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Abstract

We present the first approach to integrative structural modeling of the biological mesoscale within 

an interactive visual environment. These complex models can comprise up to millions of 

molecules with defined atomic structures, locations, and interactions. Their construction has 

previously been attempted only within a non-visual and non-interactive environment. Our solution 

unites the modeling and visualization aspect, enabling interactive construction of atomic resolution 

mesoscale models of large portions of a cell. We present a novel set of GPU algorithms that build 

the basis for the rapid construction of complex biological structures. These structures consist of 

multiple membrane-enclosed compartments including both soluble molecules and fibrous 

structures. The compartments are defined using volume voxelization of triangulated meshes. For 

membranes, we present an extension of the Wang Tile concept that populates the bilayer with 

individual lipids. Soluble molecules are populated within compartments distributed according to a 

Halton sequence. Fibrous structures, such as RNA or actin filaments, are created by self-avoiding 

random walks. Resulting overlaps of molecules are resolved by a forced-based system. Our 

approach opens new possibilities to the world of interactive construction of cellular compartments. 

We demonstrate its effectiveness by showcasing scenes of different scale and complexity that 

comprise blood plasma, mycoplasma, and HIV.
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1 Introduction

Technological advances in structural biology, proteomics, and biophysics, combined with the 

rapid advance of computational capabilities, have opened the door to studying increasingly 

large and complex biological systems. Recently, we have seen a shift from studying 

individual proteins to modeling and analyzing functional protein assemblies and even larger 

systems, such as viruses, bacteria, and portions of eukaryotic cells. These are often denoted 

as biological mesoscale structures, representing an intermediate scale between molecular 

and cellular biology. On the molecular (nanoscale) level, cells are built of proteins, nucleic 

acids, lipids, and polysaccharides. The mesoscale level reveals how these molecules are 

assembled into more complex subcellular environments that orchestrate the processes of life. 

Given the complexity of these massive mesoscale environments, modeling must be tightly 

coupled with a proper visual representation. This provides intuitive feedback for their 

validation, tools for exploration of the models, and visual materials for public dissemination 

and to communicate findings to peers. In typical scenarios, these visualizations are created 

by scientific illustrators who traditionally produce images by hand drawing or by using 3D 

modeling tools. Examples include our illustrations of cellular environments [15], and a 

detailed 3D model of a synaptic bouton created in Maya [47]. This is a laborious process 

with limited interaction and exploration capabilities, which also requires non trivial domain 

knowledge about the depicted biological structures.

A more general solution is to describe the scene on a higher level of abstraction and use this 

description to automatically create the resulting scene. This approach has recently been 

implemented in cellPACK [24] to generate and visualize 3D models of complex biological 

environments. CellPACK integrates data from multiple sources into a ’recipe’ that describes 

the constitution of the desired environment. The environment is partitioned into membrane-

bounded compartments, often arranged hierarchically. The compartments are defined by 

mesh surfaces that represent the lipid-bilayer membranes. Each compartment, including 

membranes, can be populated by a different set of ingredients, which include soluble 

molecules inside the compartment and molecules embedded in the membranes. These 

ingredients can be fibrous components, such as RNA or carbohydrate chains, soluble 

components such as proteins and metabolites, or lipids in membranes. CellPACK combines 
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the knowledge about membranes, compartments, and ingredients, and then assembles a 

mesoscale model with respect to mutual biologically-relevant interactions between them.

The main drawback of this approach is the computation time for assembling the 3D 

mesoscale model from the input data and the recipe. Depending on the desired quality of the 

distribution of ingredients, this stage spans from minutes to hours. Therefore, it is often a 

lengthy process to, for example, change parameters like the number of ingredients (molarity) 

or their interactions and observe the impact of the change. Our aim is to overcome this 

limitation and to instantly provide distributions of various ingredients within biological 

compartments and on membranes. This will open new possibilities for biologists to gather 

domain-specific knowledge about mesoscale-level structures, integrate it into a model, and 

explore the consequences of gaps in knowledge or ranges of experimentally-observed 

parameters.

Another irreplaceable part of the whole process is the visual representation of the scene and 

its content. Molecular visualization techniques have been developed in the last decades, 

which predominantly focus on visual depictions of molecules captured by X-ray 

crystallography, NMR spectroscopy, and more recently, electron microscopy. Due to the 

nature of this structural data, the molecules may be visualized at atomic resolution. 

However, the mesoscale level poses new challenges. Mesoscale models are larger, with 

millions of atoms, taxing existing visualization hardware and software. They are also more 

complex, often integrating multiple types of data at different resolutions, and with complex 

hierarchical relationships that span from individual molecules to entire cells. Visual 

representations must provide the user with an overview of the structures as well as with 

means to explore their details. To address this challenge, our state-of-the art tool cellVIEW 

[36] enables a seamless transition between visual representations of structures on different 

levels of detail. CellVIEW integrates the latest GPU-based algorithms from computer 

graphics and visualization to interactively render large biological scenes.

The approach described here incorporates instant modeling into cellVIEW to provide a 

unified visual framework for modeling and for visualization. The main contributions 

include:

• New algorithms for instant modeling of different types of compartments and 

membranes of biological structures on the mesoscale level.

• An interactive visual environment that allows users to change the population 

parameters and instantly explore the resulting scene on both nanoscale and 

mesoscale levels.

• Enhancing the process of creating models of mesoscale structures by shifting it 

from a non-visual and non-interactive environment to a fully interactive and 

visually-supported one.

