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Fig. 1. Overview of a SOMFlow clustering graph that was created during our expert study to analyze speech intonation: First, a gender
effect is identified (A) and removed using a domain-specific semitone normalization (B). The analyst created more detailed SOMs for
artificial cells and added manual annotations (C) to filter noise caused by measurement errors. The resulting SOM reveals a relation to
the pitch meta-attribute (D) and further data partitions allow the analyst to compare pitch contours of different speaker groups.

Abstract— Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from
raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive
cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user
interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative
cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data.
It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations,
iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a
flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness
measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics
experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for
interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

1 INTRODUCTION

Clustering can be used to analyze large unknown collections of time se-
ries data, such as stock market prices, temperature changes, movement
features, or spoken utterances, to form subsets of similar data items
and to reveal otherwise hidden patterns (e.g., cluster properties and
relations). However, analysis problems are often ill-defined or impre-
cise (neither knowing where or what to seek), interesting patterns (e.g.,
relations to further metadata) are hidden within particular subsets, and
it remains a problem to identify relations among a series of obtained
clustering results. Furthermore, the underlying computations need to
be adapted to reveal the desired structures for the analysis task at hand.
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Hence, this large problem space specifies a need for interactive data
exploration in different “directions”. Visual Analytics (VA) aims to
provide the analyst with a visual platform to explore automatically
obtained results to form and refine hypothesis and to interact with the
underlying computations if necessary [28, 44]. Tightly intertwined
solutions (computations, visualizations, interactions) are needed to
cope with nowadays real-world analysis problems [42,43,45] and users
which are typically experts in their domain, but novices when it comes
to VA, require specific guidance during exploration [17].

To cope with these challenges, we propose an interactive partition-
based clustering approach that allows the analyst to drill down into
subsets of interest (top down, divide & conquer) based on different
division strategies. This approach emerged from our ongoing collabora-
tions (started 3 years ago) with linguistic researchers from the domain
of prosodic research (i.e., speech intonation) analyzing time series data
of recorded speaker utterances [4, 41]. Our initial VA system used the
Self-Organizing Map (SOM) algorithm to create data overviews and it
iteratively enabled the analyst to select data subsets of interest. How-
ever, we observed that our users were sometimes overwhelmed by the
number of obtained SOMs requiring a visual overview of the analysis
process as well as user guidance to support costly and time-consuming
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analysis tasks (e.g., relation seeking or data annotation).
Inspired by existing hybrid visualization systems (e.g., [27, 51]) we

developed the idea to embed interactive SOM visualizations into a
graph structure as an analysis overview representing the clustering and
interaction flow that further supports higher-level human analytic activi-
ties (e.g., organizing and memorizing what has been done, comparison-,
or verification tasks). Our resulting SOMFlow system supports four
abstract exploration tasks with a rich set of visualization and interac-
tion techniques to (1) analyze and assess the quality of the obtained
clusterings, to (2) adapt the computations, and to (3) create further data
partitions while (4) keeping the overview. We further leverage quality
and interestingness measures to guide the analyst. Hence, we contribute
with a general clustering approach and an implemented SOMFlow sys-
tem (focusing on the SOM algorithm and time series as primary data)
that tightly integrates interactive visualization, machine learning (ML),
and quality measures, embedded into an analytical reasoning space
representing the analysis process.

Next, we provide background information and discuss related work
before we describe our approach in detail along four abstract explo-
ration tasks (Section 4). In Section 5, we explain different ways to
guide the user during the analysis and describe our SOMFlow system
in Section 6. We report on two pair analytics experiments that evalu-
ate our SOMFlow system in a real-world setting (Section 7). Finally,
we discuss remaining issues and enumerate promising future research
directions (Section 8), before we come up with a conclusion (Section 9).

2 BACKGROUND ON SELF-ORGANIZING MAPS

We chose the SOM algorithm (also known as Kohonen Maps [31]) as a
fundamental approach to automatically generate data overviews. The
algorithm introduced by Kohonen has been widely applied to clustering
problems and data exploration [29]. It is based on a neural network
that can be represented as a grid of cells (neurons, or tiles). Each cell
contains an artificial vector (e.g., time series) with the dimensionality of
the input data. During the training phase, the vectors are subsequently
adapted towards the information provided with the input data. In each
step the input vector is assigned to the best matching unit (most similar
cell), and this cell as well as a subset of spatial neighbors of the grid are
modified for better matching [29]. The result is a grid that represents
the data based on their prototype vectors. In the final topology, more
similar cells are closer and less similar cells will be farther away. As
a result, the input data is distributed across the SOM in a similarity-
preserving way. In summary, this algorithm provides data reduction
(vector quantization with means vectors), dimensionality reduction (two
dimensional embedding), and data clustering/classification (assigning
data items to cells). Note that in cluster analysis, the data items within
a cell do not necessarily form a single cluster as a set of similar cells
can be considered as cluster as well.

Depending on the use case at hand, SOM visualizations either di-
rectly show the information of mean cell vectors, or use concrete data
items for cell representations (e.g., [13, 46, 54, 55]). The SOM algo-
rithm also allows the visualization of the structure of the grid (e.g.,
neighborhood information) and quality measures. For our collaboration
with linguistic domain researchers (e.g., in our previous work [41]),
we visualize the artificially created pitch contour of recorded speaker
utterances (sound of the pitch over time) as a thick black line in each
cell (see e.g., Figure 3). Data items of every cell (in our case real pitch
contour vectors) can be shown on demand. In addition, the analyst can
inspect relations between clusters and available metadata which can be
used to color the cells. A linguistic task is then, e.g., to analyze how
often a certain pattern (pitch contour) appears and if it is related to spe-
cific speaker properties (e.g., nationality) to identify differences. Many
visualization techniques for SOMs exist and have been applied in dif-
ferent domains. Our work relies on such visualization techniques (that
mainly focus on single SOMs) embedded into a workflow supporting
iterative data partitioning and analysis steps.

3 RELATED WORK

Our work is related to Visual Interactive Cluster Analysis in general
where we put specific focus on using the SOM algorithm to analyze time

series data. The second part describes existing Hybrid and Provenance
Visualization Systems. Then we focus on Quality-based Guidance for
Visual Exploration before we emphasize on the novelty of our work.

