
Dynamic Influence Networks for Rule-based Models

Angus G. Forbes, Andrew Burks, Kristine Lee, Xing Li, Pierre Boutillier, Jean Krivine, and Walter Fontana

Fig. 1. A screenshot of the DIN-Viz application for analyzing the dynamics of a rule-based model of a protein-protein interaction
network (i.e., a Dynamic Influence Network). Our approach emphasizes the influence rules have on each other and enables users
to analyze the dynamics of these influences as they change over time. The left panel shows a network of interconnected rules at a
specific time step. The right panel provides a global overview of the system as well as detailed information about selected rules.

Abstract—We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-
based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models
that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component
biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by
KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram
that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or
types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive
DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and
to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of
a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.

Index Terms—Dynamic networks, biological data visualization, rule-based modeling, protein-protein interaction networks.

1 INTRODUCTION

In an oft-cited overview of the goals of computational systems biology,
Hiroaki Kitano explains the role of simulation in visualizing and un-
derstanding complex systems. Simulation, he writes, can “predict the
dynamics of systems so that the validity of the underlying assumptions
can be tested” [34]. Furthermore, he articulates the importance of dy-
namic diagrams that help to identify patterns in biological systems, to
explain why they emerge, and to enable researchers to understand how
they can be controlled [35]. In this paper, we introduce the Dynamic
Influence Network, a novel representation that enables the effective

• Angus G. Forbes is with University of California, Santa Cruz. E-mail:
angus@ucsc.edu. Website: https://creativecoding.soe.ucsc.edu/

• Andrew Burks, Kristine Lee, and Xing Li are with University of Illinois at
Chicago. E-mail: {aburks3, khlee2, xli227}@uic.edu.

• Jean Krivine is with Université Paris Diderot. E-mail: jean.krivine@irif.fr.
• Pierre Boutillier and Walter Fontana are with Harvard Medical School.

E-mail: {pierre boutillier, walter}@hms.harvard.edu.

visualization of the dynamics of a system of rules to describe complex
biological processes.

A central challenge across complex systems is to understand how
a multitude of heterogenous and interacting agents can give rise to
coherent system behavior. The nature of the challenge is as much
empirical as it is theoretical. It is empirical, because the relevant agents
of a system, their interactions, and the global behavior they induce
need to be discovered and characterized. It is theoretical, because
the connections between agent-centric interactions and system-level
behavior need to be grasped at a level beyond mere description, so as
to separate contingency from necessity.

The technical challenge in modeling, even at a high level of abstrac-
tion, a complex system like a cell is that the molecular components and
their manifold interactions often result in an overwhelming combina-
torial complexity, frustrating an initial insight needed for guiding the
construction of a model. The challenge is particularly acute for dynam-
ical models of a mechanistic kind, which are preferred over statistical
black boxes when a causal account of system behavior is sought in
terms of interactions between molecular agents. The molecular level is
privileged because of the fundamental role it plays in our understanding

ar
X

iv
:1

71
1.

00
96

7v
1

 [
cs

.G
R

]
 2

 N
ov

 2
01

7

https://creativecoding.soe.ucsc.edu/

of cellular processes during development, disease, and evolution.
A specific case in point are molecular signaling processes in which

criss-crossing cascades of interactions between proteins are triggered in
response to exogenous or endogenous molecular events. These cascades
integrate a multitude of signals through which a cell homes in on an
appropriate adaptive response, such as moving, dividing, differentiating,
repairing, maintaining homeostasis, and possibly attacking itself or
other cells.

Proteins are large molecules that mediate these signaling cascades
by virtue of chemical tags attached to specific locations (sites) at their
surface. These tags influence a protein’s behavior. For example, a
phosphorylation can change the conformation of a protein, thereby
modulating its chemical activity or altering which other proteins it can
transiently recognize and associate with. The set of tags, i.e. the state
of a protein, is in turn modified through interaction with other proteins
whose behavior is controlled by their own tagging state.

1.1 The Kappa Language for Rule-based Modeling
Information about the state conditions required for an interaction be-
tween specific proteins can be extracted or inferred from a rapidly
growing experimental literature and curated databases. The Kappa lan-
guage [19] is designed to formally express such interactions as rules that
can be executed by machine. The approach follows the representational
scheme of chemistry where graphs are used to express molecules as
connected atoms and graph-rewrite rules capture local bond rearrange-
ments that result in chemical reactions. There is a crucial distinction
between a mechanism, in which parts of entities are responsible for a
specific transformation, and a reaction, in which molecular species (the
full entities) affected by the transformation are produced or consumed.
A Kappa rule is a schema that does not require a full specification
of the interacting entities, referring only to the parts that are neces-
sary for the transformation. At the heart of rule-based modeling is the
agent abstraction, which conceptualizes a protein as an agent defined
by a name and an interface of sites that represent distinct interaction
capabilities, e.g. binding and modification, without explicitly repre-
senting the underlying structural or chemical features that enable these
capabilities [9, 10, 19].

KaSim is a stochastic simulator of rule-based models written in the
Kappa language [8]. Kappa expresses only local rules of action, which
are both “descriptions of mechanistic knowledge and executable instruc-
tions” [25]. Since the definitions are completely local and not based
on any kind of enumeration, the simulation algorithm that executes
these rules has a per event time cost which is independent of the size of
the set of generable species, or element types, and independent of the
total size of the elements or agents in the system. Even on a standard
desktop computer, KaSim can easily generate simulations of a system
with millions of agents and that is defined by hundreds of rules [18].
The output of a KaSim simulation, which is ingested into our DIN-Viz
software, contains information about: a) a series of observables, the
population of elements or groups of elements within the system; as well
as b) the number of times individual rules fire over time, or alternately,
the probability that they fire in different configurations. We explicitly
define this influence metric for rule interactions in Sect. 3.1.

1.2 Visual Analysis for Understanding Rule-based Models
The rule-based approach to models proceeds without a preconceived
notion of how the global behavior of interest arises in a system. In tradi-
tional models, e.g., reaction-based models, one often has a mechanism
in mind and aims at proving that it indeed behaves as claimed. If such
initial insight is not available, one may proceed by carefully expressing
known facts about interactions between parts of entities. The result is a
collection of local rules. The problem is that even if the sought-after
behavior is produced, we still need to work out why it behaves that
way. That is, a rule-based approach often ends up replacing a world
we don’t understand with a model we don’t understand. In this regard,
the modeler is in the same position as an experimentalist, but with the
much easier task of dealing with a system about which everything at
the micro-level is known, allowing one to focus on how the micro-level
gives rise to the observed macro behavior. An advantage of rule-based

models is the ease by which the assumptions underlying such models
can be altered and the consequences explored.

Rule-based models are ideally suited for mechanistic causal analysis,
that is, for identifying the chains of events (rule applications) that
were necessary in obtaining a particular result. The formalization of a
biologically meaningful notion of mechanistic causality that permits
extraction of pathways, or workflows, from a simulation of a rule-based
model is a challenging subject of ongoing research [12]. Systems
biologists utilize simulation for a range of applications, but broadly
speaking, high-level goals for using rule-based modeling to simulate
complex systems include the following goals, related to accessibility,
execution, and understanding [9, 17, 38]:

G1 Understand how a multitude of heterogenous and interacting agents
can give rise to coherent system behavior;

G2 Utilize dynamical models for causal explanations of biochemical
interactions;

G3 Provide effective visual analytics methods for investigating simula-
tion outputs of rule-based models.

Protein-protein interaction networks with hundreds to hundreds of
thousands of individual elements can be difficult to represent. However,
visualizing the rules that govern these elements and their interactions
with each other or with other elements provides a more concise way to
represent the system. This highlights the salient aspects of the system,
while at the same time accurately aggregating the lower-level elements.

Through our survey of the relevant literature in systems biology and
information visualization (see Sect. 2), along with in depth conversa-
tions with domain experts in rule-based modeling, we articulate the
main visual analytics tasks that an interactive visualization of dynamic
rule influences should support:

T1 Identify influence patterns between rules and within groups of rules;
T2 Visualize the dynamics of rules as they change over time;
T3 Generate hypotheses about the relationship between local interac-

tions and their participation in global behaviors;
T4 Annotate components of the dynamic system in order to highlight

salient features and share them with others;

We introduce a new visual analytics technique, the Dynamic Influ-
ence Network, or DIN for short, to aid in the understanding of how
coherent system behavior emerges from a set of rules. Additionally,
we present a software tool, DIN-Viz, that provides systems biologists
with the means to visually examine dynamic data collected during
simulation.1 The paper thus presents the following contributions:

• We introduce a dynamic network representation of rules and rule
influence (Sect. 3.1);

• We provide a web-based software application, created in JavaScript
using the D3.js library [7], for interactively exploring and analyzing
Dynamic Influence Networks (Sect. 3.2);

• We present a thorough explication of a use case that clearly articulates
the various strategies a systems biologist uses to make sense of a
rule-based model for a complex dynamic system (Sect. 4).