We demonstrate the approach with mesoscale models of different scale and complexity, 

including blood plasma, HIV, and an entire mycoplasma bacterium.
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2 Related Work

Experimental methods to determine mesoscale structures are extending to larger and larger 

subjects, but currently fall short of being able to determine the atomic structure of living 

cells. For instance, cryo-electron microscopy (EM) can give a detailed structure of the 

regular envelope of the Zika virus, but the more randomly arranged genome inside is still 

largely inaccessible to experiments [40]. Similarly, cryo-EM tomography is currently 

yielding detailed views of complex enveloped viruses, bacteria, and eukaryotic cells, but are 

typically able to resolve only large molecules such as ribosomes, cytoskeletal elements, and 

membranes [2].

Many groups are attempting the structural modeling of the mesoscale with atomic detail, 

using computation to combine information from mesoscale experimental techniques with 

atomic structural information on the components [22,38]. Much of the work in structural 

mesoscale modeling has focused on the soluble components of bacterial cytoplasm, using 

models to explore diffusion in crowded environments [35]. More recently, several groups are 

building tools for full structural models that include cellular infrastructure, including our 

own work with cellPACK [24] and LIFEEXPLORER [21,43].

Procedural Modeling

The mesoscale structure of cells is similar to other natural phenomena with high geometric 

and visual complexity as well as with requirements for explicit control of details. Other 

examples include the modeling of clouds and meadows covered by grass. The general 

approach to model these types of phenomena is to first define the overall shape of the 

environment, then fill it in with detailed objects using a stochastic process. This approach, 

called procedural modeling, has a long tradition in computer graphics, for example, for on-

the-fly generation of infinite cities [16] or forests [7] within rich game environments. 

Currently the focus is rather on parallelization and scheduling optimizations, so that the 

procedural content generation is efficiently realized on graphics hardware [4,41]. Wonka et 

al. [49] presented a method for the automatic modeling of architecture. Recently, a novel 

technique was proposed for viewpoint-guided generation of high geometric details on 

facades [30]. These techniques typically use certain plans or grammars, which provide 

structural rules for the generation of shapes. In our work, we focus rather on the distribution 

of objects where the space is already constrained by membranes and divided into 

compartments.

Visualization of Large Biological Scenes

Driven by the wealth of structural information available through sources like the Protein 

Data Bank [3], highly effective software is currently available for the visualization of 

biomolecules and assemblies. For recent reviews, see Kozlikova et al. [29] and Johnson and 

Hertig [27]. These methods typically fail when faced with the large number of mesoscale 

molecules. Mesoscale structures require specialized, highly-optimized solutions. Currently, 

there are two publicly-available open-source systems where large numbers of atoms can be 

rendered efficiently by leveraging graphics hardware capabilities. One system is MegaMol 

[17], which is useful for various atomic representations, not only biomolecules. The other 
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one is cellVIEW [36], a tool for illustrative multiscale visualization of large biomolecular 

datasets. An alternative approach, published by Waltermate et al. [45], introduces an 

interactive tool combining mesoscopic and molecular scale visualization. They reach this by 

using a magnifier tool that enables the user to select a region on the cell membrane and map 

a pre-computed membrane patch with atomistic resolution onto it. This approach is able to 

populate only a very limited area of the cell surface.

Mesoscale scenes are also often produced by scientific illustrators using general-purpose 3D 

modeling tools. To ease their tasks, several extensions specific to molecular modeling have 

been introduced. For example, our ePMV plugin [25] allows users to run molecular 

modeling software directly inside of professional 3D animation applications. SketchBio [44] 

is another example of a 3D interface for molecular modeling and animation. Lv et al. [33] 

explored the possibility to use game technology in biomolecular visualization, using the 

Unity3D game engine to develop and prototype a molecular visualization application for 

subsequent use in research or education.

Texture Synthesis

Our approach to populate large biological membranes with lipids is based on a tiling 

technique commonly used in seamless 2D texture synthesis. We adapt Wang Tiles [46], 

which utilize square tiles to generate a plane tiling. The positioning of tiles on the plane is 

done according to their face-color rules to compose a desired pattern. Recently, several 

extensions of this basic approach have been published. Most of them were designed for 

synthesizing 2D textures that are mapped onto 3D surfaces. Fu and Leung [13] applied 

Wang Tiles to arbitrary topological surfaces. Our case differs in the necessity to synthesize 

tiles containing 3D objects, such as lipids. Therefore, the detection and handling of overlaps 

has to take these objects into account. Here we were inspired by the solution provided by 

Lipid-Wrapper [9]. LipidWrapper solves the collisions for each triangle on the 3D mesh, 

which makes it unsuitable for large membranes. Neyret and Cani [37] presented another 

strategy to tiling, using triangles with homogeneous textures to tile surfaces. Culik and Kari 

[5] introduced Wang Cubes, which extend the Wang Tiles approach and are able to create 

non-periodic illustrative 3D patterns and textures. Lu et al. [32] presented a framework for 

volume illustration utilizing Wang Cubes. They extend the original idea and modify it for 

multipurpose tiling. The Wang Cubes are not applicable in our case. Although we deal with 

3D tiles representing the lipid bilayer, the tiles are still defined by a 2D plane. Fleischer et al. 

[12] presented an approach to texturing surfaces with so called cellular textures. These are 

textures represented by more complex geometry, which can cover the surface with small-

scale features, such as feathers or thorns. This is very close to our situation with lipid 

bilayers. However, cellular textures cannot be applied in our case because of the regularity of 

the produced surfaces and the algorithm speed.

Population with Fibrous Structures

Algorithms for self-avoiding walks may be used to populate a compartment with a fibrous 

structure. Fan et al. [10] published an extension of a Manhattan lattice to generate fibrous 

structures by going from 2D to 3D space. In our approach we execute a procedural building 

of fibrous structures, which is similar to the polymerization process addressed by Kolesar et 
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al. [28]. Their illustrative approach is a fusion of three different modeling techniques, i.e., L-

systems, agent-based systems, and systems of densities. Adding new building blocks to the 

existing polymer is based on attraction forces. Gruenert et al. [18] presented an approach to 

rule-based spatial modeling of chemical reaction systems. The technique is also suitable for 

simulating the polymerization process, showcased on the growth of filaments. The growth is 

driven by parameters, such as torsion and bending, that control the pathways and structures 

of formed complexes.

