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Using Dashboard Networks to Visualize Multiple
Patient Histories: A Design Study on

Post-operative Prostate Cancer

Jürgen Bernard, Member, IEEE, David Sessler, Jörn Kohlhammer, Member, IEEE, and Roy A. Ruddle

Abstract—In this design study, we present a visualization technique that segments patients’ histories instead of treating them as raw

event sequences, aggregates the segments using criteria such as the whole history or treatment combinations, and then visualizes the

aggregated segments as static dashboards that are arranged in a dashboard network to show longitudinal changes. The static

dashboards were developed in nine iterations, to show 15 important attributes from the patients’ histories. The final design was

evaluated with five non-experts, five visualization experts and four medical experts, who successfully used it to gain an overview of a

2,000 patient dataset, and to make observations about longitudinal changes and differences between two cohorts. The research

represents a step-change in the detail of large-scale data that may be successfully visualized using dashboards, and provides

guidance about how the approach may be generalized.

Index Terms—Information Visualization, Visual Analytics, Multivariate Data Visualization, Electronic Health Care Records, Medical

Data Analysis, Prostate Cancer Disease, Design Study, User Study, Evaluation, Static Dashboard, Dashboard Network.
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1 INTRODUCTION

V ISUALIZATION has the potential to become an integral part

of medical health care. For that, the visualization of patient

histories from electronic health record data is one of the central

subjects of interest, and can support medical research, clinical

treatment, and communication between medical experts (physi-

cians) and patients [1]. However, real-world patient histories often

provide a wealth of information about multiple attributes about

patients, e.g., outcome variables and treatment conditions [2]. It

follows that a large amount of data is sometimes needed to reason

about the well-being and treatment decisions of patients, making

the visualization of detailed patient histories a challenging task.

Two current approaches are as follows. The visualization of

single patient histories has been applied in various applications

[3], supporting tasks for different stakeholders [4]. Visualization

techniques can show multiple attributes of specific patients in

a single diagram. However, the emphasis on details means that

these visualizations do not scale well, which makes it tedious to

compare multiple patients. To address this, a second visualization

approach aims to let users see the event sequences of multiple

patients at a glance. The strategy of this approach is to abstract

complex histories into different event categories or discrete states

[5]. Thus, every patient history is represented as a sequence

of symbols, which can be visually aggregated to show multiple

patients. However, given the fact that every patient has a unique

history, this approach involves the loss of a lot of potentially

valuable information.

Showing both multiple patients and multiple patient attributes

at the same time remains a research challenge. If suitable visual-

• J. Bernard, D.Sessler, and J. Kohlhammer are with TU Darmstadt, Darm-

stadt, Germany.

E-mail: see http://www.gris.tu-darmstadt.de/home/index.en.htm

• R. Ruddle is with University of Leeds, Leeds, UK.

• J. Bernard was with, J. Kohlhammer is with Fraunhofer IGD, Darmstadt,

Germany.

Manuscript received Month xx, 20xx; revised Month xx, 20xx.

ization techniques could be developed then users would be able to

gain an overview of large sets of patient histories and discover

details about specific patient attributes. Interesting relations in

the data could be identified, e.g., that many patients sharing

specific properties in a pathology report will develop similarly in

their follow-up. In addition, such visualizations would allow the

comparison of different patient cohorts, which would help medical

experts to assess specific causes and outcomes.

The present paper describes the design and evaluation of a

technique for visualizing patient histories, using post-operative

prostate cancer as an example. Overall this paper makes three

primary contributions. First, we show that by segmenting pa-

tients’ histories, instead of treating them as raw event sequences,

segments can be aggregated using a variety of criteria (e.g.,

whole history vs. treatment combinations) and visualized as a

compact static dashboard that depicts a broad range of treatments

and outcome variables. Second, we demonstrate that the static

dashboards may be arranged as dashboard networks that allow

users to make a wide variety of observations about longitudinal

and cross-cohort changes in patients’ histories. Third, we show

that our visualization technique is effective for users who range

from medical experts and visualization experts to people who are

not expert in either field.

The following sections describe the background of the re-

search, the iterative design process, and then a user evaluation.

The evaluation was conducted with three groups of users: non-

experts, visualization experts, and medical experts.

2 RELATED WORK

We structure the related work by the class of visualization tech-

niques that was applied, which in many cases depends on the

analytical task to be supported. Overall, we follow the distinction

proposed by Rind et al. [3] where 14 visualization systems for

electronic health records were compared for clinical research or
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practice. First, we review approaches where single patient histories

were visualized with an emphasis on techniques including multi-

ple patient attributes. Second, we discuss systems that gave an

overview of multiple sequences, which typically were represented

as a set of event types or visual symbols. Extending the survey of

Rind et al., we summarize visualization techniques for multivariate

data with an emphasis on medical data visualization.

2.1 Visualization of Single Patient Histories

Some early techniques for displaying graphical summaries of

status of patients were presented by Powsner and Tufte [6], [7]

over 20 years ago. That research was complemented by LifeLines

[8], which was an interactive tool for visualizing patient histories

and used a variety of visual encodings to show longitudinal health

record data.

Other tools have been developed more recently. One used the

color semantics of a traffic light to indicate patient well-being over

time [9]. Bernard et al. [10] also used a traffic light color scheme

to combine the progression of the PSA hormone value with

multiple clinical and histological dimensions in a tool that allowed

users to interactively define cohorts. In a follow-up approach,

the authors optimized the visualization of patient histories for an

active learning approach for the assessment of patient well-being

[11]. Although, these tools allow the visualization of multivariate

information about single patients over time, the visualization of

multiple patient histories in a compact way, be it juxtaposed or

superimposed [12], remains the subject of current research.

2.2 Visualization of Event Sequences of Patients

To visualize the histories of multiple patients, the data is often sim-

plified by either abstracting events to a set of states or aggregating

identical events and sequences into higher-level sequences. All of

these approaches increase visual scalability, and example tools are

LifeLines2 [13], Outflow [14], CareFlow [15], DecisionFlow [16],

LifeFlow [17], and EventFlow [18], [19].

A core analysis task in LifeLines2 [13] is the visualization

and temporal comparison of multiple records that have been

abstracted to event sequences. We take up this idea and apply

it to multivariate states of multiple patents using a suite of charts

for different patient attributes. Similarly, the LifeFlow approach

[17] converts histories to a tree-based data structure that is used

for the visualization of simplified sequences. While we also

apply aggregation, our visualizations combine different graphics

techniques for the visual aggregation of patient states.