Additionally, Sect. 2 discusses relevant related work from biological
modeling, biological data visualization, causality visualization, and
dynamic graph visualization, and Sect. 5 presents user feedback from
domain experts in systems biology and molecular biology.

2 RELATED WORK

Visual analytics often involves mitigating the complexity of datasets
that describe systems that are too large or too complicated to reason
about without external representation. This is true as well for visual-
ization projects that aim to explore biological pathways. Instead of
representing individual proteins or biological elements, which could
number in the tens or hundreds of thousands for a single cell, or even

1DIN-Viz is open source software freely available at https://github.com/
CreativeCodingLab/DynamicInfluenceNetworks.

https://github.com/CreativeCodingLab/DynamicInfluenceNetworks
https://github.com/CreativeCodingLab/DynamicInfluenceNetworks

the types of elements, which could also require a large number of nodes,
our approach visualizes the relevant rules that govern the interactions
between elements. Since most systems have many less rules than ele-
ments or element types, this decreases the amount of information that
needs to be represented (although issues related to uncertainty, incom-
pleteness, and complexity can still occur with rule-based approaches).
Moreover, this information is potentially more useful for gaining in-
sight into how a system works, and for validating useful models that
can guide research into biological pathways.

2.1 Biological Modeling
While the majority of pathway visualization tools apply to reaction-
based modeling, our project introduces a visual analysis technique
for rule-based models. In addition to the Kappa language described
above, the BioNetGen language [23, 31] is also widely used by systems
biologists. While the differences between these languages are minimal,
one benefit of Kappa, according to Wilson et al. [64], is that tools in the
Kappa ecosystem make use of formal methods to aid in information
discovery and in debugging models.

A modeling framework called PySB aims to make it easier to build
mathematical models of biochemical systems as Python programs [42].
In their approach, models are not only created using programs, these
models are already executable programs. PySB transforms the Python
code into either BioNetGen or Kappa rules, and provides methods
that make it easier to create macros that encode recurrent biochemical
patterns and to define complex networks as reusable modules. Ped-
ersen et al. [53] also introduce a modular extension to Kappa that
provides a means for writing modular rule-based models.

While our technique was created using Kappa rules and KaSim
outputs, it should be straightforward to extend it to other rule-based
modeling languages or high-level modeling frameworks.

2.2 Dynamic Network Visualization
Efforts to effectively visualize graphs with nodes or edges that repre-
sent temporal data or that have a topology that evolves over time are
cataloged by Beck et al. [5]. They survey the landscape of dynamic
graph visualization, categorizing projects primarily in terms of how
they represent time, that is, whether or not they use animation or a
static timeline to show the evolution of networks. These categories
are then further parcellated according to which layout strategies they
utilize and how they address particular problems inherent in dynamic
datasets. Inspired by Moody et al. [46], who investigate animated net-
work “movies” for a range of sociological datasets, our tool features an
animated node-link diagram whose layout is determined by clusters of
influence (measured by how likely rules are to fire at the same time),
either on a per-frame basis or within a user-selected time window. An
interactive timeline is used to navigate through time, and more detailed
information about selected nodes is presented for the currently selected
time period.

Interesting recent approaches to visualizing dynamic data include
Archambault and Purchase’s work on dynamic attribute cascades [1],
Mashima et al.’s GMap [45], and Bach et al.’s GraphDiaries [2] and
Matrix Cubes [3] techniques. However, since a main goal of our visu-
alization was to emphasize the relationship of rules to other rules, we
elected to use a visual representation that made it easier to apply visual
encodings to the links between nodes (see Sect. 3). Techniques by Ma
et al. [43, 44], Purgato et al. [55], and Ye et al. [66] present multiple
synchronized representations of a dynamic brain network to provide
additional insight into the community dynamics within the network.
Our tool also presents auxiliary representations to support the analysis
of dynamic data, providing detail on demand for selected nodes.

Vehlow et al. [59] provide a thorough overview of different ap-
proaches to grouping data within graphs. A taxonomy of methods
categorizes groups as juxtaposed, embedded, superimposed, or encoded
using visual node attributes. Our technique utilizes superimposition,
providing colored clusters as a way to show group membership of
nodes that are similar, as well as visual node attributes, enabling a user
to apply coloring to indicate a secondary grouping of nodes. Hadlak
et al. [30] present a network layout in which each node represents a

cluster, and contains a time plot providing an overview of the temporal
trend of the cluster, as well as a secondary view that shows time series
data describing changes to a selected cluster. Our software tool also
allows the user to examine more detailed information about temporal
trends within the network.

2.3 Causality Visualization
Elmqvist and Tsigas [22] introduce the Growing Squares and Growing
Polygons techniques to explore causality, finding that they are signifi-
cantly more useful than static graphs or Hesse diagrams for reasoning
about systems. In these techniques, differently sized shapes are used to
indicate information flow in a system of interacting processes, filling
with different colors to represent the changing influence of the different
processes.

Ware et al. [63] explore the use of visual causal vectors to indicate
causal relationships between data elements, and Bartram and Yao [4]
utilize animated causal overlays in order to highlight causal flows
and to indicate the relative strength of the causal effect. Kadaba et
al. [33] also find that the use of animation is superior in terms of
both accuracy and speed in comparison to static representations for
facilitating comprehension of complex causal relations.

More recently, Dang et al. [14] introduce ReactionFlow to highlight
the inherent causality in biological pathways. In this technique, dif-
ferent reactions are presented in a column at the center of the screen,
and a user can select any reaction, or any protein involved in a reac-
tion, and play an animation that indicates which other reactions could
occur downstream. Zhang et al. [67] introduce the ReView tool for
visualizing traffic causality and to reason about the origin of network
traffic anomalies that may be indicative of suspicious requests. Also
intended to help determine root causes of events (although in an entirely
different domain), Vigueras and Botia [61] introduce an algorithm for
defining causality graphs for debugging multi-agent systems in order
to track the causality of events produced by interactions among agents
in a group. Forbes et al. [27] also investigate the use of an animation
framework to represent simulations of dynamic systems. Our technique
aims to provide systems biologists with the ability to more effectively
reason about the causal mechanisms within protein-protein interaction
networks.

2.4 Biological Network Visualization
Murray et al. [47] survey biological pathway visualization projects
and introduce a taxonomy of visualization tasks for the analysis of
biological pathway data. Relevant tasks are organized in a high-level
categorization as attribute tasks, relationship tasks, and modification
tasks. Interestingly, simulations of rule-based models are not explic-
itly discussed. However, this taxonomy does describe tasks that are
relevant to visualizations of rule-based models, and our approach in
particular, such as grouping [49, 50, 60], annotation [13, 15, 20, 28, 41],
and causality [24, 39, 51].

A range of projects introduce techniques for visualizing rule-based
models of protein-protein interaction networks. Danos et al. [16] dis-
cuss the use of contact maps to visually represent stochastic trajectories
for user-defined observables in order to tell a “story” that summarizes
how a given event type can be obtained. Kohn et al. [37] introduce
molecular interaction maps that explicitly define the topology of rule-
based networks, and that can be used for simulating the interaction
of molecular rules. Inspired by these efforts, as well as by the earlier
process diagrams of Kitano et al. [36], Chylek et al. [11] provide guide-
lines for visualizing and annotating rule-based models using interactive
extended contact maps that represent a cell signaling system so that it
is both visual and executable.

Smith et al.’s RuleBender [56] provides a framework for editing
and exploring rule-based systems of intracellular biochemistry, such as
BioNetGen. In this framework, the primary visualization provides an
interactive contact map in which molecules are rendered as large gray
nodes and domain states are positioned inside these nodes. Rules are
represented as links between specific sites within the nodes, and nested
isocontours are used to define a compartment hierarchy of elements
related to particular components of the cell. A secondary visualization

shows the relations between the reaction rules that describe the behavior
of a system. That is, similar to our approach, the influence graph shows
if a rule activates or inhibits another rule. However, our approach further
emphasizes how these influences can change over time, facilitating the
analysis of the dynamics of the system.