The problem of procedurally constructing paths is common in other areas as well. As an 

example, Galin et al. [14] presented an automatic method for generating roads between two 

given points, based on a weighted anisotropic shortest path algorithm. The result path 

minimizes a cost function influenced by different features of the scene, such as terrain shape 

and obstacles.

3 Overview

When modeling scenes containing complex mesoscale biological structures, the workflow 

consists of the following basic steps:

1. Scene organization, to define the shape of each membrane-bounded 

compartment.

2. Recipe definition, to determine the molecular composition of each compartment 

and membrane.

3. Population of the model, to fill the soluble spaces and membranes with 

ingredients defined in the recipe.

The organization of the scene is defined by closed 3D meshes that represent the lipid bilayer 

membranes. The membranes specify the separate compartments of the scene. For example, 

Figure 1 (a) shows a scene with two concentric closed membranes defining two intracellular 

environments (labeled 1 and 2) and a surrounding environment (labeled 3). The following 

step is to compile a recipe that defines the molecular composition of these compartments and 

membranes (Figure 1 (b)). This recipe includes the structures of the molecules, their 

concentration (molarity), and constraints related to their position in the membranes, specific 

interactions with other molecules, etc. The last step takes the recipe and populates the 

compartments and membranes accordingly (see Figure 1 (c)). This population step is 

typically stochastic, so it may be repeated to provide an ensemble of similar models that are 

each consistent with the scene organization and recipe.

With currently available approaches, such as cellPACK [24], the process of transforming the 

scene definition and recipe to the final model can take from minutes to hours, depending on 

the complexity of the scene. This makes the modeling process non-interactive as the user 

cannot immediately see the consequences of parameter changes. We overcome this by 

applying parallel processing, to improve computational bottlenecks of the workflow.

As can be seen in Figure 1 (b), the individual compartments and membranes can be 

populated in several ways. We can distinguish three basic cases:
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• Membranes represent a semi-permeable barrier between two compartments. 

They often consist of a lipid bilayer with embedded proteins used in the 

communication and transport of molecules and ions across the membrane. In 

order to model membranes, we have implemented a solution based on texture 

tiling.

• Soluble components occupy the free space in each compartment. They consist 

of ingredients (molecules) of different shape and complexity, which influences 

the difficulty of the population step inside of each predefined space. Our 

approach for positioning ingredients in compartments consists of two steps. The 

first step populates the spaces with ingredients without considering overlaps 

between them. Collisions are resolved in the second step.

• Fibrous structures such as DNA, RNA, or actin filaments, are long strands 

folded inside specific compartments. We use a self-avoiding random walk to 

construct fibers in the allowable regions of the compartments.

Algorithms for populating spaces with each of these types of ingredients, and the advantages 

of populating them in a specific order, are described in detail in the following sections.

4 Membrane Population

Biological membranes are built around a continuous fluid sheet containing two opposed 

layers of lipids. Lipids are small molecules consisting of several dozen atoms, with a 

characteristic chemical character. They are composed of a head group that is soluble in 

water, and one or more tails that are insoluble. In water, they spontaneously associate to hide 

the insoluble tails, forming some of the largest structures in cells. These membranes form 

the semi-permeable boundary that surrounds cells, as well as the boundary of inner 

compartments such as the nucleus or mitochondria. Different types of lipids may be 

distributed unequally to create an asymmetry between the outer and inner surfaces, which is 

important for the cell function. For each biological structure, such as the HIV virion or the 

red blood cell, the bilayer has a unique lipid composition. The common property is that 

lipids are densely packed on the membrane and are oriented roughly perpendicularly to it.

The modeling of lipid bilayers is a complex and laborious task, because of the dense packing 

and the large number of lipids compared to other surrounding molecules. The main 

challenge, in terms of modeling, is to incorporate the known structural information and to 

avoid repetitive patterns on the surface. Several bilayer-modeling programs are available, 

such as CHARMM-GUI [23], Packmol [34], or cellPACK [24]. These tools position 

individual lipids one-by-one on the membrane, which leads to unacceptable computational 

costs. A more sophisticated solution is provided by LipidWrapper [9]. It extracts whole 

patches from a pre-equilibrated planar membrane model. These patches contain the detailed 

structural information about the lipids. In order to produce the membrane surface, 

LipidWrapper uses a triangulated mesh as input, where each triangle patch is randomly cut 

out from the provided membrane model. However, the edges of adjacent patches on the 

surface do not fit together and lipids potentially overlap in these regions. LipidWrapper 

deletes overlapping lipids and fills the resulting holes with new lipids. This is an expensive 

Klein et al. Page 7

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process since it must be done for every triangle edge on the surface. Because of this, the 

computational cost of LipidWrapper is significant and not applicable to instant modeling.

For the interactive population of membranes, our solution uses a tiling approach from 

texture synthesis to cover the membrane mesh with lipids. In our approach, we require the 

mesh to be defined as a quad-based surface map. In general, any method can be used that 

resamples a given mesh into a quad-based surface if the resulting surface map is conformal 

and has low area distortions. An example can be PolyCubeMaps introduced by Tarini et al. 

[42]. The mesh generated by this approach is only marginally affected by distortions, which 

makes it suitable for our tiling approach.

To cover the mesh with lipids, we use only a small number of tiles. These tiles are pre-

populated with lipids and here we use the basic principle of LipidWrapper. Our solution is 

significantly faster because we generate the content for only a limited set of tiles instead of 

applying it onto the whole mesh geometry. The tiles are subsequently used for covering the 

membrane. They have to be placed in such a way that their edges fit together and that the 

tiling will not result in periodic patterns. As the repetition pattern should not be visible, we 

use Wang Tiles [46].