3.1 Visual Interactive Cluster Analysis
Visual interactive clustering solutions exist for a variety of data types.
E.g., the work of Andrienko et al. [2] proposes methods to group
movement trajectories, Ruppert et al. [40] describe visual interactive
workflows to cluster textual documents, Cao et al. [16] focus on the
interactive analysis of multidimensional clusters, and the approach by
Nam et al. [34] focuses on high-dimensional data. Some of them also
let the user select a specific subset of interest where another subsequent
computation of the clustering/classification is applied (e.g., the work by
Choo et al. [18]). Furthermore, specific visualization approaches focus
on the visual analysis of time series data [1] with different analysis goals
(e.g., segmentation, clustering, classification, motif-detection) [37].
With respect to our clustering scenario we focus on the grouping of time
series based on their similarities. A further task is then to seek relations
between the obtained clusters and metadata attributes (if available) or
to apply data annotations (labels) manually.

Many different clustering algorithms exist (e.g., k-means, hierarchi-
cal clustering etc. [26]) and have been applied in VA, often in combina-
tion with different metrics and a dimensionality reduction step [45] to
obtain a two dimensional embedding of the clusters. Therefore, many
VA approaches make use of the SOM algorithm [31] that naturally com-
prises both steps. Vesanto [54, 55] early described several techniques
to apply and visualize the obtained results. Existing SOM implementa-
tions and toolboxes that offer gird visualization exist (e.g., Java SOM
toolbox 1, or som pak [30]) and further interactive VA systems have
been developed. E.g., Schreck et al. [46] describe a trajectory clus-
tering system that offers the analyst visual representations to provide
interactive feedback to the algorithm. Further works by Bernard et al.
focused, e.g., on time series research data [8] and motion patterns [13].
SOM visualizations have also been used to speed up expensive data
labeling tasks. E.g., the work by Moehrmann et al. [33] allows users to
apply image labels using SOM visualizations. Finally, the predecessor
of the presented work [41] proposed an iterative refinement approach
of SOM cell selections and computation adaptions to arrive at subset
visualizations of interesting speech intonation patterns. However, a
lot of results (SOM instances) were produced making it hard for the
analyst to compare and reflect the analysis. Furthermore, it only offered
a few visualization techniques and did not support the analyst with
automatic recommendations based on quality measures.

3.2 Hybrid and Provenance Visualizations
Another area of related works describes hybrid visualization approaches
that embed smaller visualization types into another visualization tech-
nique encoding a particular structure (e.g., a tree, graph, or network).
A famous example is the Node-Trix system by Henry et al. [27] that
embeds matrix representations as aggregated nodes within a social
network (node-link diagram). A similar approach is adopted in the
OntoTrix [6] system. Other techniques embed several different visual-
izations into a structure representing the data or analytic flow. Gratzl
et al. [24] describe the domino system that enables users to apply data
subset selections and manipulations using several dependent visualiza-
tions. More recently, Stitz et al [48] propose a data workflow-based
visualization system for biomedical research. The work by van den
Elzen and van Wijk [52] provides a visual exploration method based on
small multiples and large singles. The same authors proposed another
technique called BaobabView [51] that explicitly uses the structure of
a ML algorithm (decision tree) augmented with smaller visualizations
that describe, e.g., data distributions and flows.

Further related system can be found under the heading of “data or
analytic provenance” that enable the analyst to track the history of
data transformation or interaction steps. Early works of Young and
Shneiderman [58] provide a graphical interface for data filter flows
to define and analyze boolean queries. Similarly, Elmqvist et al. [22]

1http://www.ifs.tuwien.ac.at/dm/somtoolbox/index.html, accessed 23.03.17
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describe the DataMeadow system that lets the analyst visually construct
queries using graphical set representations within a canvas. Another
famous example is the VisTrails system by Callahan et al. [15] vi-
sualizing scientific workflow evolutions. The GraphTrail system by
Dunne et al. [21] is another example that tracks users’ interactions
and embeds respective visualizations into an “exploration workspace”.
Other VA systems, such as Jigsaw [32], offer the analyst specific visual
components (e.g., the tablet view) to organize, manage, and annotate
bookmarked visualizations.

3.3 Quality-based Guidance for Visual Exploration

Another branch of related research concentrates on guiding the user
during the analysis and different approaches to build, e.g., mixed-
initiative [19] or relevance feedback [7] systems have emerged. How-
ever, the basis for such systems are task models, data-, quality- or
interestingness measures.

Bertini et. al [14] survey existing approaches that make use of quality
measures in high-dimensional data analysis and propose a quality-based
analysis framework that includes measures (e.g., cluster, correlation,
or outliers) in data and image space. Sips et al. [47] make use of class
consistency measures to determine the quality of cluster mappings from
nD into low-D (centroid-based and entropies of spatial distributions).
Tatu et al. [49] describe further quality measures for different high
dimensional visualizations (e.g., scatterplots or parallel coordinates)
and the work of Aupetit and Sedlmair compares visual separation
measures [5]. General cluster validity measures such as compactness
and separation [25], or silhouette coefficient [39] further exist.

We are also aware of SOM-based quality measures to calculate, e.g.,
quantization errors within cells, or topological errors [31, 36]. It is
further possible to visually asses the quality of a SOM result [12] using
SOM-grid/network visualizations, such as the u-matrix [50], or s-map
(smoothed data histograms) [35]. Further work by Bernard et al. [9,10]
describes approaches to measure the strength of relations between data
content and metadata, such as using Simpson’s diversity or Shannon
entropy measures.

3.4 Novelty and Contributions of our Work

Section 3.1 describes visual interactive works in the VA domain that
leverage the SOM algorithm to obtain clusterings but it also reveals
that most of the work focused on one single SOM (or clustering) result.
Section 3.2 reveals that many hybrid and provenance visualization
techniques exist, however, they are rarely integrated with complex ML
methods, such as iterative cluster exploration processes. Section 3.3
offers a variety of approaches and measures that can be used to guide
the exploration process, however, concrete real-world applications are
rarely described. Hence, we contribute with a hybrid approach to
support explicit visualization of the clustering interaction process and
further leverage quality and interesting measures to guide the analyst
during the analytic process demonstrated with a real-world setting.

