
1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 1

Compressed Animated Light Fields with
Real-time View-dependent Reconstruction

Babis Koniaris, Maggie Kosek, David Sinclair, and Kenny Mitchell,

Abstract—We propose an end-to-end solution for presenting movie quality animated graphics to the user while still allowing the sense
of presence afforded by free viewpoint head motion. By transforming offline rendered movie content into a novel immersive
representation, we display the content in real-time according to the tracked head pose. For each frame, we generate a set of cubemap
images per frame (colors and depths) using a sparse set of of cameras placed in the vicinity of the potential viewer locations. The
cameras are placed with an optimization process so that the rendered data maximise coverage with minimum redundancy, depending
on the lighting environment complexity. We compress the colors and depths separately, introducing an integrated spatial and temporal
scheme tailored to high performance on GPUs for Virtual Reality applications. A view-dependent decompression algorithm decodes
only the parts of the compressed video streams that are visible to users. We detail a real-time rendering algorithm using multi-view ray
casting, with a variant that can handle strong view dependent effects such as mirror surfaces and glass. Compression rates of 150:1
and greater are demonstrated with quantitative analysis of image reconstruction quality and performance.

Index Terms—image-based rendering, video compression, light field rendering, multi-view.

F

1 INTRODUCTION

R ECENTLY, we have seen a resurgence of Virtual Reality
(VR), mainly due to recent consumer releases of Head-

Mounted Displays (HMD), such as the Oculus Rift, HTC
Vive and PlaystationVR. Of course, the real-time rendering
performance requirements for VR content are much higher
than for traditional non-VR rendering, typically necessitat-
ing lower-complexity visual fidelity [29].

Besides interactive experiences using video game en-
gines and assets, immersive 360◦videos (monoscopic or
stereoscopic) have also emerged as a popular form of con-
tent. The main challenge with such videos is that they
are captured assuming a fixed location, therefore lacking
motion parallax and resulting in immersion breaking and
feeling of the content being “flat”, or even discomfort when
viewers eyes diverge from these prescribed locations.

We aim to bridge the gap between cinematic quality
graphics and the immersion factor provided by viewing a
3D scene accurately from any point of view. We propose a
novel end-to-end solution for content creation and delivery.
Our solution involves offline production-quality rendering
from multiple 360◦cubemap cameras, encoding it in a novel,
modular video format, and decoding and rendering the
content in real-time from an arbitrary viewpoint within a
predefined view volume, allowing motion parallax, head

• B. Koniaris is with Disney Research and Edinburgh University, Edin-
burgh, UK
E-mail: {ckoniari}@ed.ac.uk

• D. Sinclair is with Disney Research.
E-mail: {david.sinclair}@disneyresearch.com

• M. Kosek and K. Mitchell are with Disney Research and Napier Univer-
sity, Edinburgh, UK
E-mail: {maggie.kosek,kenny.mitchell}@disneyresearch.com

Manuscript received October 00, 2017; revised October 00, 2017.

tilting and rotations. Our focus is on dynamic scenes, and
we design our processing and rendering pipeline with such
scenes as the target.

The applications of our solution are numerous. It enables
consumption of immersive pre-rendered video allowing six
degrees of freedom, using an HMD. It can also be used for
rendering film-quality visuals for non-interactive areas of
a video game. In virtual production, directors can previsu-
alize shots using a tablet as the virtual camera, streaming
lightfield video decoded from a server.

Another benefit and motivator for our suggested solu-
tion is the cost reduction in asset production. When making
tie-in interactive experiences using assets from films, assets
typically have to be retargetted to a lower quality form, fit
for real-time rendering, and the conversion process is very
expensive and time-consuming. Similarly, in architectural
visualization, assets have to be converted to a lower quality
form for use with a game engine, in order to allow an addi-
tional form of viewing the data, for example using an HMD.
Both scenarios require time and expertise in authoring assets
fit for real-time use. Our system completely bypasses the
artist-driven conversion stages of the pipeline, automating
the process of turning production assets into a form usable
in real-time.

Our solution also incorporates three features that allow
even more flexibility in terms of use-cases: (a) reconstruction
is decoupled from decoding the compressed lightfield, (b)
any type and number of virtual cameras can be used for re-
construction and (c) cameras are independent of each other
(uncorrelated datasets). For instance, many users could ex-
plore a scene at the same time (one decoder, several eye
pairs for reconstruction), allowing a Collaborative Virtual
Environment with film-quality visuals. The same scene can
also be viewed with an HMD, on a standard screen, or even
projected in a dome. The uncorrelation of the per-camera
data is useful as datasets can be enriched or replaced at a

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 2

Fig. 1: Real-time ray casting reconstructions of offline-rendered animated data from a sparse set of viewpoints. Our method
enables online Virtual Reality exploration of sets of pre-rendered cubemap movies with optimized placement, allowing
users to experience 6 degrees of freedom with full motion parallax and view dependent lighting effects.

later time, allowing, for example, users to explore a scene
from locations not possible before.

1.1 Contributions
Our contributions form an end-to-end pipeline, from offline
production rendering of an animated scene from sparse
optimized viewpoints to real-time rendering of scenes with
freedom of movement:

• Two variants of a real-time image-based rendering
method that allows for free-viewpoint rendering of a
cinematic quality, pre-rendered animated scene, us-
ing data from a sparse set of viewpoints. One variant
is capable of reconstructing strong view-dependent
effects such as refractions and mirror-like reflections,
while the other is oriented towards performance.

• A method to optimize positioning of cameras for
offline rendering in order to capture the scene with
the least number of cameras for a given lighting
environment complexity.

• Two GPU-friendly temporal compression methods
(for color and depth data) that reduce video stream
memory requirements (including lower GPU upload
bandwidth use) and integrate with raw or block-
compressed data of any spatial pixel format.

• A view-dependent decompression method that ex-
ploits precomputed visibility to optimize GPU fill
and bandwidth rates.

This paper is an extended version of the publication
[17]. We address a key limitation of our published method,
the lack of accurate strong view-dependent effects in the
reconstruction, such as reflections and refractions. We devel-
oped a variant of the real-time rendering algorithm that is
capable of reconstructing such effects by sampling material
information from cubemaps that have been generated and
processed in the same way as the color and depth maps
(section 6.1). We demonstrate this functionality in a new
dataset, ReflectionRefractionBox. Additionally, we provide
further detail and results for our datasets with regards to
compression and decompression, comparing memory and
decoding costs that result by exploring the parameter space
of the algorithms (section 7). We also introduce an optimisa-
tion to view-dependent decoding (section 6.2).

2 RELATED WORK

Our work uses a sparse set of dynamic light field data to
synthesize views of an offline-rendered scene at real-time
VR rates (90fps+).

Light fields and Global Illumination. Light field render-
ing traditionally samples a 2D slice out of a 4D light field
description of the scene [10], [19]. As light samples contain
no depth information, depth estimation is a typical part of
the rendering process [8], [15]. An alternative is to render
directly from the light field [13]. However, without depth
information, the ability to compose experiences integrated
with regular interactive 3D graphics is lost. While recon-
struction can yield impressive results for complex scenes
[16], the rendering cost is typically very high and prohibitive
for real-time rendering. Nevertheless, methods have been
exhibited with real-time performance in VR [17]. Another
approach is to use a relatively sparse light field probe set
arranged in a uniform grid, and ray march using data
from multiple probes [9]. The method works well for static
scenes (although probes can be updated at an additional
cost), and uses the grid information to select the subset of
probes to query in rendering. Similar probes have also been
used in the context of global illumination reconstruction.
Light field probes [20] encode incident radiance, depth and
normals, while a world-space ray tracing algorithm uses the
probes to reconstruct global illumination in real-time. The
probes are placed in a simple uniform grid and are used
for static scenes, although the probes can be recomputed at
an extra cost. Another approach uses probes to efficiently
bake irradiance volumes by reprojecting color and depth
data from nearby probes to construct cubemaps for each
voxel [11].

