
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Radian: Visual Exploration of Traceroutes
Massimo Candela, Marco Di Bartolomeo, Giuseppe Di Battista, and Claudio Squarcella

Abstract—There are several projects that deploy probes in the Internet. Probes are systems that continuously perform traceroutes and
other networking measurements (e.g. ping) towards selected targets. The collected measurement data are stored and then studied to
gain knowledge on several aspects of the Internet. The need to understand such a huge amount of data requires suitable exploration
and visualization methods and tools. We present Radian, a tool for the visualization of traceroute paths collected by the Internet probes
deployed by measurement projects. Radian allows to visualize traceroute paths at different levels of detail and to animate their evolution
during a selected time interval. Radian has been extensively tested on traceroutes performed by RIPE Atlas [1] Internet probes.

Index Terms—Computer Society, IEEE, IEEEtran, journal, LATEX, paper, template.

F

1 INTRODUCTION

THERE are several organizations that distribute probes in
the Internet with the aim of monitoring the status of

the network and of measuring its performance. A probe
is a typically unattended device that periodically executes
popular network commands like ping, traceroute, etc. to-
wards selected targets. A few examples of such organiza-
tions follow. SamKnows [3] probes (tens of thousands) are
distributed world-wide to get broadband performance data
for consumers, governments, and Internet Service Providers
(ISPs). BISmark [4] uses probes for measuring the perfor-
mance of ISPs. RIPE Atlas [1] is an open project of RIPE-
NCC whose probes (almost ten thousands) can be used by
anyone willing to host a RIPE Atlas probe to conduct cus-
tomised measurements. MisuraInternet [5] is a probe-based
project of the Italian Authority for Telecommunications that
measures the quality of broadband access. Other notable
examples are CAIDA Ark [6] and M-Lab [7]. Organizations
providing systems of probes store the results of measures
into huge repositories of data, which are hard to analyze
without some visualization facility. This is especially evident
for traceroute data, which combine topological and perfor-
mance information. Traceroute is one of the most popular
computer network diagnostic tools and is probably the
simplest tool that can be used to gain some knowledge on
the Internet topology. It can be executed to get the path of
routers (traceroute path) traversed to reach an IP.

In this paper we present a tool, called Radian, for the
visualization of traceroute data collected by a system of
probes. The requirements of Radian were gathered inter-
acting with several ISPs, within the Leone FP7 EC Project.
Radian works as follows. The user selects a set S of probes of

• M. Candela is with RIPE NCC, Amsterdam, Netherlands.
E-mail: m.candela@ripe.net

• M. Di Bartolomeo and G. Di Battista are with the Department of
Engineering, Roma Tre University, Italy.
E-mail: giuseppe.dibattista@uniroma3.it, dibartolomeo@dia.uniroma3.it

• C. Squarcella is with ThousandEys, Inc. San Francisco, CA, USA.
E-mail: claudio@thousandeyes.com

Partially supported by the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) grant no. 317647 (Leone). We thank RIPE NCC for
collaborating to the development of the graph animation framework used in
this work. A preliminary version of this paper appeared in [2]

Fig. 1. The main interface of Radian.

a certain Internet measurement project (all the experiments
described in this paper were performed using RIPE Atlas [1]
probes), a target IP address τ , and a time interval T , and
obtains a visualization of how the traceroutes issued by the
probes in S reach τ during T . A snapshot of Radian is in
Fig. 1. Also, a demo of the tool is available at [8]. Our tool
contributes to the state of the art with: 1) a metaphor for
visualizing the dynamics of Internet routing as captured by
traceroutes; 2) the use of Autonomous Systems for allowing
the user to simplify the visualization; and 3) new algorithms
tailored for traceroute data.

The paper is organized as follows. Section 2 describes the
scenario that originated Radian. In Section 3 we discuss how
our contribution relates with the state of the art. Section 4
introduces basic terminology. In Section 5 we present an
analysis of the data of interest, whose results influenced
the design of our tool. Section 6 describes the adopted
visual metaphor and the user interface of Radian. Section 7
illustrates the algorithmic apparatus devised for Radian.
Section 8 describes a user study performed with domain
experts. Finally, conclusions are in Section 9.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

2 REFERENCE SCENARIO

2.1 Data of Interest and Basic Networking Concepts
The Internet is a large network that can be observed at
two abstraction levels. Namely, it can be seen as a network
of routers or, since routers are grouped into Autonomous
Systems (ASes), as a network of ASes. An AS corresponds to
an administrative authority, like an Internet Service Provider
(ISP), a company, etc, and is identified with a number called
AS Number (ASN). Traceroute is a standard networking tool
that reports the sequence of routers followed by data to
reach a given destination from a given source. The reported
sequence of routers, each labelled with an IP address, is
called traceroute path. Each device in the traceroute path is
also labeled with the round-trip time from the source. Several
traceroute paths collected all at the same time can be merged
to form a traceroute graph which is a partial view, at the
router level, of the topology of the traversed network at
that time. Also, given that each IP address belongs to an AS,
a traceroute path can be converted into a sequence of ASes.
Merging such paths form a graph that is a partial view of the
network at the AS level. Further, since routing continuously
changes, performing the above merge at different times
allows to capture different states of the network.

2.2 Users and Use Cases
There are several types of users who could benefit from
monitoring the evolution of routing with a system of probes.
ISPs are interested to check the proper operation of their
networks. Government authorities of a country need to
verify the quality of the Internet connection offered to the
citizens. Cyber-security agencies look for abuses of the
Internet that may implicate cyber attacks towards or from
specific countries. Finally, researchers are interested to study
the Internet routing because it is a complex, only partially
understood system. We focus our attention on ISPs, because
we could collect clear user requirements by interacting with
a few of them within the Leone FP7 EC Project. Among the
activities of an ISP, we focus on three use cases that resulted
from the discussion with our partner ISPs, and that could
require to check the status of the routing: troubleshooting,
upgrade verification, and inter-domain consistency check.

Troubleshooting copes with any unexpected event that dis-
rupted the normal operation of the network. For example,
a router could stop forwarding packets due to an overload
or a damage, making some network services unreachable or
slow to respond. Or, a wrong configuration due to a human
mistake could make the network be used in an inefficient
way, letting many paths traverse a same node and overload
it. From this perspective, following traceroute paths link-
by-link is a routing analogous of low-level debugging in
software engineering. Also, when troubleshooting a prob-
lem, it is often useful comparing routing changes with the
variations of some metric of interest (e.g. the round-trip time
or the path length). For example, a sudden increment of the
latency of a link could explain why many paths abandoned
that link almost at the same time. Finally, even if an ISP
has an alarm system deployed on its routers, on one hand
traceroutes can help trace a problem that originated in a
location far from an alert. On the other hand, traceroute is
one of the very few analysis tools that can be used when a

problem is originated in an external network, which is not
under the control of the ISP.

An upgrade is any modification made to the network by
the ISP to improve the existing services or to add new ones.
New routers and links could be added to extend the current
network, or to add redundancy and make the network more
resistant to failures and high loads. Also, an upgrade can
involve the configuration of a device. For example, a router
could get configured to distribute the incoming traffic by
following some load-balancing criteria (e.g. per-source, per-
destination). After an upgrade the ISP needs to verify that
the desired effect was obtained. Similarly to troubleshoot-
ing, this activity benefits from analyzing the dynamics of
the routing. By inspecting the paths followed by packets it
is possible to check if a router was traversed by traceroutes
issued by selected probes when it was expected. Also,
metrics associated to the paths helps assess the outcome of
the upgrade. For example, a sudden drop of the latency after
a path transition tells that the change was beneficial.

Inter-domain consistency check consists of verifying the
relationship between the intended routing established by
BGP and the actual routing reported by traceroutes, where
BGP is the protocol used by ISPs to route packets through
different ASes. Checking the consistency between BGP and
IP routing can be useful in a few cases. For example, the ISP
must check that traffic is exchanged with other partner ISPs
according to commercial agreements, or that a backup link
with another AS is operating correctly.

3 RELATED WORK

3.1 Traceroute Visualization
Because of its simplicity and effectiveness, the traceroute
command attracted the interest of researchers and practi-
tioners that developed services for visualizing the tracer-
oute paths discovered by executing one or more tracer-
outes. Broadly speaking, there are two types of traceroute
visualization systems: tools developed for local technical
debugging purposes and tools that aim at reconstructing
and displaying portions of the Internet topology.

Several tools of the first type visualize a single traceroute
path and display it on a map, showing the geo-location
of the traversed routers. A few examples follow. Xtracer-
oute [9] displays traceroute paths on an interactive rotating
globe as series of yellow lines between sites, shown as small
spheres of different colors. GTrace [10] and VisualRoute [11]
are network diagnostic tools that provide a 2D geographical
visualization of paths. The latter also features non geograph-
ical representations, taking into account other information,
e.g. the round-trip time between intermediate hops.

Tools of the first type are useful to analyze the path
followed by the traffic from a source to a destination. In such
a case, the visualization can help making sense of variations
in some observed metric like the latency, by comparing it
with the geographical positions of routers. However, this
kind of approach does not support the exploration of data
as collected from several sources at different instants, which
could be exploited to find interesting routing dynamics that
involved several paths. Also, drawing geolocalized graphs
is particularly challenging [12]. Indeed, this kind of visu-
alization gets easily cluttered as, for example, a traceroute

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

can connect two dense metropolitan networks composed
of many, relatively close routers, through a long oceanic
cable. Using the geographical positions to draw nodes poses
strong restrictions on the layout, which cannot be further
optimized for readability. In addition, ASes tend to be highly
distributed, so plotting nodes at their geographical positions
does not give a clear representation of the AS-structure of
the portion of network traversed by traceroutes.