In the following, we describe individual steps of our approach in detail. We start with the 

description of the concept and principle of Wang Tiles. Then we present our adaptation of 

this concept to membrane meshes.

4.1 Wang Tiles and their Extension to Membranes

The Wang tiling concept was introduced in the early ’60s and is well-known in texture 

synthesis. A Wang Tile is defined as a square with color-encoded edges. A set of Wang Tiles 

can be used to cover a 2D plane without periodic patterns. The colors of edges restrict how 

the tiles can be placed during the tiling process. The tiling is valid only if shared edges have 

the same color. At least four colors are required to tile a plane non-periodically.

There are several approaches that extend the concept of Wang Tiles to 3D space. In our 

solution, we follow the approach of Fu and Leun [13], which applies the tiling concept of 

Wang Tiles to arbitrary topological surfaces. They generate each tile from four different 

diamond-shaped input patches that are positioned west, east, north, and south around the tile 

center, respectively (Figure 2). These patches are combined to generate a set of tiles with 

different colors on the edges. We adapt this approach for use in membrane modeling by 

synthesizing a collection of lipid-textured tiles and then mapping them onto the membrane 

mesh.

4.1.1 Tile Synthesis for Lipid Bilayer Models—Synthesis of the tiles is the major 

challenge to generating 3D models of biological membranes. First, we have to extract the 

content for the tiles from an input texture. For biological membranes, this input texture is a 

planar representation of the lipid bilayer containing non-overlapping, tightly-packed lipid 

molecules. Atomic coordinates for the lipid bilayer can be generated, for example, by a 

molecular dynamics simulation using the Amber force field for lipids [8]. The tiles are 

generated in several steps. First, four small diamond-shaped patches are extracted from the 
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large bilayer texture. When extracting these patches (Figure 2 (a)), we include only lipids 

whose center is inside the bounds of the specified patch, where the center of a lipid is 

defined as the center of its bounding box. A large diamond-shaped patch is then created by 

positioning four of these tiles together. Finally, we extract a rectangular tile from the large 

diamond-shaped patch (see Figure 2 (b)). The different tiles needed for Wang Tiling are 

generated by different arrangements of the small patches into the large patches. The tile has 

to be further processed to resolve overlaps and fill gaps.

Detection of Overlapping Lipids: The assembly of a tile from multiple input patches 

inherently leads to overlapping lipids in areas where the input patches meet. Collisions are 

evaluated in a two step process to improve performance. First the overlap between bounding 

boxes is tested, then if necessary individual lipid atoms are checked. The lipid with the 

highest number of collisions is removed from the tile. If multiple lipids have the same 

number of collisions, one is chosen randomly for removal. The number of collisions is then 

updated for all neighbors of the removed lipid, and the procedure is repeated until all 

collisions are eliminated. This leaves the tile with undesirable holes (Figure 2 (c)), which are 

filled in the final step.

Hole Filling: The holes in a tile are filled by non-colliding lipids (Figure 2 (d)). Individual 

lipids are extracted from the same input membrane bilayer that was used to generate patches 

for tiles. For each side of the bilayer, a plane is defined that intersects the hydrophilic head 

groups of the lipids in the tile. Trial lipids are randomly chosen from the input texture and 

placed at regular intervals along the diagonals of the tile, aligning their head groups within 

the planes. If there are no collisions, the lipid is added to the tile, otherwise, the lipid is 

rotated around an axis perpendicular to the plane and tested for collisions. If no acceptable 

orientations are found, the process continues with another lipid from the input texture. 

Additionally, we reduce the number of possible candidates by rejecting those that already 

intersect with the lipids from the tile.

The result of the hole filling process depends on three parameters: how many lipids do we 

have in the testing set, how many rotations of lipids we test, and how many times we repeat 

the entire hole filling procedure. These parameters can be adjusted according to user needs. 

As we apply the process only on the tiles and not on every quad of the mesh, the parameter 

setting is not a critical aspect.

4.2 Tile Mapping

Finally, the generated tiles are mapped onto the membrane mesh consisting of quads. Since 

we are using data from a bilayer lipid membrane instead of textures, the 3D coordinates are 

mapped onto the quads instead of 2D texture coordinates. For this reason, we use 

quadrilateral coordinates to map lipid centers (λ, µ) to the quad with the vertices 

(v0,v1,v2,v3) through the following equation, where p is the resulting vertex in 3D space.

(1)
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At each resulting position, the corresponding lipid is instantiated. The orientation of the 

lipids on the quad has to be adjusted as well. As the main axis of the lipids is always 

perpendicular to the plane of the tile, we determine their orientation by computing the 

rotation angle between the original tile and its position on the quad. This rotation is applied 

to all lipids of a given tile. Figure 3 shows the result after positioning the tiles with lipids on 

the membrane mesh.

5 Soluble and Membrane-Bounded Components

Cells are typically crowded with proteins, nucleic acids, and other molecules. Soluble 

components and assemblies fill the compartments. Membrane-bounded components are 

embedded in the lipid bilayers. The recipe for a mesoscale scene specifies the quantity of 

these ingredients, their locations and orientations (if appropriate), and their mutual 

interactions. The task of population boils down to spatially distribute these ingredients in the 

corresponding space avoiding overlaps. Currently available techniques are capable of 

positioning soluble ingredients inside compartments, however, only in a sequential manner. 

This means that they position ingredients one by one. After positioning each ingredient the 

surrounding space is updated so it is aware of the distance to the closest ingredient. The next 

ingredient can only be positioned at locations with a sufficient distance to the nearby 

ingredients. The computational cost of the sequential approach is not acceptable for 

interactive environments. Therefore, our solution uses parallel processing to increase the 

performance.

