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DeepEyes: Progressive Visual Analytics
for Designing Deep Neural Networks

Nicola Pezzotti, Thomas Höllt, Jan van Gemert, Boudewijn P.F. Lelieveldt, Elmar Eisemann, Anna Vilanova

a

b c

d e

Fig. 1. DeepEyes is a Progressive Visual Analytics system for the analysis of deep neural networks during training. The overview
on the training is given by the commonly used loss- and accuracy-curves (a) and the Perplexity Histograms (b) a novel visualization
that allows the detection of stable layers. A detailed analysis per layer is performed in three tightly linked visualizations. Degenerated
filters are detected in the Activation Heatmap (c), and filter activations are visualized on the Input Map (d). Finally, in the Filter Map (e),
relationships among the filters in a layer are visualized.

Abstract—Deep neural networks are now rivaling human accuracy in several pattern recognition problems. Compared to traditional
classifiers, where features are handcrafted, neural networks learn increasingly complex features directly from the data. Instead of
handcrafting the features, it is now the network architecture that is manually engineered. The network architecture parameters such as
the number of layers or the number of filters per layer and their interconnections are essential for good performance. Even though basic
design guidelines exist, designing a neural network is an iterative trial-and-error process that takes days or even weeks to perform
due to the large datasets used for training. In this paper, we present DeepEyes, a Progressive Visual Analytics system that supports
the design of neural networks during training. We present novel visualizations, supporting the identification of layers that learned a
stable set of patterns and, therefore, are of interest for a detailed analysis. The system facilitates the identification of problems, such as
superfluous filters or layers, and information that is not being captured by the network. We demonstrate the effectiveness of our system
through multiple use cases, showing how a trained network can be compressed, reshaped and adapted to different problems.

Index Terms—Progressive visual analytics, deep neural networks, machine learning.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have shown outstand-
ing performance in various problems, like image and speech recog-
nition [24]. DNNs consist of various interconnected layers. In each
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layer, a number of filters detect increasingly complex patterns. For
example, in networks trained to recognize objects in an image, the
first layer generally contains filters that are trained to detect colors and
edges. This information is aggregated by other layers to detect complex
patterns, e.g., grids or stripes. By using hundreds or thousands of filters
in each layer, DNNs allow for more complex patterns to be learned.
Only recently the training of large DNNs was made possible by the
development of fast parallel hardware, i.e., GPUs, and the creation of
large training sets [22].

While the results that DNNs can achieve are impressive, they es-
sentially remain a black box. An increasing research effort is spent
on making the visualization and the analysis of these models feasible.
While both, the machine learning and the visualization community,
invested considerable effort in understanding how a trained network
behaves [27, 37, 50], e.g., by showing the patterns learned by the fil-



ters, little effort has been spent on the creation of tools that support
design decisions given the pattern recognition problem at hand. Even
though basic design guidelines exist, the process of designing a neural
network is an iterative trial-and-error process [2]. For example, experts
can change the number of layers or filters per layer but the effect of
a modification only becomes obvious after hours, days or weeks, as
the network needs to be retrained, a lengthy task given the size of the
datasets involved. A visual analytics approach for the analysis of a deep
network therefore seems necessary [21]. A recent paradigm, called
Progressive Visual Analytics, aims at improving the interaction with
complex machine learning algorithms [8, 33, 36, 40]. This interaction
is achieved by providing the user with visualizations of the interme-
diate results while the algorithm evolves, the training of the network
in this setting. However, the size of DNNs makes the application of
the Progressive Visual Analytics paradigm challenging, requiring the
development of visualizations that heavily rely on data aggregation at
interactive rates [9, 35, 36, 43].

In this work, we present DeepEyes, a Progressive Visual Analytics
system that supports the design of DNNs directly during training. After
discussing with machine learning experts that collaborated in the design
of DeepEyes, we came to realize that the existing work provides limited
feedback on how a DNN can be improved by the designer. To overcome
this limitation, we identified the following analytical tasks as critical to
make informed design-decisions while the network is trained:

(T1) Identification of stable layers which can be analyzed in more
detail, effectively facilitating the detailed analysis while the
network is trained

(T2) Identification of degenerated filters that do not contribute
to the solution of the problem at hand and, therefore, can be
eliminated

(T3) Identification of patterns undetected by the network, which
may indicate that more filters or layers are needed

(T4) Identification of oversized layers that contain unused filters
and, therefore, can be reduced in size

(T5) Identification of unnecessary layers or the need of addi-
tional layers, allowing for the identification of an efficient
architecture for the problem at hand

The main contribution of this work is the DeepEyes framework itself.
For the first time, DeepEyes integrates mechanisms to tackle all pre-
sented tasks to analyze DNNs during training into a single, progressive
visual analytics framework. The development of DeepEyes is enabled
by a set of further contributions of this paper:

• a new, data-driven analysis model, based on the sampling of sub-
regions of the input space, that enables progressive analysis of
the DNN during training

• Perplexity Histograms, a novel overview-visualization that al-
lows the identification of stable layers of the DNN for further
exploration

• a set of existing visualizations have been extended or adapted for
our data-driven approach to allow detailed analysis: Activation
Heatmap, Input Map, and Filter Map.

In the next section, we provide the reader with a primer on DNNs,
with the essential components to understand our contributions and the
related work, presented in Section 3. In Section 4, we present DeepEyes,
describing our visualization design based on the insights and support
we want to provide to the DNN designer. Furthermore we provide a
first example of a DNN for the classification of handwritten digits. Two
different use cases are provided in Section 5, while implementation
details are given in Section 6.
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Fig. 2. Overview of a DNN (a). Filter functions are computed by neurons
in convolutional layers by applying a kernel or convolution matrix on a
subsets of the input (b), called Receptive Field, whose instances are
image patches (c). Filter functions are trained to detect different receptive
field instances (d) and they are organized in a 3D grid (e) according to
the spatial relationships of the receptive fields they compute.