There are several tools of the second type that merge the
paths generated by multiple traceroutes into directed graphs
and show them in a drawing, focusing on the topology
of the traversed network, rather than on the geographical
positions of the routers. In Argus [13], the length of an edge
connecting two routers depends on the one-way delay. Also,
nodes belonging to a same AS tend to be visualized close
to each other. Similarly to what happens with a geograph-
ical visualization, relating the edge length to the values
of a metric can produce visual clutter. In the visualization
provided by ThousandEys [14], paths are oriented from
left to right, and nodes are positioned so that topological
distances are explicit. Although the routing dynamics is
not expressed in the visualization, the user can navigate
through time with a slider, and and see the traceroute graph
obtained at a given instant. The user can collapse parts of
the topology that are not of interest, or to outline elements
that experienced a degradation in performance under a
metric. The information available for a node include the
AS to which the node belongs. Finally, Zenmap [15] gives
a radial view of the graph, with one focal node (e.g. the
source of traceroutes towards several destinations, or the
target of traceroutes from several sources) at the center of
the drawing. Nodes are placed on concentric circles so to
explicitly encode topological distances, and the thickness of
an edge represents the latency. Similarly to ThousandEys,
the visualization can include several paths for the same
source-destination pair, but the routing dynamics are not
shown. The user can collapse the “children” of a node, that
is, the nodes that reach the focal node through it.

Tools of the second type have many features for sup-
porting the use cases described in Section 2.2. First, merging
traceroute paths into a graph is useful to analyze events that
impacted different parts of the network. Second, these tools
include layout algorithms that enhance the readability of
the topology. Finally, they have the capability to reduce the
visual complexity by hiding some parts of the visualization
that are not of interest for a specific task and allow to
correlate the traceroute graph to some metric. Some useful
features, however, have been overlooked in current tools.
Routing is a dynamic entity and traceroute graphs change
over time, but tools present traceroute graphs more or less
like static entities. Also, ASes of routers are considered only
as metadata attached to nodes, not exploiting the fact that
they are a natural way to cluster routers and offer a way to
look at the routing at a higher level of abstraction. Finally,
the graph layout algorithms are often general purpose and
do not exploit the characteristics of traceroute data for
improving the visualization, for example for reducing edge
crossings that make the topology harder to understand.

3.2 Visualization of Dynamic Graphs

Merging several traceroute paths together produces a graph.
If the traceroutes are collected at different time instants,
the resulting graph evolves over time and is a dynamic
graph. This is particularly relevant for our work, because
visualizing the dynamics of the network helps the user
understand the effect of routing events.

There is a large amount of literature on the visualization
of dynamic graphs, which is well summarized in [16].
Following that work, methods for visualizing dynamic
graphs can be essentially classified under: 1) visualization
metaphor; 2) span of knowledge on data; 3) representation
of time; 4) mental map preservation; and 5) modeling of
transitions.
Visualization Metaphor The two principal visual
metaphors used for static graphs, node-link and matrices,
are also applicable to dynamic graphs. We focus on the
node-link style for an important domain reason: traceroutes
are paths, and following paths is easier in the node-link
representation [17]. Also, this kind of diagram is intuitive
for users in the networking domain.
Span of Knowledge on Data Visualization methods for
dynamic graphs are offline if, at any time instant, future
data are known and can be used to compose the current
layout. Otherwise, they are online. The online setting is more
versatile, because it can be applied to scenarios where data
are known only up to the current instant (e.g. monitoring
systems). On the other hand, the offline setting offers better
opportunities to optimize the layout, by taking into account
future data. Here, we focus on the offline setting, because
the use cases described in Section 2.2 do not involve real-
time monitoring.
Representation of Time Time is a sequence of instants, each
associated with a different version of the graph. Animation
is a technique for representing the flowing of time and has
been applied to dynamic graphs in, e.g., [18], [19], [20], [21],
[22]. It transforms the visualization of the graph from a
given instant (or frame) to another one. In its simplest form,
an animation shows the evolution of a dynamic graph as
a movie. The strenghts of this approach are the intuitive-
ness, which users tend to like, and the compactness of the
representation, since the amount of used screen space does
not depend on the number of graph updates. The main
drawback is the difficulty for users to trace the history of
an object across a long sequence of frames, because this
requires them to rely on their memory of past frames [23].
Also, the time consumed by an animation increases the
time necessary to perform user tasks [24]. In the timeline
approach, time is represented through a spatial coordinate.
Commonly, this is done by juxtaposing several versions of
the graph, one for each time instant. The juxtaposed style is
also called small multiples. The timeline approach has been
applied to the visualization of dynamic graphs in several
forms (see, e.g., [25] [26] [27] [28]). The strength of this
approach is the ease of following the evolution of an object
along time, since time instants can be visually compared.
On the other hand, discovering differences between two
frames can be hard for users [16]. Also, the scalability of the
technique is limited and depends on the number of shown
frames, which is a trade-off between two parameters: the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

detail level of the frames, and the time granularity [21].
It is still uncertain which between animation and time-

line is the best for representing dynamic graphs. Past studies
gave contrasting results, depending on the experimental
setting and the specific tasks (see, e.g., [29] [24] [30]). In [21]
the two techniques are mixed, with small multiples used as
a preview and a navigation system of an animated graph.
We adopt a technique inspired by the one in [21], mixing
an animation approach with a timeline that offers a way to
quickly identify instants of interest.
Mental Map Preservation The adopted layout algorithm
has an impact on the preservation of the so called user’s
mental map, which is the image that users have of the infor-
mation. The preservation of the mental map has been cited,
since early stages, as a desired and fundamental property of
a visualization of a dynamic graph [31]. The intuition behind
is that the cognitive load of the user for tracking the graph
evolution is reduced by using an external visual representa-
tion, instead of relying solely on his memory. Researchers
do not seem to have reached a consensus on the topic
yet. While some works reported better user performance
under the mental map condition [32] [33] [34], others do not
report significant differences [35] or even report negative
performance [36] [37]. In [16], the authors conclude that the
importance of preserving the mental map may have been
overestimated in the past. However, a recent review paper
[38] suggests that preserving the mental map may actually
support users in executing specific tasks. Depending on the
layout strategy, the mental map can be preserved to various
degrees. At one extreme, a global optimization strategy fixes
the positions of all graph elements across time, perfectly
preserving the mental map but possibly at the expense of a
suboptimal space utilization within each frame. At the other
extreme, a local optimization strategy changes the positions
at every frame, optimizing the layout of single frames but
possibly prejudicing the mental map. We adopt the global
optimization strategy how explained in Section 6.
Modeling of Transitions Users can be helped in comparing
different time instants by explicitly encoding transitions, i.e.
by outlining the differences between two ore more frames.
Different techniques can be used depending on the adopted
representation of time. In the animation approach differ-
ences can be encoded with staged transitions, i.e. by executing
changes in different groups depending on their type [39]
[40] [41]. However, even when staged, many changes at the
same time can be hard to follow [21]. The approach we use
on transition encoding will be described in Section 6.

3.3 Layout Algorithms for Dynamic Clustered Graphs

As introduced in Section 2.1, the Internet is clustered into
ASes. Since in our use cases this aspect is relevant (Sec-
tion 2.2), we focus on layout algorithms that deal with
node clustering. There are several definitions of a graph
with clustered nodes. In a compound graph clusters can be
nested, and edges are allowed between both nodes and
clusters. A clustered graph is a compound graph in which
edges are allowed only between nodes. Finally, a clustered
graph whose clusters are not nested (i.e. there is only one
level of clustering) is flat. Graphs produced by traceroutes
fall in this last category.

The two algorithmic styles that were experimented most
in this domain are force directed and layered algorithms [42].
The latter are also called algorithms for hierarchical layouts.
Force directed algorithms have good performance on large
graphs and tend to produce drawings in which dense sub-
graphs are well separated. Algorithms for layered draw-
ings have lower scalability than force directed ones, but
on sparse graphs may produce drawings with fewer edge
crossings. Also, hierarchical relationships between nodes are
explicitly represented in the layering. We focus on the case
of dynamic graphs, which require stability across changes
for nodes, edges, and clusters [16]. For flat clustered graphs,
[43] introduces a force directed algorithm that exploits vir-
tual nodes and cohesive forces so to keep clusters compact
and well separated. [44] extends the approach of [19] to
compound graphs. In particular, the stability of the cluster
structure over time is obtained by merging the cluster hier-
archies corresponding to all considered time instants. This
aggregated information is used to produce a super-layout of
the graph through a force directed algorithm, which works
as a template for drawing the single time instants. In [45]
a similar approach is used, but an algorithm for layered
layouts is used instead of a force directed one. Also, during
the animation from a frame to the next one, clusters that
remain unchanged are collapsed so to focus on the parts of
the graph subject to some dynamics.

In relation to the problem of drawing graphs produced
from traceroutes, some considerations are necessary when
choosing an algorithm. While force directed ones pose few
or no constraints on the input graph, they are iterative
algorithms that converge at a local minimum, giving few
guarantees on the quality of the produced drawing. Also,
the direction of edges is usually not considered in the
process. On the other hand, layered drawings exploit edge
directions and use them to make node hierarchies explicit,
which can support user tasks. Also, layering gives an ex-
plicit visualization of topological distances in a network,
making possible, to some extent, to compare the length
of different paths. But these algorithms are also known to
have lower scalability than force directed ones, and require
the input graph to be acyclic. When this is not the case,
the graph must be transformed to become acyclic, which
may negatively influence the representation of hierarchies.
We chose the layered style for our problem, because the
representation of hierarchies and path directions is relevant
in the use cases. Further motivations are given in Section 5,
following the results of experiments that we performed on
our data of interest.

4 TERMINOLOGY

This section introduces notation that will be used in the rest
of the paper.