Multi-view video and view synthesis. Free viewpoint
television and 3D television necessitated efficient methods
to compress data from cameras with angle and position vari-
ations [22], [23], and synthesize novel views using that data
[26]. When depth is part of the per-camera data stream, it is
important that the compressor handles it differently to color,
as encoding artifacts can easily manifest as geometry dis-
tortions [21]. An alternative to transmitting and rendering
image data is to reconstruct a textured mesh, which has been
generated by capturing and processing video from an array

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 3

of cameras [7]. While the results are good for the provided
bitrate, a large number of cameras are required to capture
the surface well (more than 100). Additionally, the texture
maps are pre-lit, so view-dependent lighting phenomena are
not recovered. Our approach employs custom compression
methods for multi-view depth and color data that focus on
decompression speed and minimal CPU-to-GPU memory
transfers. While a mesh-based reconstruction works well for
several cases (architecture, humans), it is really challenging
to reconstruct high-frequency animated geometry, such as
swaying trees and grass. Mesh-oblivious methods such as
ours do not suffer from such a limitation on reconstructible
content.

Image-based rendering. Due to the tight performance
requirements of VR and mobile rendering, a common ap-
proach is to reuse data from previously rendered frames
to synthesize new frames in nearby locations. One such
approach is iterative image warping, that uses fixed-point
iteration to generate new frames [6]. Outatime generates
new frames by employing speculative execution, in order
to mitigate wide-area latency [18]. Another approach is to
use a novel wide-angle projection and dual-view pairs to
synthesize a new image: a primary view and a secondary
view at quarter resolution to approximately resolve disoc-
clusions [25]. Szirmay-Kalos et al. [27] use color and depth
cubemaps to approximate ray-traced effects. Our work, in a
VR scenario, synthesizes the views for each eye individually
and targets a low reconstruction rendering cost.

3 OVERVIEW

Our system is comprised of three main stages: offline prepa-
ration and rendering, stream compression and real-time decom-
pression and reconstruction (Figure 2). During the offline
rendering stage, we optimize the placement of a number
of 360◦cubemap cameras in the scene (section 4) and render
color and depth images for the desired frame range that each
camera should cover. Any renderer that can output color
and depth images in a 360◦format (either equirectangular
or cubemap) can be used. The images, if necessary, are
then converted to cubemaps, as they exhibit a number of
advantages over the equirectangular format (section 7.4).
Color images are processed into compressed streams (sec-
tion 5.1), one per cubemap face per light field viewpoint
sample. Depth images are first processed to determine the
depth range for each viewpoint, and then they are similarly
compressed into streams (section 5.2), one per cubemap face
per viewpoint. The final compressed data are organized per
stream, with an additional metadata header that describes
the stream configuration and the locations of local sample
viewpoints. Finally, the compressed data is fed to the appli-
cation to reconstruct animated frames in real-time from any
viewpoint (section 6).

Use-cases. We used six datasets in order to demonstrate
the flexibility of our method in terms of the level of dynamic
content, and the freedom of movement the viewers have.
The Sponza and Robot datasets are environments with an-
imation focused in a particular area. The users experience
motion parallax within a small volume; this maps to a
user standing with full freedom of movement and rotation
of the head. The Robot dataset in particular demonstrates

challenging reconstruction aspects such as thin geometry
(potted plant) and highly reflective surfaces. The Spaceship
and Pirate datasets are a representation of a single, animated
object. Users can move around the object and examine it
from a variety of angles and viewpoints. The Pirate dataset
is a scan of a real-world model, and is used to show that our
system is capable of real-time rendered light fields acquired
from real scenes. The Canyon dataset demonstrates large-
scale user movement in a large animated scene. Users fly
over a canyon along a predetermined camera path with a set
of 720 placed light field sample viewpoints. The Reflection-
RefractionBox dataset demonstrates reconstruction of strong
view-dependent effects such as mirror reflections and glass
refractions on animated objects and scene.

4 CAMERA PLACEMENT

Our camera placement algorithm employs the rendering
equation [14]:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t)

+

∫
Ω
fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi · n)dωi

(1)

where Lo, Le and Li are the outgoing, emissive and
incoming spectral radiances at a light wavelength λ at a
time t at a position x with surface normal n, while ωo and
ωi are the outgoing and incoming light directions and fr the
bidirectional reflectance distribution function. We calculate
a set C of 360◦cubemap cameras that capture all required
data for reconstruction of a lighting environment from any
point of view. This requires the evaluation of Lo for any
potential parameter value. In a simplified lighting model
without participating media, the evaluation of this equation
is enough to evaluate the time-parameterized formulation of
the plenoptic function [4]. We propose to solve the integral
evaluation over various levels of lighting environment and
scene complexity, such as a diffuse-only static environment,
diffuse/specular and dynamic. We keep the above notation,
where the integral is defined over all points x in a union of
all surfaces S = ∪Si.

4.1 Diffuse lighting

For the diffuse scenario, the fr reflectance term does not
depend on ωo, therefore the incoming light integral at a
point is, regularly, independent of the outgoing direction,
therefore the integral in eq. 1 at a point x, time t and
wavelength λ can be reused for any angle ωo. The effect
is that points can be rendered from any camera angle and
the resulting data can be used to reconstruct these points for
any viewing direction. The practical consequence for our
camera placement algorithm is that if a point is seen from a
camera, it does not have to be seen by any other camera.

We define an objective function for the “quality” of
a camera position O, given an existing set of cameras
Ci, i ∈ [1,Cnum] for a diffuse lighting environment. The
quality depends solely on how much of the surface the
camera sees that it is not already seen, so that we effectively
minimize redundancy. We define a minimum viewer distance
function Z(x) in order to set a limit on how close a camera

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 4

Fig. 2: Overview: Animated scene analysis is performed in a preparation phase for optimized camera placement. The light
field is then sampled at 360◦cubemap camera viewpoints. Per-viewpoint color and depth maps are compressed separately,
and then packed into per-viewpoint data clusters. In real-time, we use a subset of the compressed per-viewpoint data to
render the scene from any point of view.

can get to a surface 1. Without such a limit, in order to
cover a whole scene at an adequate sample rate, we would
need to place an infinite number cameras at an infitesimal
distance from all surfaces. Below, we use the visibility func-
tion V : R3 → {0, 1} and define a set of helper functions
to calculate the objective function f : Isuit is a compound
camera “suitability” term (camera-to-point visibility term
multiplied by a proximity term) and Icov is the redundancy
penalization term due to existing coverage.

Isuit(O,x) = V (O,x)e−k max(| ~xO|−Z(x),0) (2)
Icov(O,x,C) = max{Isuit(O,x)− max

i∈[1,Cnum]
Isuit(Ci,x), 0}

(3)

f(O,C,S) =

∫
S
Icov(O,x,C)dx (4)

The proximity term uses exponential decay (with a rate
k, see fig. 3) after the threshold distance Z(x) is exceeded,
so that closer cameras are preferred but the importance of
covering a point would never drop to zero. The optimal
camera is obtained simply as the position that maximizes f :

h(C,S) = argmax
O∈R3

f(O,C,S) (5)

A procedure that obtains the minimum number of cam-
eras is displayed in algorithm 1.

Algorithm 1 Calculating an optimal set of cameras
Precondition: A union of surfaces S

1: function OPTIMALCAMERASET(S)
2: C←∅
3: do
4: O← h(C,S)
5: y← f(O,C,S)
6: if y > 0 then
7: C←C ∪O
8: while y > 0
9: return C

The optimization generates locally optimal cameras.
While a global solver could potentially generate a smaller

1. This can be defined in the following way: an artist creates a
potential viewer location volume as a union of simple primitives, not
intersecting with geometry in the scene. At each point x we can then
calculate and store the minimum distance to the volume, effectively
creating a sparse distance field.

Fig. 3: Varying k (eq. 4) for the Pirate dataset. The coverages
score on the left include reduced-weight score from surfaces
further than Z(x) whereas the scores on the right do not.
In parentheses we show the number of cameras at which
the optimisation converges. High k values result in better
coverage of surfaces within the minimum viewer distance
and converge quicker.

set, it would also result in much slower computation, which
can make the problem infeasible to solve for complex,
long scenes. Further advantages of using a locally optimal
but iterative method is that (a) offline rendering can start
immediately after a camera has been calculated and (b) if in
the future a larger volume would need to be covered using
the same 3D scene, the optimization would continue using
the existing camera set as a starting point.

