yc = vτ+1,i,xc,yc = 1, which implies that Li is visible in the pa-
rameter interval

[
tmτ

, tmτ+1

]
. When vτ,i,xc,yc = 0 and vτ+1,i,xc,yc = 1,

the detail lens Li changes its state from invisible at tmτ
to visible

at tmτ+1 . We use a simple linear interpolation between according
values of the alpha channel or scale factors 0 and 1 to get a
smooth transition between the visibility states, but to avoid any
overlaps with any other lenses, we usually start the transition not
at tmτ

but at
tmτ +tmτ+1

2 . For similar reasons we finish the transition
at

tmτ +tmτ+1
2 if a detail lens Li changes its state from visible at

tmτ
to invisible at tmτ+1 . However, in a post-processing step we

check if the time span of visibility can be increased without
introducing any overlaps, and perform an early fade-in between
tmτ

and
tmτ +tmτ+1

2 and a late fade-out between
tmτ +tmτ+1

2 and tmτ+1

whenever this is possible.
Figure 6 shows a small example of a visualization and how

the transition of visibility states allows the utilization of the
chronological dimension to better exploit available map space and
to avoid visible overlaps. The example shows the detail lenses L23
and L26 that would partially overlap if they would not be shown
after each other.

Fig. 6: By showing detail lenses in different periods of time, our
visualizations utilize the chronological dimension to better exploit
available map space. In this example, the detail lens L23 is shown
first (left), but then disappears while at the same time the lens L26
appears (middle). After this transition, only L26 is shown (right).

We further analyzed the situation of a user that does not follow
the path that was computed by our system but decides to choose a
road segment into a different direction. This would require some
kind of re-routing by a new call of our system with the chosen
road segment as an initial constraint. Since this would however not
implicate any new technical problems which are not considered in
our framework, we did not further investigate this issue.

7.1 User Interaction

One of the general principles for standard map labeling addresses
the problem of how to make it easier for users to recognize
the labels for certain features in the map [9]. While these
guidelines mainly focus on the distance and relative orientation
between labels and features, other presented methods address
this correspondence problem by using line segments to connect
the corresponding objects [22], [27]. To avoid visual clutter, we
desist from using such line segments but leverage the interactive
component of our system to emphasize corresponding pairs of
information. In detail, the user can easily find a detail lens for a
particular map pin or vice versa a map pin for a detail lens by
hovering with a pointer above one of the corresponding items. As

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 9

a result, the opacity values of all other elements except this pair of
interest are reduced to make an identification easy. Furthermore,
the user can use a set of standard interface elements to control
the speed and direction of the visualization. With these controls
it is also possible to pause the animation to explore a static view
in more detail (cf. Figure 7 middle and right). If the user wants
to have more detailed information about a POI, he can click on a
detail lens to be presented with a more detailed view (cf. Figure 1).

Fig. 7: (left) Re-implemented functionality of Yelp in our frame-
work showing a detail lens when the corresponding map pin is
clicked. (middle) Similar view but with our proposed visualization
and visible control elements. (right) To easily recognize corre-
sponding map pins and detail lenses the user can hover over one
of the elements to reduce the opacity of all other elements.

8 IMPLEMENTATION

The current prototype of our framework is implemented with
XAML and WPF in C#. In order to allow a pixel-accurate
visualization on a PC monitor as it would be performed on a
screen of a mobile device, we use the high-PPI map tiles of
Bing Maps, which are designed for devices like smartphones and
tablets. Further, we choose an area on the PC monitor for the
visualization that exactly resembles the logical resolution of the
corresponding mobile device.

The vector-based map data that we need to extract the route
segments is obtained from the OpenStreetMap (OSM) database.
All data about the points of interest is queried from YELP.

For the future, we want to port our framework to completely
run on mobile devices and to replace the prototypic control
elements discussed in Section 7.1 by intuitive gestures. We do
not expect any performance issues since we plan to install Gurobi
on a server, which is then called by its mobile clients.