EventFlow [19] allows users to adopt filtering and substitution

strategies to simplify data. StratomeX enables the interactive

editing of patient groups and provides visual feedback for rela-

tions across different data sources [20]. Similarly, TimeSpan [21]

visualizes temporal event-sequence data and multi-dimensional

data for individual patients. It provides matrix representations and

reordering techniques for exploring patterns and new hypotheses

in data. COQUITO [22] uses networks with abstracted temporal

information to show patient cohorts as the result of interactive

temporal queries. CoCo [23] applies visual analytics and statistical

testing for the visual comparison of cohorts, based on an abstrac-

tion of patient histories to event sequences. EventAction [24] also

builds upon statistical testing, while emphasizing the combination

of summaries of attributes and event sequences. As such, CoCo

and EventAction are examples which can be combined with the

static dashboard networks presented in this work to facilitate the

visual comparison of differentiating attribute values.

To extend the functionality of approaches based on event

sequence visualization, we want to visualize multiple patient at-

tributes. The combination of being able to visualize both multiple

event sequences and multiple attributes of patients is central to the

requirements of medical experts and the motivating challenge for

the visualization design of the present research.

2.3 Visualization of Multivariate Attribute Sets

Our visualization design relies on design principles for the vi-

sualization of multivariate data. According to the medical ex-

perts (prostate cancer clinicians) with whom we collaborated,

15 attributes provide information that is important in prostate

cancer health care. Those attributes are of a variety of data types

(numerical, ordinal, categorical, and binary), which is why vi-

sualization techniques that were designed for numerical attributes

(e.g., parallel coordinates [25], RadViz [26], pixel displays [27], or

scatterplot matrices [28]) are not appropriate. Therefore, we base

our static dashboard on a class of techniques for the visualization

of multivariate data with different attribute types (mixed data),

using assemblies of small visual objects (charts) to represent

individual attributes. For related reviews, we refer readers to the

works of Fuchs [29], Borgo et al. [30], and Loorak et al. [31].

The design of intuitive and useful static dashboards for mul-

tiple attributes is a non-trivial endeavor, because designers have

to consider the characteristics of the data, the intended analytical

tasks, and the requirements and preferences of users (e.g., seman-

tics). In addition, designers must be aware of perceptual principles

of visual variables, gestalt psychology, and semiology [32], [33],

[34], [35]. If designed appropriately then such visualizations show

complex data and relationships in a compact and intuitive way,

and some examples from the bio-medical domain are as follows.

Similar to our approach, Maguire et al. present a visualization

describing progress over time [36] to visualize workflows of

biological experiments. Horn et al. present a so-called structured

metaphor graphic object for the identification of multiple parame-

ters in the context of intensive care units [37]. We build upon that

idea to assemble multiple attributes in a compact and structured

way. Other techniques visualize human body configurations, al-

lowing the analysis motion over time, e.g., to assess health recov-

ery. Along these lines, the FuryExplorer approach [38] uses a stick

figure metaphor for the assessment of health recovery. Similar

to our static dashboard, the visualizations can represent multiple

objects, conveying a notion of the variance. An alternative idea is

the use of natural objects to encode abstract data. With DICON,

Cao et al. [39] present visualizations representing distributions of

multivariate data, emphasizing cluster exploration as an important

analysis task.

In summary, some of the above approaches focus on the

visualization of single patients, while others visualize multiple

event sequences in a more abstracted way. These two general

choices either allow the visualization of dozens of attributes for

few patient histories, or the visualization of a few attributes for

hundreds or thousands of patient histories. However, the challenge

of visualizing multiple attributes for many patient histories re-

mains unsolved. For this, we consider that an assembly of carefully

designed visual objects is well-suited.
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3 APPLICATION BACKGROUND

The present research combines a design study methodology [40],

[41] with the application area of post-operative prostate cancer

to develop methods for visualizing multi-attribute patient histo-

ries. We have been collaborating with four medical experts at

the Department of Prostate Cancer at the Universitätsklinikum

Hamburg-Eppendorf (UKE), who take care of several thousand

patients per year and perform over 2,000 surgical procedures per

year. This collaboration involved bi-monthly meetings with two of

the medical experts, and two additional medical experts who gave

feedback during the design study. The following sections introduce

prostate cancer treatment, describe requirements for visualizations

of multi-attribute patient histories, and characterize the real-world

dataset that we used to design and evaluate the visualizations.

3.1 Treatment of Post-Operative Prostate Cancer

Prostate cancer is a disease that affects millions of men all over

the world. Clinics gather diverse information about patients in

the form of electronic health records, including demographic

data, blood and histological samples, clinical data and surveys

of follow-up care. One of the medical experts’ primary goals is

to improve the accuracy of early prognoses, e.g., by analyzing

diagnostic information. For this, much effort is spent on the

stratification of patients into cohorts to allow cohort histories to be

compared, so that medical experts can improve treatment quality

and avoid treatments that are harmful or unnecessary.

One of the diagnostic indicators (see Table 1) is the progres-

sion of the PSA hormone (a prostate-specific antigene enzyme).

Another important biological indicator is the occurrence of metas-

tases, which implies a bad prognosis for a patient and typically

occurs in late stages of the disease. Additional information about

the type of carcinoma can be gained from histopathology variables

that are assessed by the pathologist post-operatively and only once:

the Gleason score, information about affected lymph nodes (pN-

status) and the tumor class (pT-status). Four of the most common

treatments are surgery (OP), radiation therapy (RTX), hormone

therapy (HT), and chemotherapy (CHT). These treatments have

local (OP, RTX) or global (HT, CHT) implications on the human

body. Additional outcome variables are gathered to quantify treat-

ment success. The relapse of patients after surgery (biochemical

recurrence, BCR) is one such an indicator, which is often assessed

with the PSA progression, and another is information about death

(death of disease; DOD).

3.2 Requirements

UKE currently uses two visualization methods. The first is paper

print outs of single “patient plots” with multiple attributes, to iden-

tify and discuss differences between specific patients. The second

is a visual analytics tool that allows medical experts to stratify

patient cohorts and correlate cohorts with static attributes [10].

However, several other functionalities remain unsupported. These

can be structured into the following three groups of requirements:

1) Giving overviews: Providing an overview of a group of

patients for strategic planning with hospital managers or for

communicating potential treatment outcomes during patient

consultation.

2) Presenting longitudinal changes: Patterns of disease progres-

sion and treatment outcomes for use in clinical team meetings

or for showing temporal patterns in patient histories.

3) Comparing cohorts: Complementing statistical findings with

visualizations that summarize cross-cohort patterns of patient

histories in the medical experts’ scientific papers.

The complexity of diseases such as prostate cancer means

that, to be useful, visualizations need to be capable of presenting

multiple attributes of patient histories. For some use cases it is

sufficient to present a segment of a set of histories (e.g., for giving

an overview), others benefit from showing changes as a disease

progresses, and the remainder will typically involve both disease

progression and an understanding of differences between patient

cohorts (as in the third group above). The audience for the visu-

alizations ranges from people with little knowledge of a specific

disease over medical experts to clinical teams that are comprised

of different user groups (e.g., clinicians and nursing staff).

