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A Coloring Algorithm for Disambiguating Graph and Map Drawings

Yifan Hu and Lei Shi

Abstract—Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is
often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements.
In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed
algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to
a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings

of real world graphs and maps.

Index Terms—graph drawing, virtual maps, edge coloring, branch-and-bound algorithm, global optimization

1 INTRODUCTION

Graphs are widely used for depicting relational information among
objects. Typically, graphs are visualized as node-link diagrams [1].
In such a representation, edges are shown as straight lines, polylines
or splines. Graphs that appear in real world applications are usually
non-planar. For such graphs, edge crossings in the layout are unavoid-
able. It is a commonly accepted principle that the number of edge
crossings should be minimized whenever possible, this principle was
confirmed by user evaluations which showed that human performance
in path-following is negatively correlated to the number of edge cross-
ings [31L 35]. Later studies found that the effect of edge crossings
varies with the crossing angle. In particular, the task response time de-
creases as the crossing angle increases, and the rate of decrease levels
off when the angle is close to 90 degree 24, 125]. This implies that it
is important not only to minimize the number of edge crossings, but
also to maximize the angle of the crossings. Consequently, generating
drawings that give large crossing angles, or even right crossing angles,
became an active area of research (e.g., [10]]). Nevertheless, for gen-
eral non-planar graphs, there is no known algorithm that can guarantee
large crossing angles for straight line drawings. Therefore, techniques
to mitigate the adverse visual effect of small angle crossings are im-
portant in practice.

In this paper we propose to use colors to help differentiate edges.
Our starting point is an existing layout, and our working assumption
is that the graph is to be displayed as a static image on paper, or
on screen. The motivation comes from users of our graph drawing
software. These users were generally happy with the layouts of their
graphs, but were asking whether there was any visual instrument that
can help them follow edges better. Examining their layouts, we real-
ized that because edges were drawn using the same color (e.g., black),
when there were a lot of edge crossings, it was difficult to visually
follow these edges. Thus the feedback from our users, and our own
observation, echo the findings by Huang et al. [24}125]. When explain-
ing why small crossing angles are detrimental to the task of follow-
ing a path, they found, with the help of an eye tracking device, that
“when edges cross at small angles, crossings cause confusion, slow-
ing down and triggering extra eye movements.” and that “in many
cases, it is crossings that cause confusion, making all the paths be-
tween two nodes, and branches along these paths, unforeseeable. Due
to the geometric-path tendency, human eyes can easily slip into the
edges that are close to the geometric path but not part of the target
path.”.

Edge crossing is not the only hindrance to the visual clarity of a
graph drawing. An additional problem is that when an edge from node
u passes underneath the label of a node v and connects to a node w, it
is impossible to tell visually whether there is one edge u <> w, or two
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edges u <+ v and v <> w, when all edges are of the same color (e.g.,
Fig. 3|b)). While these problems can be solved with user interactions
by clicking on an edge of interest, or on a node to bring its neighbors
closer (see, e.g., [28]), this involves an extra step for the user that may
not be necessary if edges can be differentiated with a proper visual cue.
Furthermore, there are situations where interaction is not possible, e.g.,
when looking at a static image of a graph on screen, or in print. These
are the situations that are of particular interest in this paper.

We believe all the above mentioned problems of visually distin-
guishing and following edges can be greatly alleviated by choosing
appropriate colors or line styles to differentiate edges. We first iden-
tify edge pairs that need to be differentiated (we call them colliding
edges), and represent them as nodes of a dual collision graph. We then
propose an algorithm to assign colors to the nodes of this dual graph,
in a way that maximizes the color difference between nodes that share
an edge. Thus our main contributions are:

e An approach for establishing a dual graph among colliding
edges/regions, and coloring the nodes of the dual graph to dis-
ambugate graph/map drawings.

e A novel branch-and-bound graph coloring algorithm that finds
the globally optimal color embedding of each node with regard to
its neighbors, and that works with both continuous color spaces
and discrete color palettes.

e A user study that establishes the effectiveness of the coloring
approach, as well as its limitations.

We were made aware of the work of Jianu et al. [26], who proposed
a similar idea. We believe our work is substantially different and better
than that of [26]. We will discuss in more details in the next section,
and in Section

2 RELATED WORK

Graph coloring is a classic problem in algorithmic graph theory. Tradi-
tionally the problem is studied in a combinatorial sense. For example,
finding the smallest number of k colors on the vertices of a graph so
that no two vertices sharing an edge have the same color. The dif-
ference between this and our work is that in k—colorability problem,
a solution is valid as long as any pairs of vertices that share an edge
have different colors, no consideration is given to maximizing the ac-
tual color differences. So in essence, the distance between colors are
binary — either 0, or 1. For our problem we assume that even among
distinctive colors, the differences are not equal, and are measured by
color distances. In the special case when only k colors are allowed,
our algorithm degenerate to find the optimal color assignment among
all solutions of the k—colorability problem.

This last problem of assigning colors was also studied by Gansner et
al. [15] and by Hu et al. [23]], in the context of coloring virtual maps to
maximize the color difference between neighboring regions In these



work, maps were colored by an optimal permutation of a fixed list of k
colors, with k the number of countries in the map. On the other hand,
we assume that the color space can be either continuous or discrete,
and we select among all colors in the color space to increase color
differences.

Dillencourt et al. [11] studied the problem of coloring geometric
graphs so that colors on nodes are as different as possible. The prob-
lem they studied is very related to ours, except that in their case the
application is the coloring of geometric regions, while we are also
interested in coloring edges of a graph. Dillencourt et al. used a force-
directed gradient decent algorithm to find a locally optimal coloring of
each node with regard to its neighbors. We propose a new algorithm
based on a branch-and-bound process over an octree decomposition of
the color space, that finds a globally optimal coloring for each node
with regard to its neighbors. Furthermore, our approach is more flex-
ible and works for discrete color palettes, in addition to continuous
color spaces.