4 PARTITION-BASED CLUSTER EXPLORATION

A fundamental idea of our approach is the interactive and iterative
construction of analysis workflows for the user-centered partitioning
of large complex datasets. The SOM algorithm serves as a powerful
visual-interactive data partitioning tool that is widely applied and de-
livers robust results (further described in Section 4.1). The analysis
workflows are visually represented within a graph serving as a means
to reflect analytical provenance and support workflow navigation. In
every analysis step (node of the graph), users are enabled to analyze
partitioning results, adapt algorithmic models and parameters, proceed
with downstream partitioning routines, or step back to compare pre-
vious results. As such, our hybrid interactive graph implements the
overview and details paradigm, facilitated with VA support in every
step. In addition, the graph at a glance provides provenance information
and can be used for the navigation from coarse to fine-grained analysis.
The analyst is presented with a visualization of the entire dataset in the
beginning of the analysis. Then, the human task is to decide, how the
data can be partitioned, or how the computations can be adapted. These

Fig. 2. Our approach supports four abstract exploration tasks: The
analyst can analyze visual results of the current SOM and adapt the
computations if necessary. New SOMs are generated with several data
partitioning approaches. All intermediate cluster results are embedded
into a flow graph that enables the analyst to reflect the analytic process.
For each exploration task, we offer a set of visualization and interactions
techniques that are shown outside the circle.

decisions result in new SOMs (or new computations) and iteratively
enable the human to navigate into subsets of interest.

Hence, our approach comprises four abstract exploration tasks en-
abling analysts to partition data, analyze data partition results, adapt
data partition models, and reflect the analysis process. We structure
them along two orthogonal axes (Figure 2): The vertical axis corre-
sponds to the “current” state of the analysis process that can be visually
analyzed, as well as adapted to improve model and parameter settings.
The horizontal axis corresponds to the analysis granularity from coarse
(left) to fine grained and detail-rich (right), where new subsets can be
created by partitioning the data. Exploring the clustering flow graph
enables the analyst to reflect what has been done in the past. Three of
these abstract tasks (analyze, adapt, and partition) directly correspond
to building blocks of conceptual VA models (e.g., [28, 42, 43]) while
reflect enables higher-level verification activities [42, 44] by comparing
the graph elements. Each exploration type is supported by a variety
of visualization and interaction techniques shown outside the circle in
Figure 2. In the following, we describe these techniques in more detail.

4.1 Analyze Visual Results (Single SOM)

The SOM algorithm is used to enable users to analyze and partition
large unknown data collections. Our decision for using the SOM
is based on its special characteristics conflating data clustering,
vector quantization, dimension reduction, and the ability for cluster
visualization [12, 31, 46]. Hence, we make use of existing techniques
to support the analysis of the SOM grid visually.

Cells and Time Series: According to the nature of the SOM being a
neural network-based clustering algorithm, the output of the algorithm
is a (2D) grid, containing a matrix of cells. Each cell represents a
portion of the high-dimensional data space, comparable to the cell of
a voronoi diagram. The data items mapped to a respective cell are
represented by a representant or, like in our case, a means vector that
is visualized as a bold black line chart (Figure 3). These vectors are
created during an animated training phase allowing users to observe
and follow (see Section 7.1) the algorithm and a training history for
each prototype vector can be shown as gray background (Figure 3–A).
The actual data items that are assigned to the cells are visualized as
thinner blue vectors. We also visualize a yellow bandwidth for each
cell by drawing the min/max values (Figure 3–B) representing the
cell uncertainty. Finally, it is possible to show all the data points of
each time series step for the prototype (red) and the vectors (yellow,
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Fig. 3. Cell visualizations: A)–C) depict time series and prototype visu-
alizations. A) illustrates the training history of the prototype, B) renders
the prototype vector (black) with the actual time series vectors (blue) and
a yellow min/max bandwidth, C) renders the single data points for the
prototype (red) and data items (yellow). E)–F) show different pixel-filling
techniques to color the cell according to metadata.

Fig. 4. Grid visualizations: A) Density map, B) distance borders, C)
u-matrix, D) cell topology as a force-directed graph, E) quantization error,
F) meta-clustering, G) feature component plane, H) meta-coloring, I) cell
interestingness, and J) global 2D colormap overlay.

Figure 3–C).

SOM Topology: The grid-based output of the SOM provides
the natural structure (topology) of the cells to be visualized (e.g.,
Figure 4). A series of visualization techniques exist to analyze
topological properties in detail. The amount of data items in a cell
can be encoded as a density map (Figure 4–A) using a linear color
coding (i.e., the more blueish the more data items are contained).
Distances between the cells are visualized as black borders within the
grid where darker lines indicate larger distances (Figure 4–B). The
u-matrix can computed by obtaining the Euclidean distances of all
neighbors of a single cell (i.e., it determines how similar or separated
a cell is compared to its neighbors). It can be visualized by a gray
scale cell coloring where light colors depict most similar neighborships
(potential clusters) and dark colors represent more widely separated
cells (potential cluster borders or noise, Figure 4–C). In addition, we
allow the user to switch to a force-directed graph layout that is using
the distances of cell neighbors as spring forces (Figure 4–D). These
techniques support the analyst in understanding the topology of the
SOM and to identify clusters within the SOM grid. It is also possible
to calculate the quantization error (qe) within a cell by comparing all
member vectors to its representant/means vector (see also Section 5.1).
Visualizing the qe as another gray scale overlay (Figure 4–E) allows
the analyst to understand the quality of the quantization (aggregation)
within each cell (e.g., dark gray indicates heterogeneous cell content
while lighter cells contain data items very similar to the cell vector).
We can also apply a meta-clustering (e.g., k-means) to the SOM grid
(based on the distances between the cell representants) to automatically
obtain and visualize cluster regions on the grid (Figure 4–F).

Component Planes: This technique reveals relations between
individual dimensions (components) of the dataset and the SOM
result [46]. Given a feature vector representing the aggregated temporal
domain, component planes support the comparison of different
temporal phases (user-defined set of components/parts) of a time series
by coloring each cell according to the average value of the time series
(see Figure 9). This allows the analyst to spot specific SOM-regions
that have in average high (blue) or low (yellow) values (Figure 4–G).