Consider a time interval T and a set of probes S . During
T each probe periodically issues a traceroute towards a
target IP address τ . A traceroute from probe σ ∈ S outputs
a directed path on the Internet from σ to τ , called traceroute
path or simply traceroute. If a traceroute is available in Inter-
net at time t ∈ T , then it is valid at time t. By convention,
we consider traceroutes as paths that are directed from the
target to the source. Each vertex of a traceroute originated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

from σ ∈ S is either a router or a computer. Vertices are
identified as follows: (1) σ has an identifier assigned by
the RIPE NCC; (2) vertices with a public IP address [46]
are identified by such an address; (3) vertices with a private
IP address [46] are identified by a pair composed of their
address and the identifier of σ; (4) the remaining vertices
are labeled with a “*” (i.e. an unknown IP address). For the
sake of simplicity, consecutive vertices labeled with “*” are
merged into one vertex.

A digraph Gt is defined at each instant t ∈ T as the
union of all the traceroute paths valid at t produced by
the traceroutes issued by the probes of S . A digraph GT
is defined as the union of all graphs Gt with t ∈ T .

Each vertex of GT is assigned to one cluster as follows.
(1) Each probe is assigned to the cluster that corresponds
to the AS where it is hosted. (2) Each vertex identified by a
public IP address is assigned to a cluster that corresponds
to the AS announcing that address on the Internet. This
information is extracted from the RIPEstat [47] database and
for some public IP addresses may occasionally be missing.
(3) For each vertex v that is not assigned to a cluster after the
previous steps, let µ be the cluster assigned to the nearest
predecessor of v with an assigned cluster and let ν be
the cluster assigned to the nearest successor of v with an
assigned cluster. If µ = ν then v is assigned to µ. (4) Each
remaining vertex is assigned to a corresponding fictitious
cluster. We define Vµ as the set of vertices assigned to cluster
µ. The set of all clusters assigned in GT is denoted by
C(GT), or simply C when there are no ambiguities.

For any t ∈ T , Gt can be visualized at different ab-
straction levels. Namely, the user can select a set E of
clusters that are fully visualized and each cluster that is
in the complement Ē of E is contracted into one vertex.
More formally, given the pair Gt, E the visualized graph
Gt,E(V,E) is defined as follows. V is the union of the Vµ
for all clusters µ ∈ E , plus one vertex for each cluster in
Ē . E contains the following edges. Consider edge (u, v) of
Gt and clusters µ and ν, with u ∈ µ and v ∈ ν. If µ 6= ν,
µ ∈ E , and ν ∈ E , then add edge (u, v). If both µ and ν
are in Ē then add edge (µ, ν). If µ ∈ E (µ ∈ Ē) and ν ∈ Ē
(ν ∈ E) then add edge (u, ν) ((µ, v)). We define Gµ,t as the
subgraph ofGt induced by Vµ. Analogously, we defineGµ,T
as the subgraph of GT induced by Vµ and define GT ,E as
the union of the Gt,E for each t ∈ T . Note that GT ,∅ denotes
the graph in which all clusters are contracted, while GT ,C
denotes the graph in which all clusters are expanded and
it is equivalent to GT . We assume that GT ,E is an acyclic
graph. However, cycles can exist in single traceroute paths
or can be created by merging several paths. The origin and
the incidence of those cycles is discussed in Section 5, while
Section 7.2 describes an algorithm to deal with them.

5 ANALYSIS OF DATA

This section describes preliminary experiments that we con-
ducted to characterize the data of interest for Radian. The
results of these experiments deeply influenced the design of
our tool. We collected traceroutes executed in nine months
(from March 20th, 2012 to December 20th, 2012) by about
200 world-wide distributed RIPE Atlas probes towards 5
public targets. The probes performed measurements for the

whole period, with variable frequencies for the execution of
traceroutes ranging between one every minute and one ev-
ery 30 minutes. Then, we processed the data and generated
12, 500 random visualization scenarios of the kind to be dis-
played by Radian. Each visualization scenario is identified
by a tuple 〈τj ,Si, ti, dk〉, where τj is a target, Si is a set of
50 probes, ti is a time instant, and dk is a time duration
expressed in number of hours. Such a tuple identifies a set
of traceroute paths collected by probes Si towards target
τj , starting from instant ti and for a period of dk hours.
We constructed the visualization scenarios as follows. We
selected uniformly at random: 100 sets Si i = 1 . . . 100 each
consising of 50 probes, and 100 time instants ti i = 1 . . . 100
in the above nine months interval. By repeating this for the
five targets τj and for durations dk = k− 1, k = 1 . . . 25, we
obtained the 12, 500 visualization scenarios. A visualization
scenario of this type is an overestimation of real use cases, in
terms of number of probes and length of the analyzed time
interval. Indeed, often an ISP owns sufficient information
collected from other sources that allow to restrict the set
of probes and the length of the analyzed time interval. For
each scenario we also computed graphs GT ,C and GT ,∅ (see
Section 4). In this section we will refer to GT ,C simply as the
graph, and to GT ,∅ as the contracted graph. Note that graphs
with a duration equal to 0 have special semantics, since they
approximate the state of the routing at a fixed time instant.
On the other hand, graphs with a duration greater than 0
are composed of several states.

In Fig. 2a we plot a cumulative distribution function of
the length of the traceroute paths of the dataset. It gives
an indication on the maximum distance between a probe
in S and τ . The plot shows that traceroutes with more
than 15 vertices are rare, which implies that a traceroute
path can reasonably be visualized on the screen in its full
extent. Figs. 2b-f are related to the graphs computed for
our visualization scenarios. On the x axis there is the time
duration dk ranging from 0 to 24 hours, while the y axis
shows the value of a metric averaged over all graphs.
Fig. 2b shows that our graphs are quite sparse, even for
large durations. In particular, graphs with duration equal
to 0 are almost trees (density ∼ 1), which was expected,
since routing protocols forward data through a network
by computing a spanning tree. Figs. 2c and 2d show the
number of vertices and the number of ASes in a graph (both
order of hundreds), respectively. These amounts depend
on the number of probes in our tests and on the average
length of a traceroute path. Visualizing a network with
hundreds of vertices and ASes on a screen is challenging.
Even if the amount of screen space is enough to avoid clutter
in the visualization, understanding such a network is a
demanding cognitive task for a user. Therefore, an effective
visualization requires a way to reduce the amount of details
shown on the screen. From Figs. 2c and 2d we also draw
conclusions on the impact that dynamics has on the size of
a graph. We can see that the size of a graph increases with
time, but such increment is not dramatic. Namely, passing
from a duration of 0 hours to 24 hours the average number
of vertices increases from about 400 to about 500.

Since we deal with routing data we expected to find only
acyclic graphs, since a cycle in an IP network originates
an incorrect routing. One surprising result of our analysis

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 tr

ac
er

ou
te

s

hops

Distribution of traceroute lengths

CDF

(a)

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 4 8 12 16 20 24

ed

ge
s

/ #
 v

er
tic

es

length of the considered time interval (hours)

Edge density of a graph

avg
min

max

(b)

 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 4 8 12 16 20 24

ve

rt
ic

es

length of the considered time interval (hours)

Number of vertices of a graph

avg
min

max

(c)

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 4 8 12 16 20 24

A

S
es

length of the considered time interval (hours)

Number of ASes of a graph

avg
min

max

(d)

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20 24

%
 g

ra
ph

s

length of the considered time interval (hours)

Percentage of graphs containing SCCs

graphs w/ SCCs
graphs w/ contraction-SCCs

(e)

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 4 8 12 16 20 24

S

C
C

s

length of the considered time interval (hours)

Number of SCCs of a graph

avg
max

(f)

Fig. 2. Statistics on traceroute data. Error bars report the standard deviation. (a) Cumulative distribution function (CDF) of the length of traceroute
paths in our dataset. (b) Edge density of a graph in our dataset. (c) Number of vertices of a graph in our dataset. (d) Number of ASes of a graph
in our dataset. (e) Percentage of graphs that contain SCCs, and that contain contraction-SCCs when they are contracted. (f) Number of SCCs in a
graph. The plot for minimum values is not shown, it is always equal to 0.

is that, in graphs produced from traceroutes, cycles exist
with non negligible probability. Fig. 2e shows that, in our
dataset, 20% of graphs with dk = 0 (i.e. almost static routing
graphs) contain cycles. The percentage grows to 60% for
graphs with dk = 24. Note that Figs. 2e and 2f count
the strongly connected components (SCC) of a graph, which
imply the existence of cycles and can be efficiently detected.
A SCC is a subset of the vertices such that there exists a
directed path between any pair of them. Even if a graph has
a high probability to contain a cycle, Fig.2f shows that such
cycles are few. While cycles in a graph with some dynamics
(k > 0) can be explained from the fact that they result
from the merge of several routing states, cycles in a static
graph (k = 0) are more obscure. By analysing our dataset
we discovered that such cycles depend on two factors. First,
a static graph is only an approximation of the routing at a
given time instant, since for each probe we select the latest
measurement available and therefore the graph can actually
span several time instants. Second, measurement errors
can happen. The execution of the traceroute command is
a process that takes a time in the order of seconds, and
the routing can change during the execution. A reported
traceroute path can therefore be the fusion of two unrelated
paths, which do not exist at the same time and induce the
presence of a cycle. One additional property of SCCs in our
dataset is that even if they are small on average, outliers can
be large, up to 180 vertices. Such big numbers are due to
the fact that SCCs are formed by interconnecting traceroute
paths, whose length can reach 30 vertices. Interconnecting
a few of them is sufficient to create large SCCs. It is easy
to see that a SCC that spans more than one AS induces a
SCC also in the contracted graph. What is less immediate
is that the other way around does not necessarily hold. In

fact, it is possible to produce cycles by contracting clusters
of an acyclic graph. We call contraction SCCs the SCCs of the
contracted graph that are produced by contracting clusters.
Note that these SCCs do not have corresponding SCCs in
the original graph. Fig. 2e shows that contraction SCCs exist
in the 90% of graphs in our dataset. Differently from the case
of the graph, we do not consider the presence of contraction
SCCs only a measurement error, because the policy-based
nature of BGP actually allows cycles.