9 EVALUATION

9.1 Path Computation
We compared our approach for the path computation with several
recently proposed methods. In detail, we compared to Mooney
and Winstanley [8], Lu et al. [3] and Kachkaev and Wood [6]
since they propose competing approaches to find a high-quality
path. We tested all algorithms on a small toy example (cf. Figure
8) as well as in a real street network. The toy example represents
a small graph consisting of five nodes and six edges, each having
a distance value δ and quality value q assigned. Note that this

d=1
q=3

d=3
q=3

d=1
q=3

d=1
q=5

d=1
q=4d=1

q=4

D

A

C

B

E D

A

C

B

E D

A

C

B

E
Input Graph Lu et al. [2010] Our approach

(optimal solution)
s=D d=E dmax=4 d(p)=2 q(p)=8 d(p)=4 q(p)=14

d=1
q=3

d=1
q=5

d=1
q=3

d=1
q=3

d=1
q=4d=1

q=4

Fig. 8: (left) Toy example to demonstrate the performance of
different path computation algorithms. (middle) The method from
Lu et al. [3] only finds a suboptimal solution due to disrespect of
the suboptimal partial solution for δmax = 2 from D to B via A
which is however part of the optimal solution (right) for δmax = 4
from D to E that is successfully found by our approach.

differs from the problem definition stated in Section 4.3 where the
quality values were assigned to the vertices. However, we choose
this definition here to be consistent with the other methods. Further
note that the toy example does not claim to be a representative
small-scale model of a real street network but is only used
to give the reader an impression of the shortcomings of the
competing algorithms. The real street network in our comparison
corresponds to our Vienna dataset shown in Figure 2. We tested
the performance of all approaches for computing a high-quality
path between two preselected nodes given a maximum walking
distance δmax.

Surprisingly, the dynamic programming approach of Lu et al.
[3] does not produce competitive results, despite its very high
running time and memory consumption. We illustrate the problem
in Figure 8. Since their method only stores the path with highest
quality between all node pairs, it misses the sub-optimal sub-path
D−A−B which is however part of the optimal solution. We also
observe poor performance in our real-life scenario, particularly
for maximum walking distances that are only slightly longer than
the shortest path. Moreover, due to the high complexity level we
observed runtimes taking several hours with a directly proportional
relation between maximum path length and runtime (cf. Figure 9).

The approach of Kachkaev and Wood [6] leverages Dijkstra’s
shortest path algorithm in an iterative manner with special edge
weights to find a high-quality path. The heuristic is fast, but it also
does not perform as well as expected. In particular, our results in
Figure 9 reveal that the heuristic does not work for long maximum
walking distances. In addition, the method also fails on our toy
example in Figure 8.

The only approach beside ours that was able to find the optimal
solution in our toy example is the one proposed by Mooney and
Winstanley [8]. Their method is based on an evolutionary algo-
rithm that produces a predefined number of generations of feasible
solutions. Each generation evolves from applying a mutation and
crossover operator to the previous generation together with the
best solutions found by random walk. The approach is able to find
the optimal solution in the toy example. Also in a realistic scenario
their approach finds paths of good quality. However, we could
observe a bad runtime performance for short maximum walking
distances (cf. Figure 9). The main problem here is that it is difficult
to find a path by random walk that meets very strict maximum
walking distance constraints specified by the user.

As can be seen in Figures 8 and 9, our approach is the only one
that always finds the optimal solution in a reasonable time (< 5s),
making it suitable for the real-time requirement of our setup.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 10

10

20

30

40

50

60

70

80

Q
u

al
it

y

Shortest Path Mooney and Winstanley [2006] Lu et al. [2010]

Kachkaev and Wood [2014] Our Approach

0.1

1

10

100

1000

10000

100000

C
o

m
p

u
ta

ti
o

n
 T

im
e

[s
]

5 seconds

1400

1500

1600

1700

1800

1900

2000

2100

2200

Pa
th

 L
en

gt
h

 [
m

]
Max.

Fig. 9: Comparison of our path computation approach with several
recently proposed methods. The horizontal axis corresponds to the
maximum walking distance in relation to the shortest path.

The only approach that was faster than ours is the Dijkstra-based
method from Kachkaev and Wood [6], which is however very
limited in finding high-quality paths for large maximum distances.
In summary, our BIP-approach performs superior in comparison
to recently proposed methods used for computation of high-
quality paths. We refer the interested reader to the supplementary
materials for more details about the competing methods.