4.2 Specular lighting and dynamic scenes

In order to adequately capture a specular lighting environ-
ment, we need to render every point on all surfaces from
all possible directions. The camera optimization objective
function eq. 4 then needs to take into account this new
requirement. To express this in a way that the number of
calculated cameras remain finite, we specify a minimum
view angle θ between the vector from a point on the surface
to two camera position: the currently tested one and an
existing one. To satisfy that requirement, we modify Icov
using an extra angular weight term:

I ′cov(O,x,C) = I(θ ≥ ∠(
−→
xO,
−−→
xCi))Icov(O,x,C) (6)

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 5

When the BRDF is known, we can identify where vari-
ation occurs most and parameterize θ over the hemisphere
accordingly in order to lower the number of required cam-
eras.

To optimize a fixed camera set for a dynamic scene, we
parameterize the scene geometry S in time and integrate
over it in the objective function:

f(O,C,S) =

∫ t1

t=t0

∫
S(t)

Isuit(O,x)Icov(O,x,C)dxdt (7)

This will calculate an optimal set of cameras that remain
fixed throughout the scene animation, and data generated
using such cameras are better compressed with our sug-
gested compression methods.

We have implemented the proposed method and evalu-
ated it in a number of 3D models, for diffuse and specular
lighting environments (figure 4). For our initial prototype,
we optimize eq. 5 using a brute force approach that uni-
formly samples the subset of R3 inside the potential viewer
volume. In the supplementary video, we show how and
where coverage improves by adding cameras incrementally.

Fig. 4: Results of the two variants of the camera placement
algorithm (diffuse/specular) for the Stanford dragon, Cornell
Box and our Pirate dataset. The camera placement converges
to full coverage faster for the diffuse cases. Complex models
and placement for specular environment will rarely con-
verge to full coverage, as some parts of the models can either
never be seen be seen from some (or any) directions, such
as areas with high degree of ambient occlusion, or faces of
boxes that touch each other. All the specular examples use a
minimum view angle θ = 50◦.

5 COMPRESSION

We compress the color and depth streams separately, as
they exhibit two main different characteristics. First, color
compression can be much lossier than depth compression;
Depth inaccuracies result in bad reconstruction, which has
a propagating effect to color reconstruction. Additionally,
color pixel values change at a much higher frequency than
depth. The main reason is due to noise that exists as a result
of the rendering equation’s approximation of integrals. An-
other significant reason is because depth is shading-invariant;

shadows, lighting changes and ray bounces do not affect
depth. Our aim is to exploit these characteristics and com-
press the data to a format that can be rapidly decompressed
and uploaded to the GPU as texture data, trying at the same
time to minimize the required bandwidth. We aim for low
bandwidth and rapid decoding as the potential throughput
requirements are very high: nine color+depth 1024 × 1024
cubemaps amount to the same amount of raw data as a color
image in 16K UHD resolution (15360 × 8640).

5.1 Temporal color compression
The goal of our temporal color compression method is
to find the smallest selection of keyframes that can be
used to derive the rest frames (bidirectionally predicted,
B-frames), on a per-cell basis (see figure 5). The compres-
sion/decompression happens independently, and therefore in
parallel for each cell. As such, the first stage is to partition
the image to a regular grid, with a cell size ideally between
32 and 256 pixels per dimension (section 7.4).

Formally, let Bx be the image cell of size D, where x
the frame index ∈ [0, N). Below, we demonstrate how to
calculate the next optimal keyframe index h given a starting
keyframe index m. The reconstruction for a B-frame cell
Bx is simple linear interpolation of two nearest frame cells,
m and n where m ≤ x ≤ n, using a per-frame per-cell
parameter t:

r(n, t) = (1− t)Bm + t(Bn), t ∈[0, 1] (8)

We use PSNR as the quality metric q for the reconstruc-
tion:

q(x, n, t) = PSNR(Bx, r(n, t)) (9)

Per-frame parameters g are calculated to maximize qual-
ity:

g(x, n) = argmax
t
q(x, n, t) (10)

Finally, keyframe indices h are calculated so that the
distance between them is as-large-as-possible, whilst guar-
anteeing a minimum level of reconstruction quality:

Iq(x, n) = I(min
x∈]m,n[

q(x, n, g(x, n)) > Q) (11)

h = argmax
n∈]m,N [

(
nIq(x, n)

)
(12)

where Iq is an indicator function that returns 1 only if
the reconstruction quality for a range of frames is for all
above a threshold Q. The whole optimisation process for
an animated cell is shown in algorithm 2. In practice, we
quantize the t values to a byte for each.

This form of compression is agnostic of the how the
underlying frame data is stored; the only requirement is
that data in a cell needs to be independent from other cells.
This allows two further optimisations: view-dependent de-
coding (section 6.2) and spatial re-compression (section 5.3).
Decoding the compressed data in GPU is an efficient linear
interpolation operation, as shown in eq. 8.

Our pipeline fully supports the use of HDR color data,
due to the agnostic nature of the compressor and the de-
coder. In that case, the metric used has to be changed to be
better suited for HDR data [28].

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 6

Algorithm 2 Temporal color compression for an image cell
Precondition: An animated image cell B withN frames
Output: Vector k of keyframe indices and a vector t of per-frame parameters

1: function COMPRESSCOLORBLOCK(B,N)
2: k0← 0
3: i← 0
4: do
5: i← i + 1
6: ki← h(B, ki−1)
7: for x ∈ [ki−1, ki] do
8: tx← g(B, x, ki−1, ki)

9: while ki < (N − 1)
10: return k, t

Fig. 5: Color compression: An image is partitioned into a
regular grid. Each grid cell stores a number of keyframe
cells ki and an array of per-frame parameter values tj that
interpolate the closest keyframes forward and backward in
time.

5.2 Temporal depth compression

In terms of reconstruction, depth is more important than
color, as otherwise geometry is registered incorrectly. As
such, we aim for a near-lossless quality temporal depth
compression method. We exploit the fact that depth maps,
captured from a static camera, display low frequency of
updates. We store video frames as keyframes or P-frames.
Keyframes store all data for the frame, while P-frames only
encode the differences to a number of frames preceding
them. The differences are encoded using a set of axis-
aligned bounding boxes (AABB), which is generated from
a difference bitmask that represents the texels that need to be
updated. Each P-frame stores a list of AABB coordinates and
the raw depth data contained in each.

Encoding the frame-to-frame difference masks is efficient
due to the typically small number of pixels that change
between two consecutive frames, but can become problem-
atic for random access -type scenarios, for example when
a camera becomes active and the current frame is N , the
decoder would have to decode all frames between K and
N , where K is the last keyframe. To reduce the number of
the frames that need to be decoded in such scenarios, we
calculate the difference bitmasks using a depth window: at
frame N , the mask records pixels that are different to any
of the pixels at frames [N −W ,N − 1] at the same location,
where W is the size of the window. As a result, in order
to decode frame N when the camera becomes activated, we
need to decode frames K to frame N using step W .

The depth compression process is shown in algorithm 3.
For each frame, the first task of the algorithm is to identify
the regions that differ compared to previous frames. The
difference bitmask for a P-frame is generated as described
above, given a window W . After the construction of the
bitmask, the algorithm calculates a set of non-overlapping
AABBs that enclose the difference mask. We choose AABBs
because the data memory layout maps well to GPU texture
update functions, therefore updating a depth video texture

is simply a serial set of texture update calls, using the depth
data as-is from the P-frame data stream. Therefore, it is
important to calculate as-tight-as-possible AABBs, in order
to update the least number of pixels. Calculating tight-fitting
AABBs is well studied in collision detection literature, and it
is very closely related to calculation of AABB trees [5]. Our
use case is slightly different, as 1) we are only interested in
the “leaf level” of an AABB hierarchy, 2) calculation time
is not a priority, as compression happens offline and 3) too
many AABBs can cause a high overhead of GPU texture
update calls.