Given the findings by Huang et al. [24, 25] that edge crossings
at close to 90 degree hamper human performance less than those at
smaller angles, there are active researches in the so called RAC draw-
ings of graphs. In such a drawing, edges cross at the right angle (e.g.,
[1O]). This is a practice employed in hand and algorithm drawn metro
maps as well (e.g., [36]). However, it was shown [10] that a straight-
line RAC drawing can have at most 4n — 10 edges, with n the number
of vertices. As far as we are aware, even that is only a necessary, but
not sufficient, condition. Therefore techniques to help alleviate the ef-
fect of small angle crossings, when RAC or larger angle drawings are
not feasible, are important in practice.

The angular resolution of a drawing is the sharpest angle formed
by any two edges that meet at a common vertex of the drawing. In
addition to maximizing crossing angles, for the same reason of visual
clarity, there have been researches to maximize the angular resolu-
tion of the drawing. Most recently, Lombardi Drawing of graphs was
proposed [12} 6], in which edges are drawn as arcs with perfect angu-
lar resolution. However, Purchase et al. [33] found that even though
users prefer the Lombardi style drawings, straight-line drawings cre-
ated by spring-embedder gives better performance for path following
and neighbor finding tasks. For straight-line drawings, while it is
possible to adjust the layout to improve the angular resolution (e.g.,
[9L[18]]), the extent to which this can be done is limited. Although pre-
vious study by Purchase et al. [32]] did not find sufficient support for
maximizing angular resolution, we do find that when two edges con-
nected to the same node are almost on top to each other, it is difficult
to tell whether these are two edges or one. For this reason we consider
such edges as in collision too.

Edge bundling is another useful tool for decluttering the tangled
mess in drawings of complex graphs [16, 20l [7} 22} [14]. However
when edges are bundled, it is no longer possible to follow an individual
edge to its exact destination. Pupyrev et al. [30] proposed to separates
edges belonging to the same bundle by a small gap. While this makes
it possible in theory to follow individual edges, in practice the edges
in each bundle are drawn very close to each other. We believe whether
fully bundled, or separated by a small amount, bundled or routed edges
can benefit from using colors to differentiate among them (see Fig.[g).

For directed graph drawings, a number of studies were conducted
to evaluate the most effective way to convey the direction of edges.
Holten et al. [21] found that tapered edges are most effective amongst
5 different representations, including using standard arrows. Burch et
al. [5] found that partially drawn links can lead to shorter task com-
pletion times. The idea of partially drawn edges were also used for
avoiding visual clutter at edge crossings. Rusu [34] proposed a solu-
tion of breaking edges at edge crossings to improve graph readability.
Bruckdorfer [4] conducted a theoretical study of graphs that can be
drawn with partial edges to avoid crossings. Interestingly, the idea of
using partially drawn edges can be dated at least as far back as 1997,
when Becker et al. [2] visualized the network overload between the
110 switches of AT&T’s long distance network during San Francisco
Bay area earthquake in 1989. The large amount of edges occludes
much of the map of the US. They solved this problem using partially

drawn edges, making the resulting picture much clearer.

We note that a nice way to follow an edge, or to find the neighbors
of a node, is to use interactive techniques such as “link sliding” and
“bring & go” [27]. The algorithm we propose is primarily aimed at
disambiguating a static drawing displayed on screen or printed on pa-
per, it can nevertheless be used in conjunction with such interactive
techniques.

Finally, we were made aware of the work of Jianu et al. [26] af-
ter the completion of this work. Jianu et al. [26] proposed a similar
idea of using colors to differentiate edges. However there are multiple
important differences between that work and ours. The construction
of dual graph is different: Jianu et al. set the edge weights among
all edges to be the inverse of either the intersection angle, or the edge
distance if the edges do not intersect, which is not optimal since it is
perfectly harmless to color edges that have no conflict with the same
color. In fact, their method always results in a complete dual graph,
making it more expensive for relatively large graphs. Furthermore, be-
cause of the complete dual graph, all edges of the original graph must
have different colors. Therefore the drawings in [26], which are all
of very small graphs, always contains a multitude of colors, which is
unnecessary. Our collision graph almost always contains disconnected
components (e.g., Fig.[d). This decomposes the coloring problem into
smaller ones, and allows us to use the same (black) colors for many
edges. Jianu et al. [20] solved the coloring problem using a force-
directed algorithm, motivated by Dillencourt et al. [[L1]. We obtained
the code for [26] from one of the authors. Based on reading the code,
we found that it applies force directed algorithm to nodes of the dual
graph in the 2D subspace of the LAB color space (the AB subspace).
It then sets a fixed L value of 75 (L is the lightness, between 0 to
100). This observation is consistent with the drawings in [26], where
black background is used for all drawings due to the high lightness
value (see also Fig. @d)). This makes the algorithm limited to a small
subset of all possible colors. Finally, the force-directed algorithms of
Dillencourt et al. [[11] and Jianu et al. [26] can only be applied to con-
tinuous color space in 2D or 3D. Neither works for user specified color
palettes, or 1D colors. Our algorithm works for both continuous or dis-
crete color spaces. Overall, we believe that the idea of using colors for
disambiguating edges are quite natural to think of. It is how to use
the appropriate algorithm to make the idea work effectively in practice
that is crucial and that differentiates our work and [26]. Furthermore,
we present a first user study to evaluate this idea with real users. The
results suggest possible scenarios when the edge coloring approach is
effective.
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Fig. 1. Left: a graph with 20 nodes and 100 edges. It is difficult to
follow some of the edges. For example, is node 19 (blue) connected to
node 16 (blue)? Is node 19 connected to 17 (blue)? Right: the same
graph, with the edges colored using our algorithm. Now it is easier to
see that 19 and 16 are connected by a blue edge, but 19 and 17 are not
connected.