3.3 Data Characterization and Abstraction

This section describes the data and its abstraction. We provide

details about the data collection as well as the characteristics

of patient histories and patient attributes in Section 3.3.1. Next,

we present information about data processing, i.e., how we went

from patient histories to the data used in dashboard networks.

The two core steps in this process are the segmentation of patient

histories (Section 3.3.2) and the downstream aggregation of patient

segments (Section 3.3.3).

3.3.1 Patient Histories and Attributes

We had access to a pseudonymized portion of the data that

contained the histories of patients who had had surgery (OP).

In addition, all of the patients in this dataset had a relapse after

surgery (BCR) and received a second type of treatment. The

medical experts call such a collection of patients a ‘negative-

selection’, though a relapse is fortunately not common.

The data collection contained almost 2,000 histories, which

is one of the largest collections for prostate cancer patients in

Europe. The dataset is important to the medical experts for both

research and practice, because the dataset underpins data-driven

research and is increasingly used to provide scientific evidence for

medical hypotheses. During hypothesis generation and validation,

one fundamental analysis task is the identification and commu-

nication of specific properties of individual patient cohorts. Our

visualization design and user evaluation is targeted towards the

visual comparison of histories of different patient cohorts, and

thus match that task.

For medical experts, the choice of attributes, their abstrac-

tion, and visual representation has a significant influence on the

usefulness of a visualization for a given analytical task. Based

on our previous discussions with UKE experts, we selected 15

attributes describing the conditions from both the biological and

the treatment perspective. In this way, we preserved the details

of individual patients which can be highly specific since every

patient history is unique. Four of the outcome variables reflect

the histology report that was gathered after surgery (pT-status,

pN-status, as well as two histological Gleason scores). Patients

in the dataset had up to four different treatments, leading to four

treatment attributes (surgery, radiation therapy, hormone therapy,

and chemotherapy). Moreover we include four outcome variables

occurring in the course of the post-surgery observation (OK after

surgery, relapse, metastases, death of disease). The four remaining

attributes describe the progression of the PSA hormone (pre-

OP PSA, PSA at segment start, PSA at segment end, PSA
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Attribute Description Att. Type Value Domain Visual
Enc.

PSA Pre-OP The value of the PSA hormone is a most important biological indicator for

prostate cancer. Last measurement of the PSA hormone before OP (surgery).

Numerical [0;200.0[ ng
ml

median : 8.7

PSA at segment
start

Value of the PSA hormone at start of the visualized temporal segment. Numerical [0;4,472.0[ ng
ml

median : 0.21

PSA at segment
end

Value of the PSA hormone at the end of the visualized temporal segment. Used

to assess the progression of the PSA value within the segment interval.

Numerical [0;4,472.0[ ng
ml

median : 0.26

PSA trend in
segment

Trend of the PSA hormone value within the duration of a temporal segment.

Depicts the delta between the PSA values in a relative way.

Numerical ]−70.3;4381.68[ ng
ml

median : 0.0

pT-status Histopathological status of the tumor, obtained by pathology report (pT -

pathological tumor). Used for prognoses about the progress of the disease.

Ordinal pt2a, pt2b, pt2c, pt3a
pt2b, pt3c, pt4

pN-status Histopathological characteristics of the tumor, obtained by pathology report.

Used for prognoses about the progress of the disease.

Ordinal NX ,N0,N1

Gleason Score Histopathological characteristics of the tumor, obtained by pathology report.

Used for prognoses about the progress of the disease.

Ordinal 2+3, 3+2, 3+3, 3+4, 3+5,
4+3, 4+4, 4+5, 5+3, 5+4

OK after OP Outcome variable (biological condition) reflecting a good condition after OP.

Is active until relapse or metastases.

Boolean [ f alse, true]

BCR Outcome variable (biological condition) describing the biochemical recurrence

(relapse) of the tumor. Used for prognoses about the progress of the disease.

Boolean [ f alse, true]

Metastases Outcome variable (biological condition) describing whether a patient got

metastases. Metastases are the most severe biological indicator in the dataset.

Boolean [ f alse, true]

DOD Biological end point when a patient died of disease. Often used for cause-effect

analyses.

Boolean [ f alse, true]

OP Treatment attribute reflecting whether a patient had surgery. In the dataset all

patents received OP.

Boolean [ f alse, true]

RTX Treatment attribute reflecting whether a patient got radiation therapy. Local

treatment, only affecting the prostate area.

Boolean [ f alse, true]

HT Treatment attribute reflecting whether a patient had hormone therapy. Systemic

treatment, affecting the whole human body.

Boolean [ f alse, true]

CHT Treatment attribute reflecting whether a patient got chemotherapy. Often

applied in severe situations, e.g., when metastases are detected.

Boolean [ f alse, true]

TABLE 1
Overview of 15 most relevant attributes describing the condition of a patient. We provide individual visual encodings for each attribute. All

encodings comply with the requirement of showing information either of single patients or of groups of patients (clusters). When a group of
patients is visualized the dimensionality to be depicted increases from 16 (Gleason is 2D) to 19 (encoding of variation). For boolean attributes,

such as OP, the pie represents a ratio patients having a distinct attribute. Gleason Score is special as it has two independent integer dimensions.

trend). Table 1 provides an overview of the 15 attributes, their

characteristics, and their visual encodings.

3.3.2 Segmentation of Patient Histories

In this work, we refer to segmentation as the division of complex

temporal data into meaningful time-ordered parts [42]. Tempo-

ral segments of multivariate data allow data visualization and

analysis in finer granularity. The visualization of individual seg-

ments within patient histories is directly supported by the static

dashboard visualization technique. The segmentation routine that

was used in the present research is the result of a design study

that we conducted with medical experts [11]. At the experts’

recommendation, each segment of a patient history keeps most

information constant so that each new segment signifies a state

change in the history.

The segmentation routine worked by traversing a patient’s

history with a given step size and a maximum window length (one

week and six months, respectively, in our case), using a sliding

window approach. A new segment was created if at least one of

the following two criteria was met. First, the PSA value changed,

a new treatment occurred (OP, RTX, HT, or CHT), or a new

outcome occurred (OK, BCR, Metastases, or DOD; see Table 1).

As a result, every change in a patient history triggers the routine

to create a new segment. Please note that the three remaining

attributes pT-status, pN-status, and Gleason always change with

OP (histology report). With the first criterion the length of a

segment depends on the aggressiveness of the patient’s tumors,

but is typically a few months. However, in situations where a

patient has a severe condition, there may be rapid changes in the

history so each temporal segment covers a shorter period of time.

The second segmentation criterion is activated when the traversed

segment reaches the maximum length without attribute changes.