Algorithm 3 Temporal depth compression
Precondition: Depth images D forN frames, of dimensionsw, h, using a depth windowW
Output: A vector C of compressed frames, each stored as a list of rectangular frame data with the corresponding

rectangle

1: function COMPRESSDEPTHIMAGES(D,N)
2: r← (0, 0, w, h)
3: C0← {(D0, r)}
4: for i ∈ [1, N − 1] do
5: Ci←{∅}
6: Ddiff←∅
7: for j ∈ [max{i −W, 0}, i − 1] do . Build a binary difference map as a union of binary

maps
8: Ddiff←Ddiff ∪ I(|Di −Dj | > ε)

9: R← CalculateAABBs(Ddiff)
10: for r ∈ R do
11: Ci← Ci ∪ (SubImage(Di, r), r)
12: return C

The AABBs are calculated using a simple exhaustive
search that starts with a single tight AABB of the difference
map and iteratively splits it to smaller, tighter AABBs until
the maximum number of AABBs has been reached. We show
an example in figure 6.

Fig. 6: Depth compression: AABB fitting example for a
cubemap face of a view at a single frame. a) Depth Map,
b) Depth difference with previous frame, c) AABB set that
encloses the differences as tightly as possible. A maximum
of 8 are used in this example.

5.3 Spatial recompression and fixed-point depth
The compression methods that we described reduce data
only in the temporal domain. They were designed as such,
so that they could be used directly on already spatially
compressed data. We exploit the properties of hardware-
accelerated block-compression texture formats, such as
S3TC [12], BPTC [2], RGTC [3] or ASTC [24], as they have
fixed data rate and fixed block dimensions. In color com-
pression, if the BCn block dimension is a divisor of the cell
dimension, the block-compressed data can be stored directly
in the cell data stream. Similarly, in depth compression,

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 7

if the block dimension is a divisor of the AABB corner
points, block-compressed data can be stored instead of raw
for each AABB. For color data, we can use formats BC1,
BC6 and BC7 depending on the quality requirements and
dynamic range. Depth values are originally generated as
32-bit floating point values. In order to reduce bandwidth
and maintain high precision, we map the values to 16-bit
unsigned integers in logarithmic space, using the following
conversion:

zu = (216 − 1)log(
z

znear
)/log(

zfar

znear
) (13)

where znear, zfar the minimum and maximum depth
values respectively. Logarithmic space provides a better
distribution for the depth values, offering more precision
closer to the camera. As there is no hardware-accelerated
compression for 16-bit unsigned values, we can split the
data to two 8-bit channels and compress them using the
BC5 texture compression format.

6 REAL-TIME RENDERING

The real-time rendering algorithm reconstructs the scene
from a given camera using data for a set of viewpoints
(locations and color/depth textures) and camera parameters
using ray marching, and is shown in algorithm 4. The
rendering algorithm is comprised of two parts: calculating
the intersection with geometry and calculating the color
contribution from all views. The intersection step involves
marching along the ray until an intersection is found. The
ray marching step size is constant in the non-linear space that
the depths are stored (eq. 13), so that resolution is higher
near the camera. A point on the ray is guaranteed to hit a
surface at the first occurence where BetweenViewpointAnd-
Geometry 2 is false for all viewpoints. Conversely, if there
is even one case where the point on the ray is between a
viewpoint and its reconstructed position at that direction,
then the point is in empty space. Color calculation is based
on the product of two weighting factors: the distance of
the ray point to the closest depth sample from a cubemap
(wdepth) and the distance of the ray point to the camera
(wcam). Both are exponential decay functions, with wdepth
decaying at a faster rate. The weight wdepth ensures that
the contributed color will be from a sample as near as
possible to the ray point. The weight wcam ensures that, if we
have a set of samples with similar wdepth values, those near
the camera are preferred, ensuring better reconstruction of
view-dependent shading.

6.1 View-dependent effects
The aforementioned rendering method reconstructs color
using weighted interpolation. While some view-dependent
shading can be reconstructed this way, effects such as mirror
reflections or refractions in water or glass are more difficult
to reconstruct because of the large variation of color samples
obtained for surface points when rendered from different
angles. As our rendering method is based on ray march-
ing, we can easily adapt it to be able to reconstruct more

2. BetweenViewpointAndGeometry returns true if, at a point p, the
distance from a viewpoint v sampled using the direction p−v is farther
than |p− v|

complex effects. In order to reconstruct such effects more
accurately, we require per surface point material informa-
tion for reflection contribution, refraction contribution and
index of refraction. Such data are typically available from
the offline renderer and can be provided as an additional
input cubemap stream. This data stream is not necessarily
needed for all viewpoints, but for a subset that has good
visibility to such surfaces.

In order to reconstruct strong view-dependent effects,
the real-time rendering algorithm needs to be adjusted so
that additional rays are spawned if required at surface
points: reflection or refraction rays. The new rays use the
surface point as the origin and their direction is calculated
using the surface normal and, for refraction rays, the index
of refraction. The surface normal can be computed on the fly
based on the calculated depth and its neighboring depths,
available from the depth cubemaps.

6.2 View-dependent decoding
Users can only see part of a the reconstructed 3D scene
at any given time, due to the limited field of view. There-
fore, decoding full cubemap frames is unnecessary and
hurts performance. Our compression methods support view-
dependent decoding: the ability to decode only the parts of
the video that are visible to viewers, which we make use
of in order to lower the per-frame bandwidth required
to update viewpoint texture data. Using our compression
scheme (section 5.1), color video streams are formed by
smaller compressed streams of independent cells. The data
of each cell of a particular viewpoint are projected in a
well-defined frustum: a pyramid that starts at the viewpoint
location, its lines passing through the cell corner points and
is cut by planes parallel to the cell at znear and zfar distance
from the tip. If this frustum does not intersect with the
camera frustum at a given frame, the cell data do not have
to be updated, as they are not seen by the viewer.

Frustum-to-frustum intersection tests can become a bot-
tleneck if the cell granularity is high. For example, us-
ing 1024 × 1024 cubemaps, 64 × 64 cells, 9 viewpoints
and intersection tests with two cameras (one per eye), we
need 27648 intersection tests, leading to a CPU bottleneck.
To avoid the cost of calculating all intersections, we can
optimize the approach further by introducing hierarchical
frustum culling. Treating each face of a viewpoint as a
fully populated quadtree where cells are the leaf level nodes
and the whole face is the single coarsest level node, we
can calculate intersections hierarchically. This is possible
due to the fact that the frustum generated by a node
contains all frustums generated from the children of that
node. Therefore, early exit is possible when a coarse node
does not intersect with the camera frustum. With such an
optimisation, the number of intersection tests is drastically
reduced. Depth video streams (section 5.2) can benefit from
the same optimisation by splitting each stream into tiles,
and compressing each individually. The tiles do not have
to have the same granularity with the color cells, as they
can correspond to a lower level of the quadtree. For our
examples, we use a 2 × 2 tile grid per cubemap face for
depth data (corresponding to quadtree level 1), to benefit
from the view-dependent decoding optimisation without
introducing too many new partitions and AABBs.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 8

Algorithm 4 Real-time rendering algorithm with optional
reflection and refraction support (RR variants)
Precondition: Set of Nview cubemaps Cj (color), Dj (depth) and their origins Pj . Optional Mj (material)

cubemaps for reflection/refraction rendering. Eye location o and direction d. Number of raycasting
steps Nstep . Near/far clipping planes znear, zfar . Threshold linear distance ze . Z conversion functions
lin(), nonlin() between linear and nonlinear space using eq. 13. Reflect and Refract functions given a
surface point p, a surface normal n, a direction d and index of refraction nrfr .