Gostner et al. [29] provide an overview of graphical modeling soft-
ware tools for representing or simulating reaction-based models, and
detailing usability and perceptual issues that they can introduce. They
find that creating graphical languages with many glyphs reduces ambi-
guity, but at the cost of introducing visual clutter and making the visual
layout unappealing to users. They advocate for a minimalist approach
that presents only the visual elements necessary for a particular analysis.
Our tool also uses a smaller visual language for representing rules and
clusters of rules.

Pedersen et al. introduce Bio Simulators [52], a web-based frame-
work that uses KaSim to run simulations of Kappa rules. The visualiza-
tion output is a simple chart that shows the population of predefined
“observables” within the system, that is biological agents (e.g., proteins
or protein complexes) that are affected by the rules. This visualization
provides an overview of the system, but does not indicate specifically
which rules are responsible for these changes in observables, nor pro-
vide insight into how the activity of rules affects other rules. Our
DIN-Viz tool provides this type of visual output in a secondary panel,
providing an alternative perspective of the system.

3 DYNAMIC INFLUENCE NETWORKS
In this section, we introduce details of the Dynamic Influence Network
and our visual analytics software tool, DIN-Viz. The DIN-Viz interface
presents two interconnected view panels, the Network Panel and the
Data Panel. The Network Panel provides an overview of the influence
the rules have upon each other, and the Data Panel provides additional
detail both about selected individual rules, as well as an overview of
the entire system. These views can be temporally navigated using an
interactive timeline. Interactive thresholding defines which nodes and
links are visible, and pop-up option panels enable users to emphasize
different characteristics of the network and to toggle between different
clustering metrics.

By using DIN-Viz, researchers can engage in each of the visual
analysis tasks defined in Sect. 1.2. Specifically, our interface aims to
facilitate hypothesis generation and validation. We discuss this in detail
in Sect. 4, where we present a walkthrough of an analysis of a complex
biological system. Briefly, a user is provided with an overview of the
dynamic system in which rules that are tightly coupled are grouped
together in clusters (T1). A user can then create custom clusters of
specific rules, arranging them in close spatial proximity in order to
evince meaningful behaviors at given times (T2). For example, a user
may be interested to learn if particular rules fire together, independently
of whether or not they influence each other. A user can then temporally
traverse the dynamic system in order to identify particular times where
this hypothesis about synchronized rule firing is true or not true (T3).
The user can apply annotations (labels and color cues) to identify
relevant features of the system in order to present this information to
others (T4).

DIN-Viz was created through a collaborative design process, in which
we received expert feedback from our systems biology collaborators
over the course of a six month development period. During this time,
many iterations of the application and visual encodings were developed
and refined. As the software became more adept at representing rule-
based models, new datasets were provided that initially challenged our
application, both in terms of the robustness of our implementation and
the utility of our design choices, forcing us to rethink some aspects
of our approach and to extend others. Through this process, DIN-Viz
has become increasingly effective at representing large rule-based mod-
els in order to facilitate analysis tasks that utilize Dynamic Influence
Networks.

3.1 Defining the Dynamic Influence Network
Before describing further details of our visualization technique, we
introduce a formal definition of influence in relation to Kappa rules.

Fig. 2. These screen captures show views of the DIN at the same time
step, but each using three different clustering thresholds. As the user
increases the clustering threshold value (left to right) using the slider
at the bottom-left of the Network Panel, fewer and fewer clusters are
created. In the pop-up menu, a user can enter a precise clustering
threshold and choose the clustering window options.

Let s be a rule
s : Ls −→Rs @ γs (1)

with Ls and Rs Kappa patterns, and γs a rate constant. The activity
αs of s indicates the propensity of s to induce the next state transition
in a mixture of fully specified molecular species M (the system). The
probability that s induces the next transition is simply the relative
propensity, αs/∑

N
r αr. Moreover,

αs = γs · |{Ls;M }| ·
1
σs

(2)

where |{Ls;M }| denotes the number of matchings of Ls in the mix-
ture M and σs the number of symmetries preserved by s. The term
|{Ls;M }|/σs is the number of physical configurations that are distin-
guishable with respect to the mechanism expressed in s. The activity
αs of a rule corresponds to the conventional chemical kinetics notion
of flux (velocity) through a reaction.

The Dynamic Influence Network (DIN) is a directed graph whose
nodes are rules. A directed edge from rule r to rule s has a weight
that reports the contribution of events due to rule r (r-events) on the
activity of rule s over some fixed time interval [t, t + τ]. Rule r affects
the activity of s by either generating or destroying matchings of Ls in
M . Note that in a system of reactions (rather than rules), any firing
of the reaction A −−→ B has an immediate impact on the activity of
the reaction B+C −−→ D, if the system already contains nonzero
amounts of C. In a rule-based system, however, a firing of rule r :
A(xu)−−→ A(xp) need not have an immediate impact on the activity
of s : A(xp, yp)−−→ A(xp, yu). When r fires on an instance A(xu, yu)
in the mixture M , it has no immediate impact on the activity of s; it
does, however, when it fires on A(xu, yp).

Let i index the sequence of events that occur in [t, t + τ]. The ith
event causes a transition of the system from state Mi (before the event)
to state Mi+1 (after the event). If the ith event is due to an application
of r, the contribution of r to the relative change in activity of rule s is
given by

∆i(r s) =

αs(i+1)−αs(i)

αs(i)
if i is due to r and αs(i) 6= 0

0 otherwise
(3)

An alternative is to replace the activities αs with firing probabilities
ps = αs/λ with λ = ∑q αq the system activity:

∆i(r s) =

{
ps(i+1)− ps(i) if event i is due to rule r
0 otherwise

(4)

We aggregate these contributions during the interval [t, t+τ] and divide
by the number #r of events that were due to r to obtain the average
influence of r on s during that interval:

〈∆t(r s)〉τ =
1
#r ∑

i
∆i(r s) with i ∈ { j | time(j) ∈ [t, t +τ]}, (5)

where time(i) is the time stamp of the ith event. We shall refer to the
matrix or graph defined by (5) and using (3) as the activity-DIN, or
aDIN, and to (5) using (4) as the probability-DIN, or pDIN.

An edge in the aDIN is easy to interpret: if at time t the firing of r
produces patterns to which s is applicable, the a-influence is positive;
if it alters (and thus removes) patterns to which s could have applied,
it is negative. The interpretation of the pDIN is more subtle, since an
r-event may affect the firing probability of s not only by producing or
destroying matchings of the pattern Ls, but indirectly by affecting the
system activity λ = ∑q αq through influencing the activities of rules
other than s.

The definition (5) is, informally, reminiscent of a derivative dαs/dt
in a continuum setting, if only we could take the limit τ→ 0. In general,
one cannot write a system of differential equations for the evolution
of the rule activities in terms of only the L and R patterns of the
rules. One might therefore think of the DIN as a purely observational
version of the elusive formal system of interdependencies between rule
activities. We believe however that the DIN is useful in an “empirical”
approach towards understanding a rule-based model.

3.2 The DIN-Viz Software Application

DIN-Viz features two main view panels: the Network Panel, which
presents an interactive dynamic network of rules (nodes) and the amount
of influence between the rules (edges); and the Data Panel, which
presents detailed information about selected rules. Fig. 1 shows an
overview image of DIN-Viz, with the Network Panel on the left and the
Data Panel on the right.

In the Network Panel, the DIN is presented as a node-link influence
diagram, leveraging a force-directed layout [21] to position related
nodes and clusters near to each other. The nodes and links directly
represent the rules and the influence of each of the rules comprising
the DIN, and the visualization enables the topological analysis of the
KaSim simulation data at the time step scale. By mapping the rule-to-
rule influence to the link strength, highly mutually influential rules are
closely grouped together visually. This provides insight to the systems
biologist as to which rules are likely to be indicated in the formation of
biological pathways. In order to further facilitate the analysis of these
highly related rules, we perform a clustering operation on the network
based on the influence between rules and generate groups with a high
inner influence, based on a user-selected threshold.

In the Data Panel, we provide additional views that provide a tem-
poral context for the graph representation. The upper time-based chart
is the phenotype line graph, which charts KaSim “observables” over
the course of the simulation. The lower time-based graphs chart the
incoming and outgoing influence of user-selected nodes.

3.2.1 Network Panel

To convey the density of information necessary for the accurate analysis
of the data, we encode both data that is produced directly by the simu-
lation and data derived from that simulation. The derived data include
rule clusters, averaged influence values (when clustering globally or
within a time window), and interpolated values during animation.