3 THE EDGE COLORING PROBLEM AND A COLORING ALGO-
RITHM

Appropriate coloring can help greatly in differentiating edges that
cross at a small angle. Fig. |I| (left) illustrates such a situation. With
many crossing edges, it is difficult to follow the edge from node 19
(top-middle, blue) to node 16 (lower-right, blue). In comparison, in
Fig. [T] (right), it is easier to see that 19 is connected to 16 by a blue
edge. The objective of this section is to identify situations where am-
biguities in following edges can occur, and propose an edge coloring
algorithm to resolve such ambiguities.

3.1

Two edges are considered in collision if an ambiguity arises when they
are drawn using the same color. The following are four conditions for
edge collision:

Edge collisions

o Cl: they cross at a small angle.
o (2: they are connected to the same node at a small angle.

o (3 (optional): they are connected to the same node at an angle
close to 180 degree.

o (C4: they do not cross or share a node, but are very close to each
other and are almost parallel.

We now explain the rationale for considering each of these four
conditions as being in collision. C1 is considered a collision follow-
ing the user studies described in Section [T| by Huang et al. [24] 23].
When eyes try to follow an edge to its destination, small crossing an-
gles between this edge and other edges create multiple paths along the
direction of the eye movement, either taking eyes to the wrong path,
or slowing down the eye movement. C2 creates a situation where one
edge is almost on top of the other, making it difficult to visually follow
one of these edges.

C3 could create confusion as to whether the two edges connected at
close to 180 degree are one edge, or two edges, when node labels are
drawn. For example in Fig. [T](left), it is difficult to tell whether nodes
19 and 17 are connected, or whether 19 is connected to 20 and 20 is
connected to 17. When edges are properly colored (Fig. [I] (right)),
it is clear that the latter is true. Note that if edges are allowed to be
drawn on top of nodes, then an edge between 19 and 17 would be seen
over the label of 20, thus this kind of confusion can be eliminated.
Therefore we consider C3 as optional. But drawing edges over the
label of nodes does introduce extra clutter and make it harder to read
the node labels.

C4 causes a problem because when two edges are very close and al-
most parallel, it is difficult to differentiate between them. In addition,
it can cause confusion when node labels are drawn. Fig.[3{a) shows
two lines very close and almost parallel. While it is possible to differ-
entiate between the two edges, when node labels are added (Fig. Ekb)),
it is difficult to tell whether there are two edges (1 <+ 2 and 3 <+ 4), or
three edges (1 <+ 2, 1 <» 4 and 1 > 3), or whether there even exists an
edge 3 <+ 2. This confusion can be avoided if suitable edge coloring is
applied (Fig. Bc)).

To resolve these collisions, we propose to color the edges so that
any two edges in collision have as different colors as possible. We first
construct a dual edge collision graph.

3.2 Constructing the dual collision graph

Let the original graph be G = {V,E}. Denote by N(v) the set of neigh-
bors of a node v. The dual collision graphis G. = {V,,E.}, where each
node in V,. corresponds to an edge in the original graph. In other word,
there is a one-to-one mapping e : V. — E. Two nodes of the dual graph
i and j are connected if e(i) and e(}) collide in the original graph.
The problem of coloring the edges of G then becomes that of color-
ing nodes of the dual graph G.. Let € be the color space, and c(i) € €
be the color of a node i € V.., we want to find a coloring scheme such
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Fig. 3. An illustration of the rationale for collision condition C4. (a) Two
edges that do not cross. (b) When nodes are shown, it is difficult to tell if
there are two edges (1 <+ 2 and 3 «+» 4), or three edges (1 «++ 2, 1 ++4 and
1 < 3), or whether there even exists an edge 3 <> 2. (c) After coloring
each edges with a distinctive color, it is clear that there are two edges,
l<2and3+4

that the color of each node in the dual graph is as different to its neigh-
bors as possible. This task can be posed as a MaxMin optimization
problem:

argmax min w;;|lc(i) —c(j 1

rgmax min, wie(i) () M)
where w;; > 0 is a weight inversely proportional to how important it is
to differentiate colors of nodes i and j, and ||c(i) — ¢(j)|| is a measure
of the difference between the colors assigned to the two nodes.

Note that () is stated rather generally: 4" could be a discrete, or
continuous, color space. This is intentional since we are interested in
both scenarios. All we assume is that ¢ sits in a Euclidean space of
dimension d.

Once we colored the dual graph, we can use the same coloring
scheme for the edges of the original graph. The complete pipeline
of our proposed approach is illustrated in Fig. 2] Notice that the dual
graph in Fig.[2[b) (displayed more clearly using a force-directed layout
in Fig. ) is disconnected. We apply our algorithm on each component
of the dual graph.

Fig. 4. The dual graph in Fig.[2c), with a force-directed layout. A node
labeled “i_j” represents edge i «» j in the original graph. Nodes are
colored using Algorithm 1, so that each node is colored as differently
from its neighbors as possible. To disambiguate edges we color them in
gray scale.

3.3 A color optimization algorithm

Dillencourt et al. [11] proposed a force-directed algorithm in a Eu-
clidean color space. They wanted all pairs of nodes to have dis-
tinctively different colors. Consequently their algorithm used a force
model where repulsive forces exist among all pairs of nodes.