This criterion allows slower disease progression to be segmented,

by creating multiple states for a constant state. A state change in

the numerical value of the PSA hormone leads to different values at

the segment start and segment end, which indicates the PSA trend.

Overall, the routine created 10,485 segments for the 2,000 pa-

tients. Typically, a patient history yielded three to seven segments.

3.3.3 Aggregation of Segments

We use the term aggregation to refer to the process by which

segments were grouped for display in a given static dashboard. The
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medical experts proposed several possible aggregation criteria,

including the number of treatments, patient outcomes and the

value of the PSA hormone, and other criteria could also be applied

(see Section 6.4). In the present paper, two criteria are illustrated

and were used in the user evaluation (see Section 6). The first

was simply to aggregate all 10,485 segments together, to provide

an overview of all of the patient histories in one static dashboard

(Figure 1). The second was to divide patients into cohorts, and then

aggregate each cohort’s segments according to the combination of

treatments (OP, RTX, HT, or CHT) that had been provided. When

the resulting static dashboards were assembled into a dashboard

network, the number of treatments increases from left to right, and

different treatment combinations cause a network to branch (see

Figures 3 and 4 for the pt4 and pt2c cohorts, respectively).

Once segments have been created (see Section 3.3.2), the ag-

gregated data to be displayed in each static dashboard is calculated

using the following two steps. In the first step, the aggregation

routine creates a number of bins, with the specification of bins

depending on the aggregation criterion that was chosen. In the

second step, segments are assigned to appropriate bins.

The criterion for Figure 1 is that there is a single bin for all

segments, whereas in Figures 3 and 4 the aggregation routine

creates a bin for every treatment combination. In general, if the

criterion is based on a categorical attribute, we recommend that

categorical attributes are binned so that the most frequent cate-

gories are assigned to individual bins, and remaining categories

are grouped together [43]. For numerical attributes (e.g., PSA), the

bins are defined according to standard binning variants which can

be domain-preserving (the default in the present paper), frequency-

preserving, or be based on a goodness-of-fit measure [44], [45].

4 VISUALIZATION DESIGN

This section describes the design of the dashboard networks,

which we developed to visualize multiple attributes in patient

histories. The overall challenge was to create a design that allowed

users to gain an overview of a set of patient histories (e.g., Figure

1), assess changes that took place over time in a given cohort (e.g.,

Figure 3), and compare two cohorts (e.g., Figure 3 vs. Figure 4).

The following sections describe the design concept, the iterative

design process, and four key aspects of the design: the use of color,

visual aggregation of segments, chart types and structure.

4.1 Design Concept

The underlying concept was based on three levels of detail. At

the lowest level were the charts that presented each attribute in

the patient histories. At an intermediate level, those charts were

integrated into a dashboard that showed all of the attributes for

either the whole history of patients (see Figure 1) or a given

segment/cohort of patient histories (see Section 3.3). For this

intermediate level we use the term static dashboard because users

could not interact to change the charts, unlike the dashboards

that are commonly used in business intelligence applications. At

the highest level, the static dashboards were displayed as small

multiples in a dashboard network to show each segment in the

histories of a patient cohort (see Figures 3 and 4).

Each static dashboard was self-contained, meaning that it

summarized a particular state in the patient histories by showing

the attribute values. This meant that users could compare any two

temporal segments of the patients’ histories by looking at the

corresponding static dashboards. An alternative approach would
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Metastases
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Fig. 1. Patient segment visualization showing detailed information about
10,485 patient segments at a glance. In this example the visualization
provides an overview of all patient history segments of the dataset.
Depending on the available display space the visualization shows ex-
planatory labels for every encoded attribute. Analysts can assess the
distribution of values in detail including label information. In addition,
an enlarged visualization (referred to as a view [46]) helps to lookup
attribute information for smaller visualizations and thus can serve as a
legend in a multiple-views application.

have been for each static dashboard to show the changes in the

attributes since the previous static dashboard, but that would have

made it more difficult for users to compare segments that were

either not adjacent in a dashboard network or that are related to

different cohorts.

Making the dashboards static meant that users would be able

to make observations with the glance of an eye, instead having to

interact and rely on their memory of previous views of the data.

Static dashboards may also be printed out and are well-suited for

use in meetings (e.g., to review the quality of care and patient

outcomes in a treatment unit).

4.2 Iterative Design Process

The static dashboard design went through nine main iterations (see

Figure 2), during which we interviewed medical experts, tested

design alternatives, and held critical discussions with visualization

experts. The data attributes that were encoded in the final iteration

are described in Table 1, and a summary of the iterations is as

follows.
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Fig. 2. Evolution of the visualization design. Basically, nine core iterations mark the design process each posing an improved result. Interviews,
observations, discourse, and informal tests helped to gain valuable feedback in the course of the process. In summary, crucial factors for improving
the visualization were orderedness, attribute grouping, separation, symmetry, and a selective use of color.

v1 showed four treatment variables (OP, RTX, HT & CHT) and

an outcome variable (resistance to hormone therapy; HR) as pie

charts, the pT-status, the pN-status and the sum of Gleason scores

as colored bar charts, the number of patients who had undergone

from one to four treatments (NB: these are labeled as primary,

secondary, etc. in v4 and v5) as a grayscale bar chart, and the

PSA values and changes as box plots and using a speedometer

metaphor, respectively. In retrospect, this first design was rather

rudimentary.

v2 added a circular border to separate each static dashboard

within a dashboard network, and included the Gleason scores

as a heat map. Other charts were moved to improve the static

dashboard’s structure (for details, see Section 4.6).

v3 condensed all of the treatment variables into a single

pie chart, and the number of treatments into another pie chart.

However, that was not successful because it meant that the pie

chart showed the relative frequency of each treatment rather than

the proportion of a cohort who had had each treatment (or number

of treatments, in the case of the second pie chart). This iteration

also separated the pre- and post-surgery attributes by a vertical

line for the first time.

v4 involved three substantial changes. First, the border was

changed to an octagon because that allowed the dashboard net-

works to be more compact and, in our opinion, is more aesthetic

than a square border. Second, the pie charts were changed so

that the radius of the shaded part of each segment showed the

proportion of a cohort who had each had a given number of

treatments. Third, the design of the PSA charts was changed after
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user tests indicated that the speedometer was not intuitive. The

new design used box plots to show the distribution of the PSA

values pre-operatively, the PSA values at the start and end of the

segment, and the PSA trend during the segment (up or down). The

new design met with the approval of the medical experts.

v5 also involved three changes. Redundant coloring was re-

moved from the bar charts, the Gleason score heat map was

changed to use size encoding to further reduce the use of color, but

color was added to the octagonal border to show the distribution

of patient well-being scores [11]. The latter change was rejected

after informal user feedback indicated that the scores were difficult

to understand and the users reported “restlessness” in a border

element that should be a simple outline.

v6 replaced data about the number of treatments with outcome

variables (OK, BCR, HR, Meta and DOD), complementing the

treatment variables This enabled the experts to conduct cause-

and-effect analyses with the dashboard networks for the first time.

v7 was used to investigate the usage of bar charts to depict

outcome variables. However, users tried to identify relations be-

tween the three bar charts, instead of relating outcome variables

with treatment variables, so that design change was dropped.

v8 involved three substantial changes. The first was to revert

back to showing one attribute in each pie chart, providing simple

charts that should be understandable by most users. The second

was to position the treatment and outcome variable pie charts so

that they were in order of increasing severity. The third was to

add pie charts for two treatment-related attributes (pRTX: end of

radiation, HR: hormone refractory), but feedback from the medical

experts indicated that the additions were not welcome.

v9 added lines to divide the static dashboard into regions that

each contained the chart(s) for a set of attributes, which was

explicitly welcomed by some participants in the user evaluation.