We draw several conclusions from the analysis of data.
First, the average length of a traceroute allows visualizing it
on the screen in its full extent. The size of a routing graph
depends mainly on the number of selected probes, and in
a realistic setting it can be large enough to make cognitive
tasks hard. For this reason, an effective visualization must
allow to reduce the amount of details shown on the screen.
On the other hand, the maximum level of detail is still
required by the use cases that we considered in Section 2.2
to analyze specific parts of the network. Therefore, the user
must be able to choose the amount of displayed details
on specific parts of the visualization. Second, the sparsity
of the graphs suggests using graph drawing algorithms
for layered layouts. Hence, we performed preliminary ex-
periments with algorithms for layered layouts, discovering
that crossing-reduction heuristics like those in [48], [49]
applied to our graphs are quite effective. However, in our
case the graph density is so low that very often graphs
are planar, i.e. can be drawn without crossings, or quasi-
planar. Unfortunately, the heuristics in [48], [49] do not
guarantee the absence of edge crossings for planar graphs,
and it is quite disappointing for the user to see crossings
that can be easily avoided. So, we decided to devise new
algorithmic techniques, based on planarity, suitable in this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

scenario. Also, in Section 7.2 we describe special algorithms
for dealing with cycles in our data.

6 USER INTERFACE

This section presents the user interface of Radian and the
user tasks, along with the motivations behind the design.

6.1 Overview of the Interface
The user interface is shown in Fig. 1. It is composed of four
main panels: the graph, the timeline, the controller, and the
info. The user can select the data to visualize, identified by
a target τ , a set of probes S , a time interval T , and a set of
expanded clusters E . The interface presents at any moment
the state of the data at a time instant t ∈ T .

The graph panel displays the graph Gt,E with a radial
drawing centered in τ . All vertices and clusters that appear
in at least one traceroute in T are in the drawing, including
those that at time t are not traversed by any traceroute.
Probes in S are represented as blue circles labeled with
their identifier. Vertices are represented as white rounded
rectangles labeled with the last byte of their IP address,
or with a “*”. Also, they are placed on concentric circles,
with probes located at the periphery of the drawing. Clus-
ters are represented as annular sectors labeled with their
AS number. Each cluster in E encloses the nodes that are
assigned to it, while clusters not in E are empty and have a
fixed size. Clusters containing probes in S are light blue, the
cluster containing τ is light red, and the remaining clusters
are light yellow. Fictitious clusters are not displayed. Each
traceroute path from a probe σ ∈ S to τ is represented as
a colored curve from σ to τ passing through intermediate
vertices. For each probe the latest traceroute available before
t is shown, and it corresponds to a path in the graph GT .
Traceroute paths are not simply merged and displayed in an
aggregate fashion, since each of them has its own informa-
tive value and can change over time independently. For this
reason, we explicitly represent all paths adopting a metro-
line metaphor [50], and draw them using different colors.
Paths that change in T are represented with solid lines. For
paths that do not change and thus represent static routes, we
borrow a technique from [51]. These paths are partitioned
into sets such that each set determines a tree on the graph,
and each tree is depicted with dashed lines and a distinctive
color. This has the effect of reducing the number of lines
in the drawing, while preserving the routing information of
each probe. The user can interact with the graph in several
ways. First, he can change the current time instant t that
is visualized. Path differences between the two instants are
shown with an animation, which continuously morphs each
path from its initial position to the final one. Paths that are
morphing become thicker during the animation, so to be
more visible. A new route that was previously unavailable
is shown in the animation with a gradually appearing path,
while a disconnection is shown with a gradually fading
path. A path is also outlined when the pointer hovers on
it, and, similarly, hovering on a vertex outlines all paths
passing through it. Finally, the user can arbitrarily change
the set E of expanded clusters. Double-clicking an expanded
cluster collapses it and removes if from E , and vice versa.
Vertices in a collapsed cluster are not shown.

The timeline panel is in the lower part of the window
and provides an overview of the trend in the number of
route changes over time. It features a red cursor that points
at the current time instant t. The timeline panel and the
graph panel are linked views, and the visualized graph
corresponds to the time instant selected in the timeline. The
user can move the cursor to change the current time instant.
Additional timelines can be added below the main one, each
regarding the trend in the value of a metric with respect to
a probe. The user can add and remove the metric timeline
of a probe by double-clicking that probe in the graph panel.
All timelines have the same width and represent the same
time interval T , allowing direct comparison.

The controller panel is located in the upper right corner
and is used to control the animation. It is modeled following
the metaphor of a video recorder, and presents buttons that
activate the typical functions play, pause, step-backward,
and step-forward. When the play button is pressed, the
user is presented with a sequence of animation steps, each
regarding a single path change and with a short pause
between two changes. At each step the cursor in the timeline
panel and the visualization in the graph panel are updated
accordingly. The duration of an animation between two
time instants t1 and t2 is proportional to the logarithm of
the elapsed time between the two instants, which gives an
approximate perception of elapsed time while limiting the
overhead on the total animation time.

Finally, the info panel is in the upper part of the window.
When the cursor hovers on an AS, a node, or a path, the info
panel shows any available information about that element.

Our choice to make a topological visualization, discard-
ing geographical visualizations of traceroute data, comes
from the conclusions drawn in Section 3.1. Our use cases
are better supported by a graph visualization, which gets
easily cluttered when geographical positions for nodes are
applied. Also, understanding the structure of the network at
the AS level is more interesting for understanding routing
policies, and this would be disrupted by a geographical
visualization since ASes are usually distributed. Finally,
anycast addresses are assigned to more than one physical
device and could not be mapped to a single location. The
node-link metaphor was chosen for representing the graph
because, as explained in Section 3.2, it is intuitive to net-
working users, since it looks like the real network on which
traceroutes were performed. The graph is visualized with
a radial layered layout because it is sparse (see Section 5),
and this style of drawing is notably effective for visualizing
sparse hierarchical graphs (see, e.g., [52]). Also, in our
visualization the focus is put on the target, avoiding to give
too much importance to specific probes due to a privileged
geometric position. Finally, having all traceroutes flowing in
a same direction helps comparing their lengths. The choice
of animations, instead, was less immediate. Although users
generally like them, Section 3.2 outlined how this technique
is limited in that users need to rely on their visual memory
in order to track graph updates. On the other hand, the
main alternative consisting of small multiples suffers from
a too low scalability to support our use cases. Indeed, in
a time span of a few hours, hundreds of route changes
can happen depending on the size of the network, which
would produce too many small multiples to fit in the screen.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

For this reason we adopted animations, which support very
long time spans. We applied several techniques to mitigate
the limits of animations. First, we enforce the preservation
of the mental map (see Section 3.2 for a discussion). Vertices
maintain their positions at different time instants. Updat-
ing E may change the position of some vertices, but all
vertices preserve their relative orderings along and across
layers, which is similar to the preservation of horizontal
and vertical orderings of [31]. Section 7.1 describes in detail
the algorithms for obtaining such property. The mental
map is further preserved by visualizing nodes that are not
traversed by a traceroute at the current time instant (but
that are traversed at some different instants), which also
furnishes to the user hints on the fact that a given part of
the network is subject to dynamics at some instant. Our
choice limits graph updates to paths only, which reduces
the number of elements that the user needs to track. This
is also a natural representation in this domain, since users
tend to think of routing changes as changes of traceroute
paths. Finally, outlining with thicker lines traceroute paths
that change during an animation is a form of transition
encoding. The visualization of ASes as boxes that enclose
vertices satisfies the user expectation that ASes represent
a partition of the network. Also, this organization offers
an AS-level view of the network, which is an abstraction
useful in all use cases described in Section 2.2. Finally, we
exploited this representation to let the user collapse an AS
and hide its content. This allows to focus the attention on
the detailed dynamic of only few ASes of interest, while
maintaining a high level overview of the rest. The results is
a reduction of the cognitive load for understanding graphs
that, how showed in Section 5, can be relatively large. The
possibility to arbitrarily collapsing and expanding ASes
poses specific algorithmic challenges for the preservation
of the user mental map. Namely, consider two different
sequences of expansions and contractions and let E ′ and
E ′′ be the resulting sets of expanded clusters. If E ′ = E ′′
the user expects to see the same drawing, independently
on the specific sequence of performed actions. This is an
algorithmic requirement that is not satisfied by all graph
drawing algorithms (e.g. by spring embedders) and is faced
and solved in Section 7.1.

Fig. 3 contains various details on how the interaction
with the visualization works. A graph with static paths and
no expanded clusters is presented in Fig. 3(a). It is related
to a target τ , a set of probes S , and a small time interval
T ′. Note that some vertices are not enclosed in any cluster:
they belong to fictitious clusters. From this figure we can see
what ASes provide connectivity to reach the target, namely
1200 and 20965. A graph for τ , S and T ′′ (|T ′′| > |T ′|)
is presented in Fig. 3(b). Some dynamic paths are visible.
The same graph is presented in Fig. 3(c) with one expanded
cluster. Note how the ordering of clusters and vertices on
the radial layers is preserved. In this figure the length and
structure of the paths from each of the three probes 619, 602,
and 265 is clearly visible. Fig. 3(d) shows the same expanded
graph at a different time instant. The intermediate vertices
of two paths are different, that is, we can see how the route
changes affected the paths of probes 619 and 602.

(a) (b)

(c) (d)

Fig. 3. Details of the interactive features of our visualization. (a) A graph
GT ′ relative to a target τ , a set of probes S, and a time interval T ′.
All paths in GT ′ are static and all clusters contracted. (b) A graph GT ′′

relative to τ , S, and T ′′ (|T ′′| > |T ′|). Some paths are dynamic and all
clusters are contracted. (c) GT ′′ with an expanded cluster. (d) GT ′′ at
a different time instant.