Because in our case edges can have the same color as long as they
do not collide, there is no need to push all pairs of nodes of the dual
graph apart in the color space. Therefore we can not use the algorithm
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(b) dual collision graph

(c) dual graph colored

(d) original graph colored

Fig. 2. The proposed pipeline for coloring the edges of the Zachary’s Karate Club Graph: (a) the original graph; (b) the dual collision graph, with
each node representing an edge of the original graph, and positioned at the center of that edge; (c) the dual graph, with nodes colored to maximize
color differences along the edges (see Fig. Efor a clearer force-directed layout of this graph); (d) the original graph, with edges colored using the

node coloring in (c).

of Dillencourt et al. [11] as is. Although it is possible to adapt their
algorithm, we opt to propose an alternative algorithm. One reason is
that we like to be able to use not only continuous color spaces, but
also discrete color palettes (Sec.[d-I). Another reason is due to the fact
that even when deciding the optimal color for one node of the dual
graph with regard to all its neighbors, this seemingly simple problem
can have many local maxima.

As an example, for simplicity of illustration we assume that our
color space is 2D, and that the color distance is the Euclidean dis-
tance. Suppose we want to find the best color embedding for a node
u in the dual graph with six neighbors, and the six neighbors are cur-
rently embedded as shown in Fig. [5] (left). We want to place u as far
away from the set of six points as possible. Fig. 3] (left) shows a color
contour of the distance from the set of six points (the distance of a
point to a set of point is defined as the minimum distance between this
point and all the points in the set, assuming unit weighting factors).
Color scale is given in the figure, with blue for low values and off-
white for large. From the contour plot it is clear that there are seven
or more local maxima. In 3D there could be even more local maxima.
A force-directed algorithm such as [11]], even with the random jumps
and swaps, is likely to settle in one of the local maxima.

Instead we hope to find the global maximum. A naive way to find
the global maximum position in the color space with regard to a set of
points is to search exhaustively by imposing a fine grid over the color
space, and calculating the distance from each mesh point to the set.
However, given that the color space are typically of three dimensions,
even at a resolution of 100 subdivisions along each dimension, we
need 10° distance calculations. This is computationally too expensive,
bear in mind that this computation needs to be performed for each and
every node of the dual graph repeatedly until the overall embedding in
the color space converges.

We propose a more efficient algorithm based on the octree data
structure (quadtree for 2D) that does not require evaluations of the
distance over all mesh points. Using Fig. [§] (left) as an example, we
want to find a point in the color space that is of maximal distance to
a target set of points. Define the objective function value of a square
to be the distance from the center of the square to the target set. We
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Fig. 5. Left: contour plot of the distance to a set of six (white) points
in the space [0,0.9] x [0,0.9]. There are seven or more local maxima.
E.g., near {0,0.55}, {0.35,0.9} and {0.4,0.7}. Right: an illustration of the
quadtree structure generated during our algorithm for finding the global
optimal embedding of a node that is farthest away from the set of six
points. The final solution is {0,0} (shown as the red point).



start with a queue of one square covering the color space, and define
the current optimal value as the maximal distance over all squares in
the queue to the target set. Taking a square from the current queue,
we subdivide it into four squares. If the distance of one of the four
square to the point set, plus the distance from the center of the square
to a corner of the square, is less than the current optimal distance, this
square is discarded. This is because no point in this square can have a
larger distance to the target set than the current optimal distance. If the
square is outside of the color space, it is also discarded. Otherwise the
square is entered into the queue, and the optimal value updated. This
continues until the half width of all squares in the queue are smaller
than a preset threshold €. The point that achieves the current optimal
value is taken as the optimum. We know that the current optimal value
should be within a value § = d'/2¢ to the global optimal value, where
d is the half diagonal of the final square in d-dimensional space.

Algorithm 1 CLARIFY (G, %, ¢€)

1 input: graph G = {V,E}, color space ¥, threshold €
2 compute a dual collision graph G, = {E,,V.} of G
3 randomly choose c(i) in € for all i € V..
4 set: mindist = 0, sumdist =0
5 repeat
6 set: mindist,)g = mindist, sumdist,g = sumdist
mindist = oo, sumdist = 0
7 foricV,
8 define c(N (1)) := {c(j)| € N(i)}
9 c(i) = EmbedOneNode( (N(i)),¢)
10 mindist = min {mindist, dist(c(i),c(N(i)))}
)

(
11 sumdist += dist(c(i),c(N(i))
12 until (mindist < mindisteq ||
(mindist = mindist,g && sumdist < sumdistyq))
13 return: c(e(i)) =c(i), i€V,

Algorithm 2 EmbedOneNode(C, €)

1 input: a set of points C € €, a threshold €
2 set: s a square/cube covering the color space €
3 set: a first-in-first-out queue Q = {s}
4 set: ¢* = center(s)
5 set: dist* = dist(s,C)
6 forscQ
7 if w(s) < € break
8 Q:=0-{s}
9 for ¢ € children(s)
10 if tN% = 0| dist(z,C) +d"/?w(r) < dist*
11 continue
12 if dist(,C) > dist*
13 ¢* = center(t)
14 dist* = dist(z,C)
15 0:=0u{r}

16 return: ¢*

This algorithm is in essence a branch-and-bound algorithm operat-
ing on the octree (quadtree for 2D) decomposition of the color space.
When applied to the problem in Fig. [] (right), we can see that in the
top-left quadrant, the quadtree branched twice and stopped, because
the function values are relatively small in that quadrant. The top-right
and bottom-right quadrants branched 3 and 4 times, respectively. The
final optimal point is found in the bottom-left quadrant. Initially the
algorithm homed in on two regions, one around {0.375,0} and the
other around {0,0}, eventually settled around the latter.