Output: A color cout

1: function BETWEENVIEWPOINTANDGEOMETRY(p, j)
2: x← p − Pj
3: dtex← SampleCubemap(Dj, x)

4: return dtex > nonlin(||x||)

5: function SAMPLECOLOR(p, j, v)
6: x← p − Pj
7: dtex← SampleCubemap(Dj, x)

8: ctex← SampleCubemap(Cj, x)

9: ddiff← |dtex − nonlin(||x||)|
10: wdepth← 1/(ddiff + ε)
11: wtotal←wdepth
12: if v then . Camera distance weighting check
13: wcam← 1/(||o − Pj || + ε)
14: wtotal←wdepth · wcam

15: return (ctex, wtotal)

16: function RAYINTERSECTION(o,d, z0)

17: snonlin←
nonlin(zfar)−nonlin(z0)

Nstep
. Step magnitude

18: for i ∈ [0, Nstep] do . Non-linear raymarching
19: zcur← lin(nonlin(z0) + i · snonlin)
20: p← o + d · zcur
21: risect← true
22: for j ∈ [1, Nview] do
23: if ||Pj − p|| > znear then . Ignore if too near to a viewpoint center
24: if BetweenViewpointAndGeometry(p, j) then
25: risect← false .We are on empty space, continue marching
26: break
27: if risect then
28: break
29: if i = Nstep then . Check if ray did not intersect
30: return∞
31: else
32: return p

33: function CALCULATECOLOR(p, v)
34: cout← (0, 0, 0, 0)
35: if p 6= ∞ then
36: wsum← 0
37: for j ∈ [1, Nview] do
38: (c, w)← SampleColor(p, j, v)
39: cout← cout + c
40: wsum←wsum + w

41: cout←
cout

wsum

42: return cout

43: function CALCULATECOLOR RR(p,d)
44: cout← (0, 0, 0, 0)
45: if p 6= ∞ then
46: n← CalculateNormal(p)
47: (wrfl, wrfr, nrfr)← SampleMaterial(p,d)
48: ifwrfl > 0 then
49: drfl← Reflect(p,d,n)
50: p1← RayIntersection(p,drfl, ze)
51: if p1 6= ∞ then
52: crfl← CalculateColor RR(p1,drfl)
53: cout← cout + wrflcrfl
54: else
55: wrfl← 0

56: ifwrfr > 0 then
57: drfr← Refract(p,d,n, nrfr)
58: p2← RayIntersection(p,drfr, ze)
59: if p2 6= ∞ then
60: crfr← CalculateColor RR(p2,drfr)
61: cout← cout + wrfrcrfr
62: else
63: wrfr← 0

64: cdiffuse← CalculateColor(p, false)
65: cout← cout + (1 − wrfr − wrfl)cdiffuse

66: return cout

67: function MAIN(oeye,deye)
68: p← RayIntersection(oeye,deye, znear)
69: return CalculateColor(p, false)

70: function MAIN RR(oeye,deye)
71: p← RayIntersection(oeye,deye, znear)
72: return CalculateColor RR(p,deye)

6.3 View-selection heuristics

Typically, not all cameras provide useful data at any given
time. For example, in the Spaceship dataset, viewpoints on
the other side of the ship (with regards to eye location)
will provide very little useful data compared to viewpoints
near the eye. In cases where performance is a concern, we
might want to use a lower number of viewpoints in order
to maintain a high framerate, which is crucial for a VR
experience.

We formulate heuristics that calculate a prioritized set
of viewpoints each frame. Prioritisation is important for
maintaining coherence of the set elements across frames.
Coherence is important for the rate of updates, as every
time the viewpoint changes, the associated texture data
need to be updated as well. Besides prioritisation, we also
use viewpoint culling for additional control over the active
viewpoint set. We use two different prioritisation methods
and two different culling methods accordingly.

Distance-based prioritisation. The viewpoints are
sorted based on their distance to the eye (closest point is
highest priority). This prioritisation is useful in scenarios
where the user moves through a large space of distributed
viewpoints, as only nearby viewpoints provide useful data.
It works well in conjunction with the rendering contribution
weight wcam in algorithm 4. Angle-based prioritisation.
The viewpoints are sorted based on their angle to the eye
location, using a reference point as the origin (smallest
angle is highest priority). This is useful in scenarios like
the Spaceship, where a model is captured from all angles.
In that case, the reference point is set as the center of the
model. This scheme works well with heavy view-dependent
effects, as the prioritised cameras have the best matching
data. Angle-based culling. Viewpoints forming an angle
with another, higher-priority viewpoint that is smallest than
a given threshold, using the eye location as the origin,
are not placed in the active viewpoint set. The reasoning
for this type of culling is that when the angle between
two viewpoints is very small, the data redundancy is very
high, therefore the higher-priority viewpoint is used in-
stead. Performance-based culling. Low-priority viewpoints
are culled if the runtime performance is below a given
requirement. Given an estimated cost that a view incurs on
the runtime and the current runtime performance, we can
estimate how many views need to be culled in order to reach
a performance target. This is important when maintaining a
high framerate is crucial for user experience, for example
in VR applications where a low framerate can introduce
flickering with physical discomfort.

To form a heuristic, we use a combination of the above.
We select a prioritisation method to sort the view loca-
tions and then apply one or more culling methods: for
example we apply angle-based culling to skip redundant
views and then performance-based culling to ensure that we
maintain performance. Finally, we rearrange the resulting
set of views, so that the order of the active viewpoints is
maintained as much as possible with respect to the previous
frame.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 9

Fig. 7: Depth compression parameter variation: AABB limit and depth window, and their effect on data size (MBytes) and
decoding cost (ms) when updating 9 out of 16 viewpoints of the Robot dataset. The heatmaps use the normalized range
of captured data (lower is better), seen in the line plots on the right, while the combined heatmap shows an overall score
using a weighted geometric sum (compression 0.25, decoding 0.75). We observe that larger number of AABBs result in
better compression, but with decaying effect, while the impact on performance is much greater, where a smaller number
of AABBs is better. Additionally, shorter depth windows result in significantly reduced storage requirements and more
efficient decoding. For our given tests, the overall optimal parameters are when AABB limit is set to 2 and depth window
is also set to 2.

7 RESULTS

Our test system is an Intel Core i7 6700K with 32GB RAM
and an NVIDIA TITAN X GPU card with 12GB RAM. The
input datasets were created using Pixar’s RenderMan. The
Sponza dataset consists of nine 360◦cameras, 600 frames
each. The cameras are placed as follows: one in the middle
of the cubic volume, and the rest at the eight corners.
The Spaceship dataset consists of fourteen 360◦cameras sur-
rounding the object, 300 frames each. In this example, we
dynamically select a subset of the cameras, based on the an-
gle of the vectors from the center of the object to the viewer
and camera. The Pirate dataset uses fifteen 360◦cameras
distributed in front of the face of the pirate, each consisting
of 150 frames. This dataset demonstrates the capability for
an end-to-end pipeline from real-world data to a real-time
lightfield playback. Camera positions for this model have
been generated using our camera placement algorithm. The
Robot dataset consists of sixteen 360◦cameras, 78 frames
each. The cameras are arranged in a 4× 2× 2 oriented grid.
This example poses several challenges for a faithful recon-
struction, such as thin geometry (potted plant leaves) and
highly specular and reflective surfaces (robot, floor, table).
The Canyon dataset consists of 720 360◦cameras, distributed
along a flight path. The dataset contains an animated satel-
lite dish. For this flythrough example we use a conservative
rendering scheme, where the location along the path is
tied to the animation time. Therefore, each camera only
renders the time range mapped to nearby path segment.
In our scenario, the environment is generally static, so most
cameras render a single frame. As such, most cameras in
this example do not benefit by our temporal compression
codecs therefore they are omitted from the compression and
bitrate tables. The ReflectionRefractionBox dataset consists of
9 360◦cameras, 30 frames each, distributed similar to Sponza.
This example is the most challenging to reconstruct in terms
of shading, due to animated geometry that uses fully reflec-
tive and refractive materials. The dataset demonstrates the
effectiveness of the alternative rendering method that uses
raytracing instead of ray marching. The In all examples, the
360◦virtual cameras generate 1024×1024×6 cubemaps. The

Raw
(GB) Stream Depth

Window
Depth
AABBs

Temporal
(GB)

+Spatial
(GB)

Ratio
(%)

+LZMA2
(GB)

Ratio
(%)

73.83 Color - - 0.97 0.162 0.22 0.016 0.02
16 8 3.18 1.59 1.61
2 8 2.82 1.41 1.43Spaceship 98.43 Depth
2 16 2.58 1.29 1.31

0.076 0.07

22.46 Color - - 1.76 0.293 1.30 0.100 0.44Robot 29.25 Depth 2 16 0.32 0.159 0.54 0.053 0.18

39.55 Color - - 3.23 0.539 1.36 0.129 0.32Pirate 52.73 Depth 2 16 1.58 0.79 1.49 0.27 0.51

94.9 Color - - 8.94 1.49 1.57 0.590 0.62Sponza 126.56 Depth 2 8 3.26 1.63 1.28 0.342 0.27

TABLE 1: Color and depth compression (in GB). Raw cor-
responds to 32-bit floating point depth values and 24-bit
RGB data, followed by our temporal compression methods
(5.1, 5.2), spatial re-compression (5.3) and finally the total
percentage over the raw color or depth dataset. We addi-
tionally provide results after lossless compression, using
LZMA2, to demonstrate the further compressibility of the
output data. We provide three cases for depth compression
for the Spaceship dataset, to show the effect of varying depth
window size and number of AABBs.

color compressor uses a threshold PSNR of 50 dB and a cell
size of 64 pixels. Below, we discuss results in compression
efficiency, throughput optimisations, runtime performance
and reconstruction quality.