To visualize the system and its data, we use a force-directed layout
of a node-link diagram, where nodes encode the rules, and links encode
the influence between two rules. The absolute value of influence be-
tween rules, whether defined by activity or probability (see Sect. 3.1),
determines the attractive link forces in the network. DIN-Viz maps the
number of hits of a rule to the node size, and the influence of one rule on
another through the link width. We indicate the directionality of a link
and the sign of the influence by using two directional gradients: yellow-
to-red for negative, and yellow-to-green for positive. Alternatively,

Fig. 3. Links may be interactively filtered on demand using the visibility
slider (bottom-left of each image). With all links visible (left), the light blue
cluster is very highly interconnected. Increasing the visibility threshold
(middle) causes the free nodes to have no visible links, showing that
they do not have a strong relationship any nodes at this time step. At the
highest visibility threshold (right), only 4 links remain, all connected to the
node in the center of the light blue cluster. These important relationships
are difficult to see when more links are visible (left, middle).

a colorblind safe mode is available that replaces the yellow-to-green
positive colormap with white-to-blue.

Details-on-demand for the links show the source and target, as well
as the exact influence value, and for the rules show the rule name,
self-influence, and the top incoming and outgoing influences to the rule.
The user may also choose to make visible the names of the rules as
labels, either for all rules, or for interactively selected rules.

By default, we use curved lines in order to represent edges. We
rely on clustering for immediate spatial analysis and data-on-demand
for more in-depth quantitative information, introducing curvature only
as a minimal intervention to help differentiate multiple edges sharing
source and target nodes. The use of curves does not appear to detract
from the intensity gradient used to encode direction [32]. However, the
literature on graph perception indicates that curved edges can hinder
readability [65], so we provide an option for users to toggle between
curved or straight edges.

Rule Clustering We derive cluster assignments for the rules based
on their influence upon one another. To form these clusters, we extract
all links from the network. If a link is above the user-determined
clustering threshold, its source and target rules are considered to be
clustered together. If nether is currently associated with a cluster, they
are placed together in a newly created cluster. If one is in a cluster and
the other is not, then the unclustered node joins the cluster. Lastly, if
both nodes currently belong to different clusters, these two clusters are
joined together.

Onto these derived clusters we map a categorical color scheme to
distinguish between clusters. We double encode the cluster assignment
through the node color as well as underlaying clustered nodes with a
bounding circle of the cluster color. Double encoding is used to empha-
size the relationship between nodes; in our iterative design process, we
discovered that simply changing the color of nodes did not sufficiently
highlight them, especially inside of dense clusters.

Clustering is helpful for grouping rules together and aids the user in
understanding how rules operate together. However, these simulations
can have influence values spanning orders of magnitude. To handle
diverse simulations, the user can fine-tune the clustering threshold based
on the nature of the system, as well as the interactions they would like
to highlight. In medium-sized or smaller networks (with less than 500
nodes), the clustering computation can be performed at real-time rates
on a consumer laptop. The responsiveness of the clustering method
provides strong interactivity with the visual analytics tool.

The initial clustering mode is per time step, where the clusters will
be computed using links from the current time step. This operation
yields very precise groupings of rules based on their current states.
The clusters can be very volatile for certain systems, and a node could
potentially switch between clusters at every time step. To provide an
alternative to this, we include two additional clustering modes: global

Fig. 4. Influence networks can become very complicated (left). Through
pinning and marking, the user may apply custom spatial and categorical
groupings that serve to unclutter as well as annotate the rules. After
reorganization (right), rules pC * are marked and labeled, as positioned
near to one another. The white nodes below and to the right of the
orange cluster (left) have been pinned outside of the orange cluster with
two new marked clusters being created, green and light-green (right). A
pop-up menu provides options for the pinning and marking features.

and windowed. These modes can smooth the clustering operation when
moving backward or forward in time, and can help the user to highlight
trends across time.

Global clustering averages the influence that all nodes have on one
another over all time steps and transforms these average influence
values into the links used to cluster nodes. Globally clustering the rules
groups them by their overall behavior, not just at one specific instant.
A downside to this approach would be a link which fluctuates perfectly
from a value x to −x over the course of the simulation, resulting in an
average influence of 0. However, the clusters fail to capture the more
granular behavior may when attempting to group rules globally. As a
middle ground, we implement a time-window clustering that smooths
volatility while preserving detail. The user can specify the number
of time steps that the clustering will use. For example, if the user
selects a window of 10, the influences are averaged over 21 time steps
[t−10, t +10], including the current time step. This method preserves
the local behaviors while smoothing the cluster assignments over time.

By changing the clustering window, the user can analyze the data
at different time scales. Fig. 2 shows a view of the DIN at the same
time step, but using three different clustering thresholds. As the user
increases the clustering threshold value (using the slider at the bottom-
left of the Network Panel), fewer and fewer clusters are created. In
this figure, the user has selected a time window of 5, so that clusters
are determined through averaging influences over the 5 previous and 5
subsequent time steps.

Interactive Filtering We also allow for the interactive filtering
of links by their influence value to help handle larger datasets. By
removing the edges below a user defined influence value, the graph
is less visually cluttered, and the edges with higher influence values
become prominent, whereas they could otherwise be obscured. Fig. 3
shows an example where a user increases the visibility threshold. As
the user increases the visibility threshold value (again, using the slider
at the bottom-left of the Network Panel), more and more edges are
removed from the visualization. For example, in the rightmost frame,
the four positive influences are clearly seen within the larger gray
cluster once the negative edges with less influence are removed.

Marking and Pinning While force-directed layouts help to miti-
gate visual clutter in node-link diagrams, dense networks can still be
difficult to make sense of— an issue that is exacerbated when represent-
ing large datasets. DIN-Viz includes an option whereby the user can
manually creates a layout of nodes or entire clusters through relocating
and “pinning” them to specified locations in the Network Panel. This
reorganization reduces clutter, but also helps users to distribute the
rules and clusters in a way that is cohesive with their thought process
during exploratory analysis. When pinned, the spatial positioning and
grouping of selected rules and clusters is preserved over the course of
the entire simulation, overriding the normal layout behavior.

While the mathematically defined clusters help capture groups of
rules with a strong influence on one another, there may be rules which

Fig. 5. These four screen captures show the changes in rule influence
as the user steps through the simulation in the Network Panel. Here,
the clustering of rules changes as each rule’s influence increases or
decreases, and the incoming and outgoing influences of a rule chosen
by the user (here the ruleB.Ci2 g0 is selected) are indicated both by the
highlighted edges and the pop-up panel in the upper-left corner of the
visualization. Additionally, a dashed indicator marks the corresponding
time in the line graphs (See Fig. 1), linking network and time-based
contexts together. An additional controller below the graphs allows the
user to zoom into a smaller time window for a more detailed view.

are related through their behavior but lack a strong influence with one
another. To solve this problem, we implement a “painting,” or marking,
interaction. The user can mark a set of nodes with the same color to
give them a categorical grouping, inserting them into an existing or
newly created painted cluster. Alternatively, nodes can be painted and
labeled, grouping these rules visually, but only with color, not placed
within a cluster. These categorical groupings, similar to the spatial
groupings achieved through pinning, aid in the logical organization of
rules during analysis by the user.

Through pinning and marking actions, users are aided in the ex-
ploration of the dataset, leading to the formation and evaluation of
hypotheses. Additionally, pinning and marking, along with displaying
the labels of rules, serve as tools to annotate the data and prepare it
for presentation. Grouping rules both spatially and categorically can
help to emphasize specific interactions and biological pathways. Fig. 4
shows an example of how the use of marking and pinning can be used
to effectively reorganize a dense influence network to highlight specific
sets of rules. The operations of labeling, cluster windowing, cluster
thresholding, visibility thresholding, pinning, and marking, can all be
used in combination to articulate components of the network that are
relevant to a particular analysis session.

Animation To represent the dynamism of the system, animation is
used to update the influence between the rules, which in turn updates
the edge weights, node sizes, and cluster definitions. A time slider
controls the current time step, enabling the user to move through time
or to jump to a particular time step. We also include standard play-
back controls that animate the simulation so that the user can observe
changes in the DIN over time. The user can play and pause the ani-
mation, as well as speed up or slow down the animation. The KaSim
simulation data provides “snapshots” at particular time intervals. Play-
back across longer intervals could cause confusing jumps where the
network suddenly leaps to a completely new configuration. While this
may be important to visualize (and encourage the systems biologist
to re-run the simulation at a greater temporal resolution), even less
dramatic shifts can obscure the dynamics of the system. To improve
the temporal coherence as we animate between frames, we provide
an option where we perform a linear interpolation of influence values
between two sequential time steps [6, 62]. Fig. 5 demonstrates the evo-
lution of a DIN over time, depicting how the clusters of rules emerge
and disappear as the rules’ influence increases and decreases.