Of course this branch-and-bound algorithm only finds the global
optimum embedding for one node. After applying the algorithm to

every node of the dual graph once (one outer iteration), if the minimal
color difference increases, or if it does not change, but the total sum of
color difference across all nodes increases, we repeat.

‘We name the algorithm CLARIFY (Edge Coloring for CLARIFYing
a Graph Layout) and formally state it in Algorithm 1. First, we give
some notations used in the presentation of the algorithm. For a point
x and a finite point set C in the Euclidean color space ¢, we define
the point-set distance as dist(x,C) = minyec wy,y||x —y||2. We denote
the center of a square or cube s as center(s), its children (by dividing
a square into 4 or a cube into 8) as children(s), and its half width as
w(s). We define the distance between s and a set of point C as that
between the center of s and C, that is, dist(s,C) = dist(center(s),C).
The CLARIFY algorithm utilizes the global optimization algorithm
for embedding one node, given in Algorithm 2 as EmbedOneNode.

4 IMPLEMENTATION AND RESULTS

We now give details on the implementation of CLARIFY, and results
of using the algorithm on real world graphs.

4.1 Color space

CLARIFY works for both continuous color spaces (as long as it is a
metric space), as well as discrete ones.

The RGB color space. An often used color model is RGB. This
model defines color by a combination of three color intensities, red,
green, and blue. Thus colors in the RGB model can be considered as
residing in a three-dimensional cube.

The LAB color space. RGB color model is widely used for the
representing and displaying images in electronic systems, such as
LCD/LED display. However, distance between two colors in the RGB
space is not an accurate measure of perceived difference by human
eyes. For that purpose, the LAB color model is consider better [13].

The LAB color space (a rectangular box [0,100] x [—128,128] x
[—128,128]) includes all perceivable colors, and more. While we can
use CLARIFY directly in the LAB color space, since eventually we
need to render the resulting drawing on screen and in print, we need
to convert the coloring to RGB. Therefore we need to work within the
LAB color gamut — the part of the LAB space that corresponds to the
RGB space. It has a complex shape. Applying CLARIFY requires
checking whether a cube is outside of the LAB gamut, which is con-
siderably more complicated than checking whether a point is outside
of the gamut.

Instead, because CLARIFY works just as well on a discrete set of
colors, we modify CLARIFY slightly as follows. We first sample the
LAB gamut: we subdivide L, A and B at one unit increment, and
check whether the resulting points are inside the LAB gamut by con-
verting the point to RGB space, and back to the LAB space. If the
double-conversion ends at the same point (within a threshold of 0.02
in Euclidean distance), the point is considered inside the LAB gamut.
This resulted in 826816 points (12.4% of the LAB space). Note that
we only have to find this sample set once and store as a file. We
then construct an octree over this point set. The CLARIFY algorithm
works with this octree, without worrying about staying inside the LAB
gamut. This sampling technique also makes it very easy to control the
lightness of the color — if we need to display the drawing in a dark
background and thus light colors are desired, we can simply filter out
points with a low L value in the sample. Fig.[6]b) shows the result of
apply CLARIFY in the LAB space with 0 < L <70.

In terms of CPU time, we found that working in LAB space with
the sampling technique gives very similar CPU time to working in
the RGB space. Speed can be further improved if we take a coarser
sample.

User-define color palettes. Any user defined color palette can be
handled in a similar way to the LAB gamut — we convert the color
palette consists of k colors to the LAB space, then interpolate these
k colors to get K sample points. We do so by subdividing the path
linking these k points in the LAB space into K — 1 segments of equal
distance. The path can be constructed along a natural ordering of the
palette, or along a shortest path/tour by solving a Traveling Salesman
Problem in 3D. An octree is then constructed using the K sample



(d) ColorBrewer Dark2_8

(e) applying Jianu et al. [26]

(f) LAB (L = 75)

Fig. 6. Applying CLARIFY on the Karate graph in RGB and LAB color spaces (a-b), and with two ColorBrewer palettes (c-d). For comparison we
include the result of applying the algorithm of Jianu et al. [26], vs CLARIFY in LAB color space with fixed lightness of 75 (e-f).

points and CLARIFY is applied over the octree. Fig. [f] gives some
examples of using two ColorBrewer [3]] color palettes, with K = 10*.

Other color spaces. There are situations where other color space
may be more appropriate. For example, for disambiguating the edges
in Fig. 4] we avoided using colors for edges in order to accurately
display colors of the nodes. For this drawing we used CLARIFY with
the gray scale, so that edges are in black or gray. We could even map
the gray scale to line styles, with black for solid line and gray for
dashed line of different weights.

4.2 Complexity of the CLARIFY algorithm

The CLARIFY algorithm consists of two main steps: finding the dual
collision graph, and computing a color assignment.

The dual graph is calculated by checking whether edge pairs are in
collision. Conditions C2 and C3 can be checked by looping through
each node of the original graph, and testing if a pair of edges starting
from the node nearly overlap, or run in almost opposite directions.
This check can be done after sorting the angles, hence on a node with
d neighbors, assuming that the edges are not entirely on top of each
other, the cost should be around dlog(d), so the cost of checking over
all nodes is |E|log |E| (the pathological case of all edges on top of each
other would give a complete dual graph thus a complexity of |E|?).

Condition C1 can be checked using the Bentley-Ottmann algo-
rithm [29] with a complexity of O((|E|+ k)log|E|), where k is the
number of edge crossings. If k is |E \2 or more, a naive algorithm
which checks all |E|?/2 edges should be used. We are not aware of
a good algorithm for checking C4, one possibility is to replace each
edge with a rectangle in the shape of a thicker edge, then apply the
Bentley-Ottmann algorithm, which should give us the same complex-
ity as checking Cl1.