Size (GB) Ratio (%) Decode (ms)

HEVC-hq 0.009 0.031 57.5
HEVC-lossless 0.208 0.71 57.69
Ours (+LZMA2) 0.159 (0.053) 0.54 (0.18) 1.62

TABLE 2: Depth compression comparison in Robot dataset.
We compare compression and decoding performance
against HEVC using high quality and lossless presets. De-
coding measures decoding time for all faces from a subset
of 9 views (54 streams in total). Our method has a clear ad-
vantage in decoding speed, which is paramount for the re-
quired data throughput. LZMA2 streams are decompressed
asynchronously, so LZMA2 decompression times are not
included in the decoding times.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 10

Fig. 8: Color compression parameter variation: Cell size and PSRN quality threshold, and their effect on data size (MBytes)
and decoding cost (ms) for a single viewpoint of the Robot dataset. The heatmaps use the normalized range of captured
data (lower is better), seen in the line plots on the right, while the combined heatmap shows an overall score using a
weighted geometric sum (compression 0.25, decoding 0.75). We observe that the PSNR threshold, as expected, has a direct
effect on the compressed data size as well as the decoding cost. More importantly, the cell size has a small effect on
compression size but a big impact on performance, where larger cell sizes result in much faster decoding.

7.1 Compression
In table 1 we show compression results obtained using
our methods. Unlike typical codecs, they are primarily
optimized for pure decoding performance, due to the large
number of pixels that needs to be decoded in runtime. The
decoding cost of our methods is insignificant, as it is limited
to memory transfers (parts of a texture, each frame) and,
in the case of colors, a linear interpolation operation, which
is performed in hardware. Decoding the block-compressed
data is also performed in hardware. Decoding can become a
bottleneck if the number of regions to decode is very high,
thus incurring performance costs associated with the driver
overhead of scheduling many commands.

The Spaceship and Pirate datasets exhibit very good spa-
tial compression ratio, mainly because many of the cubemap
faces contain no data: in such a case a cell would compress
to two keyframes (out of 300) using any parameter value.
In contrast, the depth compression is not as effective, partly
because the color block-compressor provides a better ratio
(6:1 for DXT1 over 2:1 for BC5) and partly because of the 16-
frame depth window and number of AABBs, which increase
the area that needs to be updated each frame. The Sponza
and Robot datasets in contrast offer better compression in
depths rather than colors. This is because of the effect of
light bounces in the scene: For example, the falling spheres
cause light to be bounced on the walls and floor, causing
changes in shading in areas where depth remains constant.
All results can be further compressed with general lossless
methods, such as LZMA2. As can be seen in the table, such
compression can significantly reduce the data to rates that
can be easily transmitted over a network. The reason for
the higher lossless compression of the Spaceship dataset is
because of the redundancy of data (e.g. no colors or depths)
across several views and cubemap faces.

Quality and resolution of depth maps are critical for
reconstruction (moreso than color data), therefore our com-
pression scheme for depths is not very aggressive. As the
rendering algorithm samples multiple views for depth, in-
consistencies would manifest as holes on surfaces (a single
intersection test incorrectly failing in algorithm 4) or floating
geometry (all intersection tests incorrectly pass in algo-
rithm 4). Similarly, during color reconstruction, wdepth factor
could be incorrectly set, leading to wrong color contribution.

If compression is of paramount importance for a particular
implementation, the depth streams can be compressed with
any compressor, including a stream of AABBs for each
frame, pre-calculated using our method. In real-time, the
frame can then be decompressed and we can then use the
AABB info to update the appropriate texture region.

In table 2 we show a comparison of depth compression
against a hardware-accelerated HEVC implementation by
NVIDIA [1] for the Robot dataset. Floating point depth val-
ues were mapped to 24-bit integers using equation 13 and
split to RGB channels, swizzling bits for better compression:
SetBit(c(i mod 3),GetBit(u, i) � (i\3))∀i ∈ [0, 23] where c
is the output 3-channel color and u the input 24-bit integer.
Our method has better overall compression than the lossless
HEVC and the decoding speed is an order of magnitude
better.

In figure 7 we show depth compression results exploring
the parameter space, by varying the AABB number thresh-
old and the depth window. A high number for the AABB
threshold allows a more granular and therefore tighter fit of
the depth data, reducing storage cost, but incurs runtime de-
coding overhead by having to schedule more GPU-to-GPU
subtexture region updates. A low number for the depth
window results in smaller regions that need to be updated,
therefore lower storage costs, but when there is a large
jump in frames, the decoder has to iteratively update the
state of the depth cubemap. For example, when a viewpoint
becomes active at frame 60, the closest earlier keyframe is
at frame 40, and the dataset is compressed with a depth
window of 4, then the decoder has to iteratively process
frames 40 + 4i, i ∈ [0, 5].

The additional material information for reconstruction of
view-dependent effects requires 3 values (reflection weight,
refraction weight, index of refraction) that can be quan-
tized to 8 bits resolution. Therefore, BC1 texture format
can be used to store the material data. In the temporal
domain, the depth compressor is more suitable than the
color compressor for such data, as material values typically
remain constant. As a result, the compressed data size of
the material information maps – using BC1 (0.5 bytes per
pixel) and the depth compressor – incur half the storage cost
compared to compressed depth data using BC5 (1 byte per
pixel) and the depth compressor, as the depth compressor

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 11

generates the same results.
Figure 8 shows the effectiveness of the color compression

algorithm under different configuration parameters, using
a single viewpoint from the Robot dataset. Increasing the
PSNR threshold results in exponential increase of the stor-
age costs, while cell size appears to have a different effect
depending on the threshold. The reason for the variation
is the overhead associated with each cell: as an extreme
case, using 4 × 4 cells compressed with the BC1 format,
cells occupy 0.5 bytes per texel while the parameter storage
is 1 byte per texel, and therefore more expensive to store.
It can be observed that in most PSNR thresholds the cell
size does not play an important role, as the overhead from
the parameters negates the benefit of finer granularity for
detection of similar cells.

While cell size does not have an important effect on
compressed data size, it does have a significant effect in
decoding performance. Figure 8 also shows the decoding cost
of using the aforementioned data (single viewpoint, Robot
dataset). The results clearly show that smaller cells have
a detrimental effect on performance; this is again caused
by driver overhead of the GPU-to-GPU texture update
commands that need to be scheduled. Smaller cells require
a higher number of update calls and therefore accumulate
overhead costs, increasing the overall decoding time.

7.2 Runtime performance

The performance in all our examples is real-time and can be
used with performance-demanding HMDs (often requiring
90Hz rendering rate for a smooth experience). The perfor-
mance bottleneck of our runtime algorithm is the texture
update stage, where all visible parts from all views in the
active set need to be updated to display the current frame
correctly. As such, we attempt to reduce the volume of data
by only updating visible parts for each viewpoint. Even with
such an optimisation, in cases where the user is looking
towards a direction with moderate to heavy animation,
the performance generally drops due to increased texture
updates. In such cases, we use heuristics (section 6.3) to
detect such performance drops and adjust the active set size
by dropping lower priority views. Reducing the number of
views improves perfomance both by reducing the data that
needs to be updated each frame, but also because fewer
textures are sampled in the ray marching shader.

Table 3 shows timings for the texture update and ren-
dering parts of the runtime, as well as the effective bitrate
for color and depth data. We measured the bitrate by
recording the updated color and depth at each frame, for
all frames over several repetitions of the video. It is clear
that the view-dependent optimisation significantly reduces
the bitrate, and as a consequence it reduces texture update
time, resulting in improved performance. Depth bitrate is
typically higher than color as the per-texel storage cost is
higher.