9.2 Detail Lens Placement
To evaluate our method for detail lens placement, we carried out a
user study in which we tested the preference of users for different
methods for presenting information about points of interest in
visualizations similar to ours. To this end, we showed pairs of
short videos, with each video in a pair showing a method different
from the other, to 32 participants in an online test and asked them
which method they would prefer if they were using it as a guide in
an unfamiliar city. We used our framework to generate results for
three different paths in three different cities and arbitrarily chose
London, New York and Vienna for this purpose. For every path we
queried 100 POIs in the environment of the path origin and used
our methods for path computation and map cutout optimization.
Since the goal of the user study was to test the preference for
different methods for presenting information about POIs, we used
five different methods for the detail lens placement:

1) Complete optimized placement (cf. Section 6).
2) Incremental placement with 4 parts (cf. Section 6.7).
3) Incremental placement with 8 parts (cf. Section 6.7).
4) Naı̈ve placement per frame without temporal coherence. To

this end a BIP is solved independently for each frame,
without caring about the transition between the results of two
consecutive BIPs.

5) Complete optimized placement in screen space.
We used modified versions of our approach to have a basis

for comparison. For method (5), we used our approach as it was

described in Section 6 but did not use a discrete grid in the map,
but partitioned the screen into as-square-as-possible sized cells
which best resembled the visible cell size of the other solutions.
In contrast to the other solutions, the detail lenses do not move
during the visualization when they are placed in screen space but
stay on a fixed position on the screen. With “frames” for method
(4) we refer to the finite number of map cutouts along m(t).

Altogether we generated 15 results (3 paths × 5 methods
for detail lens placement) and extracted 3 10-second long video
sequences corresponding to 3 non-overlapping path segments
from each result, yielding 45 video sequences. We restricted the
comparable pairs of video sequences to those which belong to the
same path segment, resulting in 3×3×

(5
2

)
= 90 comparable pairs.

To keep the time span per user in an adequate range, we reduced
the number of pairs which were shown to each participant to 50.
These 50 samples were chosen randomly, but in order to avoid
favoring any of the algorithms, we ensured that each algorithm
was presented equally often to each participant.

The results of each participant k were translated into an
off-diagonal 5× 5 matrix Mk with entries Mk

i j corresponding to
the number of times method j was preferred to method i. By
summing up the columns, we identified the number of points
which were distributed to the methods by the participants. The
point distributions of all 32 participants were then merged and
analyzed by performing an ANOVA whose outcome was used to
perform Tukey’s honest significance test.

As shown in Fig. 10, our method is preferred significantly
by the participants to a screen-space solution and a naı̈ve per-
frame solution. Although there is a noticeable trend that the quality
of the result decreases proportionally with the number of parts
in the incremental approach, we could not identify a significant
acceptance drop for 4 and 8 parts. This in turn means that one
can use the incremental approach with 8 parts to get a reasonable
result in 10% of the time (cf. Fig. 13).

2 4 6 8 10 12 14 16

Screenspace

Per Frame

8 Parts

4 Parts

Complete

Points

Fig. 10: Results of our user study with 32 participants. Our method
is preferred significantly by the users to a screen space solution
and a naı̈ve solution in which the detail lenses are positioned
without temporal coherence per frame. The orange dots with the
connected lines show mean and standard errors of points the users
assigned to the methods. The gray bars show non-overlapping
point intervals and therefore significant difference.

9.3 Usability Test and Comparison
In order to evaluate the usability of our system, we performed
another user study whose aim was

1) to see if our method appeals to users and
2) to compare it to an existing method that is widely used to

perform similar exploration tasks.
To this end we asked the participants to use both our and the

existing method to perform several predefined exploration tasks.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 11

Due to its success with over 10 million downloads, very positive
reviews (4.5 of 5 stars at Google Play) and a growing community
we chose the functionalities of the Yelp app to represent the
current state of the art. In order to allow an unbiased comparison
we did not use the Yelp app directly, but re-implemented its
functionality into our framework. This allowed us to present the
same set of POIs and computed path of our system but using the
visualization techniques of Yelp. In detail, we implemented the
map view of the Yelp app that shows the queried POIs on the map
using standard map pins. In contrast to our system that shows a
precomputed animation, using Yelp the user has to click on a pin
to get information about the corresponding POI. Moreover, we did
not try to recreate the shape and appearance of the information
blocks that are displayed in the Yelp app after clicking on a pin
but used our detail lenses instead to avoid any bias caused by
a possible preference for either of the shapes (cf. Figure 7). For
easier notation, in the following we refer to the Yelp functionalities
in our framework just by using the term Yelp.