The second step of CLARIFY, that of assigning colors, applies the
EmbedOneNode algorithm repeatedly over all nodes. EmbedOneN-
ode is a branch-and-bound algorithm over an octree data structure. Its
complexity is dependent on the number of local maxima, and how
close they are to the global maximum (in terms of the objective func-
tion value). If the local maxima have much smaller function values
compared with the global maximum, as in the case of Fig. 5] then
branches of the octree/quadtree corresponding to the local maxima
will terminate at an early stage, and the complexity of the algorithm is
around log(¢€), otherwise the complexity is around L = log(€) where L
is the average number of local maxima. Overall the worst case com-
plexity is O(|E|log(e)L) per iteration over all nodes. L is a value hard
to quantify, we believe it is related to the average degree of the dual
graph.

Taking both the collision graph formation and the optimization into

account, the CLARIFY algorithm has an average case complexity of
O((|E|+k)log|E|+t|E|log(g)L), with k the number of edge crossing,
L the average number of local maxima, and ¢ the number of iterations
of Algorithm 1. The worst case complexity is O(|E|> +t|E|log(g)L),
in the pathological situation where all edges are on top of each other.

In practice we found that the optimization step dominates the com-
putation time even when we use the naive algorithm for computing the
collision graph (see Table [I)). Therefore for the rest of the paper we
use the naive algorithm for the first step of forming the collision graph,
which makes computation of C4 much simpler.

4.3 Choice of parameters

For checking collision conditions, we need to define what is a “small
angle” and what is “close to 180 degree.” Based on empirical obser-
vations, by default we set these to be 15 degree and 165 degree. We
define two lines being “very close” if their distance (the smallest dis-
tance between two points on the lines) is less than 1% of the larger
of the length of the lines. We consider two lines as “almost paral-
lel” if they form an angle that is less than one degree. The parameter
€ controls the accuracy with which we find the global optimal em-
bedding for one node. Through numerical experiment we found that
the CPU time increases almost linearly with log(€), as predicted by
the complexity analysis. The color difference achieved is also in-line
with expectation: from € to £/10, it changes roughly proportionally to
d'/2g or less, where d = 3 is the dimension of the color space. This
fits our analysis in Section Perceptually, we found that € = 1072
gives very similar coloring to £ = 1073, hence we set € = 1072 by
default.

4.4 Examples

We now apply CLARIFY to graphs from real applications. Table [I]
gives results on six of the graphs we tested, including running time
and objective function (I) (color diff) achieved in LAB color space.
These come either from the University of Florida Sparse Matrix Col-
lection [8]], or from the test graphs distributed with Graphviz [17], and
originate from different application areas. We intentionally avoided
choosing mesh-like graphs — such graphs are easy to layout aestheti-
cally. Their layouts also tend to exhibit a low perceptual complexity,
making it relatively easy to follow edges and paths. Compared with a
non-mesh-like graph, a mesh-like graph is easier for our algorithm be-
cause there are typically fewer colliding edges. We ran the experiment
on a Macbook Pro laptop with a 2.3 GHz Intel Core i7 processor.

It can be seen from Table[I] that for graphs of up to a few thousand
nodes and edges, CLARIFY runs quickly. The majority of the CPU
time is spent on color assignment, while the construction of the dual



Fig. 7. Edge coloring on ngk_4 graph: (a) the original graph. Are nodes 45 and 15 (blue) connected? (b) the colored drawing. We can tell that 45
and 15 are indeed connected by a red edge.
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Fig. 8. (a) A graph with spline edges. Some of the splines are hard to differentiate. (b) In the zoomed-in view, is node 16 connected to node 60, or
to node 19 (both below node 16)? (c) Splines are colored using the CLARIFY algorithm. Now colliding edges are easier to differentiate. (d) In the
zoomed-in colored view, node 16 is seen to be connected to node 60 by a red spline, but not to 19. The latter is connected by a blue spline to node
15 above.

Fig. 9. Applying CLARIFY on a collaboration map with two ColorBrewer palettes: left: Accent.8, right: Dark2_8.
7



Table 1. Statistics on the original and dual test graphs, CPU time (in
second) and objective function (cdiff) for CLARIFY (one random start).
The time in bracket is for constructing the dual collision graph.

graph 4 |E] |Ec]| CPU cdiff
ngk 4 50 100 54 0.6 (0.) 122.69
NotreDame_yeast 1458 1948 1685 1.3 (0.2) 679 5
GD00_c 638 1020 1847 1.7 (0.1) 64.32 5
Erdos971 429 1312 4427 2.1(0.1) 593 %
Harvard500 500 2043 11972 2.3 (0.3) 350 F
extrl 5670 11405 34696 14.5(7.9) 47.1

graph takes relatively little time even with the naive dual graph con-
struction algorithm. The Harvard500 graph gives a large |E;| (number
of edges in the dual graph) in comparison to the number of edges, be-
cause it has a few almost complete subgraphs, which results in a lot of
crossings at small angles.

Fig. [7| shows the ngk 4 graph before and after the coloring. It is
difficult to tell, from Fig. a), whether nodes 45 and 15 (blue) are
connected. From Fig. [7(b) we can tell that they are indeed connected
by ared edge.

So far we have been applying CLARIFY to straight-line drawings
of graphs. The algorithm can also be used for drawings where edges
are splines. This could be the result of an edge bundling, or an edge
routing. Fig.[8|shows the result of applying our algorithm to a graph
from a user of our software, this is one of the examples that motivates
our work. As we can see, from the original drawing, it is difficult to
differentiate some of the splines. For example, is node 16 connected
to node 60, or to node 19 (both below node 16)? With colored splines,
we can see that node 16 is connected to node 60 by a red spline.