Table 4 shows a comparison between regular and hi-
erarchical frustum intersection tests for view-dependent
decoding for 9 active viewpoints of the Robot sequence,
averaged over time. It can be observed that finer quadtree
levels offer diminishing returns in terms of visibility, while
the number of tests increases exponentially. At any leaf level,

the hierarchical approach results in fewer tests, with the
difference widening in finer quadtree levels.

7.3 Reconstruction quality
The quality of our reconstruction largely depends in the
number and placement of cameras in the animated scene.
Challenging cases from a geometrical point of view involve
thin geometry (e.g. chains of hanging braziers in Sponza, pot-
ted plant in Robot) and deep crevices (e.g. parts of Spaceship,
especially in front). To evaluate the reconstruction quality of
our method, we rendered 90 frames of turntable animation
for the Spaceship dataset using Renderman, and compared
it with our method by using the camera path information
to reconstruct the views. Challenging cases in terms of
lighting complexity involve highly specular reflections (e.g.
table, floor and robot in Robot). To demonstrate how our
method compares to ground truth, we rendered a small set
of images for the Robot dataset using a constant frame and
a camera moving between two view points (figure 11). It
can be observed that the largest errors are disocclusions,
followed by edge reconstruction. The latter can be explained
by the nearest-depth filter that is used for the depth image
generation (sec. 7.4), as multiple depth samples (typically
prominent at the edges) are lost. We evaluate the PSNR
between our reconstruction and the reference against a
simple point rendering of the Spaceship dataset, where every
texel of every cubemap of every view is projected into
the world-space position using the depth map information
(see supplementary video). We also compare the PSNR val-
ues obtained using different number of active viewpoints,
shown in figure 9. It can be observed that the greater the
number of views is used at any given time, the better the
reconstruction becomes. The drop in reconstruction quality
around frame 60 can be explained by the fact that at those
frames the camera is pointing directly at the ship’s crevices,
where data is not present among the viewpoint samples.
This could be solved by having a further viewpoint sample
at such a location (figure 10).

In image 12 we show a comparison of the standard ren-
dering method (labelled LERP) versus the view-dependent
effects aware method from section 6.1 (labelled VDFX), us-
ing the ReflectionRefractionBox scene. We compare a series of
images that focus on each of the two spheres (one reflective
and one refractive), starting at a viewpoint location and
moving gradually towards another viewpoint location. At
the endpoints, the reconstruction is close to the original in
both cases, as the depth-based color reconstruction weights
are heavily biased towards the respective viewpoints, so
the color samples are effectively copied. In the interpolated
locations, the standard rendering method does not achieve
adequate reconstruction fidelity, due to incorrectly blending
the viewpoint color data. Using the raytracing method,
the reflections and refractions can be calculated on the fly
using provided material information, resulting in far more
accurate reconstruction.

7.4 Implementation Analysis
Cube mapping vs equirectangular. Equirectangular map-
ping is often used to generate 360◦images. While this is
a convenient, single-image representation, it has several

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 12

View
Dependent

Active
Viewpoints

Animated Color Data
at 24fps (in Mbps)

Animated Depth Data
at 24fps (Mbps)

Per Frame Update
Time (ms)

Render Time (ms)
1024x1024

no 5 9 14 36.00 91.04 119.12 216.16 880.64 1092.48 0.74 2.18 2.82 2.83 2.94 3.30Spaceship yes 5 9 14 19.52 35.12 40.48 205.20 471.68 589.76 0.60 1.13 1.40 2.84 2.94 3.31

no 5 9 - 292.43 521.35 - 323.93 557.61 - 3.77 6.79 - 1.40 1.60 -Sponza Soldier yes 5 9 - 153.07 241.25 - 185.49 287.49 - 2.08 3.22 - 1.42 1.63 -

Sponza Floor yes 5 9 - 54.95 124.59 - 46.21 116.70 - 0.64 1.45 - 0.98 1.18 -

Sponza Spheres yes 5 9 - 213.54 368.56 - 253.24 404.84 - 2.71 4.61 - 1.85 2.23 -

TABLE 3: Timings and bitrates in the runtime. We show the effective bitrate (in Mbps) of texture updates for a 24fps video,
and the time needed for texture updates and rendering (in milliseconds). We vary the number of active viewpoints and
we show the results of view-dependent decoding (VD) versus without. Rendering cost is for a 1024 × 1024 image. Floor,
soldier and spheres view implies looking towards areas of low, medium and high degree of animation. We can observe
that using view-dependent decoding typically halves the bitrate and significantly improves performance.

Fig. 9: PSNR and SSIM of reconstruction against reference for the Spaceship dataset using a variable number of active
viewpoints, selected via the angle-based prioritisation heuristic.

Lvl1 Lvl2 Lvl3 Lvl4

Visibility (%) 39.8 30.9 26.1 23.6
Regular 351 1482 6088 24678
Hierarchical 271 713 2027 6272

TABLE 4: Hierarchical versus regular frustum intersection
tests for view-dependent decoding of the Robot dataset. The
levels relate to the number of subdivisions in each cubemap
face: 2×2, 4×4, 8×8 and 16×16. The regular method visit all
cells at a given level, while the hierarchical performs queries
in coarser levels first. We compare the per-frame average
visibility percentage and number of intersection tests of the
total dataset using levels 1 to 4 of the quadtree as the leaf
levels.

drawbacks compared to cube maps, which have been used
for a long time in computer graphics: Mapping distortion.
The equirectangular mapping exhibits higher distortions the
closer a point is to any of the two poles. At its most extreme
distortion, the single points at the poles cover the same
number of pixels as the great circle. Standard video codecs

Fig. 10: Ground truth comparison for Spaceship dataset. We
compare the reconstruction (left) from a random angle to
an image generated explicitly from that angle by the offline
renderer (middle).

also perform better with cube maps, as they assume motion
vectors as straight lines. Storage cost. A cubemap needs 75%
of the storage space required for an equirectangular map
at the same pixel density. In such maps, the excess storage
cost is spent near the distorted poles. Sampling performance.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 13

Fig. 11: Comparison of our reconstruction (top row) with ground truth (middle row) for the Robot dataset. We render
images from four locations along the line between two 360◦cameras (scene views (a) and (d) are the endpoints, with two
zoomed sections on the left). The reconstructions at the endpoints have higher PSNR/SSIM, but still exhibit heat map
differences due to compression and loss of depth information on edges. Specular effects are handled gracefully (e.g. glass
sphere), while thin and transient geometry poses a challenge.

Cubemap sampling using 3D cartesian coordinates has been
implemented in hardware since 2000. Equirectangular map-
ping requires the use of trigonometric functions, which
increases the sampling cost when used frequently.

Cell dimensions for temporal color compression. Our
temporal color compression scheme first partitions an image
into a regular grid ofN×N cells, which are then compressed
and decompressed independently of each other. There is no
globally ideal cell size that is always the best for any given
case; this depends on the content and the hardware that
is used for decompression. For the following comparisons,
we assume cubemap faces of dimensions 1024 × 1024 and
a reference cell size of 64. Selecting a very small cell size
(e.g. N = 16) results in better identification of static or
animated cells, therefore the cumulative ratio of keyframes
over frames will be lower (better). But the smaller cell size
also reduces the compression ratio as the per-cell, per-frame
data becomes higher (bytes used by t over bytes used by
cell). During decompression, the performance can also be
lower, as the number of texture update calls and frustum
culling checks becomes higher (16×). Conversely, selecting
a very large cell size (e.g. N = 256) results in higher
(worse) cumulative ratio of keyframes over frames, but in a
better per-cell, per-frame compression rate. During runtime,
frustum culling is faster due to lower number of checks,
but texture update cost can be higher, as the coarser cell
granularity results in more data in need for update.

Depth map filtering Production renderers often apply
filtering on outputs to reduce aliasing artifacts and noise.
Such a filter is destructive for depth output, distorting
silhouettes by linearly interpolating depths of foreground
and background disjoint geometry.