To make the procedure applicable to GPU implementation, we divide our approach into 

three consecutive steps (see Figure 4):

1. Compartment space organization using voxelization.

2. Populating the space with the given ingredients.

3. Detecting and resolving collisions between ingredients.

The major advantage of this approach is that the processing of the individual ingredients 

becomes mostly independent from the processing of other ingredients. In the rest of this 

section we describe the steps in more detail.

5.1 Step 1 – Space Partitioning using Voxelization

The first step is to partition the scene into a set of compartments, delimited by membrane 

meshes. Our approach is based on the state-of-the-art method of GPU voxelization by 

Schwarz and Seidel [39]. The voxelization process starts with the classification of voxels 

that intersect with the compartments. In one of the grid axes, a scanline algorithm is applied 

to all voxels to determine if they belong to cellular compartments, membranes, or to the 

surrounding environment. We assign a negative value to cellular compartment voxels, a 

positive value to surface voxels, and zero to outside voxels. We repeat this process for all 

compartments in the scene. The resulting structure, which we call a compartment grid, 

identifies the compartment or membrane associated with each voxel, for the rapid population 

in the following step. Moreover, we can sort the voxels per compartment and estimate the 
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volume for each of them. Thus, given a molarity we can calculate the proper count for a 

specific protein.

In addition to the compartment grid, we define an occupancy grid that helps to resolve 

some of the overlaps between ingredients. The occupancy grid is of the same size and 

resolution as the compartment grid. It holds negative values for empty voxels or the 

corresponding ID of the ingredient if the voxel is occupied. This is especially important if 

the size of ingredients differs significantly, e.g., if surface ingredients protrude from the 

compartment surface. For this reason, we start the population process by distributing the 

large surface ingredients and then use the remaining space for the interior ones by 

employing the updated occupancy grid. This divides the population process into two passes, 

but prevents small ingredients from being completely overlapped by larger ingredients 

coming from a different compartment.

5.2 Step 2 – Population

In this step we populate a given compartment with individual ingredients defined in the 

recipe, using the compartment grid and occupancy grid generated in the previous step. Here 

we distinguish between two types of ingredients to be populated. The first type are 

ingredients that occupy the inner part of a compartment but are bounded to the compartment 

membrane. The second type of ingredients populates the soluble space of the compartment. 

In order to avoid additional overlaps, we first populate the surface of the compartment and 

then its inner part.

5.2.1 Population of Compartment Surface—Cell membranes typically include a 

diverse collection of membrane-bounded proteins, which may interact just on one side of the 

membrane or extend through the membrane. This poses several challenges: the proteins must 

be oriented correctly, must face the proper direction, and their membrane-spanning portions 

must be embedded in the membrane. These proteins often have large portions extending 

from one or both sides of the membrane, which must be evaluated for collisions with other 

membrane-bounded proteins and soluble components. In order to spatially distribute 

ingredients on a given membrane, we need the information about the ingredient type, its 

molarity, the ID of the membrane, and the principal vector and offset of the ingredients 

(Figure 5 (a)). Then we update the information stored in the occupancy grid (Figure 5 (b)).

The ingredients should be randomly distributed and should not overlap. To solve this issue, 

Willmott previously used the property of a Halton sequence to distribute in real time non-

overlapping objects in a plane [48]. Similar to his approach, we use a Halton sequence to 

select positions on the mesh of the membrane to place the ingredients.

In general, a Halton sequence [19] provides point sets with low discrepancy, i.e., it produces 

well-spaced samples. The sequence is constructed using a prime number that defines the 

number of divisions of a unit interval into sub-intervals. These are subsequently divided 

using the same prime number until the desired length of the sequence is reached. The 

sequence is then ordered in such a way that it produces subsets that evenly cover the entire 

domain. Halton sequences are often used for numeric methods like Monte Carlo simulations 

[6]. Another advantage of a Halton sequence is that it never contains the same number twice 
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so that we do not choose the same position for multiple ingredients. This approach provides 

an efficient and rapid way of distributing ingredients on the surface of the membrane with 

sufficient randomness while minimizing potential overlaps.

The orientation of the ingredient is then described as the principal vector defining the 

orientation of the ingredient with respect to the membrane, and an offset vector that places 

the ingredient at the proper position relative to the surface of the membrane (Figure 6). This 

information is usually computed using the OPM webserver [31].

5.2.2 Population of Compartment Inner Area—For populating the soluble space of 

compartments, we use the information stored in the compartment grid and the occupancy 

grid to find appropriate positions for the ingredients. The membrane-bounded ingredients 

positioned in the previous step are considered as non-moving obstacles, i.e., they are handled 

as static objects when resolving collisions.

The population procedure works as follows. For each instance of the ingredient defined in 

the recipe, we place it at a voxel marked with the appropriate value in the compartment grid, 

and with an empty value in the occupancy grid. The occupancy grid is then updated with the 

identity of the ingredient, and these steps are repeated until all ingredients are positioned 

(Figure 5 (c), (d)). The occupancy grid is updated even after the positioning of all 

ingredients is completed, so that the grid may be used in populating this compartment with 

fibrous structures (see Section 6).

As the size of the ingredients can be substantially larger than the voxel size, this will 

ultimately result in intersecting ingredients if they are placed in a close proximity. The 

population step does not necessarily need to take overlap into consideration, although the 

less overlap is produced, the less computation is required. The following resolves the 

overlaps. A straightforward approach to avoid overlaps is to uniformly distribute ingredients. 

However, this leads to an undesired visual appearance since the grid structure becomes 

clearly visible. In order to introduce a certain degree of randomness and still reduce 

overlaps, we again utilize a Halton sequence to choose potential grid points for population. 

In practice a compartment populated using a Halton sequence can still suffer from visible 

regularities. Therefore, we additionally introduce jittering by a random vector in each grid 

position and we also apply a random rotation to each ingredient. With the Halton sequence, 

we can significantly reduce the number of overlapping molecules but it does not completely 

avoid them. The following step detects and resolves these remaining overlaps.