3.2.2 Data Panel

Although the use of animation helps to facilitate insight into the dy-
namics of the system, it can make it difficult to keep track of detailed
differences between time-steps, hindering comparative analysis and in-
creasing cognitive load [5,57]. To address this problem, we supplement
the Network Panel with the Data Panel.

The Data Panel provides the explicit temporal context missing from
the Network Panel, enabling a thorough multi-level analysis of the
data. The Data Panel consists of 3 line charts, graphing information
dependent on time. The Phenotype Chart graphs observables— pop-
ulations of particular biological elements— from the simulation over
time. This view assists in the analysis of global trends in the simulation
for the entire system. The additional Rule Influence Charts display
the incoming and outgoing influences of a user-selected node. The
Rule Influence Charts show global trends in the simulation for a single
rule, rather than the entire system. Self-influences are denoted by a
red line, while influences to and from other rules are denoted by gray
lines. Hovering over these lines shows the corresponding time step and
influence values while highlighting the line itself. By using the three
charts in the Data Panel, system trends over time may be analyzed at
both a global and local level simultaneously. Located at the bottom of
the Data Panel is the time selection slider, which enables the user to
zoom the time axes of the Phenotype and Rule Influence Charts. The
right side of Fig. 1 shows the Data Panel.

4 CASE STUDY

To evaluate the DIN technique, we present a detailed use case in which
a systems biologist examines the dynamics of a complex protein-protein
interaction network. The basic usage practice consists in: (i) Visualiz-
ing the dynamics of the influence network and identifying clusters of
rules, determined by mutual strength of influence, regardless of whether
influence has a positive or negative sign; (ii) Identifying temporal se-
quences of activation and inhibition between rules or rule clusters; and
(iii) Using these temporal “story lines” to connect the mechanisms
laid down in the rules with a specific macroscopic behavior of the
system. For our use case, this practice occurred in iterative steps, as,
for instance, an identification of an interesting sequence (ii) could lead
to the need to re-conceptualize which rules were most relevant (i), or
a hypothesis about the meaning of a story line (iii) could require a
change to the pinning or thresholding of rule clusters in order to reveal
potentially meaningful dynamics (ii).

4.1 The KaiABC Oscillator
Many organisms control physiological processes in a pattern that an-
ticipates daily changes in light levels. Such circadian rhythms are
maintained by molecular networks that exhibit autonomous oscillations
that directly involve or are coupled to gene regulation. A widely studied
system is the circadian oscillator of the cyanobacterium Synechococcus
elongatus [48]. This system is remarkable because its key components
are just three proteins— KaiA, KaiB, and KaiC— which have been
isolated and reconstituted in the test tube, where they maintain the
oscillating behavior under consumption of chemical energy (ATP) [58].
Though this rule-based system is relatively small, it exhibits many of
the complexities found in much larger models.

1. The protein KaiC is a complex of six identical units each of which
can be reversibly phosphorylated (marked with a phosphate group)
independently of the others, with dephosphorylation (unmarking)
occurring more readily than phosphorylation (marking). The hex-
amer as a whole (henceforth simply KaiC) has therefore 6 sites and
26 = 64 possible phosphorylation states, but we distinguish only 7
overall phosphorylation levels (p-levels) p ∈ {0,1, . . . ,6}.

2. KaiC is assumed to switch between two conformational states,
termed “active” (A) and “inactive” (I). Importantly, the probability
(i.e. the rate constant) of a conformational flip from A to I increases
with the p-level of KaiC.

3. KaiA binds KaiC in the A-form, but the interaction strength (more
specifically: the average time that KaiA stays bound to KaiC) de-
creases rapidly with increasing p-level. When bound, KaiA prevents
conformational flipping and promotes the phosphorylation of KaiC.
In the model, this is done by upping the phosphorylation rate and
preventing dephosphorylation. In sum, KaiA sticks to KaiC in
the A-form at low p-levels, cranks up the p-level, and by doing
so kicks itself off KaiC. When KaiA unbinds from KaiC at high
p-levels, KaiC flips back into the I-form, which KaiA cannot bind.

At this point the dephosphorylation tendency takes over, leading to
a decrease in the p-level.

At low numbers of KaiA, (1)-(3) induce individual KaiC molecules
to move up and down p-levels rather randomly and without coordination
among each other. As a result, the population of KaiC molecules settles
on a steady level of average overall phosphorylation.

4. Coordination between KaiC proteins is achieved by a third agent,
KaiB, which reversibly binds KaiC in the I-form. When bound,
KaiB locks KaiC in the I-form, thereby allowing dephosphorylation
to proceed. Importantly, bound KaiB also strongly (but reversibly)
binds KaiA. The probability that KaiA binds KaiB, when the latter
is bound to KaiC, is maximal at intermediate p-levels (but the time
it stays bound is independent of p-level). While bound in this way,
KaiA can no longer interact with any KaiC. Hence, KaiB promotes
dephosphorylation of the KaiC it is bound to and holds back phos-
phorylation of other KaiC molecules by sequestering KaiA. These
interactions statistically synchronize the phosphorylation and de-
phosphorylation cycles on individual KaiC molecules, resulting in
collective p-level oscillations of the KaiC population.

When translating these mechanistic descriptions (some of which are
empirical findings and some of which are hypotheses [58]) into Kappa,
we obtain 57 rules, whose dynamical action is simulated using KaSim.
If the same model were based on a description in terms of molecular
species instead of patterns, it would require 707 species and 13090
reactions. In the present case, KaiC is represented as an agent with 6
phosphorylatable sites, because Kappa is (deliberately) not designed
to express the idea of equivalent sites or the notion of a phosphory-
lation “level.” However, we can choose to automatically detect such
equivalences (and hence implicitly the notion of a phosphorylation
level). In so doing, the number of species shrinks to 59 and the number
of reactions they participate in turns out to be exactly 1000. Even in
relatively simple cases as this one, the rule-based approach provides a
hugely compressed description that is lossless with regard to dynamics.

4.2 Using DINs to Understand the KaiABC Clock
After spending an initial period of time becoming familiar with the
overall dynamics of the system, we then begin a more focused visual
analysis to identify important features, or “story lines,” of the KaiABC
clock that are made apparent using DIN-Viz. Fig. 6 depicts a series of
time steps from this analysis session and is referred to throughout this
section.

We proceed first by turning off visual clustering, working only with
the default structure imparted by the force-directed layout. We also turn
off all edges, leaving only unmarked nodes. Running the DIN animation
in this terse format allows quick identification of which nodes (rules)
are potential drivers by paying attention to (a) the evolution of node
size, which reflects the number of firings in the corresponding time
interval (displayed on the lower-right), and (b) identifying nodes that
move abruptly or rapidly, as such nodes appear to signal changes in the
influence pattern. A case in point is the node A.Ca in the timeframes
[64.6− 64.7] to [64.7− 64.8]. Around t = 64.6, A.Ca had no firings
but received a high positive influence from rule A..B. At t = 64.7,
A.Ca starts firing and suddenly connects with a host of other nodes, as
can be seen when turning on the edge display. Using the full graph
display is, of course, useful too, in particular when keeping an eye on
the trajectory of the systemic property shown in the right panel of the
browser. It is also informative to turn on and off all inhibitory edges
(red) or all activating edges (green).

The next step consists in marking and pinning nodes that appeared
salient in the first pass. It proves useful to rerun the animation before
pinning in order to determine any cluster structure among the salient
nodes, which would suggest a division of the screen area into regions
dedicated to these clusters. It is important to keep in mind that cluster
structure is influence-based and therefore likely transient. The purpose
of pinning is to fix a “coordinate” system of salient nodes against which
to assess the tug of war of influence over the remaining mobile nodes.

Fig. 6. This figure shows a series of snapshots taken during an analysis
session of the KaiABC clock, discussed in Sect. 4.2. The left column
shows the current time step and the global phosphorylation in the system
(the y-axis) across the simulation session, with a point indicating the
particular time step (the t-axis). The middle column presents snapshots
of the DIN where influence is defined using the relative change in activity
(the aDIN). The right column presents snapshots of the DIN where
influence is defined based on the firing probabilities of rules (the pDIN).

If the pinned nodes are indeed salient, they should engage in distinct
patterns of activity that organize the mobile nodes. Tuning the visual
clustering (by setting the cluster threshold) can be useful to determine
cohesive structure among the mobile nodes. Note that here pinned
nodes are excluded from such visual clustering.