6.2 User Tasks

This section describes the tasks that a user can execute
with the interface of Radian. The use cases described in
Section 2.2 are decomposed in user tasks, that are classified
in two groups: topology tasks, devoted to understanding the
structure of the routing and of the network at a given time
instant, and dynamics tasks devoted to understanding how
the routing evolved over time in a given interval. Topology
tasks are executed on the routing as captured at a single time
instant, while dynamics tasks require the user to compare
different time instants and make use of animations. For
brevity, we refer to use cases Troubleshooting, Upgrade
Verification, and Inter-domain Consistency Check as UCT,
UCV, UCC, respectively.

The list of the topology tasks follows. Consider a set of
probes S and a target τ .
Find what nodes are traversed by σ ∈ S . This task is
fundamental for all use cases, since it implies discovering
the route followed by a σ at a given instant to reach τ , which
is the final product of the routing. The task is accomplished
by following the colored curve across the graph, from the σ
to τ , and see what nodes are intersected.
Find the topological distance to τ . This tasks implies to
discover the number of nodes to traverse to reach τ . Often,
shorter paths provide better performance. This is useful in
UCT and UCV, either to find out the reason for experienced
bad performance, or to spot in advance long paths that
could be future causes of issues.
Test if τ is reachable. This task supports UCT and UCV.
τ is reachable from σ ∈ S if the curve from σ intersects it.
An unreachability can have different meanings. Depending
on how far from τ the path is interrupted, it could either
mean that the routing was wrong or that τ was not working
properly. Note that an unreachability does not necessarily
imply a fault, since routers can be configured to not respond
to traceroutes, for security reasons. However, an ISP usually
knows, in its own AS, which routers respond.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Find what probes in S traverse a node. This task is useful
to understand what parts of the network depend on a node
for reaching the target. In UCV this implies to check if the
node designated for connecting a subset of the network is
doing it correctly. In UCT, a node shared by several probes
that experienced reduced efficiency is possibly the cause of
the problem, and a start point for a deeper analysis. The task
is executed by following all curves that traverse the node,
from that node back to the probes.
Find single points of failure. This task is somewhat in the
middle between UCT and UCV. The objective is to find in
advance nodes whose fault or overload would impact a
large part of the network. The task is executed by finding
nodes with many traversing paths.
Find the ASes that make τ reachable. The task consists of
finding what ASes are traversed to reach τ from a probe
σ ∈ S . The user contracts all clusters to simplify the
visualization, and looks for a path of traversed clusters.
Such a path can be compared with the BGP announce-
ments to check if the actual routing is consistent with BGP.
Understanding what ASes are traversed to reach τ means
reasoning about the routing and the network at a high
abstraction level, and it is the fundamental task of UCC.
Test if σ1, σ2 ∈ S are treated equally in the network. In
UCT, an ISP may receive mixed feedbacks from its cus-
tomers regarding the use of a remote service. While those
near σ1 experienced low performance or even an outage,
those near σ2 did not. By comparing the paths towards τ ,
the ISP may discover that intermediate nodes forwarded
data through different paths depending on the source. Also
in UCC, if an external AS is suspected to offer different
levels of service, the ISP expands the relative cluster in the
visualization and keeps the other collapsed, to focus the
study on the internal routing of that AS.

The list of the dynamics tasks follows. Consider a set of
probes S and a target τ within a time interval T .
Find probes of S subject to path changes. As described
in Section 6.1, routes that are not subject to dynamics in
the selected time interval are depicted with dashed lines.
That is, from a single frame, the interface of Radian tells
whether a probe changed its path at some time instant. This
is a general feature supporting all use cases in which it is
necessary to understand the routing evolution.
Find intense routing activity. In UTC, the user needs to
restrict T and locate routing changes related to some event
of interest, with only a rough temporal indication. For
example, a customer ticket could complain about degraded
performance or lack of service starting from a given hour
of the day. In UCV, the same analysis is done to check if
the routing changed in correspondence of a configuration
change of the devices. The timeline panel gives an overview
of the distribution of path changes during T . The user, for
example, may find out that nothing happened until a given
instant, and therefore focus on what happened after.
Find failing nodes. The paths of several probes in S could
abandon a specific node at the same time. This is clearly
outlined in the graph panel, which shows with an animation
that the corresponding paths stop traversing that node and
morph to another path. In UCT, this could be the sign of
a hardware failure on that node. In UCV, the node could

have been turned off for maintenance, and the probes redis-
tributed to different paths.
Find repetitive phenomena. Repetitive routing dynamics
are shown in the timeline panel as spikes of activity hap-
pened with a certain regularity. In UCT, the user could
start the analysis from a given time instant were suspect
dynamics happened, and then discover that more activity
is present in the hours before or after that instant with
regularity. For example, the network of an ISP could be
not able to respond with acceptable performance to a traffic
load in the early night hours, caused by many customers
connecting after work from their homes. This would be the
cause of many path changes happening around that time for
several days, as the result of intense load balancing.
Test if a BGP backup link is operational. An ISP can
be connected to the Internet through several BGP links for
redundancy, either with a same partner ISP or with several
ISPs. In case of a fault on a link, a backup link becomes
operational due to BGP policies. In UCC, the user can follow
the evolution of paths traversing a failing BGP link and
check that, in correspondence of the failure, all of them start
traversing the backup link.
Test if a path change improved the performance. After the
user has spotted a path change of interest, this could be not
enough to decide if it was positive or not. In all use cases, the
user is interested to check the value of metrics in correspon-
dence of the change, to see if there was an improvement.
This is done by selecting one or more probes in the graph
panel, which shows for each probe an additional line chart
with the metric trend over time. Line charts are displayed
one on top of another, which allows to compare them instant
by instant.

7 ALGORITHMS

This section describes the algorithm used by Radian for
drawing acyclic traceroute graphs, and the algorithm for
removing cycles from traceroute graphs.

7.1 Layout Algorithm

Following the conclusions of the analysis in Section 5, the
layout algorithm of Radian produces layered layouts and is
planarity oriented. It works by creating a static layout of a
super-graph obtained by merging all time instant, which is
then used to visualize single instants. This is supported by
the fact that our visualization problem is offline (Section 3.2),
and that node positions are fixed to preserve the user
mental map (Section 6). For our purposes an interesting
reference is [53], which constructs radial drawings adapting
techniques of the Sugiyama Framework. Unfortunately, it
does not support clusters. The algorithm in [54], which
extends the one described in [55], inspired part of our
work. However, it proposes a clustered planarity testing
algorithm, while we rather need an algorithm for clustered
graph planarization, and [54] is not easily extensible for this
purpose (neither is the algorithm in [56] that is not suitable
for hierarchical drawings). In [57] an algorithm is proposed
for the expansion/contraction of clusters of hierarchical
drawings, building on [58]. Unfortunately it uses a local
layering scheme, while global layering [48], [49] produces

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

more compact drawings and hence is more suitable for the
average length of traceroute paths (Section 5). For these
reasons, we devised a new algorithm to produce clustered
hierarchical drawings, as a planarization-oriented variation
of [54], and which uses a global layering scheme.

At a high level, our algorithm works as follows. We pre-
compute a hierarchical drawing Γ0 of GT . In that drawing
all clusters are expanded. The layout is computed in such a
way to have few crossings that involve connections between
clusters. The quality of the layout inside the clusters is
considered with lower priority. Moreover, the quality of the
drawing of edges that are part of many traceroutes in T is
privileged among the edges of GT . The drawing computed
for each cluster is stored and reused in any drawing where
that cluster is expanded. The obtained drawing is mapped
to a radial drawing with a coordinate transformation.

What follows gives more details on our algorithmic
framework. In a preprocessing step several information are
computed on GT that will be used for actual drawings.
Given any Gµ,T , a vertex is a source (sink) of Gµ,T if it is
the first (last) vertex ofGµ,T encountered in some traceroute
path. Each graph Gµ,T is augmented with extra vertices and
edges so that all the longest paths from a source to a sink
have the same length. The added vertices are called fictitious
vertices of µ and ensure that, given an edge (u, v) ∈ GT ,
u ∈ µ, v ∈ ν, µ 6= ν, clusters µ and ν do not share a layer
in any drawing of Gt,E for any choice of E . Moreover, they
force edges that leave a cluster by spanning several layers to
be routed inside that cluster. A µ-drawing is pre-computed
for each Gµ,T . It consists of 1) assigning vertices to layers so
that all edges are between consecutive layers and 2) comput-
ing a total order for the vertices of each layer. A partial order
≺ is computed for clusters, such that for any two clusters µ
and ν with µ ≺ ν, the vertices of µ appear to the left of the
vertices of ν for any drawing Γ where µ and ν share one
or more layers. This helps preserve the mental map during
expansions/contractions. The preprocessing step obtains a
µ-drawing for each cluster and a partial order ≺ of clusters
from a drawing Γ0 of GT with all clusters expanded. The
algorithm to compute Γ0 is similar to that in [54], where a
PQ-tree [59] is used to order vertices along the layers of the
drawing. Our PQ-tree is initialized with a spanning tree of
GT and incrementally updated with the remaining edges
that induce ordering constraints. An edge is added only
if it does not produce a crossing (i.e. the PQ-tree does not
return the null tree). A rejected edge will produce crossings
in Γ0. Edges are added with priority given by their aesthetic
importance: namely, they are weighted by the number of
traceroutes that traverse them in T . As an implementation
detail, we actually compute a total order for clusters to
represent a partial order ≺. Such order is produced by a
DFS visit of the embedded spanning tree ofGT . The tree has
an embedding induced by the layer orders produced by the
PQ-tree algorithm, and the children of a vertex are visited in
clockwise order. Intuitively, we preserve the geometric left-
to-right order for clusters from Γ0, and reuse it to produce a
drawing of any Gt,E .