5.3 Step 3 – Detecting and Resolving Collisions

Ideally, we would want to detect collisions by evaluating contacts between all atoms in the 

molecules. However, this is not practical in terms of performance, so for every molecule 

type, we compute a two-level proxy geometry that approximates its shape. The higher-level 

proxy is simply the bounding sphere of the molecule. The lower-level proxy approximates 

the molecule with a small number of spheres calculated with a GPU-based K-means 

clustering algorithm [11]. As preset we use 16 spheres. The clustering provides the centers 

of the spheres and the radii which correspond to the cluster sizes. This ensures that all atoms 

are covered by the proxy geometry. The collision-detection process first uses the higher level 
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proxy geometry to detect potential collisions between two molecules, which are then verified 

with the lower-level proxy geometries using the finer approximation of the shape. Figure 7 

shows the lower-level of the proxy geometries (a) and the scene populated by ingredients 

(b). The proxy geometry slightly overestimates the actual shape of the molecule to ensure 

that a certain distance is created between molecules after the collision is resolved. From a 

perceptual point of view, the molecules are easier to distinguish if their shape boundaries are 

not in direct contact.

The resolving of collisions is loosely based on standard rigid body dynamics [1]. Usually the 

exact point of contact between two bodies is detected and then corresponding forces are 

computed. Since our molecules are already in a colliding state, we simply compute forces 

that resolve these collisions. We use the information about collisions from the lower-level of 

the proxy geometry as a basis for the computation. For each intersecting pair of molecules 

we determine the overlapping sphere pairs and consider each as one collision. Each 

molecule accumulates a linear and angular force that is updated for every collision. The 

linear force is defined by a direction and strength. The direction is derived from the vector 

between the centers of the two spheres. The distance between the two sphere centers 

determines the strength of the force. As in rigid body dynamics, we compute the angular 

force by taking into account the vector between the center of the molecule and the collision, 

as well as the direction vector. After the forces for all collisions are computed, they 

determine the new position and rotation of molecules, as in a standard physics-based system. 

This defines one integration step. During the collision-resolving process, a molecule might 

temporarily leave its compartment. In this case we apply a force to the molecule, that will 

steer it back into the compartment. This process is repeated for a certain number of 

integration steps until all collisions are resolved or a stop criterion is reached. The criterion 

can be set by the user and specifies a certain number of acceptable remaining collisions. This 

makes the system flexible for less powerful hardware systems as well. Both the collision 

detection and the subsequent resolving is computed on the GPU.

6 Fibrous Structures

Fibrous ingredients are linear or branched polymers of repeated units, found in many places 

in cells. They include protein filaments that form infrastructure, polysaccharides that provide 

protection or store energy, and nucleic acids that encode genetic information. They are 

usually modeled using a procedural growing algorithm, such as self-avoiding random walks. 

Angle and length are constrained to maintain the persistent length of the processed fiber. The 

process of building the fibrous structure is sequential by nature as we have to be aware of the 

previous state of the fiber. However, this process can be greatly improved by using the 

compartment and occupancy grid information. For every incremental step of the walk, the 

corresponding grid element can be checked if it belongs to the compartment (compartment 

grid) and if it is occupied by some other protein (occupancy grid). This improves the 

computational cost by restraining the growing fiber to allowed space and minimizing 

intersections with previously positioned ingredients, including self-intersections. For large 

systems, such as genomes, the fiber can contain millions of subunits, so the complete fiber-

growing process will not be interactive. Here, we provide the possibility for the user to 

observe the current progress of the fiber growth, to remain interactive.
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The self-avoiding random walk in our approach works as follows. In the target compartment, 

a starting point is randomly chosen and the ensuing protocol is iterated until the required 

length of the fiber is reached. In each step, a random direction is selected from the 

hemisphere that is oriented and positioned according to the previous direction, as illustrated 

in Figure 8 (a). Possible intersections of the random walk with membranes, soluble 

molecules or itself are tested by using the occupancy and compartment grids. If there are no 

intersections, the segment is added and the grids are updated. Otherwise, a different random 

direction is chosen. A dead-end is reached if the walk cannot be continued after a given 

number of attempts. In our experience, the order in which molecules are distributed strongly 

influences the success of the population step. We have obtained the best results by placing 

membrane-bounded proteins first, followed by fibers, and finishing with soluble ingredients. 

This sequence addresses two significant potential problems: (i) membrane-bounded proteins 

often protrude in the compartments, so the fiber must avoid them, and (ii) typical soluble 

components are highly crowded into compartments, lead to few free grid points, and leave 

no options for fiber growth. Figure 8 (b) shows result of positioning DNA and RNA fibrous 

structures.

The method provides interactive performance for small fibers, such as the 

lipopolysaccharides extending from the mycoplasma surface or small RNA molecules in the 

cytoplasm. Long genomic DNA molecules, however, require several minutes to generate. We 

provide two methods to allow the user more interaction for these large structures: a premade 

DNA model may be preloaded, or we grow the walk in real-time to show the progress. This 

enables the user to stop and restart if the growing model shows problems.

7 Results and Discussion

The approach described here is flexible, allowing the user to model a variety of biological 

systems. This ability is due, in part, to the relationship of all living organisms on Earth. 

Similar membranes surround all cells and define their inner organelles, and similar proteins 

orchestrate the traffic of molecules and information across the membranes. Similar proteins 

and nucleic acids are used for the many metabolic and genetic tasks required for energy 

production, biosynthesis, and reproduction, which are packaged in very similar 

compartments within cells. Since viruses rely on cells for reproduction, they are also built 

from a subset of this machinery. With a limited set of structural modeling tools, we are able 

to build a variety of different cellular scenes.