Finally, we applied CLARIFY to color virtual maps where countries
could be fragmented. Because of the fragmentation, we have to use as
many color as there are countries. Fig. 0] shows colored versions of
an author collaboration map (see [15]]) using two color palettes. Here
each node is an author who published in the International Symposium
of Graph Drawing between 1994 to 2004. Authors are connected by
edges if they co-authored a paper. This gives a collaboration graph.
Nodes are then clustered to form countries. Up to now, for coloring
edges of node-link graphs, we assume that it is equally important to
differentiate all colliding edge pairs, thus set the w;; in (E'p to 1. For
coloring virtual maps, it is more important to color adjacent countries
with more distinct colors, at the same time, we also want to differen-
tiate all countries. Thus we set w;; to be the inverse of the length of
the shortest path that connect countries i and j in the dual graph of
the map. From Fig. [0 we can see that CLARIFY works well in using
the specified palettes, keeping neighboring countries colored with very
distinct colors. Unlike the coloring algorithm in [[15]], we also maintain
good color distinction among non-neighboring countries. Additional
examples of graph and map coloring can be found in the supplemental
pdf file.

4.5 Comparison with Jianu et al. [26]

We evaluated our algorithm against that of [26] (hereafter called
JRFL), using the code kindly supplied by the authors. Fig.[6fe) gives
the result of applying JRFL on the Zachary graph. Following [26],
we use a black background, because the code sets lightness to 75. It
is seen that near nodes 34 and 28, it is difficult to differentiate edges.
E.g., it is not clear whether node 34 is connected to 27 or not, due to
the colors of edges 34-27 and 34-23 being very similar. For a like-
for-like comparison Fig. @D is the results of CLARIFY with fixed
lightness of 75. Despite of the restricted lightness, it does not suffer
from the ambiguity seen in Fig. [f(e). We also compared with JRFL
on other graphs, and found CLARIFY better both in terms of ability
to disambiguate drawings, and in speed. On most graphs, CLARIFY
is about 10 times faster. Quantitatively, we found that JRFL always
gives much worse (smaller) color differences among colliding edges
than CLARIFY, even if we restrict lightness to 75 in CLARIFY.
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Fig. 10. Experiment results shown as error bars (Mean + 1 Standard
Error) on three task types separately: (a) Task error in B/W and Color
groups; (b) Task completion time in B/W and Color groups; (c) Task
error increase of the Color approach in LAB color space and with user
selected color palette; (d) Task completion time increase in the same
groups with (c); (e) Task error in finding neighbors by the number of
actual neighbors; (f) Task error by user type, experienced v.s. zero-
knowledge on node-link graphs; (g) Task completion time by user type.



5 USER STUuDY

We conducted a controlled experiment to study the effect of edge
coloring on user’s performance in fundamental graph-related tasks,
such as visually following edges, finding neighbors and calculating the
shortest path. Generally we compared two approaches, defined as two
visualization types: the baseline graph drawing in black-white (B/W)
and the improved graph drawing with edges colored by our algorithm
(Color).

Experiment design. We recruited 12 participants (8 male, 4 fe-
male) for this paper-and-pencil experiment. 10 of the participants were
graduate students majoring computer science and the other 2 of them
were department assistants with no technology background. A half
of the participants ever had experiences on node-link graphs, one stu-
dent was even an expert on graph. The other half did not have previ-
ous knowledge with the node-link graph. The experiment followed a
within-subject design that every participant entered all tasks with both
visualization types. To eliminate the learning effect over the same
task, we used two different layouts of the same graph data. The design
ended up full factorial on the choice of two visualization types and two
graph layouts. Each participant entered the same task four times in to-
tal. The experiment order was randomized across participants. Half of
them completed the tasks first with the B/W approach and then with
the Color approach. Another half adopted the opposite order. Further,
in half of the time when participants were given the colored drawing,
the algorithm is fixed to use the LAB palette. In another half, the par-
ticipants selected their favorite palette and completed tasks with the
colored drawings generated by this palette.

Before participants took the experiment, a training session was held
to make sure they understood each task and got familiar with both
drawing approaches. The training session included one task from each
task type on a simple graph. The organizer checked the answer of each
training task and explained any ambiguity immediately. In the formal
study session, we recorded participant’s answer and completion time
in each task. We did not distinguish the task reading time from the
completion time, because all tasks were very short.

Data and task. Two layouts of the Zachary’s Karate Club Graph
were used. One was exactly the layout in Fig.[2} Another was rotated
and re-labeled. Three types of graph-related tasks were designed:

T1 (Connectivity): Determine whether two particular nodes are
connected by a direct edge;

T2 (Neighbor): Estimate the number of nodes a particular node
connects directly;

T3 (Path): Estimate the minimum number of hops from a particular
node to another, including the source and destination.

On each type, four tasks were selected on each graph layout with
similar difficulty levels. To eliminate user’s visual node querying time
from their task completion time, we annotated the related nodes in
each task on the corresponding graph layout before participants took
the task.

Result. Results were analyzed separately on each task type. Signif-
icant level was set at 0.05 throughout the analysis.

Task error: We computed the task error measure by the absolute de-
viation of the user’s answer from the ground truth. ['| On Connectivity
tasks, task error will be 1 if the answer is incorrect, O otherwise. After
that, we applied the two-way repeated measure analysis of variance
(ANOVA) test where the task error was the dependent variable, the vi-
sualization type and the choice of graph layout were two independent
variables. On Connectivity tasks, the task error difference between
B/W and Color group is statistically significant (p < .01). A close
look at the error bar in Fig. [[0[a) shows that the average task error
of the Color group (M = 0.083, SE = 0.04) is less than 30% of the
B/W group (M = 0.292, SE = 0.066). On Neighbor tasks, the aver-
age task error of the Color group (M = 1.208, SE = 0.204) has a 15%
reduction from the average task error in the B/W group (M = 1.417,
SE = 0.204), though statistically the difference is not significant. On

"'We also computed the task error rate (task error divided by the correct
answer). However, there is little difference from the absolute error measure.