2 DEEP LEARNING PRIMER

Deep artificial neural networks are trained on a specific pattern recogni-
tion problem, such as image classification. The goal is to predict a class
of an unseen sample. A training set consists of a set of high-dimensional
inputs x ∈ Rn together with an associated vector y ∈ {0,1}d with
∑i yi = 1, where d is the total number of labels. The only non-zero
component indicates the associated label. The goal of a DNN is to
predict the label ỹ ∈ [0,1]d for an unseen input x̃ ∈ Rn. The prediction
is usually in the form of a discrete probability distribution over the
possible labels, hence ∑i ỹi = 1.

A DNN consists of a set of layers L . An example of a DNN that
comprises five layers, more specifically one data layer, two convolu-
tional layers and two fully-connected layers, is presented in Figure 2a.
Independently from the nature of the layer, every layer l ∈L contains
a set of neurons that computes filter functions f l

i ∈F l , or, more con-
cisely, filters. However, exactly the same filter can be computed by
many neurons in the same layer. In the example in Figure 2b-e the
input consist of images, where each pixel is a dimension in our input
space Rn. Filter functions in Layer1 do not take the full dimension-
ality Rn as input, but rather a subsets Rkl ⊂ Rn, the receptive fields
where kl represents the size for layer l. For images, these subsets are
patches and a few instance of these patches are presented in Figure 2c.
Mathematically, a specific receptive field δ l

r ∈ ∆l for layer l is a set of
indices δ l

r := {i j}kl

j=0 ⊂ {0 . . .n} that defines a corresponding projec-

tion function π(δ l
r ) : Rn → Rkl

,(x0, . . .xn)→ (xi0 , . . . ,xikl ). We now
focus on the relationship between filters and neurons given an instance
of a receptive field, i.e., a specific patch for a specific input image x
identified by the projection function π(δ l

r )(x). In Figure 2d a heatmap
is shown to illustrate the output of filter functions f l

i (π(δ
l
r )(x)), also

called filter activations, given specific instances of receptive fields
π(δ l

r )(x). In the first layer, the filter function is usually a weighted
sum of the pixel values on the receptive field. These weights are the
learnable parameters that are trained to detect specific patterns in the
data. Further, the weights define the filter function and are the same for
all neurons computing this filter. In the example, f 1

4 detects , having
high filter activation, while f 1

2 detects .
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Fig. 3. In deeper layers, filter functions are trained to detect more complex patterns in larger receptive fields. In convolutional layers a subset of
the neurons in the previous layer, the neuronal receptive field, is the input to the filter functions rather than the receptive field instance (a). The
same description holds for a fully-connected layer, however, it differs from convolutional layers as the receptive field of a neuron corresponds to the
complete input and the neuronal receptive field contains all the neurons in the previous layer (b).

Given a single instance of a receptive field, as or in Figure 2d, a
1-to-1 correspondence exists between filters and neurons (represented
as points in Figure 2). However, when the full input is considered,
neurons that share the same filter function but process a different lo-
cation in the image, i.e. receptive field, are organized in a grid-like
layout that mimic the input shape. The layout for Layer1 is illustrated
in Figure 2e, where neurons that compute the same filter function are
placed on planes. By stacking these planes, the resulting layout is a 3D
grid of neurons. Filter functions give better information on the detected
patterns than single neurons, as they are pattern detectors learned by the
layer independently of the position in the input. Note how, in Figure 2e,

is detected by the filter f 1
2 which is computed by different neurons,

i.e., where eyes and portholes are located.
The same description holds for any layer, as shown in Figure 3a.

Here, the receptive fields are larger in deeper layers and the filter
functions are trained to detect more complex patterns. For example,

is detected by the filter f 2
1 as it has a high activation. The main

difference from Layer1 is that, the filter functions are not a direct
expression of the dimensions in the receptive field in Layer2. In this
layer, the filter functions consider as input a subset of the neurons in
the previous layer, whose receptive fields are fully contained in the
receptive field for Layer3. We define the region in the 3D grid of
neurons in the previous layer as the neuronal receptive field of the
neuron in the considered layer. The filter activation is obtained by
weighting the activation of the neurons in the neuronal receptive field.
The neurons in Layer2 are also organized in a 3D grid according to the
relationships between the receptive fields and the filters. In Figure 3b,
the computation for the fully-connected Layer3 is presented. Similarly
to Layer2, Layer3 takes the neuronal receptive field in the previous
layer as input. The receptive fields of filters in fully-connected layers
correspond to the complete input, hence there is no need for a 3D grid
of neurons. For this reason, a 1-to-1 correspondence between filters
and neurons exists, meaning that a filter function is computed by just
one neuron.

In this section, we provided an overview of the relationships be-
tween relevant elements of the DNN. We only briefly introduced the
learnable parameters, or weights, involved in the convolutional or fully-
connected layers. These parameters are learned by optimization given
the training set. In modern architectures many different layers are
used to define the filter functions, e.g., max-pooling and normalization
layers. The concepts introduced so far hold, as filters are defined as a
composition of the operations performed by different types of layers.
For the intereseted reader we refer to LeCun et al. [24] for a more broad
overview.
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1
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Fig. 4. DeepEyes approach to filter analysis. Instances of receptive
fields are sampled and embedded in a 2-dimensional space based on
the similarity of the activation in the neuronal receptive-field. Activation
of filters is highlighted in the resulting scatterplot and the instances of
the receptive fields are visualized in a linked view.

In this work we rely on the idea that, independently from the chosen
layers, input data or receptive field instances are usually interpretable by
humans, while abstract weights and relationships between neurons are
not [28, 50]. Figure 4 provides an intuition of the central approach that
we take in DeepEyes for analyzing what patterns a layer is trained to
detect. The user creates a 2-dimensional representation of the instances
of receptive fields used in the training. Instances that are perceived as
similar by the layer, i.e. have similar activation in the neuronal receptive
field, are close in the 2-dimensional visualization. Specific filter activa-
tion is then highlighted on demand, allowing for the understanding of
the response of the filter to the input. For example, in Figure 4 we see
that a separation of the receptive fields according to the input label, i.e.,
cat and rocket which are visualized in linked views, is available and
the visualized activation of filter f 2

1 , is strongly correlated with the cat
label. Note that, despite the focus on the analysis of DNNs for image
classification, the proposed approach is general as it focuses on filter
activations and can be extended to different types of data, e.g., text or
video, if appropriate linked views are used [20].