Building mesoscale models is always an iterative process, where the recipe, ultrastructure 

and other parameters are tuned to reflect on and lend insight to the available experimental 

results. This is a laborious process with systems such as cellPACK, where single models 

require from minutes to hours to generate, followed by a significant effort to visualize the 

results. Our approach tightens this research cycle, allowing researchers to generate models 

or ensembles of models rapidly in an intrinsically visual environment. This allows the users 

to interactively optimize recipes, identify and correct any errors or bugs, and incorporate 

new data rapidly as it becomes available.

Klein et al. Page 14

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We demonstrate the capabilities and advantages of this new approach in three test systems. 

In a mesoscale model of blood plasma, the efficiency of the current method allows us to 

create a very large scene containing millions of molecules, which required a prohibitive 

computational effort with previous methods. With HIV, the interactive capability allows us 

to generate multiple models from a single recipe, and explore stochastic variations of a 

structurally complex subject. In a model of an entire mycoplasma bacterium, we are able to 

tune the recipe and modeling parameters interactively to achieve a particular goal: creating a 

3D version of an existing 2D rendering of the cell. In the following sections, we describe 

these cases as well as the achieved results. The performance was measured using a computer 

with an Intel Core i7-6700K CPU 4.00 GHz and NVIDIA GeForce GTX 1080 graphics card 

with 8 GB memory.

Blood Plasma

Blood plasma is largely homogeneous and relatively sparsely occupied by proteins and short 

fibrous components. These proteins have a variety of functions, including molecules of the 

immune system, blood clotting factors, transport molecules, and hormones. It is a perfect 

system for early tests of methods for populating mesoscale scenes, because the proteins have 

a variety of sizes and shapes, including several with very large aspect ratios. When 

generating the model using cellPACK, a scene containing nearly 30,000 molecules was 

created in 116 seconds. With our approach we have tested a scene with blood plasma 

containing more than 33,000 molecules. The population step takes on average 100 ms and 

the consecutive overlap resolving takes on average 2000 ms. Our system is also capable of 

populating significantly larger scenes. As shown in Figure 9, we have populated a scene with 

a volume of two cubic microns with blood plasma. Given the exact molarity, our approach 

produces over 4.6 million soluble protein ingredients in 0.6 seconds. In our current 

implementation, this is beyond the capabilities of our force-based system to resolve potential 

overlaps. The main bottleneck here is the collision detection. However, this is not a 

conceptual limitation. Current research [20] has shown that it is already possible to 

interactively solve the collisions of millions of particles.

HIV

We have used HIV as a convenient test system for mesoscale modeling since the inception of 

the cellPACK project. It has several advantages: it is relatively small, but still taxes most 

methods and it is one of the most-studied organisms, so there is abundant information 

available. However, there are still significant gray areas in the available data, so this leaves 

room for experimentation in the parameters of the recipe.

The recipe used here was described by Johnson et al. [26], and comprises five types of 

surface proteins, 19 types of interior proteins and two RNA copies (9,200 bases, roughly 

30,000 Ångströms long).

A membrane envelope surrounds the virion, with several copies of the viral envelope protein 

embedded in the membrane and extending outwards. Inside, a protein-enclosed capsid 

protects two copies of the viral genome. A variety of proteins, including the viral enzymes 

and several accessory proteins, are found in the space between the membrane and the capsid.
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Figure 10 depicts the different steps of our procedural approach to model HIV. The final 

model consists of 11,790 protein ingredients. The entire model requires 0.07 seconds to 

generate without the RNA, and requires ∼3 seconds to generate the two copies of the RNA. 

It takes up to an hour to generate this model using cellPACK.

Mycoplasma Bacterium

The ultimate goal of this work is to create computational models of entire cells, to interpret 

experimental results, and model structure/function relationships in healthy and diseased 

states. To address this challenge, we have focused on one of the simplest cells, a 

mycoplasma bacterium. This bacterium has a very simple structure, with a single cellular 

membrane and a small genome. The membrane is filled with pumps and channels, and 

decorated on the outer surface with lipopolysaccharides that form a protective coat around 

the cell. The detailed organization of molecules inside the cell is only now beginning to be 

explored by cryo-EM microscopy, given the small size of the cells. We have modeled a 

random tangle of DNA surrounded by the soluble protein and RNA components.

The draft recipe for the current model (Figure 11) includes the membrane, one strand of 

DNA (1,211,703 base pairs), 1500 lipopolysaccharides, and a collection of 18 of the most 

prevalent proteins and nucleic acids. The model required ∼100 sec for the generation of all 

the fibers in the model (DNA, mRNA, peptides, lipopolysaccharides) and 0.1 sec to fill the 

remaining space with soluble components. Using cellPACK, the creation of the mycoplasma 

model takes several hours. We employed the interactive capabilities of the method to tune 

the recipe, based on previous research used to create a hand-drawn illustration of the cell. 

Figure 11 includes the illustration, a 3D model using the draft recipe, and a 3D model 

generated after interactively tuning the recipe to better match the illustration.

Performance and Interactive Capabilities

Creation of the presented types of models has previously been a laborious process, forming a 

bottleneck in their study. For instance, the micron-sized blood plasma scene previously 

required hours of computation time, and is modeled with the new method in less than a 

second. Currently, the method is able to populate soluble compartments interactively, 

allowing the user on-the-fly experimentation with recipes and testing their effects on the 

resultant scenes. The performance of mod-eling fibrous and membrane components has also 

been significantly improved when comparing with previous approaches. It takes seconds to 

generate a cell-sized membrane and about a minute to calculate a genome-sized object.