The result of the preprocessing is used to compute a
drawing ΓT ,E of GT ,E , as detailed in the following. Note
that, once ΓT ,E is computed, we display, for any t ∈ T
all the vertices of GT ,E but only the edges of Gt,E . First, a

layering of GT ,E is computed such that for each vertex the
distance from τ is minimized. Also, dummy vertices, called
fictitious vertices of GT ,E , are added so that each edge spans
two consecutive layers. Vertices are horizontally ordered on
each layer such that: 1) ≺ is enforced; 2) for each cluster µ of
E , the orders on the layers of its µ-drawing are enforced;
and 3) the fictitious vertices of GT ,E are placed in such
a way to have few crossings. In particular, they must not
be interleaved with the vertices of any cluster, that is, the
vertices of each cluster must be consecutive on every layer.
For this reason, each fictitious vertex is assigned to a new
fictitious cluster, which is inserted in the partial order ≺
in an intermediate position between the endpoints of the
edge it belongs to. The described technique can create edge
crossings even if the instance admits a planar drawing.
The reason is that, for a vertex resulting from merging
the sources of a cluster, the PQ-tree does not preserve the
consistency between the orders of its incoming and outgoing
edges. When the vertex is split again in the embedded graph
to reconstruct the original sources, crossings can result in
the layer that precedes or follows the one of the sources.
We mitigate this effect by post-processing the embedding
produced by the PQ-tree. Namely, the position in each
layer of the vertices that represent probes is preserved,
while the position of any other vertex is computed by a
single bottom-up sweep of the layers that uses a barycentric
positioning. The technique is inspired by those commonly
used in algorithms for Sugiyama-like layouts [42].

Finally, the ordered layers are used to assign geometric
coordinates to vertices. The vertical coordinate of a vertex is
proportional to the layer number it belongs to. Horizontal
coordinates are computed by solving a linear program that
minimizes the sum of the horizontal distances between a
parent node and its children, while preserving the vertex
orderings of layers and a minimum horizontal parent-to-
child distance. To obtain a radial drawing, the coordinates
of vertices are transformed in such a way that each layer
is mapped to a circumference, and these circumferences are
nested. An edge (u, v) is drawn either as a straight segment
or a curved arc, depending on the angle it must sweep to
connect vertices u and v. Note that each edge connects only
vertices in two consecutive layers, hence a curved edge can
be drawn only in the space between these layers.

7.2 Handling Cyclic Graphs
As pointed out in Section 5, the contraction of clusters in a
graph can create cycles. Namely, the graphGT ,E2

that is pro-
duced by contracting a cluster in graph GT ,E1

can contain a
cycle that does not exist in GT ,E1

. For this reason, given a
graph GT with clusters C, an algorithm for removing cycles
must ensure that GT ,E is acyclic for any set of expanded
clusters E ⊆ C. A naive approach like checking all possible
sets of expansions is unsuitable, since it requires to check
a number of graphs that is exponential in the number of
clusters. However, Theorem 1 states that it is sufficient to
check a limited number of graphs.
Theorem 1. There exists a cycle in GT ,X for some X ⊆ C if

and only if there exists a cycle either in GT ,∅ or GT ,C .

Proof: The proof in one direction is trivial: ∅ and C are
sets of expanded clusters, therefore if GT ,∅ or GT ,C contains

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

a cycle then some GT ,X does. For the other direction,
assume that GT ,X , with X 6= ∅ and X 6= C, contains a
cycle C . If all vertices of the cycle belong to a same cluster
then that cycle also exists in GT ,C and the theorem holds,
so assume that C spans more than one cluster. Be µ ∈ X
an expanded cluster that is traversed by C . The cycle enters
and exits the boundary of µ several times, producing pairs
of entering and exiting crossings on such boundary. There is
a path inside µ for each such pair of crossings, because the
cycle is connected. Contracting µ collapses such path and
identifies the two crossings, preserving the connectedness of
the cycle. Namely, the graph obtained by replacing µ with
a vertex vµ contains a cycle C ′ that traverses vµ as many
times C traversed µ. Contracting every cluster produces a
cycle in GT ,∅ and the theorem holds.

The result of Theorem 1 is that, to make a graph GT
acyclic, it is sufficient to make acyclic GT ,∅ and GT ,C .

Reversing edges is a common technique for removing
cycles from a directed graph. In applications it is usually
desirable to reverse a small number of edges to preserve
the original graph as much as possible, but finding the
minimum number of edges to reverse is a NP-hard problem
and heuristics are used [42]. However, existing heuristics

(a) (b) (c) (d)

Fig. 4. Layouts induced by different choices of edges reversed for remov-
ing cycles. The edges that close the cycles are dashed, the reversed
edges are dotted. (a) A cyclic graph. (b) Layered layout induced by
reversing edge (5, 6). (c) Layered layout induced by reversing edge
(3, 4). (d) Layered layout induced by reversing the path from vertex 5
to vertex 2.

give little or no control on which edges are reversed, and
this can lead to undesirable effects on the layouts produced
by Radian, which are based on layering. For example,
Fig. 4(a) shows a graph with a cycle. Vertex 1 is the source,
vertex 8 is the target, and the edges that close the cycle are
dashed. Figure 4(b) shows a layered layouts resulting from
reversing edge (5, 6). The drawing is slightly distorted, and
vertex 6 is on a higher level than the source, which does not
correctly represent their natural hierarchy. Figure 4(c) shows
a different layout, where edge (3, 4) is reversed. The layout
is very distorted, and the source is even on a lower layer
than the target. Intuition suggests that the correct path in
the graph goes from vertex 1 to vertex 8, while the entire
path that goes from 5 to 2 is “going back” and is the cause
of the cycle. Figure 4(d) shows a drawing that follows this
intuition, by reversing the entire subpath from 5 to 2.

In the following we describe an algorithm to remove
cycles from our graphs that builds on the fact that they are
produced from traceroute paths. The algorithm first com-
putes an acyclic version of GT ,∅, then the same procedure
is applied to GT ,C in such a way that the edge directions of
the two graphs are consistent.

Given a graph GT with clusters C, let T be the set of
traceroutes that induce it. Also, assume that, when referred
to GT ,∅, traceroute paths are contracted, that is, each path
is a sequence of clusters. Each graph edge is weighted
with the number of traceroutes that traverse it, where
duplicate traceroutes produced by repeated measurements
over time are considered as distinguished. Then, for each
SCC, its edges are iteratively removed from the graph in
increasing order of weight, until the vertices of the SCC
induce an acyclic subgraph. Each time an edge is removed,
the traceroutes that traverse it are put in a set T1. At the
end of the process the obtained graph is acyclic. Then the
traceroutes in set T2 = T \T1 are merged to obtain an acyclic
graph G′

T ,∅ ⊆ GT ,∅. The traceroutes in T1 are added to
G′

T ,∅ as follows. Traceroute paths that do not contain cycles
are processed first. A path is split in maximal subpaths
such that the two extremal vertices of a subpath either
have a layer assigned or represent a probe. Each subpath
is added to G′

T ,∅, reversing its direction if it violates the
layer ordering of its extremal vertices. The layering of the
graph is updated every time a subpath is added. Then cyclic
traceroutes in T1 are processed. For each, maximal acyclic
subpaths are extracted from it and added to the graph with
the aforementioned rules, until all edges of the traceroute
have been added.

The procedure described so far computes a graph G′
T ,∅

which is an acyclic version of GT ,∅. The same procedure is
applied also to GT ,C , with the following constraint: inter-
cluster edges must have the same direction established in
G′

T ,∅. Namely, let e = (v1, v2) be an edge of GT ,C such
that v1 ∈ C1 and v2 ∈ C2. The direction of e is (v1, v2)
if (C1, C2) ∈ G′

T ,∅, otherwise it is (v2, v1). The constraint
keeps G′

T ,∅ and G′
T ,C consistent. Finally, G′

T ,C is the acyclic
graph to be processed by the layout algorithm.

8 USER STUDY

We conducted an informal user study at the end of the
development of our tool, in order to gather expert opinions
on its soundness and effectiveness. We interviewed 6 se-
lected employees of the R&D division of a prominent Italian
ISP. Their areas of expertise covered IP edge innovation,
cyber security threat evolution, security solutions analysis,
and video & multimedia platforms. Such heterogeneous set
of expertise covers a wide spectrum of the actual needs
and challenges of the ISP. The interviews were held in
the context of the Leone FP7 EC research project. We had
only one chance to do a user study with them before the
end of the research project. The general objective of the
study was to receive feedbacks about the motivations of our
work, and to assess whether the functionalities offered by
Radian supported the typical needs of an ISP. Namely, we
wanted expert opinions on how useful the tasks described
in Section 6.2 were for solving the use cases described in
Section 2.2, and how effective Radian was in supporting

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

those tasks. The users were informed on the supported
tasks and their classification into two classes: tasks aimed
at understanding the topology of the network as seen by
the routing, and tasks aimed at understanding the routing
evolution over time. We also wanted opinions on the per-
ceived utility of simplifying the visualization by contracting
ASes. A the time the study was conducted, Radian did not
support the visualization of metrics.