City #POIs Exploration Task

London 89 Find an Algerian café

Manhattan 74 Find a café close to the path serving
Belgian beer

Paris 32 Find a restaurant that serves Ramen

San Francisco 54 Find a restaurant with a rating of at least
4 stars that serves Pizza

TABLE 1: Cities we chose as examples in the second user
study with corresponding number of POIs and exploration tasks
containing descriptions of the requested POIs that were handed to
the participants. We measured the time the participants needed to
find the corresponding POIs for a quantitative comparison of the
methods. Figure 11 shows the results of these measurements.

We arbitrarily chose four cities as examples and computed one
path for each city. For each path we used a different number of
POIs to demonstrate the behavior of the methods for differently
complex scenarios. Furthermore, we randomly picked a POI
representing a restaurant from the environment of each path and
formulated an exploration task containing a short description of
the POI that was handed to the participants during the study (cf.
Table 1). We only used restaurants to avoid any bias caused by
any knowledge of the users about the prominent sights in the
environment of the paths. Each participant was asked to perform
the corresponding exploration task for each path using either our
system or Yelp. We measured the performance of either method by
measuring the time the participants needed to find the requested
POI and to click on the corresponding detail lens. We avoided a
preference by choosing both the order of the paths as well as the
method randomly and referred to them in an anonymous way by
calling them “Method 1” and “Method 2”. We assured that each
participant had to use each method equally often and that after n
participants n/2 would have used Yelp for one particular path and
n/2 our method. Furthermore, for both methods we initialized the
view to show the origin of the path in the middle of the screen.

Altogether we could acquire twelve participants for our second
user study, ten male and two female, all between 20 and 40 years
old. Nine of the participants were graduate students, two were
university staff and one female was a technical professional. After
the measurements we removed all outliers using Grubbs’ test un-
der the assumption of normally distributed data. For all remaining

0 s

50 s

100 s

150 s

London Manhattan Paris San Francisco

Yelp Our Method

Fig. 11: Average times and standard errors of the measurements
from our user study in which we asked the participants to find
specific POIs given an exploration task (cf. Table 1). Our method
allows the user to find a suitable POI in significantly less time than
with Yelp. Especially in environments with many POIs like in our
London example we observed a time reduction of almost 60%.

samples we computed the average values and standard errors. As
can be seen in Figure 11, using our method the participants needed
significantly less time to find a POI that matched the description
in the exploration task. Especially for complex environments with
many POIs we observed a time reduction of almost 60%. The
long average time in the London example can be explained by the
choice of the requested POI, which was harder to find than the
POIs in the other examples due to the total number of POIs in the
environment and its location in a rather late section of the path.

Questionnaire. In addition to the exploration tasks, the users
were asked to assign levels of agreements to several statements
about the used methods. The questionnaire consisted of 13 state-
ments and 6 open questions. In Figure 12, some of the statements
with corresponding answers are shown. Please refer to the supple-
mentary materials for the full evaluation of the questionnaire. As
can be clearly seen in Figure 12, 83% of the participants agree or
strongly agree that our method is easier to use than Yelp and that
it would be their preferred method if they would have to explore
a path in an unfamiliar region. Moreover, 92% of the participants
agree that our method allows to gain quick insight into the POIs
in the environment, while only 17% had this opinion about Yelp.

The open questions were used to clarify what the users most
liked or disliked in both presented methods. Many users stated
that they liked the freedom provided by Yelp but that they found
it very tedious to use it for exploration due to the intense level of
interaction. In contrast, our method was perceived as very user-
friendly and people liked that they could quickly get a feeling
about the POIs in the environment. Two aspects they did not like
about our method is the fixed zoom level and the inability to freely
move the viewport for investigation of regions which are more
distant to the path. This leads to exciting possibilities of future
work to increase the adaptiveness of our system.

10 RESULTS AND DISCUSSION

Figure 16 shows examples of our approach for several cities
using different mobile output devices. Table 2 shows the impact
of the complexity of some examples (number of variables and
constraints) on the run-time of the BIP.