3 RELATED WORK

Existing visualization techniques for DNNs can be divided in weight-
centric, dataset-centric and filter-centric techniques.

Weight-centric techniques aim at visualizing the relationships be-
tween filters in different layers through the visualization of the learnable
parameters, or weights, introduced in Section 2. A straightforward visu-
alization for the weights are node-link diagrams [38], similar to the one
presented in Figure 2a for the connection of Layer3 to Layer4. Here



weights can be encoded in the edges, e.g., as line thickness. However,
this approach does not scale to state-of-the-art networks that comprise
millions of connections, limiting the application of weight-centric tech-
niques mainly to didactic purposes [12]. To reduce the clutter generated
on such networks, Liu et al. recently proposed a biclustering-based
edge bundling approach [27] that aggregates neurons and bundles edges.
Neurons are aggregated if they are activated by data that share the same
label, while edges are bundled if they have similar and large absolute
weights. However, in DNNs, neurons are trained to separate labels
only in the last layers, therefore this clustering is not informative in
early layers. For example, in Figure 2e the filter f 1

2 activates both on

and , an information that does not reveal the pattern that the
filter is trained to detect. Moreover, while the system allows a real-time
exploration of the network, the creation of the visualizations requires
hours of preprocessing, making the analysis of the network during
training unfeasible. DeepEyes does not provide a weight-based visual-
ization. After discussing with the machine learning experts involved in
the development, we realized that it is more important to focus on the
analysis of filters as pattern detectors, rather than on individual neurons
and their connections [50].

The goal of dataset-centric techniques is to provide a holistic view
on how the input data are processed by the network rather than pro-
viding a solution to the previously introduced tasks (T1,T2,T3,T4,T5).
The training- or the test-set is processed by the DNN and the activa-
tions of neurons in the last fully-connected layer are collected as high-
dimensional feature vectors. Using non-linear dimensionality-reduction
techniques, the dimensionality of the feature vectors is reduced to two
dimensions and visualized in a scatterplot [1, 19, 31]. Two data points
that are close in the 2-dimensional space are also close in the feature
space, meaning that the network perceives them as similar. Recently,
Rauber et al. [37] showed the evolution of this representation during
training, while Pezzotti et al. [35] showed that hierarchical informa-
tion is learnt by DNNs even though this information is not encoded
in the training set. While these techniques provide insight on how the
network reacts as a whole, they are limited to the analysis of the last
fully-connected layer of the network. The only work in the analysis of
hidden layers, i.e., not the input- or last-layer, is from Rauber et al. [37]
where 2D embeddings are generated for hidden and fully-connected lay-
ers. This approach suffers from a severe limitation, being restricted to
the analysis of layers where a 1-to-1 correspondence between neurons
and filter functions exists, i.e., fully-connected layers. We extend their
work such that it can be used for convolutional layers which are the
most widely used layers in modern day architectures [14,22,24,39,41].

Filter-centric techniques aim at giving an intuition on the pattern
that a filter f l

i is trained to detect. A straightforward approach pre-
sented by Girshick et al. [11] identifies for each filter f l

i the instance
of a receptive field π(δ l

r )(x) with the highest activation f l
i (π(δ

l
r )(x)).

The instance of a receptive field π(δ l
r )(x) is then presented to the user,

e.g., as an image patch. A more complex approach aims at inverting
the filter function f l

i by defining ( f l
i )
−1, allowing for the reconstruc-

tion of the receptive field π(δ l
r )(x) that produces the highest activation

for f l
i [7, 28, 34, 49, 50]. However, the explicit definition of ( f l

i )
−1 is

not possible and it is approximated using deconvolutional neural net-
works [50]. This approach generates images that can give the intuition
of the patterns detected by the filters, as demonstrated by Google’s
Deep Dream [32], and can be further extended for different tasks, such
as style transfer [10]. However, according to the feedback provided by
machine learning experts, the reconstructed receptive fields can be diffi-
cult to interpret for complex patterns, i.e., for late-layers in the network,
and do not allow for a reasoning on architectural decisions (T4,T5).
Moreover, the reconstruction of the receptive field is a minimization
process itself that is time consuming, requires complex regularization
techniques and may produce misleading results [28, 49] Filter-centric
techniques are powerful tools but are generally limited to the analy-
sis of a single and well-behaving filter, making their application for
the analysis of a neural network during training difficult. DeepEyes
includes novel filter-centric techniques for the identification of badly
trained filters (T2) and provides a holistic view on filter activations

Deep Neural NetworkData Mini-Batch

Instances of RF & Filter Activations 
Layer1 Layer2

Deep Eyes

Loss- and Accuracy-curves

Instances of RF

Convolutional Fully-connected

Fig. 5. Overview of the DeepEyes system. The network training
overview provided by the loss- and accuracy-curves is integrated with
the Perplexity Histograms that allow for the identification of stable layers
in the network (blue background). The user focuses on stable layers that
are analyzed in detail with three tightly linked visualizations, namely the
Activation Heatmap, the Input Map and the Filter Map (red background).

given instances of receptive fields.
Finally, a recently proposed filter technique visualizes relationships

between filters, i.e., how similarly they activate on the input and which
label they are most strongly associated with [37]. Filters are represented
as points and placed in a scatterplot by a multi-dimensional scaling
algorithm [4]. Filter-to-label association is then highlighted by coloring
every point with the color of the most correlated label. While this filter-
centric technique allows for newer insights (T3), it has two limitations
that we overcome with a novel approach. First it requires the analysis of
the complete dataset and, second, it cannot be applied to convolutional
layers.