The interview had three parts. 1) A presentation of the
tool, to explain the motivations, the input data, and the
functionalities. 2) A supervised session of usage of the tool,
in which we proposed a real-life scenario and they were
asked to argue on the dynamics of the routing. The focus
was not to actually give complete explanations, but to get an
initial sense of the logic and interactions of the system. 3) A
questionnaire that the users were asked to anonymously
fill out with their opinions. The questionnaire contained
several statements, each representing a hypothesis we made
that a given feature of Radian was useful or effective. The
users were requested to rank each statement between 1
(completely disagree) and 5 (completely agree), and to write
a short comment with the motivation for each given rank.
In the following we list the statements of the questionnaire,
together with the minimum, the average, and the maximum
ranking given by the users. The statements after the first
can be considered in pairs: each statement ending with an
“a” is about a motivational matter, and has a corresponding
statement ending with a “b” which is about how good
Radian was considered with respect with that motivation.
S1 Traceroute data produced by a probe system, because of
the magnitude, are hard to exploit without a visualization
tool (4, 4.83, 5).
S2a The topology of a part of a network as deduced from
traceroute data, both at router and AS level, provides rea-
sonable information to understand the state of the routing
in that part of the network and in a given instant (3, 3.33, 4).
S2b Radian represents the topology of a network in a
comprehensible way (3, 3.83, 4).
S3a Traceroutes performed periodically in a part of a net-
work provide sufficient information to understand the dy-
namics of routing in that part of the network (2, 3.17, 5).
S3b Radian represents routing changes in a comprehensible
way (3, 4.2, 5).
S4a There exist cases in which it is necessary to focus on
the routing of a specific AS, keeping at the same time an
overview of the routing at AS level (3, 3.6, 4).
S4b Radian supports focusing the attention on a specific AS,
maintaining at the same time an overview of the neighbour
ASes (3, 3.83, 5).
S5a Understanding the topology of a network and the
dynamics of the routing supports typical activities of net-
work administration and monitoring, including the study
of complex scenarios otherwise difficult to analyze (3, 4.5,
5).
S5b Analyzing traceroute data with Radian supports the
study of complex scenarios (3, 4.33, 5).

Statement S1 is about the original motivation of our
work, and asked the users whether visualization is actu-
ally useful in this domain. It received very high rankings,
the highest in the study. The users were already familiar
with the analysis of traceroutes, and in the comments they

confirmed that understanding large amount of traceroutes,
like those produced by a system of probes, is challenging.
Visualization was considered a fundamental tool for this
kind of task. Some keywords that frequently appeared in
the comments as desiderable properties of a visualization
were “dynamics”, “aggregation”, and “overview”. Radian
has interface elements to support all of these. Namely, the
dynamics of routing is represented with animations. Data
are aggregated from two different points of view: first,
several traceroutes collected over time are merged into a
graph, which highly reduces the amount of data to watch.
Also, the user can expand and collapse ASes, to further
reduce the amount of displayed data and focus only on a
portion of interest. A temporal overview of routing changes
is furnished by the event timeline. Finally, the graph itself
is a form of overview, since all vertices traversed by a
traceroute in some time instant are always displayed.

Statements S2a and S2b regard the capability of the
traceroute graph to reconstruct a reasonable and compre-
hensible snapshot of the routing in a given instant. The opin-
ions were mixed. The users were not completely convinced
of S2a, because of some known limitations of the traceroute
itself. 1) Some routers of the Internet could be configured,
for security reasons, not to respond to measurements like
traceroutes. 2) Even if configured to respond, an overloaded
node could decide to discard some requests. 3) A reported
traceroute path could be a simplified version of the real
path, because packets transit inside tunnels that are invisible
to traceroutes. 4) Finally, a traceroute path could report non-
existing links between some nodes, because of the presence
of load balancers in the traversed network. This kind of
problem is tackled by a special version of the traceroute
tool (see [60]), which however could be not installed on the
probes used for the measurements. For these reasons, many
of the users suggested to integrate traceroute data with the
decisions taken by routing protocols, which are known to
an ISP for its own network. On the other hand, all users
admitted that these limitations of traceroutes are hardly
avoidable, and that when measuring a network belonging
to someone else, the traceroute (with its limitations) is
one of the very few, if not the only, tools available. The
average ranking, even if not that bad (it is greater than 3),
is relatively low. We believe that this was due to the strong
statement we made: it would have been probably higher
if we stressed more the fact that the graph reconstructed
from traceroutes is only an approximation of the topology
of the traversed network and of its routing. Surprisingly,
Statement S2b received higher rankings: this means that,
apart from the reported limitations of traceroutes, the graph
metaphor implemented in Radian was considered clear and
effective. This was also confirmed in the comments.

Statements S3a and S3b regard the effectiveness of pe-
riodically performed traceroutes to sample the dynamics
of the routing, and the effectiveness of the animations
implemented in Radian to represent such dynamics. State-
ment S3a received a particularly low average ranking and
was subject to criticisms similar to S2a: traceroutes were
considered too poor in information to let the user to fully
understand the routing dynamics. The statement, in our
intentions, expressed the capability of periodic traceroutes
to report a sampling of the routing changes happened in the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

network, so that the user becomes aware of them and has
the possibility to make deductions from their comparison.
However, similarly to S2a, we believe that the statement
was too strong and that was interpreted by the users. Their
written comments were fundamental to understand the
reasons behind the answers: they complained that simply
seeing the routing changes is not enough to understand the
reasons behind them, which requires the usage of additional
data sources like information on the routing protocols. Two
of them were very specific in these terms, saying that tracer-
outes do not allow a “root-cause analysis” of the routing
events, and that they do not help “understand why”. We
are obviously aware of these limitations, and never intended
to present Radian as a tool for root-cause analysis, which
is a challenging task that requires specific tools. All that
Radian is capable of is to report the sequence of routing
changes happened over time, so that the user can precisely
tell what changed and when, and then draw some conclu-
sions. The reported events are possibly starting points for a
deeper analysis. And, indeed, the very high ranking of State-
ment S3b confirmed that Radian is effective in this task. The
written comments pointed out that the users appreciated
the usage of animations, and considered them an effective
an intuitive way to represent changes in a traceroute path.
Some very interesting comments to Statement S3a and S3b
regarded the possibility of comparing routing changes to
other metrics, like the round-trip time. The user considered
useful, to understand the reason of a routing change, to
know if some metric of interest changed at the same time.
For example, a sudden improvement of the round-trip time
in correspondence of a routing change may imply that some
node was overloaded, and the routing protocol changed
the routing to avoid that node and restore acceptable per-
formance. A feature of this kind was indeed missing in
Radian, and its conceiving is an important outcome of this
user study. Hence, we labelled traceroute paths with round-
trip time information. However, integrating networked data
with more network metrics into one visualization is an
interesting challenge to consider for future work.

Statements S4a and S4b regard the usefulness of looking
at the network at different abstraction levels, exploiting the
clustering of nodes into the ASes they belong to, and the
effectiveness of Radian in supporting this feature. Despite
the good rankings, these were the only Statements for which
no significant written comments were given by the users. We
believe that, more than for the previous statements, S4a was
too abstract and was not understood completely. Therefore,
the users may have given rankings similar to those of the
previous statements. However, we observed them during
the usage session of Radian, to spot interesting patterns of
use, and noticed that all of them made use of the possibility
of keeping collapsed the ASes that were not involved in any
dynamics. This makes perfectly sense to us, since some ASes
with static routing were very large and caused cluttering on
the screen, while the interesting part of that instance was the
very particular inter-AS routing dynamics. This observation
indirectly confirms our expectation that, if available, users
gladly use a feature to simplify the current visualization by
abstracting those parts that are not of interest for a task.

Finally, Statements S5a regards the general functionali-
ties offered by Radian, consisting in supporting the compre-

hension of the topology of a network and the dynamics of
its routing, as inferred from periodic traceroute data. State-
ment S5b asks how good Radian is at implementing these
features. The average ranking is quite high for both, which
is a strong confirmation of the quality of our work. In the
written comments, the users considered Radian very effec-
tive for the tasks it was designed for, and said that it could
help “debugging problems” and “refine future strategies”,
referring to the administration of a network. Differently
from before, the Statement regarding the implementation re-
ceived slightly lower rankings than the motivations behind
it. In the comments the users explained that the possibility
of comparing routing changes to other kind of metrics is an
important, missing feature of Radian, which would enable
a much deeper analysis of the routing. This influenced their
general opinion on the tool. See also Statements S3a and S3b.

In conclusion, the users considered Radian a very useful
tool for supporting their everyday work in the administra-
tion of a network. The kind of functionalities and our imple-
mentation were well appreciated. The main complaints were
for the intrinsic limits of traceroutes. On the other hand, the
users admitted that these limitations are unavoidable and
that traceroutes are one of the few sources of data available
when analysing a network administrated by someone else,
on which there is no control nor information available on
the routing protocols. The possibility of visually comparing
routing changes to other kind of metrics is considered a
fundamental, missing feature of Radian, which motivates
the changes discussed above.

9 CONCLUSIONS AND FUTURE WORK

We presented a Radian, a tool for the visualization of tracer-
oute measurements towards specific targets on the Internet.
It visualizes traceroute data with a radial drawing of a flat
clustered graph. The user can interact with the visualization
using animations to see the evolution of routing over time,
and contracting ASes to select the level of detail in the
visualization. The tool uses new algorithms that are specific
for visualizing traceroute data.

This work can be expanded in several ways. First,
metrics should be integrated with the graph visualization,
besides being presented with temporal charts, since visually
associating metric changes to specific parts of the network
can support user tasks. Second, the geographical positions
of nodes, which were not considered in this work, could be
used to partially group nodes and give geographical hints to
the user in specific cases. Third, the user interface could pro-
vide additional functionalities to support the user in finding
interesting dynamics in the data, reducing the amount of
time spent watching animations. Finally, the layout algo-
rithm could be improved to reduce the edge crossings that
in our solution are handled with post-processing.

REFERENCES

[1] RIPE NCC, “RIPE Atlas,” http://atlas.ripe.net/.
[2] M. Candela, M. Di Bartolomeo, G. Di Battista, and C. Squarcella,

“Dynamic traceroute visualization at multiple abstraction levels,”
in Graph Drawing (Proc. GD ’13), ser. LNCS, vol. 8242, 2013.