Path tasks, the error performance of the two groups are almost the
same.

Task completion time: We applied a similar two-way repeated mea-
sure ANOVA test on task completion time. On all three types of tasks,
there is no significant difference between B/W and Color groups. The
detailed task completion time distribution is shown in Fig. [I0[b).

Effect of color palette: On each participant, we computed the in-
crease of task error and completion time of the Color approach over the
B/W approach on the same task and graph layout. We compared these
measures between two groups: one applying the fixed color palette
(LAB) to generate the drawing and another applying the user selected
color palette from six candidates. Results are shown in Fig.[I0[c) and
Fig.[I0[d). Though in all task types there is no significant difference
between the two groups, we observe that on Connectivity and Neigh-
bor tasks, using user selected palette leads to much smaller increases
in both task error and completion time, which corresponds to solid
performance improvement.

Analysis. The user study results demonstrate that the edge coloring
technique on graph drawings can improve user’s performance in iden-
tifying 1-hop graph connectivity significantly. This is also echoed by
the subjective feedbacks from our participants. Most of them found the
colored graph much clearer in showing the graph connectivity. While
in the B/W drawings, they found it hard to distinguish the edges that
are crossed by or closed to other edges at small angles. On the third
task to quantify the shortest path, the Color approach does not have a
comparative advantage to the B/W approach. This is reasonable be-
cause most cases in this task involve a rather long path. It is difficult
for people to figure out the exact path length only by eye, even if the
graph is colored. Lastly, the intermediate task to estimate the number
of 1-hop neighbors returns some surprising results. We have expected
the Color approach to be significantly better than the B/W approach.
However, only a 15% reduction in the task error is observed in aver-
age and the difference is not significant. To account for this result, we
drilled down to the detailed cases and plotted Fig. [[0fe) to show the
relationship between the Neighbor task error and the number of actual
neighbors. It is clear that the task error is large on nodes with a higher
number of neighbors, and smaller on other less-connected nodes. On
the nodes with a medium number of neighbors (10, 12), the Color ap-
proach is better than the B/W approach; while on the node with the
highest number of neighbors (17), there is no error reduction for the
Color approach. We also asked the participants making the most er-
rors about the challenges in completing Neighbor tasks. Quite a few
of them mentioned the same reason: most crossing angles between the
edges on the target node are too small, so that they can not determine
the exact number of edges on that node, no matter the graph is colored
or B/W.

Possible concerns on the user study design are the small number
of participants enrolled, and whether the diversified user background
can interfere with our main result. We argue that our experiment has
a fully within-subject design. Each participant is tested and measured
24 times, adding up to 288 entries in both participant’s answer and
completion time. This is sufficient to get an initial idea of the edge
coloring effect. We also looked at the impact of the user background.
In Fig. [TO[f), it is shown that participants with zero knowledge on
the node-link graph actually made fewer errors than other experienced
users. Further investigation on their task completion time narrates the
potential reason: the zero-knowledged participants spent much longer
time than the experienced users (Fig. [[0{g)) — they are simply more
careful in taking the tasks. By a two-way ANOVA test, we found that
there is little interaction between the user background and the visu-
alization type on the task error performance. The advantage of edge
coloring applies unbiasedly to both experienced and first-time users.
Comparing Fig.[T0(a) and [T0|f), it can be observed that the task error
improvement with the edge coloring is similar in magnitude to that
brought by more carefully taking the task and spending more time on
the questions.



6 DISCUSSIONS

The approach of coloring edges for disambiguating drawings has its
limitations. Our working assumption is that the drawing is to be dis-
play as a static image on paper, or on screen. In case when an inter-
active environment is available, interactive techniques such as “link
sliding” and “bring & go” [27] could be more effective. In such a situ-
ation, the algorithms proposed here can be used as an additional visual
aid to the interactive techniques.

While the algorithm proposed here can run on relatively large
graphs, our experience is that for graphs with a lot of edges, a static
image is insufficient to allow the user to clearly see and follow each
edge. Therefore our approach is best suited for small- to medium-
sized graphs. Typical usage scenarios are illustrations of diagrams,
such as computer or biological networks.

Finally, we note that sometimes edge colors are used to encode at-
tributes on the edges. To apply our approach without interfering with
the need to display such attributes, edges can be differentiated using
dashed lines of different style and/or thickness, using the same algo-
rithm in this paper. This can be achieved by mapping different line
styles to 1D or 2D spaces.

7 CONCLUSIONS

Edge crossings, particularly those at small crossing angles, are known
to be detrimental to the visual understanding of graph drawings. This
paper proposes an edge coloring algorithm for disambiguating edges
that are in collision because of small crossing angles or partial over-
laps. The algorithm, based on a branch-and-bound procedure applied
to a space decomposition of the color gamut, generates color assign-
ments that maximize color differences of the colliding edges, and
works for both continuous color space and discrete color palettes. The
algorithm can also be applied to generate coloring for disambiguating
virtual maps. Our user study found that that coloring edges in graph
drawings helped user’s performance in 1-hop graph connectivity task
significantly. Consequently we have made the CLARIFY code avail-
able as part of an open source software.

For future work, we plan to investigate better initial coloring strate-
gies, before applying the CLARIFY algorithm. These include coloring
high degree nodes first, or use a strategy similar to the register alloca-
tion algorithm [19].
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