Visualizing Metadata: Our approach supports the combined anal-
ysis of (time series) clusters and additional metadata attributes, such

as sensor devices of an experiment, subject measured with a time se-
ries recording, distinction between male and female, or the day within
the week. If the data contains such additional information its cate-
gory/value frequency can be visualized. We implemented different
meta-coloring techniques, such as circular, bar, or Hilbert pixel filling
(Figure 3–D,E,F) to reveal relations between the SOM results and the
metadata (e.g, see Figure 4–H). Those techniques produce different
visual patterns and are more or less suitable for specific analysis tasks
and application domains (see Section 7). The coloring allows the an-
alyst to distinguish homogeneous (single value) and heterogeneous
(mixed) cells. With that respect, it is possible to visualize how inter-
esting each cell is using the Simpson’s Index (see also Section 5.1)
considering a specific metadata attribute. The obtained interestingness
value can also be normalized and encoded on the entire SOM grid (see
Figure 4–I) [10]. Yellow denotes interesting cells that include a relation
to a specific attribute value while dark gray depicts uninteresting cells
without relation to the metadata attribute.

4.2 Adapt the Underlying Computations
Users can adapt the underlying computations in every analysis
step if the obtained results do not sufficiently meet the analysis
requirements. Examples include the wrong preprocessing (e.g.,
sampling or normalization) of the time series, the distance calculation,
or parametrization of the SOM algorithm. Hence, the SOM algorithm
may not be able to grasp the desired properties of the data. Our
approach offers interactions for each block of the ML pipeline [42, 45]
that correspond to the data, the feature space, and the SOM algorithm.

Data: Analysts can assign user-defined labels to each cell. These
labels can be used as additional metadata provided by the human (data
enrichment) who can, e.g., mark cells (or data items) as “uninteresting”
or “interesting”. Note, that the computations will automatically
consider these labels (e.g., interestingness measure) for providing
user recommendations (see Section 5). Iterative data selections are
explicitly realized with our data partitioning tasks (Section 4.3).

Transformations: The performance of the analysis depends on
the data cleansing and preprocessing strategy. Our tool is able to
apply normalization techniques (min/max, logarithmic, square root,
etc.) to transform the data values. As the SOM algorithm requires
time series vectors of equal lengths, it is also possible to adjust the
time series by different strategies, such as simple approaches of
adding mean-values (mean–padding) or 0s (zero–padding), or linear
interpolation (pair–wise).

Metric and Weightings: The Euclidean distance measure builds
the reference metric. We use a weighted variant, allowing the
user-based weighting of different temporal intervals of the time series
feature vector. The metric can be switched to Manhattan or more
expensive computations, such as dynamic time warping (FastDTW) or
Earth Movers distance. We also offer an editor to weight different parts
of the time series more or less important (Figure 9–C).

Parameter Tuning and Constraints: The SOM algorithm can be
parameterized in different ways. Training parameters such as the num-
ber of iterations (i), learning radius (r), or learning rate drop (d) can
be set in a control panel for each SOM. We animate the training phase
by updating the visualization after 1000 steps. Another parameter
denotes the form of the SOM (number of cells, rows, and columns).
For a default configuration of these parameters we use the “rules of
thumb” [31, 55]. Accordingly, we apply a two-step training process:
The first step is a rough training (i = 200000, r = 0.3, d = 1) while the
second step is a finer training (i = 1500000, r = 0.1, d = 1). Within
the training progress, users can fix individual cells of the SOM grid to
enforce a specific topology [46]. Adapted configurations can be applied
in a new SOM or replace the current SOM. This allows the analyst
to compare the different configurations. The parameters can be freely
adjusted based on the analysis task at hand. It is, e.g., possible to create
SOMs with different sizes. This allows the user to analyze the same
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Fig. 5. Graph exploration techniques: A) Linking & brushing across the
entire graph on cell hovering, B) A 2D colormap can be created for a
selected SOM and shown in the entire graph, C) Meta-coloring for the
same attribute for all SOMs.

data with different aggregation levels (e.g., step A and B in Figure 8).

4.3 Partitioning Data
Our approach enables the analyst to partition the data into subsets of
interest to iteratively arrive at a more fine-grained analysis. We are
able to group the partitioning task into three categories.

Cell Selections: The analyst can select cells that either represent an
interesting subset of the data that can be investigated in more detail,
or depict imprecise cells (high qe) that need further refinement in
order to arrive at more fine-grained visualizations. Cell selections can
be performed based on the primary data and the SOM result quality
(Figure 3–A–C, Figure 4–A–E).

Cluster Selections: Similar cells (or cell clusters) that partition
the data based on their neighborhoods can be selected to form new
subsets. The analyst can either select specific clusters to create new
partitions or just split the data based on cluster labels. Clusters can
be identified manually supported by the SOM topology visualizations
(Figure 4–A–E) or using automatic meta-clusterings (Figure 4–F).

Metadata-Based Selections: On the one hand, metadata can be
used to create hypothesis-driven subsets of the data by applying filters
or splits based on attribute values. On the other hand, the analyst can
seek relations between clusters of the SOM result and metadata. A
task for the analyst is to overlay the meta-colorings to reveal specific
areas on the grid that are represented by a particular data attribute (see,
e.g., Figure 4–H). These attributes (or the respective clusters) can then
be used to split the data further. Another reason to partition the data
is to select heterogeneous (mixed value) cells (e.g., at the decision
border, or outliers cells) to explore more detailed differences within
these subgroups. The metadata-based partitioning is supported by the
meta-coloring and interestingness overlays (Figure 4–H and I).

4.4 Reflect the Analysis within the Flow Graph
The entire analysis is embedded into a flow graph connecting
the SOMs based on their hierarchical relations. It serves as an
analytic provenance [57] component that supports higher-level veri-
fication activities with a visual comparison of the obtained SOM results.

Flow Graph Elements: Each SOM is a node connected by shared
data items (links). The graph is built by the human who is supported
by visualizations and quality-based recommendations (see Section 5)
to create data partitions. The connections show the number of data
items flowing from the parent into the child SOMs. Different elements
(direct flow, splitters, and filters) can be created. The arrow size is
mapped to the number of data items and metadata can be used to
illustrate the data flow.

Interactive Exploration: Our approach offers specific interactions
to explore relations within the graph. Hovering a cell will highlight all

the cells that contain shared data items. The strength of the highlighting
is mapped to the number of common data items (Figure 5–A) by
comparing the hovered cell to all other cells of all SOMs. Selecting a
specific SOM will highlight the original cells within the parent SOM
by adding an orange border around these cells (e.g., Figure 8–B).
When users want to analyze distributions of cell contents of an
entire SOM with all SOMs of the analysis graph, the 2D colormap
technique can be used. 2D colormaps [11] dye the cells of a SOM with
similarity-preserving colors, either depending on the input or the 2D
output space. We transmit the color-coding to all SOMs in the analysis
graph, allowing the lookup of similar cells in different SOMs, as well
as the comparison of cluster structures across SOMs. An example for
this color-linking strategy is depicted in Figure 5–B. Similarly, it is
possible to select a global meta-coloring (Figure 5–C) and finally, we
let the analyst switch between a local (per SOM) and global (per graph)
min/max-normalization for the data-rendering.