The design was also given some final polishing, such as the

optimization of label sizes.

4.3 The Use of Color

Color is used to discriminate the four treatment variables, and

the four outcome variables. To some degree, this use of color

is redundant since the variables can be distinguished by their

different positions in a static dashboard. However, interviews with

visualization experts suggested that coloring should be included in

the approach for three reasons:

• The lookup of colored pies is pre-attentively perceivable

• Color eases visual comparison for small visualizations

• The colors have a semantic meaning

The colors were chosen with input from the medical experts

about color semantics of the domain. However, we did equalize

the brightness and saturation of the colors, following input from

an expert in perception and cognition. The four outcome variables

follow the idea of a traffic light metaphor (plus black for DOD),

according to the severity of the disease. A consequence of the

metaphor and the domain-specific colors was that both Meta and

CHT used a reddish color, but as both are severe conditions the

semantic overlap was considered acceptable. Overall, the colors

seemed to be correctly interpreted by participants in the user

evaluation. However, the colors are not colorblind safe, which is a

possible subject for future work. One option is to display the four

biological conditions in different brightnesses of a given hue, with

a second hue used for the four therapy states, and a second option

is to use a grayscale scheme because the labels (OP, RTX, etc.)

allow each chart to be identified.

In addition to using color for the treatment and outcome

variables, we used a gray to dark red colormap to emphasize the

severity of Gleason scores, which increases from the lower left to

the upper right of the 2D grid. This color encoding supports the

visual comparison of Gleason scores.

4.4 Visual Aggregation of Segments

One challenge in the design was showing multivariate information

for multiple segments in a single dashboard. The number of

segments visualized with a single static dashboard depends on the

aggregation strategy applied to assign segments to groups (see

Section 3.3.3). For the user evaluation in the present research

the number of segments in a group ranged from eight (the right

hand static dashboard in Figure 3 to 10,485 (see Figure 1). We

addressed the challenge by choosing types of charts that are

capable of showing either a portion of items (the pie charts) or

a distribution of values (the other charts). Details are provided in

the next section.

4.5 Chart Types

A key challenge that we faced was to design a static dashboard

that showed many attributes of patients’ histories, and a strength

of the final design (v9) was its use of four different chart types

(pie charts, bar charts, box plots and a heat map), which helped

the groups of attributes to stand out from each other. This section

reflects on those choices of chart.

Box plots were used for the PSA values because they provide

a compact way of presenting distributions of numerical values and

are widely used in the medical domain. The box plots were also

more intuitive than the novel speedometer metaphor that was used

in v1–v3.

The pT-status and pN-status are both ordinal data, and this re-

quired a chart that could show either the number or the proportion

of patients. We used a bar chart, which is the obvious choice. It

would have been possible to use a pie chart, but for the pT-status

that would have broken the guideline that there should be no more

than six segments [47], and the symmetry of the static dashboard

was increased by using the same chart type for both the pT-status

and the pN-status.

The Gleason score is also ordinal but has two dimensions.

These could be shown together with a grid-based encoding,

which was provided by a heat map. However, during the design

iterations we decided that it was better to encode the frequency of

each combination of Gleason scores using size rather than color,

because that allowed the most common combinations to stand out

while reducing the need for color.

The most challenging attributes were the treatment and out-

come variables. We used pie charts rather than bar charts because:

(a) we wanted those variables to stand out from the other groups

of variables (bar charts were the preferred option for the pT-

status and pN-status), and (b) we consider pies to be more

appropriate for showing small proportions that should stand out

due to their domain importance (e.g., Meta, DOD, and CHT).

After investigating three designs of pie chart (see v1, v3, and v4),

we chose a design that showed one attribute in each pie chart,

trading-off the simplicity of each chart with the number of charts

that were required.
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Fig. 3. The history of a cohort of patients who all had a pT-status of pt4. From left to right the static dashboards are ordered by the number of
treatments that the patients received (1-4). Two different signatures of treatments exist in the second segment (OP-RTX and OP-HT). Twenty-nine
patients have a third segment and eight have a fourth, showing that this cohort contains patients who have the most severe treatment (CHT) and
get metastases (Meta) and die (DOD). The colors are the same as shown in Figure 1.

4.6 Structure

The final design (v9) structured the data by applying principles for

ordering, grouping, separation, and symmetry. Ordering worked

in three ways. The first was for data that was guaranteed to be

gathered in a particular order, which was presented in temporal

order from left (earliest) to right (latest). An example is the three

PSA measurements that were gathered pre-operatively, and at the

start and end of each segment. The second was to position the

treatment variables in order of severity (OP, RTX, HT, and CHT),

as defined by medical experts (see v8 and v9). The third was to

apply a data-driven approach and calculate the order from the

sequence in which events typically happened, with an example

being the four outcome variables (see v8 and v9).

Grouping took advantage of the hierarchical nature of the

attributes, and was applied to some extent in all nine iterations to

the PSA measurements, and the treatment and outcome variables.

However, driven by user feedback, the grouping became more

explicit as the designs progressed by adding lines to separate the

groups – v1, v4 and v5 relied solely on space to separate the groups,

whereas v9 was the only design that used lines to separate each

group from its neighbors.

Symmetry concerned the way in which the attribute groups

were arranged within the visualization as a whole, and depended

on the fact that there were similarities between some of the

attribute groups. Symmetry was achieved by balancing the types

of chart that were used on opposite sides of either an horizontal or

vertical axis, and is most evident in v2-6 and v9.

5 USAGE SCENARIO

This section outlines three usage scenarios for the static dash-

boards, in line with the groups of required functionalities in

Section 3.2. The first scenario (Section 5.1) shows how a single

static dashboard may provide an overview of the entire set of

segments of the dataset that was described in Section 3.3. The

second scenario (Section 5.2) shows how users may identify

temporal characteristics of a specific patient cohort. For that, we

decided to group the dashboard network by the treatment signature

but, of course, other groupings are possible, e.g., with respect to

outcome variables. The third scenario (Section 5.3) depicts how

dashboard networks can be used for the visual comparison of the

histories of two patient cohorts.