4 DEEP EYES

In this section, we introduce DeepEyes, a Progressive Visual Analyt-
ics system for the analysis of DNNs during training that combines
novel data- and filter-centric visualization techniques. We start with
an overview of DeepEyes in relation to these tasks in Section 4.1. A
detailed description is provided in Sections 4.2 to 4.5. As a running
example throughout this section we use the MNIST dataset [25] which
consists of a training set of 60K images and 10K validation images. We
train with the Stochastic Gradient Descent [26] the MNIST-Network
that is provided in Caffe [18], a commonly used deep learning li-
brary which provides the deep-learning framework for DeepEyes. The
network comprises two convolutional layers, with 20 and 50 filters
respectively, and two fully connected layers with 500 and 10 filters
respectively. Note that we use the MNIST-Network as proof of concept
of our implementation and, for the sake of reproducibility, we use the
architecture and training parameters provided by Caffe even if they do
not achieve state-of-the-art results in classification performance.

4.1 Overview
Figure 5 shows an overview of our system. A DNN is trained by
computing the filter activations on subsets of the training set, called
mini-batches. The loss function, which measures how close the pre-
diction matches the ground truth, is computed and the error is back
propagated through the network. The learnable parameters of the net-
work are then updated in the opposite direction of the gradient of the
loss function [24, 26]. DeepEyes builds on the notion that the un-
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sampled for every input data (a). The activation of the neurons that corre-
spond to the receptive fields are collected, i.e., the receptive field’s depth
column (b). The depth columns are transformed in probability vectors
(c) whose perplexity is computed (d) and used to populate the perplexity
histogram (e). (f) shows the evolution of the perplexity histograms for
the layer Conv1 and Conv2 in the MNIST-Network. Changes in the
histogram over time are presented in a second histogram, highlighting
the changes with red and green bars, for decreasing and increasing
numbers, respectively.

derstanding of the relationships between instances of receptive fields
π(δ l

r )(x), which can be visualized and understood by humans, and the
activation of filter functions f l

i (π(δ
l
r )(x)) is crucial for understanding

the patterns detected by the network in every layer.
For every mini-batch that is used to train the network, we sample

instances of the receptive fields for every layer and the corresponding
filter activations. Unless the user specifies otherwise, we sample a
number of instances that grants a coverage of at least 50% of each
input. This information is used to create a continuously-updated dash-
board that provides insights into which patterns are detected by the
layers in the DNN. In the Training Overview, loss and accuracy over
time are presented. We complement this standard visualization, with
a novel visualization, the Perplexity Histograms (Sec. 4.2), which
allows for identifying when a layer learned to detect a stable set of
patterns (T1). The detailed analysis of stable layers is performed using
three tightly-connected visualizations, highlighted in red in Figure 5.
The Activation Heatmap (Sec. 4.3) allows for the identification of
degenerated filters (T2), while the Input Map (Sec 4.4) shows the rela-
tion of filter activations on instances of receptive fields for a given layer
(T3). Finally, the Filter Map shows how similar the filters activate
on the input. Interaction with the Input- and Filter-Map support the
identification of oversized and unnecessary layers (T4,T5).

4.2 Perplexity histograms as layer overview

The evolution of the loss- and accuracy-curve presented in the Training
Overview, is the de-facto standard way to visualize the evolution of
the network during training. However, this visualization only provides
information about the global trend of the training and fails to give a
per-layer visualization of the changes. Given the size of the network, it
is important to guide the user [5] towards layers that can be analyzed in
detail while the training progresses, i.e., layers that learned a stable set
of patterns (T1). Our solution is based on the notion that every filter in a
layer is trained to identify a certain pattern for a specific receptive-field
size [50]. Therefore, we propose to treat every layer as a classifier
designed to detect patterns, which are unknown at this moment, and
we analyze its performance over time. More specifically, we want to
know if the classifiers’ ability to detect patterns is stable, increasing, or
decreasing during training. If it is stable, it means that the layer learned
what it was able to learn. If it decreases, the knowledge that this layer

provides to the network is decreasing, and inversely when increasing.
We encode the layer stability as follows. For every input in a mini-

batch, we randomly sample a number of instances of receptive fields
(Figure 6a) and the corresponding filter activations (Figure 6b). We
transform the activations in a probability vector p ∈ R|F l |, where |F l |
is the number of filters in the layer l, by applying a L1-normalization
(Figure 6c). Then, we compute for every receptive field instance the
value of perplexity of the corresponding probability vector p (Fig-
ure 6d). The perplexity, a concept from information theory [23] that, in
this setting, measures how well a pattern is detected by the layer under
consideration. The perplexity of the distribution p is equal to 1 if
only one filter is activated by the instance of the receptive field. An
example is given by the activations marked with 1 in Figure 6a. On
the contrary, the perplexity of p is equal to the number of filters |F l |,
if the activations of every filter are equal, as shown for the activations
marked with 2 in Figure 6a. The Perplexity Histogram accumulates
the sampled input based on the corresponding perplexity value in the
range [1, |F l |] for every layer l (Figure 6e). Changes in the histograms
during training are visualized in a second histogram. Here, green bars
represent an increase in the corresponding bin, while red bars represent
a decrease (Figure 6f). A shift to the left in the histogram, i.e., to lower
values of perplexity, means that the ability to detect patterns for this
layer is increasing and vice-versa. Note that, because the computed
perplexity assumes continuous value, the number of bins in the his-
togram has no link with the number of filters in the layer. We provide
a default of 30 bins, that we empirically found to be visually pleasing
and does not hamper the ability to detect shifts in the histograms.