Meta Interactions: In real-world analysis tasks, the flow graph can
grow fast and different analysis branches can be created. The graph
elements can be re-arranged, resized, maximized, and minimized. It
is further possible to navigate within the canvas (zoom & pan) and to
annotate graph elements with textual descriptions. This all supports the
analysts verification activities, such as knowledge management, adding
interpretations, remembering results, and drawing conclusions.

5 PROVIDING GUIDANCE

Our approach offers a rich set of visualization and interaction tech-
niques to support our four abstract exploration tasks. To enhance the
usefulness, we integrated a series of guidance techniques to overcome
costly investigations of uninteresting data properties.

5.1 Computing Groupings, Quality, and Interestingness
We automatically calculate groupings, quality, and interestingness
measures based on data, SOM, and metadata properties.

Automatic Clustering: It is possible to apply a meta-clustering
to the SOM-grid that is computed based on the cell prototypes. We
implemented different algorithms (k-means, k-medoids, coweb, SOM)
that can be chosen by the analyst who may then decide to split the data
based on the obtained cluster labels.

Similar Cells: Once a user selects a cell (that is considered as
interesting) we can compute if there are neighboring similar cells that
can be suggested for extending the selection (simCells). We make use
of the normalized cell distances (dist) to identify the relevant neigh-
bors that have a smaller distance than a similarity threshold simT = 0.3.

Cell Quality: We can automatically point the analyst to imprecise
cells with a high qe as candidates for further refinement. We compute
the qe according to [31] by calculating the mean Euclidean distance
of all cell members compared to the cell prototype vector. qe is
normalized for each cell over the complete SOM and we introduce a
threshold qeT = 0.1 to distinguish good from imprecise cells. We also
leverage the SOM topology and put neighboring cells with qe > qeT
into a common SOM resulting in new child SOMs that show imprecise
areas in more detail.

Interestingness: Other measures support the identification of inter-
esting relations between time series clusters and metadata properties.
Similar to [10], we calculate an interestingness score for each metadata
attribute and SOM cell (i.e., calculate a diversity score of contained
attribute-values for each cell) using the Simpson’s Index (simpIdx). We
can make use of this measure to identify interesting metadata attributes
with potential relations to the SOM result.

5.2 Providing Recommendations with Visual Cues
This section describes how we leverage the described measures to
provide the analyst with visual recommendations.
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Fig. 6. Visual cues recommend ways to partition the data: A) Ranked
attribute interestingness, B) selection extensions, C) partitioning cues.

Interestingness Ranking: We append a thumbnails bar at the left
hand side of each SOM visualizing ranked attribute interestingness
overlays (Figure 6–A). Similar to the approach of Bernard et al. [10],
the rank of a meta-attributes is determined by a three-step calculation:
1.) For each SOM cell and metadata attribute we calculate the
interestingness (simpIdx), 2.) The average interestingness over all cells
and attributes is calculated, 3.) For each attribute, we count how many
cells are more interesting than the average and we use the obtained
value to rank the meta-attributes. If two meta-attributes share the
same rank, a second-level ordering is done by considering the average
interestingness value of each attribute.

Extending Cell Selections: Once a user selects a cell of interest we
obtain relevant neighbors (simCells) and visualize a dashed selection
border as a visual cue to extend the current selection (Figure 6–B).

Partitioning Cues: We visualize the most significant recommen-
dations for creating further data partitions on the right hand side of
the SOM (Figure 6–C). Hovering the partitioning cues will reveal the
respective visualization overlay on the SOM grid (Figure 6–right).
In case of imprecise cells we show the respective cells with red
borders. In case of recommended attribute splits the meta-coloring
is shown, and finally, in the cluster split case, we show the cluster
coloring. Our recommendation system contains three different types
of actions. The first type of recommendation is the SOM refinement
by retraining imprecise cells as new SOMs. Therefore it suggests to
retrain cells with a high qe (> qeT ). Neighboring imprecise cells are
aggregated and trained in a single SOM. This option is always the first
recommendation, if available. Second type of action is the split option.
It suggests to partition the data into subsets with equal meta-attribute
characteristics based on its interestingness value as high interestingness
implies high homogeneity in the SOM cells. Therefore, it might be
interesting to analyze each meta-attribute characteristic separately. A
maximum number of five meta-attributes with high interestingness
average values are suggested (avgInterestingness > 0.6) and ranked,
similarly to the thumbnail previews. Last but not least, a third type of
action recommends to split the data by a meta-clustering. Clicking on
any partitioning cue will trigger a data partitioning action.We are well
aware that our thresholds appear a bit arbitrary and need to be adapted
based on the data and analysis tasks at hand (see Section 8).

6 THE SOMFLOW SYSTEM & USE CASES

All the described methods are implemented within our SOMFlow
system. In the following, we introduce the remaining details with
exemplary use cases.

Implementation: The system is implemented in Java using the
Java 2D Graphics API and the Swing library for rendering. The SOM
algorithm is also implemented in Java what enabled us to tightly
integrate the computations with the visualizations. We further make

Fig. 7. A) Filter divides data in two parts by some meta-attribute, B)
filter is changed with by different constraints, C) filter updates affect all
following SOMs in the hierarchy.

use of prefuse2 to generate a force-directed layout and included
javaML3 for basic ML functionalities.

Data Handling: The system can handle any data in JSON format
with the only requirement that each data object has to contain a numeric
array that can be used as primary (time series) data. As the SOM
algorithm requires data vectors of equal length we offer several data
processing operations (see Section 4.2). All remaining data attributes
are parsed as categorical metadata.

Attribute Manager: The meta-coloring (for single SOMs or the
entire graph) can be controlled using the Attribute Manager. This
component automatically assigns a default color to each attribute value
but also allows to assign custom colors using a color chooser. It is
further possible to add new user-defined attributes (adding a name and
class labels with colors) that can be used for data annotations.