5.1 Overview of the Entire Dataset

Overall, the segmentation algorithm described in Section 3.3

created 10,485 segments for the 2,000 patients in the dataset.

Despite the amount of aggregation that was needed to reduce all of

those segments to information that could be displayed in a single

static dashboard (see Figure 1), the visualization preserved the

detail that users needed to make a number of observations.

The information for static attributes on the left of the dash-

board shows that pt2c, pt3a, and pt3b are the most often occurring

pT-status values, and the most often observed Gleason scores

are 3+4 and 4+3. The pN-status N0 is observed in over 6,000

segments. At the upper right the visualization shows roughly one

quarter of the patient segments were in a state of OK, while

about three quarters of the segments indicate BCR. The portion

of patients suffering from metastases (Meta) remains fairly small,

which particularly applies to the number of patients that died

(DOD). According to the dataset, 100% of the patients had OP,

about two thirds of all cases had radiation treatment (RTX), about

one quarter received hormone treatment (HT), and only a small

portion of patients had chemotherapy (CHT).
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Fig. 4. The history of a cohort of patients who all had a pT-status of pt2c. From left to right the static dashboards are ordered by the number
of treatments that the patients received (1-3). Two different signatures of treatments exist in the second segment (OP-RTX and OP-HT). Over
nine hundred patients started with segment one and over two hundred have a third segment. However, this cohort contains only few cases with
metastases (Meta), virtually no deaths (DOD) and none of the patients received chemotherapy (CHT). The colors are the same as in Figure 1.

5.2 Identify Longitudinal Changes

Figure 3 shows an example dashboard network with five static

dashboards that are ordered by the number of treatments that

a patient had received (the treatment stage; left to right) and

the combination of treatments (the treatment signature; top to

bottom). The dashboard network in Figure 3 depicts the history

of the cohort of patients who all had a pT-status of pt4. Users can

make observations about longitudinal changes by comparing the

dashboards in the network.

In the first stage (left) the only treatment that patients had

received is OP. The ratio of patients with status OK is considerably

higher than in Figure 1.By contrast, the outcome variable BCR is

lower than the overall distribution shown in Figure 1. Moreover,

a strong increase in the PSA value can be observed. In the second

stage, two different treatment signatures exist (OP & RTX and OP

& HT): patients with RTX had lower PSA values, but the PSA

value increased after the treatment in many cases. For patients

receiving HT, the situation is somewhat opposite, with higher but

slightly decreasing PSA values. HT seems to have been prescribed

for patients with more severe biological situations, where in some

cases the first Meta are diagnosed. Other indicators for the more

hazardous biological state of HT are the pN-status, which contains

more N1, and the Gleason score 5+4. Finally, 100% of the patients

receiving RTX have a BCR, hinting at the usual treatment of a

biochemical recurrence with radiation therapy. If patients reached

the third and fourth stage, the biological condition had become

more severe. Many patients had diagnoses of Meta and some died

DOD. The PSA values were high and literally shot through the

roof in stage four. Chemotherapy was given only in stage four, as

a last resort.

5.3 Comparison of two Cohorts of Patients

The dashboard network described in Section 5.2 also allows the

comparison between cohorts that are displayed in separate sets of

visualizations. The following usage scenario uses Figures 3 and 4

to depict two cohorts with a different pT-status (pt4 and pt2c).

One of the most obvious differences between the cohorts is

the missing fourth stage in Figure 4, indicating that pT-status pt2c

does not lead to CHT. In stage one both treatment signatures share

OP as the first form of treatment, which is pre-defined in the

dataset. A closer look at the PSA trend reveals that the PSA value

of the pt4 cohort increases considerably stronger in the first stage.

In stage two, the treatments received by the pt2c cohort have less

implications on the PSA value progression. One hypothesis may

be that low PSA values are less responsive to treatments. These

observations indicate that pT-status pt2c has a better prognosis

than pt4, which is a hypothesis that can be validated as follows. In

stage three only a few pt2c patients had Meta and few patients

died. Similarly, the ratio of the extraprostatic extension of the

prostate cancer (N1) is substantially higher for pt4, while N0

dominates for pt2c. The PSA value remains at a low level in stage

three for most patients in pt2c, particularly when compared with

pt4. The visual comparison of Gleason scores reveals a dominance

of less severe scores for pt2c (e.g., 3+4) when compared with

the pt4 cohort (4+3, 4+5). The overall visual comparison of the

two cohorts indicates that pt2c is a considerably more pleasant

diagnosis than pt4.

6 USER EVALUATION

We present the results of a user evaluation to assess the usefulness

of the dashboard networks, using three different user groups: non-

experts, visualization experts, and medical experts. These groups

span the intended audience for our dashboard networks. Medi-

cal experts could benefit from visualization to help understand
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Fig. 5. The number of observations made in T1 by the three user
groups. The standard error (SE) is depicted with error bars. Non-experts
identified about 13 of all observations, medical experts about 18.

variations in patient histories over time and between cohorts.

The general public are becoming ever more involved in decision-

making about their own treatment, which should be made easier

by appropriately designed visualizations, and the same is true

for public-patient involvement in health research. Visualization

experts lie in-between the other two groups, with the medical

knowledge of the general public but with specialist knowledge

about the pitfalls and advantages of different styles of visualization

and encoding.

6.1 Method

6.1.1 Participants

We recruited 14 participants (2 female, 12 male). All participants

had normal vision and did not report color blindness. Their age

ranged from 22 to 51 (Median = 32, SD = 8.01). Each participant

had at least a diploma/master’s degree, five had a PhD degree or

higher. Five participants were classified as non-experts because

their background was neither in visualization nor prostate cancer.

Five participants worked in information visualization research

or application, but not in prostate cancer, and are referred to

as visualization experts. The remaining four participants were

prostate cancer clinicians and are referred to as medical experts.

6.1.2 Procedure

The evaluation took place in a quiet room that contained a

participant and always the same interviewer. The evaluation was

divided into three parts: introduction (approximately 10 min),

familiarization (10 min), and tasks (20 min).

The introduction started with an explanation of a background

to prostate cancer (if necessary) and the 15 attributes encoded in

the visualization. Then the current state of the art was outlined

as described in the introduction section of this paper, and our

approach (the visualization of multiple attributes of multiple

patient histories) was explained. We showed example images of

the dashboard networks to introduce the design and the prostate

cancer data in combination with visualization.

