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Abstract

Advances in high-throughput imaging allow researchers to collect three-dimensional images of 

whole organ microvascular networks. These extremely large images contain networks that are 

highly complex, time consuming to segment, and difficult to visualize. In this paper, we present a 

framework for segmenting and visualizing vascular networks from terabyte-sized three-

dimensional images collected using high-throughput microscopy. While these images require 

terabytes of storage, the volume devoted to the fiber network is ≈ 4 percent of the total volume 

size. While the networks themselves are sparse, they are tremendously complex, interconnected, 

and vary widely in diameter. We describe a parallel GPU-based predictor-corrector method for 

tracing filaments that is robust to noise and sampling errors common in these data sets. We also 

propose a number of visualization techniques designed to convey the complex statistical 

descriptions of fibers across large tissue sections—including commonly studied microvascular 

characteristics, such as orientation and volume.
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1 INTRODUCTION

FIBERS and filaments, often connected into large networks, are frequently encountered in 

biomedicine. Examples include microvascular vessels, or microvessels, that are visible using 

magnetic resonance angiography (MRA) [1] or computed tomography angiography (CTA) 

[2]. Microvascular networks, formed by complex interconnected microvessels, play a key 

role in brain tissue function [3], [4]. Microvascular structures are also commonly studied in 

cancer, where tumors emit signaling proteins that encourage microvessel growth [5]. The 

important role of microvessels in disease makes them a strong target for clinical intervention 

[6]. However, researchers and clinicians do not fully understand the characteristics of 

microvascular networks and how they can be used to diagnose disease or quantify treatment.

Recent advances in high-throughput microscopy, such as Knife-Edge Scanning Microscopy 

(KESM) [7], allow fast acquisition of large, terabyte sized data sets at microscopic 

resolution [8], [9] for understanding complex microvascular structures. The resulting images 

are terabytes in size and challenging to reconstruct, since they are extremely thin and 

tortuous. The shear volume of data demands efficient, automated, and scalable algorithms 

that are robust to noise and can be run in a medical and research setting. However, the highly 

interconnected nature of these networks makes the development of a robust segmentation 

framework challenging. Existing methods [10], [11], [12] typically involve constant user 

intervention during the fiber segmentation, which greatly limits their scalability. This paper 

attempts to address this scalability issue while improving the segmentation accuracy.

Once the microvascular networks are extracted, visualizing and interpreting their complex 

structure is necessary for experts to diagnose and compare networks. Among many 

characteristics, the anisotropy property of features in structures, composed of filament data, 

is of particular interest to domain specialists. Pathologists, for example, can use anisotropy 

measures in microvascular data to quantify and categorize structural changes due to the 

development of certain diseases such as Alzheimer’s (Fig. 2). However, due to the space 

filling and highly interconnected nature of the networks, it is nearly impossible to parse the 

anisotropy property of certain characteristics of the networks from the conventional 

visualization techniques, such as the direct volume rendering as shown in Fig. 3. In 

particular, it is difficult to answer questions regarding anisotropic features, including

• What is the general direction of the fibers in this region?

• Are the fibers in this region homogeneous or heterogeneous in nature?

• Are these two regions the same in terms of the fibers in them?

These questions are difficult to answer because visually human eyes tend to focus on outliers 

and attribute more importance to them than to other parts of the visualization that may be 

more important. In the case of microvascular data, this is demonstrated in Fig. 3 where the 

thick fibers might be given higher importance, when in reality the thinner fibers are more in 

numbers and contribute more to blood flow in the closed system. This reduces an expert’s 

ability to quantitatively distinguish and compare densely connected networks. Solving this 

issue is one of the primary motivators for this work.

Govyadinov et al. Page 2

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To address the above challenges, we present researchers and pathologists with a scalable 

framework to segment dense microvascular networks and to visualize important anisotropic 

characteristics of the extracted networks that can be used for analysis and comparison 

between regions in heterogeneous tissue samples. In particular, we make the following two 

major contributions in this work.

• We revisit the formulation of a template-based predictor-corrector algorithm [12] 

(Section 3) to optimize the segmentation algorithm by reducing the required 

number of samples (Section 3.2), and by introducing a novel and automated 

branch detection process (Section 4);

• We devise strategies to effectively visualize aggregated anisotropy information 

about the aforementioned segmented networks that are useful to experts (Section 

5). In particular, we employ the binning technique to aggregate a number of 

statistical information of the network so that glyphs can be applied to visualize 

this aggregated information in a concise form. Specifically, we describe the 

mathematical model for fitting 2nd-order symmetric tensors to the anisotropic 

directionality information to enable a visualization using superquadric tensor 

glyphs. In addition, we model the distribution of various statistics information of 

the fibers within a local region using the spherical harmonics, which enables us 

to visualize this high-order information using high-order glyphs. In this work, we 

focus on two primary metrics: flow-distance and flow-volume, where flow-
distance is based on the length of decomposed microvessels and in flow-volume 
the decomposed microvessels are weighted by their volume. For both metrics we 

assume the direction of flow to be ambiguous.