Figure 6f shows the evolution of the perplexity histograms of the
convolutional layers for the MNIST-Network, i.e., Conv1 and Conv2.
After 10 iterations a shift to low values of perplexity in the first layer is
visible. The peak in the histogram for Conv1 corresponds to patches
that are not detected by any filter (T3). While the histogram of the first
layer is shifting to the left, i.e, decreasing the perplexity, the histogram
of the second layer is shifting to the right. This behavior shows that the
second layer is responding to a change in the filter functions computed
in the first layer by becoming less specific, i.e., increasing the resulting
perplexity. The histograms are updated at every iteration and the user
monitors the stability of the layers. Figure 6f shows how the histograms
evolved after 80 iterations. Compared to iteration 10, the first layer is
still unstable and the second layer is now more specific. After 300
iterations, the first layer is stable, while the second layer shows a shift
to lower values of perplexity. This shift is limited, showing that the
layer is currently affected by minor changes, allowing the user to start
its detailed analysis.

4.3 Activation Heatmap
Guided by the Perplexity Histograms, the user focuses on the detailed
analysis of a stable layer starting from the Activation Heatmap, where
every filter is visualized as a cell in a heatmap visualization (Figure 7a).
The Activation Heatmap is designed for the quick identification of
degenerated filters (T2). We aim at the identification of dead filters,
i.e., filters that are not activating to any instance of a receptive field, and
filters that are activating to all instances. In both cases these filters are
not providing any additional information to the network. These filters
are detected in a heatmap visualization that shows the maximum- and
the frequency-of-activation.

For creating the heatmaps, we randomly sample instances of recep-
tive fields and we compute the maximum activation µ l

i for every filter
f l
i in layer l

µ
l
i = max( f l

i (π(δ
l
r )(x))),

where π(δ l
r )(x) is the sampled instance of the receptive field. For each

filter f l
i , the corresponding µ l

i is visualized in the heatmap in the range
[0,max(µ l

i ,∀i)]. We use a similar approach for the identification of
filters that have high activation on every input. For every filter, we
keep track of how frequently they activate on the sampled data, and
we display these frequencies in the heatmap. We consider a filter to be
active on a given patch if its activation is greater than a percentage β of
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the maximum activation max(µ l
i ,∀i), where a default value of β = 0.5

is used. The user can choose if the maximum- or the frequency-of-
activation is visualized in the heatmap and we distinguish between the
two by using two different color scales. A green-to-yellow color scale
is used for the maximum activation, while a yellow-to-blue color scale
is used for the frequency of activation [13]. At this level of detail, we are
interested in giving an intuition of the response of the layer as a whole,
hence we provide the option to keep the filters sorted according to the
currently visualized information. Because the learnable parameters are
changing during training, visualizing the maximum activation for a
filter may be misleading. For example, a filter that was active in the
early phase of training can “die” in later steps [24]. Therefore, we
compute a measure for the reliability of the information contained in
the heatmap. We keep track of the last iteration where a filter f l

i reached
an activation higher than a percentage θ of its maximum activation µ l

i ,
where θ = 0.8 by default. We visually encode the distance between the
current iteration and the last one that reached the maximum activation
threshold θ as the size of the cell that we draw in the heatmap [15] and
we allow the reinitialization of the computed maximum in a layer.

An example of the proposed visualization is presented in Figure 7a.
The maximum activation of the filters in the first convolutional layer
of the MNIST-Network after 100 iterations is presented. Ten filters,
highlighted in red, out of 20 have a very low activation and do not
provide additional information (T2). The smaller size of the cell in
the heatmap for the filter identified by a purple arrow means that the
maximum activation visualized is not reached in several iterations,
leading to the conclusion that at the current iteration its activation
is even lower. By visualizing the frequency of activation the user
identifies several filters, here highlighted in orange, that have high
activation on every input (T2). These insights lead to the conclusion
the layer is oversized given the problem at hand (T4) and can be
removed by the user before continuing the training, making it faster
and the final network smaller. Our visual encoding is scalable in the
number of visualized filters. One of the layers with most filters in state-
of-the-art architectures is the last fully-connected layer in the AlexNet
network [22], consisting of 4096 filters. If every filter is encoded, using
a 5x5 rectangle, the heatmap results in an image of 320x320 pixels, that
easily fits into our user interface.

4.4 Input Map
The Input Map is a cornerstone of DeepEyes. It provides the tools to
solve several analytical tasks (T2,T3,T4,T5) and is based on the idea
presented in Figure 4. The map is generated upon user’s request when
a stable layer is identified. An example is given in Figure 7b where the
first convolutional layer of the MNIST-Network is analyzed in detail.
Instances of receptive fields are visualized as points in a scatterplot
and colored according to the label of the input they are obtained from.
Two instances are close in the scatterplot if they have similar activation
for the neurons within the neuronal receptive field and, therefore, are
similar input for the current layer (see Section 2). The layout is ob-
tained by reducing the dimensionality of the activation of neurons in

the neuronal receptive field to 2 dimensions, while preserving neighbor-
hood relationships [35]. By brushing on the scatterplot, the user selects
instances of receptive fields of interest that are visualized in a linked
view, here abstracted as arrows pointing to image patches. The mix
of colors corresponding to the input labels indicates that a separation
between the classes is not possible at this level (T5), also showing that a
clustering of the neurons based on labels as proposed by Liu et al. [27]
is not meaningful for early-layers.

The activation of a user-selected filter is visualized on top of the Input
Map, as shown in Figure 7c where four filter activations are shown. We
keep the Input Map in the background as a reference, drawing the data
points as larger and semi-transparent circles. On top, we draw a new set
of semi-transparent black circles, whose size is encoding the intensity
of the filter activation on the corresponding input. The user can switch
between the two visualization modes, allowing to reason on where the
activations are localized in the Input Map, therefore giving a detailed
understanding of which input is detected by a filter. For example, we
can validate the insights previously obtained through the Activation
Heatmap. By clicking on a cell in the heatmap, the corresponding
filter activation is visualized in the Input Map, showing that the dead
filters are not activating on any input (T2). Moreover, single filters are
activating on large portions of the input. Together with the presence
of many dead filters, this signals that the current layer contains more
filters than needed (T4). By visualizing the maximum activation of
the filters on each data point, as presented in Figure 7d, we allow for
the identification of data that are scarcely or not at all detected by the
network. In the example, the outer region of the Input Map contains
points that do not produce a strong activation (T3). The inspection
of the instances of the corresponding receptive fields reveals that they
correspond to background patches and, therefore, are not informative
for the problem at hand.