SOM Interactions: It is possible to interact with the SOM cells:
1.) hovering will trigger the linking & brushing for the respective cell,
2.) left-click will select a cell of interest (and trigger the similar cell
recommendations), and 3.) right-click will open a context menu for
applying manual data labels. It is further possible to enable global
or local rendering options within a control panel next to the canvas.
Another controls bar on top of each SOM allows to switch between
the grid and force-directed layout, while another controls bar can be
revealed on the right hand side of each SOM (e.g., Figure 10–F). This
bar offers controls to 1.) annotate the SOM or the graph (adding notes),
2.) create a new SOM for selected cells with a default configuration,
3.) creating a new SOM for selected cells with a custom configuration
(a configuration panel to set the data processing, SOM parameters, and
metric will be opened), 4.) to define data filters, or 5.) splitters.

Filters: We offer filters for metadata-attributes. Figure 7 shows the
application of filters with a stock market analysis example4. If a filter
is applied on the meta-attribute “stock” (to filter e.g., for specific stocks
based on their abbreviations), the SOM is split in two parts: a SOM
which contains only data items matching the regular expression in
the filter (e.g., stock = aa|aig|axp|ba|bac) and a SOM which contains
all remaining data items. Links connecting filter and SOMs depict
the amount of data flowing in each SOM. Filters can be altered by
changing the meta-attribute by which it filters or by changing the
regular expression (Figure 7–B). All children are recursively updated
and retrained as their data changed (Figure 7–C). This data-update and
retraining process is restricted to children which have been created by
split, filter, or retrain options. SOMs that have been created based on a
selection can not be updated due to the loss of information.

Splitters: We provide data splitters, that divide the data based

2http://prefuse.org/, accessed 24.03.17
3http://java-ml.sourceforge.net/, accessed, 24.03.17
4http://www.stockhistoricaldata.com/nasdaq, accessed 24.03.17
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Fig. 8. Yearly temperature changes of the southern hemisphere: A) Initial
SOM, B) A bigger SOM is retrained with a meta-clustering, C) cluster
labels are corrected manually.

Fig. 9. A) Initial SOM with component plane thumbnails on the left,
B) component planes editor allows to generate an arbitrary number of
feature components, C) custom weighting for future training can be set,
D)–G) component planes 1-4: Each component plane SOM only uses
the respective part of the time series for calculation. Visible differences
between second (C) and fourth (E) component with regard to distribution
of some meta-attribute.

on attribute values, or meta-cluster labels. An example is shown
in Figure 8, where yearly temperature times series (1 value per
month) of the southern hemisphere5 are analyzed (A) and retrained
within a bigger SOM (B) to reveal more detailed variations. Then, a
k-means meta-clustering was applied to split the yearly temperature
progressions (B) and the data has been split to obtain three separate
SOMs (high, medium, and low temperatures) that can be corrected
manually (C). Note, that the manual annotations are back-propagated
within the entire graph.

Component Planes and Weighting. The interestingness thumb-
nails can be replaced with the component planes on the left side of
each SOM (Figure 9–A). The component planes editor (Figure 9–B)
and a weight editor (Figure 9–C) can be used to apply configurations.
The example in Figure 9–A shows that most prototypes in the bottom
left corner of the SOM have relatively low values and high values in
the top right corner. We can also see that most prototypes are relatively
stable in the first three components (1-3) and change in the end (4).
The weight editor (Figure 9–C) can be used to apply custom weights
to the SOM training and to generate new SOMs only based on the
comparison of a certain part of the time series (Figure 9–D–G).

7 EVALUATIONS

We conducted two pair analytics [3] experiments to analyze empirical
linguistic datasets with a subject matter expert (SME) from the

5https://data.giss.nasa.gov/gistemp/, accessed 24.03.17

domain of speech prosodic research (intonation). The aim was to
explore the datasets and to discuss the new system functionality,
also compared to our previous version of the system (that focused
on one single SOM) [4, 41]. All the used datasets contain a set of
recorded utterances for different speakers. We use the utterance
pitch-contours (i.e., a curve that tracks the perceived pitch of the
sound over time) as primary data for our SOMFlow system and further
information about the speaker, utterance, or the experiment as metadata.

Apparatus: One VA expert (VAE1, tool developer) was controlling
the system guided by a linguist (SME) who had to interpret the
visualizations and point VAE1 to interesting aspects. A second
experimenter (VAE2) was observing the study and available for
explanations and discussions. We recorded the study, saved important
screenshots, and took notes. The system run on a desktop computer
using a display with screen resolution of 3840x2160 pixels. The SME
was familiar with the basic concepts of our system (SOM, exploratory
data analysis) based on our previous collaborations. We also intro-
duced the new SOMFlow functionalities at the beginning of the session.

7.1 Study 1 – Confirmatory Analysis
The first experiment captured data to investigate to what extent
a speaker’s first language (German or Japanese) influenced the
production of intonation when reinforcing an utterance in first and
second language. To this end, German and Japanese participants
produced the word “Entschudligung” and “sumimsen”, both with the
meaning “excuse me”. The participants had to repeat each utterance
three times to attract the waiter’s attention within a crowded bar (with
the assumption to produce more emotional utterances under increased
frustration). Japanese speakers were also learners of German and
visa versa. Our SME expected a significant difference between the
two speaker groups within the “sumimasen” utterances and we were
especially interested in the usefulness of the recommendations that
should guide the analyst to answers for this hypothesis.

Dataset: The dataset contains 185 recorded pitch contours (pitch
value over time) with metadata about the speaker (e.g., nationality, age,
etc.) and the utterance (word, repetition). The time series have been
well pre-processed by the SME to make them comparable (smoothed
using B-splines [20]).

Tasks and Procedure: We presented the SME with the initial SOM
and explained all recommendations. The SME had to comment and
assess the quality of each recommendation and the task was to decide
which actions are most interesting to pursue in order to derive findings
and explanations from the visualizations. We were especially interested
in whether the recommendations automatically point the analyst to the
predicted differences within the “sumimasen” utterances.

A part of the resulting SOMFlow graph is shown in Figure 10. The
first SOM is shown on the very left (#1, without the meta-coloring) and
the first system recommendation was to train new SOMs for the cells
with high qe, however, the SME favored to keep the current aggregation
and to look for the other metadata recommendations before. These
recommendations pointed the analyst to the attribute “japanology” (in-
dicating if a speaker studied Japanese) where the SME discovered that
this attribute is only tracked for one of the speaker groups. To visualize
this effect we decided to split the data based on the groups (Figure 10–
A) and can reveal that only the German speakers contain “true” values.
The SME further reported that the cells with a magenta-color filling
look “more Japanese-like”. By investigating the recommendations for
the obtained subsets we were able to identify further attributes that are
only tracked for one of the subgroups or contained coding errors.