The familiarization phase included two questions to ensure

that participants understood the data and the static dashboards and

networks. First, we used Figure 1 to provide an overview of all

segments of the data and to give an impression of the overall

distribution of the patient histories (see Section 5.1 for details).

The second question was whether or not participants were able to

identify the treatment sequences depicted in Figure 3.

In the main part of the evaluation, the participants were asked

to conduct two tasks using screenshots (see Figures 1, 3, and 4).

We explained that Figure 1 could be used as a legend for the static

dashboard and a summary of the data segments provided with

the dataset. When performing the tasks, communication with the
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Fig. 6. The number of observations made in T2 by the three user groups.
Error bars show the SE. The analytical task is substantially different from
T1, but the pattern between the groups is similar.

participant was kept at a minimum, so only general questions of

understanding were answered. The tasks were:

• T1 Identification of characteristics of a patient cohort

• T2 Visual comparison of two patient cohorts

In T1 the participant was asked to identify the characteristics

and longitudinal changes of a single patient cohort that had a

pT-status pt4 (see Section 5.2 for details). The participant was

provided with a static dashboard showing an overview of all of

the patients (see Figure 1) and a dashboard network showing the

pt4 cohort (see Figure 3). The treatment signature of the cohort

was shown in four stages from a single treatment (always OP)

on the left up to stage four (four treatments) on the right. At

the second stage two different treatment signatures exist and are

shown above the other. Some patients received OP and RTX, while

other patients received OP and HT.

In T2 the participant was asked to identify differences between

the characteristics of the two patient cohorts (see Section 5.3).

The two cohorts had a pT-status pt4 and pt2c, respectively, and

the participant was provided with Figure 1 (overview), Figure 3

(pt4 cohort) and Figure 4 (pt2 cohort). Again, the history of each

cohort was presented so that the number of treatments increased

from left to right.

6.2 Results

In each task, the participants were asked to describe the character-

istics of given patient cohorts, which we refer to as observations

[48]. If participants made similar observations then they were

merged.

The first question in the familiarization phase concerned the

overview of all of the patients that is depicted in Figure 1. A table

in the supplemental materials provides lists the 12 observations

that were made by the participants. The second question was

whether or not participants were able to identify the treatment

sequences depicted in Figure 3. All 14 participants were able to

describe that every patient in the cohort started with OP in the

first stage, followed by a second treatment in stage two (OP-

RTX or OP-HT). In the third stage the participants had hardly

any problems in identifying that OP, RTX, and HT were taken,

combining the treatment orders OP-RTX-HT, as well as OP-

HT-RTX. Finally, all participants noticed that CHT was always

conducted last.

The remainder of this section reports the results for T1 and

T2, and is divided into three sections. Information about all of

the observations that participants made in those tasks is provided

in tables in the supplemental materials. First we compare the

observations that were made by the three groups of participants.

Then we analyze the complexity of the observations, and followed

this by analyzing the data attributes that were used. Together, these



USING DASHBOARD NETWORKS TO VISUALIZE MULTIPLE PATIENT HISTORIES: A DESIGN STUDY ON POST-OPERATIVE PROSTATE CANCER 11

Fig. 7. Fine-grained analysis of observation complexities for T1 and
T2. Colored cells in the grid depict the number of observations the
participants had, corresponding with the attribute count, attribute type,
and the number of static dashboards (segments) that were used.

results show how each component (chart) of the static dashboards

were used, and the extent to which participants were able to

integrate many different components from the dashboard networks

to make the observations.

6.2.1 Between-groups Comparisons

In T1 the number of participants who made each observation

was significantly correlated for all three pairs of user groups:

non-experts vs. visualization experts (r(31) = 0.63, p < .01),

non-experts vs. medical experts (r(31) = 0.52, p < .01) and

visualization experts vs. medical experts (r(31) = 0.64, p < .01).

However, medical experts made more observations (see Figure 5)

and showed greater consistency. Thirteen observations were made

by all of the medical experts, but only three observations were

made by all of the visualization experts and two observations

by all of the non-experts. One striking difference was that the

medical experts focused more on treatments, with five of the

treatments observations being made by all of the medical experts.

No treatment observation was made by all members of either

the non-experts or visualization experts group. This may be an

indication that the mental models of medical experts are targeted

towards the treatment of patients, while the other two groups

focused on more general observations.

There was a similar pattern of results for T2. The number

of participants who made each observation was significantly

correlated for all three pairs of user groups: non-experts vs.

visualization experts (r(24) = 0.73, p < 0.01), non-experts vs.

medical experts (r(24) = 0.46, p < 0.05) and visualization experts

vs. medical experts (r(24) = 0.58, p < 0.01). Medical experts made

more observations (see Figure 6) and showed greater consistency,

with 15 observations made by all of the medical experts, but only

seven observations were made by all of the visualization experts

and five observations by all of the non-experts. Three of the

treatment observations were made by all of the medical experts,

but no treatment observation was made by all members of either

the non-experts or visualization experts group.

6.2.2 Complexity of the Observations

Two ways of quantifying the complexity of each observation are

the number of attributes and the number of static dashboards that

were involved. There was little difference between the three user

groups for either complexity measure, so this section combines

the observations for all of the participants.

The number of attributes that were involved in each obser-

vation ranged from 1–4, the number of static dashboards ranged

from 1–9 and, as expected, the former tended to decrease as the

latter increased (see Figure 7). The overall complexity of each

observation was calculated by multiplying the number of attributes

and the number of static dashboards. This overall complexity was

in the range 2–27, with the observations generally more complex

in T2 than T1 because the former involved two cohorts rather than

one (9 vs. 5 static dashboards).

The complexity data demonstrates the flexibility of our dash-

board networks. Each static dashboard contained 12 charts, mean-

ing that, at the glance of an eye, participants chose flexibly from a

total of 60 (T1) or 108 different charts (T2) to make a wide variety

of observations about longitudinal changes within and differences

between patient cohorts.

6.2.3 Attributes

The multitude of attributes included in the static dashboards raises

questions about whether all visual encodings of the attributes were

useful and participants preferred some attributes over others. To

investigate this, we mapped each observation to its attributes.

The mapping for T1 is presented in Figure 8. Fourteen at-

tributes are involved, and the most popular attributes are PSA

Trend (PSA T.), RTX, HT, and CHT. The focus of medical experts

on treatments is clearly shown. By contrast, outcome variables

(PSA Trend, PSA Value, Meta, and DOD) were identified by all

three groups almost equally. This may be due to the fact that non-

experts and visualization experts focused on the well-being status

of patients rather than patient treatment.