The Input Map is a dataset-centric technique (see Section 3), whose
improvements over the state-of-the-art are twofold. First, it is built
by sampling instances of receptive fields, allowing for the creation of
a dataset-centric visualization even for convolutional layers. Second,
differently from existing techniques that focus on the activation of the
filters in the current layer, the Input Map reduces the dimensionality
based on the activations of the filters in the neuronal receptive field
rather than the activation of filters in the layer under analysis. This
feature allows for the analysis of the relationship between input and
output of a layer, an approach that was not possible before. While
these two features allow for new insights, they pose computational
challenges in the creation of the 2-dimensional layout in the interactive
system. Tens of thousands of receptive field instances are sampled
during training and ought to be placed in the Input Map. Further, the
dimensionality of the feature vector considered is higher than in exist-
ing techniques as we do not just consider the activations in the current
layer but the whole neuronal receptive field. We considered several
dimensionality-reduction techniques for the generation of the scatter-
plot [45]. The t-distributed Stochastic Neighbor Embedding (tSNE)
algorithm is often used [44] in dataset-centric techniques. However,
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as reported by Rauber et al. [37] for their proposed approach, several
dozens of minutes are required for the creation of embeddings contain-
ing 70K points described by 50 dimensions, limiting its application in a
Progressive Visual Analytics system like DeepEyes. Therefore we use
the recently-developed Hierarchical Stochastic Neighbor Embedding
(HSNE) [35], as it creates visual representations of tens of thousands
of data points, described by several thousand dimensions, in seconds.
HSNE enables the analysis of such large data in an interactive system
by building a hierarchical representation of the data and by generating
Input Maps with only a few hundreds data points sampled from the
input data. The exploration of the complete dataset is then performed
with a filter and drill-in paradigm. We refer to Pezzotti et al. [35] for
further details.

4.5 Filter Map
The Filter Map provides a view on how similarly filters in a layer
respond to the input as a whole. We visualize the filters as points in a
scatterplot. Filters with a similar activation pattern are placed closer in
the scatterplot (Figure 7e). If many filters activate in the same way on
the input it is an indications that the layer contains too many filters (T4).
Here, we are interested in visualizing the relationships between filters
and labels y. Hence, points are colored according to the training label
that activates a filter the most, while the size of the point shows how
strongly the filter is correlated to that label. We choose this encoding for
the sake of simplicity, but different visual encodings can be used, e.g.,
by encoding the correlation with color brightness or saturation [6, 37].
The presence of a cluster composed by large and similarly colored
points in the Filter Map is an indication that a classification can be
performed at this stage (T5). To the best of our knowledge, the only
existing work in this direction is from Rauber et al. [37]. In their work,
the Pearson correlation between filter activations is computed and the
filters are visualized using a multi-dimensional scaling algorithm. This
approach requires the receptive field of the analyzed filters to cover the
complete input and it cannot be used for the analysis of convolutional
layers, a severe limitation if state-of-the-art architectures ought to be
analyzed (see Section 2).

We propose to overcome this limitations by computing similarities
in a progressive way, using instances of receptive fields instead of the
complete input. The similarity between two filters is computed as a
weighted Jaccard similarity [17]. This gives a measure of common
amount of activation divided by the maximum activation of both filters.

If the filters activate equally for the same instances of receptive fields
the value will be 1. The more they differ the smaller the similarity will
be. For two filters i and j on layer l, their similarity φi, j is computed as:

φi, j =
∑r,x min( f l

i (π(δ
l
r )(x)), f l

j(π(δ
l
r )(x)))

∑r,x max( f l
i (π(δ

l
r )(x)), f l

j(π(δ
l
r )(x)))

, (1)

where f l
i (π(δ

l
z )(x)) is the activation of the filter f l

i , given the sam-
pled receptive field for input x. The similarities are updated for every
training iteration and, when requested by the user, the filters are em-
bedded in a 2D space with tSNE [44]. In Figure 7e, the Filter Map for
the first layer of the MNIST-Network is presented. By brushing on the
scatterplot the user selects filters whose activation is then visualized in
the Input Map. In the example of Figure 7, it can be seen that two filters
that are close in the Filter Map (e) also have a similar activation pattern
on the input (c). We also keep track of which label is most associated
with a filter. For each filter f l

i , we compute the vector tl
i ∈ Rd , where

d is the number of labels in the dataset. It contains the cumulative
activation f l

i on the sampled receptive fields of instances of objects
belonging to the same label:

tl
i(argmax(y)) = ∑

r,x
f l
i (π(δ

l
r )(x)), (2)

where x is an input with associated label vector y. For every filter
f l
i , the corresponding point in the Filter Map is drawn with the color

associated with the label argmax(tl
i). The point size in the Filter Map

encodes the strength of the association with a label. This association is
computed as the perplexity of the probabilities, obtained by normalizing
the vector tl

i with L1-norm (see Section 4.2). The points size encodes
the inverse value of the perplexity, where a low value of perplexity
means a strong association with the label. Filters in Figure 7e are small
in size, showing a low association with the corresponding label, i.e.
a large value of perplexity. Also, not all the label colors present in
Figure 7b are represented in the Filter Map, showing that filters in this
layer are not specialized to perform a proper classification.