[3] “SamKnows,” http://www.samknows.com/broadband/.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[4] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Craw-
ford, and A. Pescapè, “Broadband internet performance: A view
from the gateway,” in Proc. SIGCOMM, 2011.

[5] “MisuraInternet,” https://www.misurainternet.it/.
[6] “CAIDA Ark,” http://www.caida.org/projects/ark/.
[7] “Measurement Lab,” http://www.measurementlab.net/.
[8] Roma Tre, “Radian, traceroute visualization,” http://www.dia.

uniroma3.it/∼compunet/projects/radian.
[9] B. Augustsson, “Xtraceroute,” http://www.dtek.chalmers.se/

∼d3august/xt/index.html.
[10] R. Periakaruppan and E. Nemeth, “Gtrace - a graphical traceroute

tool,” in Proc. 13th USENIX Conference on System Administration.
USENIX Association, 1999.

[11] Visualware, “VisualRoute,” http://www.visualroute.com/.
[12] G. Da Lozzo, M. Di Bartolomeo, M. Patrignani, G. Di Battista,

D. Cannone, and S. Tortora, “Drawing georeferenced graphs -
combining graph drawing and geographic data,” in Proceedings
of the 6th International Conference on Information Visualization Theory
and Applications, IVAPP 2015, 2015, pp. 109–116.

[13] QoSient LLC, “Argus,” http://qosient.com/argus.
[14] ThousandEyes Inc., “Network monitoring software,” http://

www.thousandeyes.com/.
[15] G. Lyon, “Zenmap,” https://nmap.org/zenmap.
[16] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “The State of the

Art in Visualizing Dynamic Graphs,” in EuroVis - STARs. The
Eurographics Association, 2014.

[17] M. Ghoniem, J. D. Fekete, and P. Castagliola, “A comparison
of the readability of graphs using node-link and matrix-based
representations,” in Information Visualization, 2004. INFOVIS 2004.
IEEE Symposium on, 2004, pp. 17–24.

[18] P. Eades and M. L. Huang, “Navigating clustered graphs using
force-directed methods,” J. Graph Algorithms Appl., vol. 4, no. 3,
pp. 157–181, 2000.

[19] S. Diehl and C. Görg, “Graphs, they are changing,” in Graph
Drawing, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2002, vol. 2528, pp. 23–31.

[20] M. Baur and T. Schank, “Dynamic graph drawing in visone,”
Fakultt fr Informatik, Universitt Karlsruhe, Tech. Rep., 2008.

[21] B. Bach, E. Pietriga, and J.-D. Fekete, “Graphdiaries: Animated
transitions and temporal navigation for dynamic networks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 5,
pp. 740–754, May 2014.

[22] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source
software for exploring and manipulating networks.” ICWSM,
vol. 8, pp. 361–362, 2009.

[23] P. Saraiya, P. Lee, and C. North, “Visualization of graphs with asso-
ciated timeseries data,” in Information Visualization, 2005. INFOVIS
2005. IEEE Symposium on, Oct 2005, pp. 225–232.

[24] D. Archambault, H. Purchase, and B. Pinaud, “Animation, small
multiples, and the effect of mental map preservation in dynamic
graphs,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 17, no. 4, pp. 539–552, April 2011.

[25] M. Pohl, F. Reitz, and P. Birke, “As time goes by: Integrated
visualization and analysis of dynamic networks,” in Proceedings
of the Working Conference on Advanced Visual Interfaces, ser. AVI ’08.

[26] P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk, “A
visual analytics approach to dynamic social networks,” in Proceed-
ings of the 11th International Conference on Knowledge Management
and Knowledge Technologies, ser. i-KNOW ’11, 2011, pp. 47:1–47:8.

[27] M. Farrugia, N. Hurley, and A. Quigley, “Exploring temporal ego
networks using small multiples and tree-ring layouts,” Proc. 4th
International Conference on Advances in Computer-Human Interactions
(ACHI 2011), vol. 2011, pp. 23–28, 2011.

[28] T. Dwyer and P. Eades, “Visualising a fund manager flow graph
with columns and worms,” in Information Visualisation, 2002. Pro-
ceedings. Sixth International Conference on, 2002, pp. 147–152.

[29] I. Boyandin, E. Bertini, and D. Lalanne, “A qualitative study on
the exploration of temporal changes in flow maps with animation
and small-multiples,” Computer Graphics Forum, vol. 31, 2012.

[30] M. Farrugia and A. Quigley, “Effective temporal graph layout: A
comparative study of animation versus static display methods,”
Information Visualization, vol. 10, no. 1, pp. 47–64, 2011.

[31] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment
and the mental map,” ”Journal of Visual Languages & Computing”,
vol. 6, no. 2, pp. 183 – 210, 1995.

[32] H. Purchase, E. Hoggan, and C. Görg, “How Important Is the
Mental Map? - An Empirical Investigation of a Dynamic Graph
Layout Algorithm,” in Graph Drawing, ser. LNCS, 2007.

[33] S. Ghani, N. Elmqvist, and J. S. Yi, “Perception of animated node-
link diagrams for dynamic graphs,” Computer Graphics Forum,
vol. 31, no. 3pt3, pp. 1205–1214, 2012.

[34] D. Archambault and H. Purchase, “Mental map preservation
helps user orientation in dynamic graphs,” in Graph Drawing, ser.
Lecture Notes in Computer Science, 2013.

[35] ——, “The mental map and memorability in dynamic graphs,” in
IEEE Pacific Visualization Symposium (PacificVis), 2012, pp. 89–96.

[36] H. Purchase and A. Samra, “Extremes are better: Investigating
mental map preservation in dynamic graphs,” in Diagrammatic
Representation and Inference, ser. LNCS, 2008.

[37] P. Saffrey and H. Purchase, “The ”mental map” versus ”static
aesthetic” compromise in dynamic graphs: A user study,” in Proc.
9th Conference on Australasian User Interface, ser. AUIC ’08, 2008.

[38] D. Archambault and H. C. Purchase, “”the “map” in the mental
map: Experimental results in dynamic graph drawing”,” Interna-
tional Journal of Human-Computer Studies, vol. 71, no. 11, 2013.

[39] C. Friedrich and P. Eades, “The marey graph animation tool
demo,” in Graph Drawing, ser. LNCS, 2001, vol. 1984, pp. 396–406.

[40] ——, “Graph drawing in motion,” Journal of Graph Algorithms and
Applications, vol. 6, no. 3, pp. 353–370, 2002.

[41] U. Brandes and D. Wagner, “Visone - analysis and visualization of
social networks,” in Graph Drawing Software, ser. Mathematics and
Visualization, 2004, pp. 321–340.

[42] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall,
1998.

[43] Y. Frishman and A. Tal, “Dynamic drawing of clustered graphs,”
in INFOVIS 2004, 2004, pp. 191–198.

[44] M. Pohl and P. Birke, Interactive Exploration of Large Dynamic
Networks, ch. Proc. 10th International Conference on Web-Based
Visual Information Search and Management, VISUAL 2008.

[45] F. Reitz, M. Pohl, and S. Diehl, “Focused animation of dynamic
compound graphs,” in Information Visualisation, 2009 13th Interna-
tional Conference, July 2009, pp. 679–684.

[46] “RFC 1918. address allocation for private internets,”
http://www.ietf.org/rfc/rfc1918.txt.

[47] RIPE NCC, “RIPEstat,” https://stat.ripe.net/.
[48] G. Sander, “Layout of compound directed graphs,” FB Informatik,

Universitat Des Saarlandes, Tech. Rep., 1996.
[49] ——, “Graph layout for applications in compiler construction,”

Theoretical Computer Science, vol. 217, no. 2, pp. 175 – 214, 1999.
[50] M. J. Roberts, Underground Maps Unravelled - Explorations in Infor-

mation Design, 2012.
[51] L. Colitti, G. Di Battista, F. Mariani, M. Patrignani, and M. Piz-

zonia, “Visualizing interdomain routing with BGPlay,” Journal of
Graph Algorithms and Applications, Special Issue on the 2003 Sympo-
sium on Graph Drawing, GD ’03, vol. 9, no. 1, pp. 117–148, 2005.

[52] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, “Animated explo-
ration of dynamic graphs with radial layout,” in Proc. INFOVIS’01.

[53] C. Bachmaier, “A radial adaptation of the sugiyama framework for
visualizing hierarchical information,” IEEE Trans. on Visualization
and Computer Graphics, vol. 13, no. 3, pp. 583–594, 2007.

[54] M. Forster and C. Bachmaier, “Clustered level planarity,” in SOF-
SEM 2004: Theory and Practice of Computer Science, ser. LNCS, 2004.

[55] G. Di Battista and E. Nardelli, “Hierarchies and planarity theory,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 18, no. 6,
pp. 1035–1046, 1988.

[56] G. Battista, W. Didimo, and A. Marcandalli, “Planarization of
clustered graphs,” in Graph Drawing, ser. LNCS, 2002.

[57] M. Raitner, “Visual navigation of compound graphs,” in Graph
Drawing, ser. LNCS, J. Pach, Ed., 2005, vol. 3383.

[58] K. Sugiyama and K. Misue, “Visualization of structural informa-
tion: automatic drawing of compound digraphs,” IEEE Trans. on
Systems, Man and Cybernetics, vol. 21, no. 4, pp. 876–892, 1991.

[59] K. S. Booth and G. S. Lueker, “Testing for the consecutive ones
property, interval graphs, and graph planarity using pq-tree algo-
rithms,” JCSS, vol. 13, no. 3, pp. 335 – 379, 1976.

[60] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman,
M. Latapy, C. Magnien, and R. Teixeira, “Avoiding traceroute
anomalies with paris traceroute,” in Proc. 6th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’06, 2006, pp. 153–158.