The mapping for T2 (comparing two patient cohorts) is pre-

sented in Figure 9 and shows a different distribution of observa-

tions. Overall eleven attributes were taken into consideration. The

most common attributes are pN-status (pN-St.), PSA Value (PSA

V.), and PSA Trend (PSA T.). At least two reasons may have an

influence on the resulting distribution. First, the comparison task

emphasizes attributes showing differences between the pt4 and the

pt2c cohort, and Figures 3 and 4 clearly reveal major differences

between the Gleason score, PSA values and trends, and the pN-

status. The second reason may be that the usage scenario of T2 is

based on treatments that were received. The treatment signatures

of the two cohorts were similar, although the pt2c cohort had to

undergo fewer treatments and no CHT at all.

6.3 Data Quality Observations

Using the dashboard networks, participants identified two data

quality problems with the PSA attributes. These problems show

how our dashboard networks may be used to verify the quality

and integrity of data.

First, some of the medical experts queried the pre-OP PSA

because the value was rather unexpected (the last PSA value before

OP has an influence on patients’ development in the follow-up

phase). On investigation, we found that the data model contained

an error, meaning that pre-OP PSA was incorrectly shown to be

constant across the dashboard network.
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Fig. 8. The mean number of times participants made an observation that was about each attribute in T1 (characteristics of the patient cohort).
Error bars show the SE. Abbreviation: PSA PRE is pre-OP PSA. Medical experts emphasized treatment attributes while outcome variables were
identified equally. Overall, RTX and HT were most interesting to solve T1.

The second problem concerned some unexpected zero values

of the PSA values for the pt2c cohort (see Figure 4), which in

two of the static dashboards caused the whiskers of the boxplot to

spread down to 0.0. Two visualization experts identified this issue,

leading to discussions about the way the value domain should be

represented.

6.4 Discussion

The overall success of the design is demonstrated by the fact that

all three groups of participants (non-expert, visualization experts

and medical experts) made a sizable number of observations in

each task, with medical experts making the most. At the glance

of an eye, participants were able to pick and mix information

from 2 – 27 charts out of a much larger number of charts in the

dashboard networks (60 and 108 charts in T1 and T2, respectively)

to make each observation. Every single attribute was used in

some observations and, of course, the frequency with which each

attribute was used was affected by the application domain.

The evaluation had a number of limitations. The most impor-

tant one was that the data was more orderly and constrained than in

electronic health records (EHRs) as a whole, because there were

only a small number of treatments and outcomes (four of each,

compared with tens of thousands of codes in disease classifications

such as ICD-10) and the data was curated so its quality was higher

than is often found in EHRs. Other limitations were the use of

a fairly small number of participants, and the fact that all of the

participants were familiarized with the dashboard networks at the

beginning of the evaluation. In a real-world setting, typically it

would not be possible to spend time familiarizing non-experts

(e.g., patients) prior to a doctor/patient consultation.

Although the design was specific to a particular medical do-

main, there are aspects that provide guidance for the application of

the design to other domains. Some of that guidance results in three

design principles that help to provide structure for static dash-

boards: (1) divide charts into groups according to their attributes,

(2) position the charts so that they are ordered according to time,

and (3) explicitly separate each group of charts. A fourth principle

is to arrange charts symmetrically, where possible, because the

improved aesthetics [49] is likely to make it easier for users to

compare static dashboards longitudinally or between-cohorts.

Encoding multiple attributes causes conflicts in the choice

of visual channels, so we considered several design alternatives

for each attribute encoding. One example can be seen in design

v7 (Figure 2) where the outcome variables are encoded with a

barchart instead of a pie chart. As a result, the symmetry between

outcome variables (top) and treatments (bottom) was lost and users

started to seek connections between the outcome variables (right)

and the pT-status (left), which was not intended. Another example

is the limited use of color, which allowed more flexibility for

dealing with semantic overlap between the meaning of different

attributes (e.g., Meta and CHT both indicate severe patient condi-

tions and hence the use of a reddish color). In this regard, we refer

to a quote from David Travis ”When correctly used, the benefits

of color are unrivaled ... However, when incorrectly used, color

has the potential to make a system unusable“ [50].

The design also had some limitations, which we briefly sum-

marize here. In the usage scenarios used for the evaluation, we

aggregated the data for patients who received the same treatment

at a given stage (e.g., stage 3 in Figure 3), but some participants

said that it may be useful to separate patients who had received

different sequences of treatments (e.g., OP-RTX-HT vs. OP-HT-

RTX). The design could be improved for attributes that remain

constant, so users do not have to compare static dashboards

to deduce that an attribute has not changed. The segmentation

process was designed to differentiate between changes in the

attributes, but some types of treatment (e.g., hormone therapy)

take place over an extended period of time. A color legend should

have been provided for users who were not familiar with the

chosen domain-specific norms. Informal feedback indicated that

the presentation of the PSA attributes could be improved but the

best solution remains an open question. It could be argued that

the PSA trend is redundant, because that is implicit from the PSA

start and PSA end boxplots. However, many participants expressed

observations in terms of the trend, rather than absolute PSA values,

and one participant suggested that the trend should be discretized

to three directions (constant, up, and down) which would allow

the current trend arrow to be made more salient.

Finally, the scalability of the design to more diverse patient

cohorts remains an open question. As more treatment pathways

are introduced (e.g., imagine four treatments that could occur in

any order, rather than the two orders of the present research) the

complexity of the dashboard networks will increase. This will

increase the cognitive effort of making comparisons and at some

point, as with all visualizations, the design will break down.

7 CONCLUSION

This paper describes a design study that developed a novel method

for visualizing patients’ medical histories so that longitudinal

and cross-cohort patterns could be understood. Our solution pre-

sented those histories using a three-tier visualization structure

that comprises: (1) charts that presented each attribute in the

patient histories, (2) static dashboards that contained the charts

for given temporal segments of the histories, and (3) a dashboard

network that showed all of the segments for a given patient cohort.
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Fig. 9. The mean number of times participants made an observation that was about each attribute in T2 (comparison of two patient cohorts).
Participants in all three groups emphasized biological attributes and early indicators for the disease to answer T2. Error bars show the SE.

Central to the dashboard network is our data segmentation method,

which preserves the order in which events occur, rather than the

events’ actual time. This allows the static dashboards to reveal the

proportion of a population (e.g., patients) with each attribute, and

the dashboard network to show longitudinal and between-cohort

patterns.

The dashboard network design evolved during nine iterations,

during which we interviewed medical experts, tested design alter-

natives, and held critical discussions with visualization experts.

The success of the design is shown by the large number of

observations that were made by users who ranged from non-

experts to medical experts, and the diversity of those observations

in terms of both the number of attributes and the number of history

segments that were involved.

There are a number of future avenues for our research. One

is to investigate the ability of dashboard networks to handle

missing or noisy data. A second one is to understand the extent to

which the networks scale in terms of the number of attributes,

static dashboards and dashboard networks that are possible to

be displayed while still allowing users to easily make diverse

observations. Finally, the effectiveness of dashboard networks

should be investigated in other application domains.
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