4.6 From insights to network design
Here, we illustrate how insights obtained in DeepEyes support network
design decisions. Figure 8 shows the analysis of the MNIST-Network



introduced in Section 4. Driven by the stability of the perplexity his-
tograms, the user is guided to the detailed analysis of layers whose
filters are stable. Conv1 is analyzed first, then Conv2, FC1 and finally
FC2. In the Input Map of Conv1, a separation of the labels with respect
to the input is not visible, since all label colors are mixed in the scat-
terplot (Figure 8a). Further, filters are active on large regions of the
Input Map, see filter activations in Figure 8a for the selected filter in the
filter map. Many dead filters are identified (T2) by selecting filters with
low maximum activation in the Activation Heatmap (Figure 8a). The
layer is oversized (T4) as overly-redundant or non-existent patterns are
learnt by the filters. Conv2 is analyzed next. Here data points in the
Input Map start to cluster according to the labels (Figure 8b). Notice
that the shown instances of the receptive field are larger than for Conv1,
as Conv2 processes a larger region of the input images. Differently
from the previous layer, filter activations are localized in the Input Map,
leading to the conclusion that more filters are needed in Conv2 than in
Conv1. Similarly as for Figure 7d, points with low maximum activation
in Figure 8b correspond to background patches (T3).

In FC1 (Figure 8c), inputs cluster in the Input Map according to
the associated label. The visualization of the Maximum Activation in
Figure 8c shows that every data point is activating at least one filter
in the current layer, hence every input is identified by the network at
this level (T3). Before we can conclude that a classification is feasible
at this stage (T5), the Filter Map is analyzed. In the Filter Map, we
see that the filters form visual clusters that are associated with labels.
However, there is no visible red cluster, associated with the label “digit-
5”. The activation of a “digit-5” associated filter is visualized on the
Input Map, showing a strong activation also on points in green, i.e.,
“digit-3”. This insight shows that a perfect separation is not possible
in this layer, and that the second fully-connected layer is needed (T5).
The presence of duplicated filters and dead filters, as in FC1, shows
that this layer is oversized and fewer filters can be used (T4).

Finally, in the last layer, which performs the prediction (Figure 8d),
every filter is colored with colors of different labels, showing that a
correlation between filter and label exists and the network is correctly
classifying the input. By showing the activation of the filters on the
Input Map, the user also gets an intuition of which labels are con-
fused by the network, e.g., points that correspond to the “digit-0” and
“digit-6”, as shown in the filter activation in Figure 8d. Based on the
insights obtained from DeepEyes, we modified the network reducing
the first convolutional layer from 20 to 10 filters, and the first fully-
connected layer from 500 to 100. This reduction allows for a smaller
network which is faster to be trained and makes predictions without
any visible loss in the accuracy of the classification that is stable for
both architectures at 98.2% after 2000 iterations. Note that for the
sake of reproducibility we used the parameters defined by Caffe in the
“lenet train test.prototxt” training protocol.

5 TEST CASES

In this section, we provide further examples of analysis performed with
DeepEyes. In recent years a great number of different architectures
have been presented. For our test cases we decided to focus on widely
used architectures derived from AlexNet [22] that are often modified
and adapted to solve different problems, a setting in which the insights
provided by DeepEyes are greatly needed. AlexNet [22] consists of
5 convolutional layers, with 96-256-384-384-256 filters, and 3 fully-
connected layers, with 4096-4096-1000 filters, leading to more than 16
million trainable parameters. Note that AlexNet is among the largest
neural networks in terms of computed filter functions, where a trend in
reducing the number of filters exists [14,16]. This analysis demonstrates
the scalability of our progressive system in a general setting. In the first
test case, we show how DeepEyes allows for a better understanding of
the fine-tuning of DNNs, while in the second test case, we show how
a better architecture for the medical imaging domain is derived from
insights obtained through DeepEyes.

5.1 Fine tuning of a deep neural network
Training a large DNN from scratch requires a very large training set,
computational power, and time. To overcome this limitation, a common
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Fig. 9. Fine tuning of a pretrained neural network. Deep eyes allows
for the identification of layers that do not need retraining, e.g. Conv1.
Unrecognized input data are highlighted in the Perplexity Histograms
and in the Maximum Activation visualization of the Input Map, here
highlighting data that is labeled as Geometric Compositions which are
not recognized by the original network. Furthermore, a filter trained to
detect faces is not discriminative given the Romantic and Vintage labels.

approach is to fine-tune an already trained network for a different
problem [3]. The rationale behind this approach is that low-level filters,
like color- and edge-detectors, could be reused. To which degree filters
can be reused is crucial but not clear a-priori [48]. In this test case,
we show how DeepEyes helps in the identification of which layers
contain useful filters that can be reused and filters that are not needed
and must be retrained. We used the fine-tuning example provided
in Caffe, where AlexNet, which was trained for image-classification,
is retrained for image-style recognition [18]. In this example, the
prediction layer of the network is changed from 1000 filters, used to
detect 1000 objects, to 20 filters that are retrained to detect 20 styles
of images, e.g. “Romantic”, “Vintage” or “Geometric Composition”
(Figure 9a). The network requires 100.000 iterations and more than 7
hours to be retrained with a K40 GPU and achieves an accuracy on the
test set of 34.5% [18].

The hypothesis that color and edge detectors are useful filters for
the problem at hand is confirmed in the first convolutional layer, i.e.,
Conv1 in Figure 9b, as they present a localized and consistent activation
pattern, e.g., blue- and vertical-edge-detectors are found. While the
first layer is stable, the Perplexity Histogram of the fifth convolutional
layers, i.e., Conv5, shows that an increasingly large number of input
patches are not activating any filter, hinting at a problem in the filter
functions for this layer. The detailed analysis of Conv5 shown in
Figure 9c reveals that data labeled as “Geometric Composition” are in
the region of the Input Map that is hardly activating any filters (max
activation in Figure 9c). Images labeled as “Geometric Composition”,
i.e., with large and uniform color surface, were not included in the
“image-classification” training set, therefore the network has not learnt
useful filters for discriminating such images. Another interesting insight
is obtained by visualizing the activation of other filters on the Input Map.
For example, a filter that detects human faces is found, see Figure 9c.
While this filter is useful for the image-classification problem, it is not
discriminative for style-recognition because human faces are associated
with many different styles (Figure 9a). This insight shows that the
analyzed layer needs to learn new patterns from the input. The fine-
tuning of a network or, in general, the reusability of the learned filters,
is an active research topic under the name of transfer learning [48].
Insights obtained from DeepEyes can help to improve the fine-tuning
of networks by placing the user in the loop.