Fig. 6 exhibits our layout for the KaiABC clock. In this model
several rules have a natural family structure. For example the A..Ca x
rules represent the dissociation of A from an active C at a rate con-
stant that depends on the p-level of the C-agent. These rules are all
expressing the same basic transformation (unbinding of A from C) but
their refinement according to p-level is a critical part of the differential
affinity mechanism [58]. Often, but not always, do such rules cluster
naturally in the DIN. A modeler should therefore make use of any
information he or she has about the nature of the rules to group them
using DIN-Viz.

Once parts of the DIN are fixed, the state of the DIN needs to be
put into correspondence with the macroscopic behavior of the system.
For this purpose we supply a file with a time series of the property of
interest (i.e., a Phenotype Chart). In our case, the systemic property is
the overall fractional phosphorylation Y :

Y =
∑

n
i i|C(p−−i)|

n|C()|
(6)

where |C(p−−i)| is the number of C-agents with i phosphorylated sites,
|C()| is the total number of C-agents, and n the number of phospho-
rylatable sites—in our case n = 6. The quantity Y can be viewed as

the probability that any of these sites is phosphorylated. Y = 1 means
that all C-agents are fully phosphorylated, and Y = 0 means that none
has even a single phosphorylated site. The left-hand column of Fig. 6
shows a few oscillations of Y (t) with a dot marking the position in the
cycle corresponding to the aDIN and pDIN snapshots on the right.

The top row (t = 58) shows 3 of the 4 anchor clusters of nodes we
select by observing the animation as described above. While the initial
confidence in these selections is supported by detailed knowledge of
the model, we believe that someone without knowledge of the model
would have discovered the same selection. First, the selected nodes are
conspicuous in the temporal evolution of their firing rate and, second,
the mobile nodes are seen to be meaningfully organized by the influence
behavior of these anchors. The latter is an after-the-fact property that
may require some iteration, which this interactive approach to DIN
visualization is designed to facilitate. Anchors I and II (Fig. 6, middle)
are the single rules A..B and A.Ca, respectively. Rule A.Ca is central
to the processes described in item 3 of Sect. 4.1, while rule A..B and
the anchor cluster III are central to those described in item 4. In the
down-leg of the system cycle, many of the C-agents are in a state where
they are being dephosphorylated, as they are locked into the inactive
conformation by the binding of B (anchor III).

Interacting with anchor III is a cloud of mobile nodes containing
rules named pc x op, which are dephosphorylation rules. (The x de-
notes the site on which the rule operates.) In addition, the cloud contains
flip x rules, which flip a C-agent from the active to the inactive state,
promoting dephosphorylation. (The x in the rule name denotes the
p-level of the agent, not a specific site.) Finally, the cloud also contains
pC x rules, which are phosphorylation rules. The animation makes
sense of all this: One can see a “catching” motion where sites on C-
agents are dephosphorylated, ultimately leading to a p-level of zero,
turning on the B.Cix 0 op nodes, which effectively cause agents of
type B to dissociate from agents of type C, initializing the phospho-
rylation phase. At the same time, pC x rules fire and activate flip x
rules, indicating that some C are still in the previous up-leg of the cycle
where they are reaching the peak and get switched into the inactive
state by binding to B (rules B.Cix g0, which fire at higher p-levels).
This analysis of the “catching” motion upon animation (at any edge
visibility threshold) simply indicates the flow along the down-leg of the
cycle: A majority of the C population has entered the downward leg
and is dephosphorylating, thus promoting eventual detachment from B,
which locks the inactive state. However, another fraction of the popu-
lation is lagging behind, still entering phosphorylation peak territory.
The microscopic picture around anchor III enables these conclusions,
although the systems level data simply indicate an overall declining
p-level of the population.

According to the DIN, the processes that dominate at the midpoint
of the down-leg have not changed much their interrelations when the
system-level trajectory has reached the valley floor at t = 64. Consider
now what is going on, in parallel, between anchors I and II at t = 58 or
t = 64. As indicated in item 4 of Sect. 4.1, the phosphorylation of active
C-agents is promoted by their binding to agents of type A, rule A.Ca,
which is our anchor II. However, agents of type A are sequestered by
agents of type B when the latter are bound to highly phosphorylated C.
The point of this is to allow dephosphorylation to proceed by silencing
the A-agents (which promote phosphorylation). But once C-agents
have reached maximal dephosphorylation levels, they should enter the
up-leg, for which the A-agents need to be awake. This is accomplished
by releasing (unbinding) the A-agents through rule A..B, anchor I. The
hairball in the middle is a cluster of mobile nodes that are about the
binding of A to B, the opposite of what anchor I accomplishes. By
definition of influence (Sect. 3.1), the firing of A..B has a positive
effect on the binding rules A.Bx because it makes A available. In the
downward leg of the cycle, A..B fires much more frequently (the large
disk) than A.Bx, but the latter is still firing with appreciable frequency
in this snapshot—presumably because of the laggards that are now
reaching the peak and ready to bind B, lock in the inactive state and
sequester A.

Rules A.Ca and A.Bx compete for free A, rendered by the red ar-
row from A.Bx to A.Ca. Yet, at t = 64 the negative influence is not

reciprocated, because A.Ca doesn’t fire at all, and this despite the avail-
ability of activated C (or A.Ca could not be influenced). When stepping
through the DIN at t = 65.5 and beyond, one notices that A.Ca never
reciprocates the negative influence, even when it begins to fire. How
can that be, if, from a static analysis point of view, A.Ca removes a
free A from the system that could have also participated in A.Bx? The
reason is that the binding rate constant of A.Bx is so high (both in
the real system and the model) that once a B binds to a C, creating
the condition for an A to bind that B, the event happens very quickly.
There rarely is just a B bound to a C in the system. In other words: the
rule A.Bx fires to immediately consume any pattern instance to which
it is applicable. This creates the seemingly paradoxical situation of a
rule that fires often and has almost always activity zero. A rule with
activity zero cannot be negatively influenced; it can only be influenced
positively, on the supply side, i.e. by A..B. The DIN shows that, at
this point in the cycle, whenever A..B feeds the system with free A
(green arrows oriented towards A.Bx), A.Bx makes sure nothing of that
reaches A.Ca (red arrows from A.Bx to A.Ca).

The DIN panel at t = 58 shows two parallel mechanisms at work
in the downward leg of the Kai oscillator. (i) The binding of B to C
locks C into its inactive state and allows dephosphorylation to proceed
more effectively. This mechanism is at work in the lower half of the
DIN panels. (ii) The high affinity of A for B bound to inactive C puts
the breaks on the front-runners, i.e. those C-agents that have already
reached the valley floor and switched into the active state, ready for
the upward (phosphorylation) leg of the cycle. Those agents need
rule A.Ca to fire and bind them to A, locking their active state and
promoting phosphorylation. But despite these very C-agents having
released B, which in turn releases A (high firing rate of A..B), A
gets immediately captured by B-agents bound to laggard C-agents that
have not yet completed their dephosphorylation leg. This holds back
the front-runners ready from initiating the upward leg while ensuring
that the laggards complete their downward leg. The upper part of the
DIN reproduces precisely the statistical synchronization mechanism
proposed by van Zon et al. [58], but seen through the lens of a rule-
based model. The fact that group IV is already active at t = 65.5, a
time when the system-wide p-level just passed its minimum, indicates
how spread out the distribution of individual p-levels must be, as some
are evidently already nearing the top. The basic structure of the DIN
then persists throughout the upward phase and beyond, before it breaks
down again at t = 73.2 and the previous organization reappears.

In sum, the use case illustrates a system in which KaiC proteins go
through a phosphorylation cycle. They are incrementally phosphory-
lated at 6 positions in the molecule when they switch to a dephosphory-
lation process that removes the phosphates. Yet, even if each protein
goes through such a cycle, this would not lead to synchronization across
the whole population of proteins. In the model, a series of interactions
causes a large fraction of individuals to synchronize and this causes
oscillations at the level of the whole population. Using the DIN, the
systems biologist can begin to investigate subtleties of the dynamics
of these interactions in order to better understand this population-level
synchronization.

5 USER FEEDBACK

While the detailed case study presented above provides a real-world
example of how a biologist can analyze a rule-based model using DINs,
we also gathered initial feedback regarding the DIN-Viz tool, both
through unstructured interviews and written responses to questions
about how DIN-Viz might be used to support relevant analysis tasks.
Feedback was provided by professors and postdoctoral researchers in
systems biology or molecular biology from Harvard Medical School
and University of Arizona. Each of the six researchers who provided
feedback are actively engaged in investigating protein-protein interac-
tion networks related to cancer biology and interested in using bioinfor-
matics tools for rule-based modeling of biological networks.