The next recommendation was to split the data based on the dif-
ferent utterances (see color overlay in SOM#1). By comparing the
obtained SOMs (Figure 10–C) the SME was able to interpret that the
“Entschuldigung” (#4) utterances have more variations than the “sum-
imasen” (#5) because in German pitch is primarily used to express
emotions, while this is not the case in Japanese [53, 56]. To reveal
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Fig. 10. A part of the SOMFlow graph that has been produced during the first study. An unexpected finding was that some metadata is only present
for one of the speaker groups and requires different labels (branch A). The the system automatically pointed the analyst to speaker differences
within the “sumimasen” utterances (C – SOM #5) revealing a steeper pitch fall for Japanese native speakers. Further splits and investigations (E)
revealed stronger pitch variations (G) for German speakers (because they use pitch to express emotions, in contrast to Japanese native speakers).
H) overlays a 2D colormap to compare all SOM cells within the flow graph.

speaker differences, the SME decided to use the nationality color over-
lay for both SOMs and to split the data further in order to investigate
the utterance repetitions (1, 2, 3–blueish colors). As the SME did not
find any patterns in the lower branch (Figure 10–D), we focused on
the “sumimasen” utterances. The SOM clearly revealed that Japenese
(native) speakers have a steeper pitch fall in the end (yellow cells in
SOM#5). Splitting the SOM according to the speaker groups (Fig-
ure 10–E) also reveals that the contours produced by Germans have a
stronger variation (Figure 10–F) than the ones of Japanese speakers
(Figure 10–G). The SME concluded that the Germans ignored basic
linguistic rules of the Japanese language [53]. Using the blueish color
overlay for the repetition attribute also revealed that the Germans pro-
duced a raising pitch for the first and second repetition (politeness)
and a falling pitch for the third repetition (impoliteness). The SME
concluded that the German participants tried to adapt their habits to
Japanese. In the end, we used the 2D-colormap to reflect the analysis.

Results: Especially in the beginning of the analysis, we observed
that the SME investigated each recommendation in detail. However,
during an “analysis branch” the SME formed (novel) specific hypothe-
ses that could be tested by manual color overlays, splits, or cell selec-
tions. After these hypotheses have been confirmed or rejected, the SME
was able to come back to focus again on the previous recommendations
(it was good to have the graph to remember that there was another
recommendation). The SME also mentioned that the bar coloring (e.g.,
see Figure 3–B) is not useful for their domain, because it could com-
municate a relation between the different parts of the pitch contours
and the colors. The study took much longer than expected because
most of the system recommendations were interesting and also helped
the SME to identify errors in the data (e.g., missing or wrong labels
for subsets where the system recommended interesting attributes). We
further observed that the SME focused on the attribute-based selections
and did not follow up on the SOM or cell properties. We can also
confirm that the recommendations automatically pointed the SME to
the predicted speaker differences in the “sumimasen” case and that
the SME was able to derive further insights about the data. We also
observed that the graph grew very fast and the SME liked the ability
to reflect the analysis by having an overview with a 2D-colormap and
linking & brushing functionality. The note taking functionality was also
considered as useful and the animated SOM training with the history
overlay helped the SME to get an intuition about its function. The most
interesting question of the SME during the study was if it is possible to
rate the recommendations with respect to their usefulness depending
on the analysis task at hand. In general, the SME was very satisfied
with the results and arrived at a useful overall picture of the different
groupings within the dataset.

7.2 Study 2 – Exploratory Analysis
We used another bigger and unprocessed dataset to test which
functionality of the tool is used and needed to arrive at interesting
insights about the data.

Dataset: 7179 utterances of non-sense words (e.g., gubbu, punnu,
nunnu, etc.) with High-Low-contour (HL) or High-High-contour
(HH) have been imitated by 48 German learners of Japanese (=GL),
24 Japanese (=JN) and 24 German non-learners (=GN). The data
contains metadata about the speakers and the pitch contours. They
also contain manually annotated labels indicating if the pitch is HL
or HH. The HH-condition was considered as a reference for all three
participant groups. For the HL-condition, it was expected to find
a difference between the groups as the contours in this condition
were Japanese-specific. In contrast to the previous dataset, the pitch
contours were not normalized nor smoothed. We only applied our
linear interpolation processing to obtain vectors of equal length.

Tasks and Procedure: We started with the initial SOM and spotted a
gender effect by browsing through the visual recommendation cues.
Figure 1–A shows the metadata overlay for the gender information
(sex) encoded with blueish colors. We can see that the upper right
area is dominated by higher pitch values produced by female speakers
and the lower left cells are dominated by male speakers that produce
lower pitch values. This effect is also visible within the component
planes to the left of SOM#1 where the main difference of these
areas appears within the first two components (i.e., first half of the
pitch contour). The SME reported that it would be useful to apply a
semitone normalization (a domain specific normalization to remove
the pitch differences caused by general pitch height differences by
female and male speakers). We applied this normalization and obtained
a second SOM that clearly visualizes that the gender effect was
removed (Figure 1–B), except some cells at the SOM borders that are
specific to female speakers. By inspecting the SOM cells (prototypes,
bandwidth, and qe) the SME spotted artificial contours that could
be caused by measurement errors during the experiment. Therefore,
we started a noise annotation graph for each selected cell of interest
(Figure 1–C) and added a filter to create a subsequent noiseless SOM.
The result (Figure 1–D) offers the metadata attribute “pitch” as the
most interesting meta-overlay that differentiates red (HH) from orange
(HL) contours and the SME reported that the remaining mixed cells
could be checked in more detail to validate these manually annotated
labels. However, the SME asked us to split the data based on the
pitch label (SOMs #15, #16) and we then focused on the HL data
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(#16) to further explore the data as it was expected to find differences
between the groups in this condition. The SME was interested in the
different speaker groups shown as color overlays in SOM#16. Due
to the different numbers of data in the three participant groups, we
trained separated SOMs for each group. The SME was now able to
compare the contours across the SOMs using the linking & brushing
functionality to identify speaker differences. In the end, we again
zoomed out, activated the 2D-colormap and reflected the analysis steps.