In order to evaluate the impact of the number of parts in the
incremental approach, we measured the runtime of the BIPs for
detail lens placement for one particular example (San Francisco,
iPad Air 2) in which the number of parts was gradually increased.
(cf. Figure 13). With 4 parts we could decrease the overall runtime
by 76%, with 8 parts by almost 90%, and we could show in a user
study (see Section 9) that our method then still provides acceptable

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 12

0%
10%
20%
30%
40%
50%
60%

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

The proposed method is easier to use than
Yelp

20%

40%

60%

0%

20%

40%

60%

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

I would prefer the proposed method over
Yelp when exploring a path in an unfamiliar

region

0%

20%

40%

60%

80%

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

I found it easy to keep track of the path and all
POIs in the environment

Yelp Our Method

0%

20%

40%

60%

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

The method is well suited to gain a fast insight
into the POIs in the environment

Yelp Our Method

Fig. 12: The participants were asked to assign levels of agreement
to several statements. Above some of these statements plus an-
swers are shown. The answers show the significant acceptance rate
of our method: 83% agree or strongly agree both that our method
is easier to use than Yelp and that it is the preferred method for
exploring a path in an unfamiliar region.

solutions. Figure 14 shows the impact of the number of POIs,
Figure 15 the impact of the path length on the runtime.

Limitations. Currently, our approach is directed to one spe-
cific zoom level, which we consider as the main limitation. Users
can still zoom in and out, but this leads to a growing/shrinking of
detail lenses and possible visible artifacts like POI pins which get
occluded by detail lenses.

Another limitation of our approach lies in the complexity of
the binary integer program for the path computation (Section 4)
for very big problem instances. Although we can find an optimal
path for problems with a similar range to the presented results in
a few seconds, we observed a significant performance drop for
considerably larger distances (e.g. over 10 km). However, we do
not expect any usability issues since our framework is specifically
designed for pedestrians and reasonable walking distances.

121.9
91.2

52.7
38.2 32.0 27.3 23.8 20.0 19.3

91.9
62.2

29.5
16.3

10.9
8.2

5.8
4.0

3.5

220.5

60.9

30.4

13.2
7.6

5.3
3.9

3.0
2.2 1.91

10

100

1000

1 2 3 4 5 6 7 8 9 10

Se
co
nd

s

#Parts

Sum [s]

Max [s]

Mean [s]

Fig. 13: Runtime to solve the BIPs using the incremental approach
(cf. Section 6.7) depending on the number of parts the path is
segmented into. The shown numbers refer to an example with 62
POIs and 80 frames and an iPad Air 2 as the chosen output device.

11 CONCLUSION

We have presented a system for dynamic route exploration on
mobile devices. Our results give immediate guidance to a user by
presenting both routing information for an attractive path whose
environment contains many high-quality points of interest (POIs),
as well as information about those POIs by the use of detail lenses.

1024

4096

16384

65536

0,125
0,25

0,5
1
2
4

2 4 8 15 29 57

#V
ar
ia
bl
es

Se
co
nd

s

#POIs

BIP [s]
#Variables

Fig. 14: Impact of the number of POIs on the resulting run-time
and the number of variables of the BIP. The numbers refer to the
San Francisco example (80 frames) by taking only every 2n-th
queried POI of P for 5≥ n≥ 0 along the longitudinal direction.

1
4
16
64
256
1024
4096
16384

0,016
0,031
0,063
0,125
0,250
0,500
1,000
2,000

#V
ar

ia
bl

es

Se
co

nd
s

Path Length

BIP [s]
#Variables

Fig. 15: Impact of the path length on the resulting run-time and
the number of variables of the BIP. The numbers refer to the
San Francisco example with 15 equally distributed POIs along
the middle 100/2n% of the original path for 5≥ n≥ 0.

In addition, we contribute an algorithm for optimizing the map
cutouts which correspond to the viewports in the final visualization
that is presented to the user. Moreover, we introduce a novel layout
algorithm that computes a dynamic layout of rectangular entities
in a discrete grid under specific constraints and present the results
of a study that shows the significant acceptance rate of our method.

For future work, we want to extend the functionality of or
framework. We think of a multi-layer approach in order to allow
a visualization on different zoom levels and smooth transitions
between the layers.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful suggestions, Michael
Hecher for valuable comments on the user study, Christian Hafner
for discussions and proofreading, and all participants of the user
studies for their time and patience. This work was funded by the
FWF, project numbers P23237-N23 and P27972-N31.