5.2 Mitotic figures detection

We present a different test case from the application of DNNs in the
medical imaging domain. In this context, DNNs developed by the ma-
chine learning community are applied to different recognition problems.
DeepEyes helps in filling the expertise gap, by providing insight on how
the network behaves given the problem at hand. The number of nuclei
separations in tumor tissue is a measurement for tumor aggressiveness.
In radiotherapy treatment planning, histological images of tumor tissue
are analyzed by pathologists. Nuclei separations, also known as mitotic
figures, are counted. Examples of images with “mitotic figure” label
are presented in Figure 10a, together with images labeled as “negative”.
The counting of mitotic figures helps in deciding the dose of radiation
used to treat a tumor, leading to a more personalized treatment. How-
ever, it is a tedious task and DNNs have been recently proposed to
automatize the process. In this test case, we analyze the DNN devel-
oped by Veta et al. [46] that is trained on the AMIDA dataset [47] to
detect mitotic figures in histological images. The network comprises
4 convolutional layers with 8,16,16 and 32 filters respectively, and 2
fully-connected layers, containing 100 and 2 filters respectively.

After a few training iterations, the first layer stabilizes and is an-
alyzed in detail. Figure 10b shows the detailed analysis of the first
convolutional layer after 40 iterations. The Input Map shows a cluster
of red points, corresponding to instances of the receptive fields sampled
from images labeled as mitotic figures. By visualizing the activation
of the filters we see that filters are trained to detect dark regions versus
bright regions, as they are an important feature at this level. Similar
Input Maps are obtained in the other convolutional layers, where the
patches processed by the layers are larger.

An interesting observation is made in the first fully-connected layer
of the network. The Input Map and the Filter Map for this layer are
presented in Figure 10c. A separation of the labeled input is visible
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Fig. 10. Mitotic Figures detection. A DNN is trained to detect mitotic
figures in histological images (a). Filters in the first convolutional layer
Conv1 are highly associated with mitotic figures (b). Labeled data are
separated in the Input Map of the first fully-connected layer FC1 (c). After
removing FC1 the prediction layer (d) still shows very strong separation,
indicating that FC1 is indeed not needed for classification.

in the Input Map, showing that the classification is feasible at this
level. This is confirmed by the fact that filters are divided in the Filter
Map according to the most strongly associated label. Thus, another
layer, as is present in the network, is not needed in order to perform
a prediction on the problem at hand (T5). Therefore, we change the
design by dropping the fully-connected layer and by connecting the
prediction layer directly to the last convolutional layer. The analysis
of the prediction layer after retraining is provided in Figure 10d. The
new network reaches an accuracy of 95.9% on the test set, which is
identical to the accuracy obtained with the previous architecture, while
it is much faster to compute a prediction.

We contacted Veta et al. [46], presenting DeepEyes and providing our
findings. They informed us that they had come to the same conclusions
after several blind modifications of their network, commenting that a
system like DeepEyes is beneficial in the definition of networks for
a specific medical imaging problem. Furthermore, they showed it
particular interest in visualizing the instances of the receptive fields
and the corresponding filter activation directly in the system. They
also acknowledged that inputs which are difficult to classify are easily
identified by the user in the Input Map (Figure 10d). Hence, they
commented that DeepEyes also gives insights on how the training set
can be modified in order to improve the classification as it shows which
kind of input must be added to the training set.

6 IMPLEMENTATION

DeepEyes is developed to complement Caffe, a widely-used deep-
learning library [18]. DeepEyes, requires Caffe files that describe the
network and the parameters of the solver as input. DeepEyes trains
the network using Caffe, but seamlessly builds the Progressive Visual
Analytics system presented in this work on top of it.

For optimal performance, we implemented DeepEyes in C++. The
interface is implemented with Qt. Perplexity Histograms and the Ac-
tivation Heatmaps are implemented in JavaScript using D3 and are
integrated in the application with QtWebKit Bridge. The Input- and
Filter-Maps, are rendered with OpenGL. DeepEyes is implemented
using a Model-View-Controller design pattern, allowing for the fu-
ture extension to different deep-learning libraries, such as Google’s
TensorFlow [1] or Theano [42].

7 CONCLUSIONS

In this work, we presented DeepEyes, a Progressive Visual Analytics
systems that supports the design of DNNs by showing the link between
the filters and the patterns they detect directly during training. The user
detects stable layers (T1) that are analyzed in detail in three tightly-
linked visualizations. DeepEyes is the only system we are aware of that
supports DNN design decisions during training. Using DeepEyes the
user detects degenerated filters (T2), inputs that are not activating any
filter in the network (T3), and reasons on the size of a layer (T4). By
visualizing the activation of filters and the separation of the input with
respect to the labels, the user decides whether more layers are needed
given the pattern-recognition problem at hand (T5). We used DeepEyes
to analyze three DNNs, demonstrating how the insights obtained from
our system help in making decisions about the network design.

A limitation of DeepEyes is that it relies on qualitative color palettes
for the visualization of labels in the Input- and Filter-Maps. This so-
lution does not scale when the number of labels is large, therefore we
want to address this issue in future work. Further, the Input- and Filter-
Map are created with dimensionality-reduction techniques, which may
be affected by projection errors. Hence, adding interactive validation of
the projections [29] is an interesting future work. Another interesting
future work is the development of linked views that allows for the anal-
ysis of different type of data, such as text or video. We want to extend
DeepEyes by integrating different deep-learning libraries, such as Ten-
sorFlow [1] or Theano [42], and to the analysis of different and more
exotic network architectures, such as Recurrent Neural Networks [30]
and Deep Residual Networks [14]. Finally, we want to apply DeepEyes
for the analysis of DNNs in several application contexts, giving insights
on their design.
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