Results: We observed that the first part of the study focused on
the data processing, SOM/cell quality, and noise removal while the
second part of the study turned over to investigate interesting metadata
attributes. During the study the SME identified an uneven distribution
within the speakers groups (GN, GL, JN) and the SME reported that
it would be useful to see the number of items as further histograms
or simple numbers within the attribute manager. Furthermore, the
force-directed SOM layout was considered as “a nice feature” but it
was not really used by the SME to create subsets. We also observed that
the functionality of the system was overwhelming, but the visual cues
and the VAEs were able to provide recommendations and explanations.
Hence, we conclude that using the system and understanding the
concepts/approaches requires training. Finally, the SME emphasized
that our approach enables to “freely” explore the data to identify
subsets of interest (that include significant effects). These findings
could then be verified using conventional statistics.

The two studies demonstrated that our approach was useful to ac-
complish a variety of analysis tasks. However, we also received useful
feedback to improve SOMFlow for the domain of prosodic research.

8 DISCUSSION AND LIMITATIONS

Our study and ongoing discussions revealed remaining open issues and
interesting future work.

We recognized in our user studies that the SME did not fully exploit
the functionality of the system (e.g., meta-clustering). Therefore,
we aim to improve and fine-tune the recommendations. As a first
action, we implemented sliders for our recommendation thresholds
(qeT , interestingness rank, simT , k-clusters) to steer and test different
configurations as an intermediate preparation step to leverage ML
techniques to derive good recommendations from explicit user
feedback (“guiding the guidance”, learning the thresholds). Further
improvements can be achieved by considering the current analysis
state and previous decisions within a SOMFlow (e.g., by considering
already selected/spitted attributes for interestingness calculations). We
also envision to experiment with automatically starting computations
of subsequent SOMs (or even complete SOMFlow branches) and to
investigate how users react to such recommendations. It will also be
interesting to revisit, incorporate, and compare other existing automatic
approaches to create hierarchical SOMs (e.g., [38]) for our SOMFlow
graph (in contrast to our human-in-the-loop approach). Furthermore,
we aim to implement “semantic interactions” [23] that automatically
adapt the underling computations. E.g., we can automatically adapt the
feature weighting based on manual user annotations (using relevance
feedback [7]) or enable the analyst to navigate (semantic zoom)
through different SOM-grid dimensions.

We focused on categorical metadata and it would be useful to
consider numerical attributes as well. On the one hand, we will
implement several binning approaches to transfer numeric metadata
into meaningful categories. On the other hand, we can offer further
metadata color overlays and quality measures for numeric data (e.g.,
avg/min/max value color encoding). Similarly, the visual design of
the SOMs could be further tailored and evaluated for specific data and
domain requirements (e.g., removing the bar-coloring for prosodic data
or adding other cell visualizations for other data types than time series).

We discussed about focusing in more detail on the analytic
provenance aspect of the resulting SOMFlow graph. We could map

further data characteristics to the graph (besides link sizes/colors etc.).
Similarly, we want to track user interactions for each graph element
(e.g., hovers or clicks) that can be mapped to graph properties (e.g.,
node sizes). Finally, we want to experiment with different automatic
layouts (e.g., temporal or SOM similarity based). This will enable
us to conduct further studies with the aim to compare and evaluate
visual results. Another related aspect are collaborative analysis settings.

We noticed that the resulting graph can be used as a classifier (similar
to the decision tree in [51]). It would be interesting to “keep the flow
but to change (or enrich) the data” like in common ML scenarios (e.g.,
cross-validation, training vs. test set). We also noted that our approach
“strictly” focuses on a particular dataset that is iteratively partitioned.
In contrast, we can experiment with other “flow” paradigms, such as
starting from multiple SOMs that merge during the analysis. Another
idea would be to freely drag & drop cells to re-assign data. This would,
e.g., enable the analyst to create “SOM bins” to organize the data. (e.g.,
put all good ones into one SOM). However, this would also require
to adapt the guidance (automatic recommendations) to these paradigms.

Scalability can be discussed in several ways. Firstly, computation
time of the SOM algorithm depends on available recourses of the
machine and increases with the size of the data (number of items and
vector lengths), the SOM grid (and additional SOM parametrizations),
as well as the used metric. Complexity further increases with parallel
SOM computations (e.g., after splitting data) and with the quality
measures (e.g., attribute interestingness). To avoid long response
times, we visualize the iterative process of the SOM training [46],
while threading allows to continue the analysis process in parallel to
model (re) computations. Threading also allows parallel computation
of multiple SOMs. Secondly, the visual and perceptual scalability
of the SOM representation depends on screen size and resolution.
In case of bigger SOMs (beyond the data sizes of our examples),
the cell prototypes or the linking & brushing might not be visible
anymore requiring further visualization alternatives to our tile based
representations (e.g., aggregates, glyphs, lenses). Thirdly, SOMFlow
graphs can become very complex beyond perceptual and cognitive
capabilities of the human analyst. Therefore, we can further investigate
graph simplification and layout techniques.

Finally, we want to emphasize that our approach is in principle not
limited to SOM and could be implemented for other clustering and di-
mensionality reduction algorithms (or even combine several algorithm
types). That would make the approach applicable to a broader range of
domains and problems and additionally foster a tighter integration of
automatic clustering techniques with interactive visualizations.

9 CONCLUSION

We proposed a visual interactive clustering approach with an imple-
mentation that allows the analyst to iteratively partition the data while
keeping the overview. The described SOMFlow system provides a vari-
ety of visualization and interaction techniques to support four abstract
exploration tasks (analyze, adapt, partition, reflect) and offers addi-
tional user guidance. We leverage quality and interestingness measures
to provide the analyst with visual recommendation cues and demon-
strated their usefulness in a real-world setting. Hence, we were able
to derive useful findings about the data and additionally derived in-
teresting future research areas from our observations. As a next step,
we will focus on automatic recommendations and fine-tune usability
issues with the ultimate goal to offer a powerful and freely available
SOMFlow implementation.
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organizing maps. In J. Paralič, G. Pölzlbauer, and A. Rauber, eds., Pro-
ceedings of the Fifth Workshop on Data Analysis (WDA’04), pp. 67–82.

Elfa Academic Press, Sliezsky dom, Vysoké Tatry, Slovakia, 2004.
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