REFERENCES

[1] J. R. Akerman, Cartographies of travel and navigation. University of
Chicago Press, 2006.

[2] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[3] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zhang, “Photo2Trip:

generating travel routes from geo-tagged photos for trip planning,” Mm,
pp. 143–152, 2010.

[4] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura, “Travel route rec-
ommendation using geotags in photo sharing sites,” Proceedings of
the 19th ACM international conference on Information and knowledge
management, pp. 579–588, 2010.

[5] ——, “Travel route recommendation using geotagged photos,” Knowl-
edge and Information Systems, vol. 37, no. 1, pp. 37–60, 2013.

[6] A. Kachkaev and J. Wood, “Automated planning of leisure walks based
on crowd-sourced photographic content.” Paper presented at the 46th
Annual Universities’ Transport Study Group Conference, 06-01-2014 -
08-01-2014, Newcastle, UK., no. January, pp. 227–246, 2014.

[7] F. Grabler, M. Agrawala, R. W. Sumner, and M. Pauly, “Automatic
generation of tourist maps,” ACM Transactions on Graphics, vol. 27,
no. 3, p. 1, aug 2008.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 13

iPhone 6 Plus iPad Air 2

Example #POIs #Frames #Variables #Constr. Time [s] #POIs #Frames #Variables #Constr. Time [s]
London 40 56 20442 1311 0.582 64 55 302499 8492 84.923

New York 43 67 34544 2511 1.776 74 79 360866 12229 170.401
Paris 20 98 24797 3663 0.909 41 160 297518 24087 107.351

San Francisco 58 78 32740 2878 0.843 62 80 362088 14102 220.539
Vienna 59 62 36145 1946 0.948 83 61 395288 8882 152.553

TABLE 2: Quantitative results for five different cities and two differently sized mobile devices. All numbers refer to a complete
(non-incremental) solution. Note that the number of variables involved in the BIP for optimized detail-lens placement is an order of
magnitude bigger for the iPad than for the iPhone, while the corresponding time to solve the BIP differs in 2 orders of magnitude.

[8] P. Mooney and A. Winstanley, “An evolutionary algorithm for multicrite-
ria path optimization problems,” International Journal of Geographical
Information Science, vol. 20, no. 4, pp. 401–423, 2006.

[9] E. Imhof, “Positioning names on maps,” The American Cartographer,
vol. 2, no. 2, pp. 128–144, 1975.

[10] S. A. Hirsch, “An algorithm for automatic name placement around point
data,” The American Cartographer, vol. 9, no. 1, pp. 5–17, 1982.

[11] S. Edmondson, J. Christensen, J. Marks, and S. Shieber, “A General
Cartographic Labelling Algorithm,” Cartographica: The International
Journal for Geographic Information and Geovisualization, vol. 33, no. 4,
pp. 13–24, dec 1996.

[12] J. Christensen, J. Marks, and S. Shieber, “An empirical study of
algorithms for point-feature label placement,” ACM Transactions on
Graphics, vol. 14, no. 3, pp. 203–232, jul 1995.

[13] S. Zoraster, “Integer programming applied to the map label placement
problem,” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 23, no. 3, pp. 16–27, 1986.

[14] ——, “The solution of large 0–1 integer programming problems encoun-
tered in automated cartography,” Operations Research, vol. 38, no. 5, pp.
752–759, 1990.

[15] M. Birsak, P. Musialski, P. Wonka, and M. Wimmer, “Automatic genera-
tion of tourist brochures,” Computer Graphics Forum, vol. 33, no. 2, pp.
449–458, 2014.

[16] M. Agrawala and C. Stolte, “Rendering effective route maps,” in Pro-
ceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’01. New York, USA: ACM Press,
aug 2001, pp. 241–249.

[17] J. Kopf, M. Agrawala, D. Bargeron, D. Salesin, and M. Cohen, “Auto-
matic generation of destination maps,” ACM Transactions on Graphics,
vol. 29, no. 6, p. 1, 2010.

[18] P. Karnick, D. Cline, S. Jeschke, A. Razdan, and P. Wonka, “Route
visualization using detail lenses.” IEEE transactions on visualization and
computer graphics, vol. 16, no. 2, pp. 235–47, jan 2010.