User response was, for the most part, overwhelmingly positive. For
example, one user was initially skeptical since the KaiC use case merely
“enables recovery of what we already know.” However, after exploring
the model in more detail, the user expressed more interest, telling us

he was impressed by the ability to reason about macro and micro level
behaviors simultaneously: “What I find spectacular is this juxtaposition
of the crazy moving hairball on the left, which is the microscopic
picture, and the quiet calm coordinated oscillations at the systems level
on the right. That is really something emotional to see the two together.”
One of our systems biology collaborators told us that they were very
intrigued by being able to look alternately at the aDIN and pDIN
versions of the simulation: “I think I now see the subtle footprint of a
critical synchronization mechanism at work in the Kai clock. Seeing
is an active act, which is sometimes in the way; the DIN visualization
switches “seeing” into a receptive mode where you can get rid of
the bias that comes from the active version of seeing.” Another user
was excited about the potential pedagogical utility of DIN-Viz: “The
coloring and pinning of the nodes is terrific! A very useful way of
interacting with the tool. I could learn a great deal about this system
by working with this visualization. I think its going to be very useful
in the classroom.” However, we were also cautioned that our use case
provided only an initial confirmation of the success of our approach:
“You need to make a model of a system that’s not yet understood and
show how the visualization enables a bona fide explanation.”

While encouraged by this feedback, in future work we will more
rigorously evaluate the use of DINs to help make sense of a wide range
of biological processes, both in scientific and educational contexts. In
general, there is a lack of evaluation about the effectiveness of rule-
based approaches, and DIN-Viz could be used to help understand when
it is most appropriate to use them to make sense of complex systems.

6 CONCLUSIONS

In this paper, we introduced the Dynamic Influence Network, a novel
visual analytics technique for investigating the dynamics of how rules
influence other rules in rule-based models of complex systems. We
demonstrated that our web-based application, DIN-Viz, supports a range
of visual analysis tasks for making sense of dynamic protein-protein
interaction networks.

While our approach has shown to be useful for the manual explo-
ration of these types of rule-based modeling systems, our initial evalua-
tion leads us to believe that some of these manual explorations could
be automated. That is, just as a researcher observes that particular rules
fire at similar rates, an automated system might highlight a range of
interesting temporal patterns, allowing the user to investigate whether
or not these patterns are scientifically meaningful.

The goal of the DIN is precisely to focus on rules rather than individ-
ual elements or types. However, it could be useful to be able to “drill
down” from a selected rule or set of rules to another representation,
such as a contact map or biological pathway, that provided additional
context for the rule dynamics. Determining how to navigate effec-
tively between these levels of abstraction is a significant visualization
challenge that we plan to investigate.

The DIN technique was designed to support the Kappa language,
and specifically to ingest KaSim simulation data, but we expect that it
should be relatively straightforward to adapt our technique to support
other rule-based modeling languages. More broadly, DINs could be
used to represent a wide range of dynamic systems explored in other
domains, such as economics [40], ecology [26], or social network
analysis [54], among others.

ACKNOWLEDGMENTS

This work is funded by the DARPA Big Mechanism Program under
ARO contracts W911NF-14-1-0367 and W911NF-14-1-0395.

REFERENCES

[1] D. Archambault and H. C. Purchase. On the effective visualisation of
dynamic attribute cascades. Information Visualization, 15(1):51–63, 2016.

[2] B. Bach, E. Pietriga, and J.-D. Fekete. GraphDiaries: Animated transitions
and temporal navigation for dynamic networks. IEEE Transactions on
Visualization and Computer Graphics, 20(5):740–754, 2014.

[3] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks with
Matrix Cubes. In Proc. CHI, pp. 877–886. ACM, 2014.

[4] L. Bartram and M. Yao. Animating causal overlays. Computer Graphics
Forum, 27(3):751–758, 2008.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Computer Graphics Forum, 36(1):133–159,
2017.

[6] P. Bénard, A. Bousseau, and J. Thollot. State-of-the-art report on temporal
coherence for stylized animations. In Computer Graphics Forum, vol. 30,
pp. 2367–2386, 2011.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[8] P. Boutillier, J. Feret, J. Krivine, and L. K. Quyen. KaSim development
homepage. http://dev.executableknowledge.org, accessed March
26th, 2017.

[9] L. A. Chylek, L. A. Harris, J. R. Faeder, and W. S. Hlavacek. Modeling for
(physical) biologists: An introduction to the rule-based approach. Physical
Biology, 12(4):045007, 2015.

[10] L. A. Chylek, L. A. Harris, C.-S. Tung, J. R. Faeder, C. F. Lopez, and
W. S. Hlavacek. Rule-based modeling: A computational approach for
studying biomolecular site dynamics in cell signaling systems. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine, 6(1):13–36,
2014.

[11] L. A. Chylek, B. Hu, M. L. Blinov, T. Emonet, J. R. Faeder, B. Goldstein,
R. N. Gutenkunst, J. M. Haugh, T. Lipniacki, R. G. Posner, J. Yang, and
W. S. Hlavacek. Guidelines for visualizing and annotating rule-based
models. Molecular BioSystems, 7(10):2779–2795, 2011.

[12] P. R. Cohen. DARPA’s Big Mechanism program. Physical Biology,
12(4):045008, 2015.

[13] T. Dang and A. G. Forbes. BioLinker: Bottom-up exploration of protein
interaction networks. In Proc. PacificVis. IEEE, 2017.

[14] T. Dang, P. Murray, J. Aurisano, and A. G. Forbes. ReactionFlow: An
interactive visualization tool for causality analysis in biological pathways.
BMC Proceedings, 9(6):S6, 2015.

[15] T. Dang, N. Pendar, and A. G. Forbes. TimeArcs: Visualizing fluctuations
in dynamic networks. Computer Graphics Forum, 35(3):61–69, 2016.

[16] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based mod-
elling of cellular signalling. In International Conference on Concurrency
Theory, pp. 17–41. Springer, 2007.

[17] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based
modelling and model perturbation. In Transactions on Computational
Systems Biology XI, pp. 116–137. Springer, 2009.

[18] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation
of cellular signaling networks. In Asian Symposium on Programming
Languages and Systems, pp. 139–157. Springer, 2007.

[19] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer
Science, 325(1):69–110, 2004.

[20] K. Dinkla, M. El-Kebir, C.-I. Bucur, M. Siderius, M. J. Smit, M. A.
Westenberg, and G. W. Klau. eXamine: Exploring annotated modules in
networks. BMC Bioinformatics, 15(1):201, 2014.

[21] T. Dwyer. Scalable, versatile and simple constrained graph layout. Com-
puter Graphics Forum, 28(3):991–998, 2009.

[22] N. Elmqvist and P. Tsigas. Animated visualization of causal relations
through growing 2D geometry. Information Visualization, 3(3):154–172,
2004.

[23] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek. Rule-based modeling of
biochemical systems with BioNetGen. In I. V. Maly, ed., Systems Biology.
Springer, 2009.

[24] R. M. Felciano, S. Bavari, D. R. Richards, J.-n. Billaud, T. Warren, R. Pan-
chal, and A. Krämer. Predictive systems biology approach to broad-
spectrum, host-directed drug target discovery in infectious diseases. In
Proc. Pacific Symposium on Biocomputing, pp. 17–28, 2013.

[25] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana. Internal coarse-
graining of molecular systems. Proceedings of the National Academy of
Sciences, 106(16):6453–6458, 2009.

[26] T. Filatova, P. H. Verburg, D. C. Parker, and C. A. Stannard. Spatial agent-
based models for socio-ecological systems: Challenges and prospects.
Environmental Modelling & Software, 45:1–7, 2013.

[27] A. G. Forbes, T. Hollerer, and G. Legrady. Behaviorism: A framework
for dynamic data visualization. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1164–1171, 2010.

[28] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, and
H. Kitano. CellDesigner 3.5: A versatile modeling tool for biochemical
networks. Proceedings of the IEEE, 96(8):1254–1265, 2008.

[29] R. Gostner, B. Baldacci, M. J. Morine, and C. Priami. Graphical modeling
tools for systems biology. ACM Computing Surveys, 47(2):16–1–21, 2014.

[30] S. Hadlak, H. Schumann, C. H. Cap, and T. Wollenberg. Supporting the
visual analysis of dynamic networks by clustering associated temporal
attributes. IEEE Transactions on Visualization and Computer Graphics,
19(12):2267–2276, 2013.