One of the great advantages of our presented methods is the ability to test hypotheses 

interactively. Biological research is an ongoing process, and there are many gray areas in the 

body of knowledge about the structure and function of cells at the mesoscale level. In many 

cases, it is useful to test the emergent mesoscale consequences of different properties at the 

molecular level. In the current implementation, many useful parameters are tunable at 

runtime. The user imports meshes that represent compartments, descriptions of ingredients, 

and then creates and visualizes the model based on the recipe on the fly. Tunable parameters 

in the recipe currently include the location, the molarity, the orientation (as defined by 
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principal vector and offset), and fiber-generation parameters. Once the basic geometry is 

loaded, everything may be changed interactively.

For example, in Figure 12, we tested two assumptions on DNA persistence length in a model 

of a small genome packed into a spherical bacterium. A longer persistence length leads to 

DNA strands that wrap around the periphery of the cell, whereas a shorter persistence length 

leads to a trajectory that is more reminiscent of a 3D random walk. The reality is probably a 

combination of these two assumptions, since DNA-binding proteins often form kinks that 

mimic the short persistence length, while free strands of DNA show a longer persistence 

length.

8 Conclusion and Future Work

In this work we have presented the first interactive approach to an integrative structural 

modeling of the biological mesocale. The interactive performance of the method provides 

several significant advantages in scientific and educational applications. With the possibility 

to create interactive models, domain experts are now able to tune parameters and explore the 

mesoscale properties that emerge. In addition it is now possible to create an ensemble of 

models from a single recipe, allowing researchers to explore the stochastic variations in 

mesoscale properties and compare them with experiments. In education, interactive 

capabilities can allow curriculum developers to better tune their models and representations 

to optimize the clarity of the resultant imagery. A long tradition in scientific illustration has 

proven the pedagogical utility of introducing small artistic changes to a subject to improve 

the interpretability of what is shown.

The next major enhancement of the method will be the incorporation of a faster and more 

intuitive approach to model interactions between the ingredients. For instance, modeling the 

interaction of ribosomes with messenger RNA to form a polysome, or crosslinking of DNA 

by DNA-binding proteins, is currently not feasible. We are currently exploring particle 

simulation methods such as NVidia Flex to add this capability. In addition, we will continue 

to optimize the generation of fibrous components, which is currently the rate-limiting step of 

the model generation with the new approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) The hierarchy is provided by compartments that organize the scene (here marked as 1, 2, 

and 3). (b) For each individual compartment, their composition is defined including the type 

and number of ingredients. (c) Our algorithms automatically populate the compartments and 

their surfaces with the information about the ingredients.
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Fig. 2. 
Overview of the Wang Tile synthesis. (a) Four small patches are extracted from the input 

texture. (b) A large patch is assembled from the four small patches, and then the tile is 

extracted from the center of the patch. (c) Bordering lipids with collisions are removed, 

leaving holes in the tile. (d) Holes are filled by positioning new lipids.
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Fig. 3. 
Example of lipid-bilayer membrane populated by lipid tiles. This cross-sectional view is 

visualized using a cutting plane.
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Fig. 4. 
The three steps of our approach to populate compartments with soluble components. (a) 

Voxelization of the space and definition of inner grids (purple and grey), surface grids (dark 

purple and dark blue), and outer grid (light blue). (b) Positioning of individual ingredients 

inside the inner compartments. Collisions between ingredients are highlighted. (c) Scene 

after resolving collisions using a force-based approach.

Klein et al. Page 24

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
(a) Ingredients distributed on the surface of a compartment. (b) Occupancy grid containing 

information about the voxels occupied by these ingredients (green for outside, yellow for 

inside). (c) Positioning ingredients inside the compartment (new ingredients have red and 

orange color). (d) Occupancy grid update.
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Fig. 6. 
(a) Example of surface ingredient with proper principal vector (black), and offset vector 

(white), pointing from the center of mass to the anchor position at the surface. (b) 

Positioning of the ingredient on the surface using the correct orientation and offset aligned to 

the surface normal (top). Grid occupancy update (bottom).
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Fig. 7. 
(a): Proxy geometry of ingredients. Overlapping geometries are marked in red, non-

overlapping ones in green, and static ones in grey. (b) The same scene populated by 

ingredients.
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Fig. 8. 
Fibrous structures are modeled using a self-avoiding random walk. (a) The walk starts with a 

random point inside of a certain compartment. A random direction in the forward-

hemisphere at this point is then chosen. If there is no intersection with existing structures or 

compartment surfaces, the direction is selected and the segment is added to the fiber. This 

process is repeated until the desired length of the fiber is reached. (b) A very long DNA 

(yellow) with long persistence length is combined with shorter RNA (red) with short 

persistence length.
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Fig. 9. 
A cubic space, two cubic microns wide, filled with blood plasma, with over 4.6 million 

soluble protein ingredients, populated in ~0.6 sec.
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Fig. 10. 
Overview of the interactive modeling of the mature HIV virion based on the cellPACK 

recipe. (a) Building the membrane (magenta) based on a spherical mesh, and preloading the 

capsid (blue) from a cryo-EM structure (PDB entry 3J3Q). (b) Solid voxelization of 

compartments. (c) Updating the occupancy grid. (d) Populating the surface ingredients 

(envelope protein in green, matrix protein in yellow). (e) Building two copies of the RNA 

(red) using the fiber growth method and attaching the HIV NC protein at all control points. 

(f) Resulting model.
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Fig. 11. 
Cross-sections of Mycoplasma mycoides. (a) A hand-drawn illustration. (b) 3D model 

generated with the draft recipe. (c) 3D model generated by interactively tuning the recipe to 

match general characteristics of the illustration. In the 3D models, the membrane is in green, 

with membrane-embedded proteins in orange and lipopolysaccharides in green. Inside, DNA 

is in yellow, soluble proteins in blue and magenta, and RNA in red.

Klein et al. Page 31

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Two models of DNA in a bacterial cell, using (a) a long persistence length and (b) a short 

persistence length (7 sec to generate).
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