[19] Y.-T. Zheng, S. Yan, Z.-J. Zha, Y. Li, X. Zhou, T.-S. Chua, and R. Jain,
“GPSView,” ACM Transactions on Multimedia Computing, Communica-
tions, and Applications, vol. 9, no. 1, pp. 1–18, 2013.

[20] K. Been, E. Daiches, and C. Yap, “Dynamic map labeling.” IEEE
transactions on visualization and computer graphics, vol. 12, no. 5, pp.
773–80, jan 2006.

[21] T. Götzelmann, K. Hartmann, and T. Strothotte, “Agent-Based Annota-
tion of Interactive 3D Visualizations,” in 6th International Symposium on
Smart Graphics. Springer Verlag, 2006, pp. 24–35.

[22] J.-D. Fekete and C. Plaisant, “Excentric labeling,” in Proceedings of the
SIGCHI conference on Human factors in computing systems the CHI is
the limit - CHI ’99. New York, USA: ACM Press, 1999, pp. 512–519.

[23] L. Chittaro, “Visualizing information on mobile devices,” Computer,
vol. 39, no. 3, pp. 40–45, 2006.

[24] M. A. Rylov and A. W. Reimer, “Improving label placement quality by
considering basemap detail with a raster-based approach,” GeoInformat-
ica, vol. 19, no. 3, pp. 463–486, jul 2014.

[25] F. Wang, Y. Li, D. Sakamoto, and T. Igarashi, “Hierarchical route
maps for efficient navigation,” in Proceedings of the 19th international
conference on Intelligent User Interfaces - IUI ’14. New York, New
York, USA: ACM Press, feb 2014, pp. 169–178.

[26] A. J. Orman and H. P. Williams, Optimisation, Econometric and Finan-
cial Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, ch.
A Survey o, pp. 91–104.

[27] M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff, “Boundary
labeling: Models and efficient algorithms for rectangular maps,” Compu-
tational Geometry, vol. 36, no. 3, pp. 215–236, apr 2007.

Michael Birsak is a doctoral researcher at the
Institute of Computer Graphics and Algorithms of
the Vienna University of Technology. He received
an MSc degree in computer science from the
Vienna University of Technology in 2012. His
current research interests include Geospatial Vi-
sualization, Discrete Optimization and Fabrica-
tion.

Przemyslaw Musialski is with TU Wien where
he is senior research associate at the Insti-
tute of Discrete Mathematics and Geometry, and
member of the Center for Geometry and Com-
putational Design (GCD) where he heads the
Computational Fabrication group. He obtained
the MSc degree in 2007 from the Bauhaus Uni-
versity Weimar, Germany, and the PhD degree
in 2010 from the TU Wien, Austria. From 2011
till 2012 he was postdoc at the Arizona State
University, AZ, USA.

Peter Wonka received an MS degree in urban
planning and the doctorate in computer science
from the Vienna University of Technology. He is
currently with King Abdullah University of Sci-
ence and Technology (KAUST). Prior to coming
to KAUST, he was an Assoc.Prof. at the Arizona
State University. His research interests include
various topics in Computer Graphics, Visualiza-
tion, and Image Processing. He is a member of
the IEEE.

Michael Wimmer is an associate professor at
the Institute of Computer Graphics and Algo-
rithms of the Vienna University of Technology,
where he received an M.Sc. in 1997 and a
Ph.D. in 2001. His current research interests are
real-time rendering, point-based rendering and
procedural modeling. He has coauthored many
papers in these fields, and was papers co-chair
of EGSR 2008 and Pacific Graphics 2012, and
is associate editor of Computers & Graphics.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 14

Lo
nd

on
Pa

ris
Sa

n
Fr

an
ci

sc
o

p(t) and m(t) Detail Lens Placement

Fig. 16: Results of our framework. (left) Overview of the example areas with the queried set of POIs P and the computed paths p(t)
(black) and m(t) (dark orange). The sum of the mixture of POI Gaussians, indicating the POI distribution, is outlined by a heat-map.
(middle) The computed positions of the detail lenses. Note that the overlaps do not occur in the final visualization due to placement in
different time spans. (right) Example views of the final visualization for different mobile devices (iPhone 6 Plus and iPad Air 2).