[31] L. A. Harris, J. S. Hogg, J.-J. Tapia, J. A. Sekar, S. Gupta, I. Korsunsky,
A. Arora, D. Barua, R. P. Sheehan, and J. R. Faeder. BioNetGen 2.2:
Advances in rule-based modeling. Bioinformatics, 32(21):3366–3368,
2016.

[32] D. Holten and J. J. van Wijk. A user study on visualizing directed edges
in graphs. In Proc. CHI, pp. 2299–2308. ACM, 2009.

[33] N. Kadaba, P. Irani, and J. Leboe. Visualizing causal semantics using
animations. IEEE Transactions on Visualization and Computer Graphics,
13(6):1254–1261, 2007.

[34] H. Kitano. Computational systems biology. Nature, 420(6912):206–210,
2002.

[35] H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–
1664, 2002.

[36] H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda. Using process di-
agrams for the graphical representation of biological networks. Nature
Biotechnology, 23(8):961–966, 2005.

[37] K. W. Kohn, M. I. Aladjem, S. Kim, J. N. Weinstein, and Y. Pommier.
Depicting combinatorial complexity with the molecular interaction map
notation. Molecular Systems Biology, 2(1):51, 2006.

[38] D. C. Krakauer, J. P. Collins, D. Erwin, J. C. Flack, W. Fontana, M. D.
Laubichler, S. J. Prohaska, G. B. West, and P. F. Stadler. The chal-
lenges and scope of theoretical biology. Journal of Theoretical Biology,
276(1):269–276, 2011.

[39] A. Krämer, J. Green, J. Pollard, and S. Tugendreich. Causal analysis ap-
proaches in Ingenuity Pathway Analysis (IPA). Bioinformatics, 30(4):523–
30, 2014.

[40] C. Kühn and K. Hillmann. Rule-based modeling of labor market dynam-
ics: an introduction. Journal of Economic Interaction and Coordination,
11(1):57–76, 2016.

[41] A. Lex, C. Partl, D. Kalkofen, M. Streit, S. Gratzl, A. M. Wassermann,
D. Schmalstieg, and H. Pfister. Entourage: Visualizing relationships
between biological pathways using contextual subsets. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2536–2545, 2013.

[42] C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger. Programming
biological models in Python using PySB. Molecular Systems Biology,
9(1):646, 2013.

[43] C. Ma, A. G. Forbes, D. A. Llano, T. Berger-Wolf, and R. V. Kenyon.
SwordPlots: Exploring neuron behavior within dynamic communities of
brain networks. Journal of Imaging Science and Technology, 60(1):10405–
1–13, 2016.

[44] C. Ma, R. V. Kenyon, A. G. Forbes, T. Berger-Wolf, B. J. Slater, and
D. A. Llano. Visualizing dynamic brain networks using an animated
dual-representation. In Proc. EuroVis, pp. 73–77. Eurographics, 2015.

[45] D. Mashima, S. Kobourov, and Y. Hu. Visualizing dynamic data with maps.
IEEE Transactions on Visualization and Computer Graphics, 18(9):1424–
1437, 2012.

[46] J. Moody, D. McFarland, and S. Bender-deMoll. Dynamic network visual-
ization. American Journal of Sociology, 110(4):1206–1241, 2005.

[47] P. Murray, F. McGee, and A. G. Forbes. A taxonomy of visualization
tasks for the analysis of biological pathway data. BMC Bioinformatics,
18(2):21–1–13, 2017.

[48] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki,
T. Oyama, and T. Kondo. Reconstitution of circadian oscillation of
cyanobacterial KaiC phosphorylation in vitro. Science, 308(5720):414–
415, 2005.

[49] F. Paduano, R. Etemadpour, and A. G. Forbes. BranchingSets: Interac-
tively visualizing categories on node-link diagrams. In Proc. VINCI, pp.
9–16. ACM, 2016.

[50] F. Paduano and A. G. Forbes. Extended LineSets: A visualization tech-
nique for the interactive inspection of biological pathways. BMC Proceed-
ings, 9(6):S4, 2015.

[51] C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer, and D. Schmalstieg.
enRoute: Dynamic path extraction from biological pathway maps for
exploring heterogeneous experimental datasets. BMC Bioinformatics,
14(19):1–16, 2013.

[52] M. Pedersen, N. Oury, C. Gravill, and A. Phillips. Bio Simulators: A web
UI for biological simulation. Bioinformatics, 30(10):1491–1492, 2014.

http://dev.executableknowledge.org

[53] M. Pedersen, A. Phillips, and G. D. Plotkin. A high-level language for
rule-based modelling. PLOS ONE, 10(6):e0114296, 2015.

[54] A. Prskawetz. The role of social interactions in demography: An agent-
based modelling approach. In Agent-Based Modelling in Population
Studies, pp. 53–72. Springer, 2017.

[55] A. Purgato, M. Santambrogio, T. Berger-Wolf, and A. G. Forbes. Inter-
active visualization for brain spatio-temporal networks. In Proc. BHI, pp.
21–24. IEEE, 2017.

[56] A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai. RuleBender: In-
tegrated modeling, simulation and visualization for rule-based intracellular
biochemistry. BMC Bioinformatics, 13(8):S3, 2012.

[57] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: Can it
facilitate? International Journal of Human-Computer Studies, 57(4):247–
262, 2002.

[58] J. S. van Zon, D. K. Lubensky, P. R. Altena, and P. R. ten Wolde. An
allosteric model of circadian KaiC phosphorylation. Proceedings of the
National Academy of Sciences, 104(18):7420–7425, 2007.

[59] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing group structures in
graphs: A survey. In Computer Graphics Forum, 2016. doi: 10.1111/cgf.
12872

[60] C. Vehlow, D. P. Kao, M. R. Bristow, L. E. Hunter, D. Weiskopf, and
C. Görg. Visual analysis of biological data-knowledge networks. BMC
Bioinformatics, 16(1):1–15, 2015.

[61] G. Vigueras and J. A. Botia. Tracking causality by visualization of multi-
agent interactions using causality graphs. In International Workshop on
Programming Multi-Agent Systems, pp. 190–204. Springer, 2007.

[62] J. Villegas, R. Etemadpour, and A. G. Forbes. Evaluating the perception
of different matching strategies for time-coherent animations. In Human
Vision and Electronic Imaging XX (HVEI), vol. 9394 of Proc. Electronic
Imaging, pp. 939412–1–13. SPIE-IS&T, 2015.

[63] C. Ware, E. Neufeld, and L. Bartram. Visualizing causal relations. In Proc.
Information Visualization, pp. 39–42. IEEE, 1999.

[64] J. Wilson-Kanamori, V. Danos, T. Thomson, and R. Honorato-Zimmer.
Kappa rule-based modeling in synthetic biology. In M. A. Marchisio,
ed., Computational Methods in Synthetic Biology, pp. 105–135. Springer,
2015.

[65] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and P. H. Nguyen. A user
study on curved edges in graph visualization. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2449–2456, 2012.

[66] A. Q. Ye, O. A. Ajilore, G. Conte, J. GadElkarim, G. Thomas-Ramos,
L. Zhan, S. Yang, A. Kumar, R. Magin, A. G. Forbes, and A. D. Leow.
The intrinsic geometry of the human brain connectome. Brain Informatics,
2(4):197–210, 2015.

[67] H. Zhang, M. Sun, D. D. Yao, and C. North. Visualizing traffic causality
for analyzing network anomalies. In Proc. International Workshop on
Security and Privacy Analytics, pp. 37–42. ACM, 2015.

http://dx.doi.org/10.1111/cgf.12872
http://dx.doi.org/10.1111/cgf.12872
http://dx.doi.org/10.1111/cgf.12872
http://dx.doi.org/10.1111/cgf.12872
http://dx.doi.org/10.1111/cgf.12872
https://dx.doi.org/10.1111/cgf.12872
https://dx.doi.org/10.1111/cgf.12872
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6
https://doi.org/10.1007/978-1-4939-1878-2_6

	Introduction
	The Kappa Language for Rule-based Modeling
	Visual Analysis for Understanding Rule-based Models

	Related Work
	Biological Modeling
	Dynamic Network Visualization
	Causality Visualization
	Biological Network Visualization

	Dynamic Influence Networks
	Defining the Dynamic Influence Network
	The DIN-Viz Software Application
	Network Panel
	Data Panel

	Case Study
	The KaiABC Oscillator
	Using DINs to Understand the KaiABC Clock

	User Feedback
	Conclusions