8 CONCLUSION

We have presented a set of methods than enable real-
time reconstruction of pre-rendered video from an arbitrary
point-of-view within an animated light field, that is capable

to run at 90Hz on modern hardware, allowing smooth, high-
quality VR experiences. Our camera placement method en-
sures that the datasets minimize redundancy among views.
Our temporal compression methods are specialized for the
color and depth streams, whereas they can also be used
in tandem with hardware-accelerated, spatial texture com-
pression formats. Decompression for both methods is very
fast to evaluate and minimizes GPU memory bandwidth
by only updating out-of-date and visible texture regions.
Our runtime rendering algorithm is very easy to integrate
due to its simplicity and uses prioritization heuristics to
control the number of active viewpoints, and by extension,
the performance versus quality tradeoff.

In the example scenes, we have purposefully not used
offline-rendered images containing camera effects such as
depth of field and motion blur or participating media and
other volumetric effects. Our method uses images capturing
a single depth value per pixel, so there is a direct mapping
of depth pixels to color pixels. As such, reconstruction using
imagery with such effects would result in artifacts. In further
work, we plan to add support for camera effects, such as
depth of field and motion blur, as runtime components.

In the future, we would like to improve support for thin
geometry, volumetric effects and transparency. We would
also like to improve the spatial adaptivity of the com-
pression codecs by using a subdivision scheme such as a
quadtree. Hardware texture decompression informed by our
scheme could reveal a much higher performance towards
ultra high resolution VR.

ACKNOWLEDGMENTS

The authors would like to thank Maurizio Nitti for the Robot
scene, Llogari Casas for the Pirate model, Fraser Rothnie
and Desislava Markova for their work on the modified
Sponza scene, as well as Evan Goldberg for providing the
ReflectionRefractionBox scene. They are also thankful for
the insightful feedback provided by the anonymous review-
ers. This work was funded by InnovateUK project #102684.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 14

Fig. 12: Comparison of using view-dependent effect extension or not on reflective and refractive geometry. Top left: View
of a reflective and a refractive sphere. Top right: Scene panorama. We show reconstruction of the reflective (rows 2 and 3)
and refractive (rows 4 and 5) spheres, using the standard reconstruction algorithm (rows 2 and 4) and the extension for
view-dependent effects rendering (rows 3 and 5). For the reconstruction images, the camera starts at a viewpoint location
(1st column) and gradually moves towards another viewpoint (7th column). While both versions work equally well near
the viewpoint locations, the view-dependent effects method is clearly superior for in-between locations.

REFERENCES

[1] NVIDIA VIDEO CODEC SDK. https://developer.nvidia.com/
nvidia-video-codec-sdk.

[2] RGTC Texture Compression. https://www.khronos.org/registry/
OpenGL/extensions/ARB/ARB texture compression bptc.txt.

[3] RGTC Texture Compression. https://www.khronos.org/registry/
OpenGL/extensions/ARB/ARB texture compression rgtc.txt.

[4] E. H. Adelson and J. R. Bergen. The plenoptic function and the
elements of early vision. Vision and Modeling Group, Media Labo-
ratory, Massachusetts Institute of Technology, 1991.

[5] G. v. d. Bergen. Efficient collision detection of complex deformable
models using aabb trees. Journal of Graphics Tools, 2(4):1–13, 1997.

[6] H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and M. Gross.
Iterative image warping. In Computer graphics forum, volume 31,
pages 237–246. Wiley Online Library, 2012.

[7] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Cal-
abrese, H. Hoppe, A. Kirk, and S. Sullivan. High-quality stream-
able free-viewpoint video. ACM Transactions on Graphics (TOG),
34(4):69, 2015.

[8] L. Dabala, M. Ziegler, P. Didyk, F. Zilly, J. Keinert, K. Myszkowski,
H.-P. Seidel, P. Rokita, and T. Ritschel. Efficient Multi-image Cor-
respondences for On-line Light Field Video Processing. Computer
Graphics Forum, 2016.

[9] S. Donow. Light probe selection algorithms for real-time rendering
of light fields, 2016.

[10] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The
lumigraph. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 43–54. ACM, 1996.

[11] J. Hooker. Volumetric Global Illumination at Treyarch. In Advances
in Real-Time Rendering Part I Course, SIGGRAPH ’16, New York,
NY, USA, 2016. ACM.

[12] K. I. Iourcha, K. S. Nayak, and Z. Hong. System and method
for fixed-rate block-based image compression with inferred pixel
values, Sept. 21 1999. US Patent 5,956,431.

[13] Y. J. Jeong, H. S. Chang, Y. H. Cho, D. Nam, and C.-C. J. Kuo. Effi-
cient direct light field rendering for autostereoscopic 3d displays.
SID, 2015.

[14] J. T. Kajiya. The rendering equation. In ACM Siggraph Computer
Graphics, volume 20, pages 143–150. ACM, 1986.

[15] C. Kim, K. Subr, K. Mitchell, A. Sorkine-Hornung, and M. Gross.
Online view sampling for estimating depth from light fields. In
Image Processing (ICIP), 2015 IEEE International Conference on, pages
1155–1159. IEEE, 2015.

[16] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. H.
Gross. Scene reconstruction from high spatio-angular resolution
light fields. ACM Trans. Graph., 32(4):73–1, 2013.

[17] B. Koniaris, I. Huerta, M. Kosek, K. Darragh, C. Malleson, J. Jam-
rozy, N. Swafford, J. Guitian, B. Moon, A. Israr, S. Andrews, and
K. Mitchell. Iridium: immersive rendered interactive deep media.
In ACM SIGGRAPH 2016 VR Village, page 11. ACM, 2016.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2818156, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YEAR 15

[18] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan,
A. Wolman, and J. Flinn. Outatime: Using speculation to enable
low-latency continuous interaction for mobile cloud gaming. In
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, pages 151–165. ACM, 2015.

[19] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques, pages 31–42. ACM, 1996.

[20] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke. Real-
time global illumination using precomputed light field probes. In
Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, page 2. ACM, 2017.

[21] P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Mueller, P. de With,
and T. Wiegand. The effects of multiview depth video compression
on multiview rendering. Signal Processing: Image Communication,
24(1):73–88, 2009.

[22] P. Merkle, K. Muller, A. Smolic, and T. Wiegand. Efficient com-
pression of multi-view video exploiting inter-view dependencies
based on h. 264/mpeg4-avc. In 2006 IEEE International Conference
on Multimedia and Expo, pages 1717–1720. IEEE, 2006.

[23] P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Multi-view video
plus depth representation and coding. In 2007 IEEE International
Conference on Image Processing, volume 1, pages I–201. IEEE, 2007.

[24] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adap-
tive scalable texture compression. In Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on High-Performance Graphics,
pages 105–114. Eurographics Association, 2012.

[25] B. Reinert, J. Kopf, T. Ritschel, C. Eduardo, D. Chu, and H. Sei-
del. Proxy-guided image-based rendering for mobile devices. In
Computer Graphics Forum: the international journal of the Eurographics
Association, volume 35, 2016.

[26] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruction
algorithms. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 1, pages 519–528.
IEEE, 2006.

[27] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Premecz. Approx-
imate Ray-Tracing on the GPU with Distance Impostors. Computer
Graphics Forum, 2005.

[28] G. Valenzise, F. De Simone, P. Lauga, and F. Dufaux. Performance
evaluation of objective quality metrics for hdr image compression.
In SPIE Optical Engineering+ Applications, pages 92170C–92170C.
International Society for Optics and Photonics, 2014.

[29] A. Vlachos. Advanced vr rendering performance. Game Develop-
ers Conference 2016, 2016.

Babis Koniaris is currently a software engineer at the University of
Edinburgh. He received his EngD in Digital Media from the University
of Bath. His research focuses on real-time algorithms for a variety of
domains, such as rendering, compression and parameterization.

Malgorzata Kosek is a digital artist with an MSc in Philosophy and
Formal Logic and a fine arts background, currently working at Disney
Research and as a lecturer at Edinburgh Napier University. Her passion
lies in character design, concept art, and traditional oil painting.

David Sinclair is a software engineer with a background in Mathemat-
ics, currently working at Disney Research as a Lab Coordinator. He has
interests in scripting and automation, as well as Virtual and Augmented
Reality.

Professor Kenny Mitchell is head of Interactive Graphics at Disney
Research and chair of Game Technology at Edinburgh Napier University.
He has published in real-time topics of rendering, vision and visual-
isation, and is organiser of many international conferences, including
papers co-chair CVMP 2016 and papers co-chair of ACM I3D 2018.