While we focus our implementation (see a publicly available link in the Appendix, which 

can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TVCG.2018.2818701) on microvascular data and demonstrate how our methods 

can be of use to pathologists and researchers interested in the effects of certain diseases, 

these methods and strategies can be adapted to other disciplines where cylindrical structures 

are common.

2 RELATED WORK

In this section, we will discuss current work in the areas of microvascular segmentation, 

specifically focusing on algorithms that are practical for terabyte-scale data sets. We will 

then discuss work in visualizing and characterizing network structures.

2.1 Network Segmentation and Fiber Tracking

Standard methods used to collect 3D images of microvascular networks rely on confocal 

microscopy [13], [14], which is generally limited to 200–300 mm thick sections. While 

more advanced techniques can alleviate depth constraints [15],[16], they do so at the 

expense of image acquisition time. In order to collect large volumes of tissue, our analysis is 

performed on data obtained using Knife-Edge Scanning Microscopy [7].
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Many algorithms are effective for the segmentation of MRA and CTA [17], where vessels 

are large (≈ 1 mm) and form tree-like structures. Traditional MRA and CTA images are also 

significantly smaller, making time-consuming pat-tern recognition algorithms more 

practical. Microvessels,on the other hand, are often ≈ 4 μm in diameter and no more than a 

few pixels in size. In addition, KESM data that contain miscrovessels are typically with 

terabyte size, which demands data-parallel approaches using GPU-based hard-ware to 

process [18].

A majority of algorithms focus on image pre-processing to isolate larger blood vessels [19], 

[20]. While multi-scale techniques can be used to accelerate this pre-processing, most 

microvessels have the same small diameter at or near the sampling rate, resulting in little 

improvement. Methods based on selecting threshold values, such as centerline detection [21] 

and thinning [22] work well on small, high-contrast data sets. For large-scale data sets, these 

thresholds tend to vary significantly and require iterative pixel-level processing. Such 

methods are also susceptible to artifacts. KESM offers relatively high signal-to-noise ratio 

(SNR), but the process suffers from barding, striping and staining arti-facts [12] as shown in 

Fig. 1. During segmentation these arti-facts are responsible for topological errors as well 

assignificant over-segmentation. Region growing approaches[23] are effective for 

segmenting vessel surfaces, but require a relatively complex initial surface which can be 

difficult to find in the complex topology of the network. Convolutional neural networks 

(CNN) are shown to be effective at dealing with sampling noise, dropped fibers and cyclical 

data [24]at the cost of extra time spent on training.

Template matching methods [10] are robust, at the high computational cost of matching 

templates with multiple ori-entations and scales, even if the majority of the voxels contain 

no relevant fiber information. Vector tracking methods[11] share some similarity to template 

matching, but rely on an underlying vector field to simulate particle advection for tracking 

fiber paths. The bottleneck in both cases is sampling, which becomes time-consuming for 

large data sets. GPU-based tracking methods offer a solution by parallelizing data fetches 

[12]. However, these methods require constant user-intervention in the form of (manual) 

seed-point selection. In practice, an automated approach is desired.

In this paper, we implement a robust GPU tracking algorithm that (a) significantly reduces 

the number of samples required in the previous work [12] and (b) uses prior information 

about network connectivity to eliminate the need for user intervention but allows the user to 

tune the algorithm to prioritize performance and/or accuracy.

2.2 Microvascular Morphology

Microvascular morphology varies significantly across organs and tissue types (Fig. 2). There 

is extensive research exploring the statistical and morphological variations in microvascular 

structures, most prominently in the brain [13], [14]. Models produced using images of 

microvasculature have been used to understand flow characteristics [25], [26]. This research 

plays a critical role in understanding the neurovascular unit, a biological concept that 

couples microvessels with surrounding neurons [27], [28]. These structures may have a 

significant effect on disease progression and are candidates for many translational treatments 

[29]. Microvasculature also plays an important role in tumor growth [30], where 
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antiangiogenic therapy is a critical component in treatment [31]. Finally, there is significant 

evidence for microvascular variation in neurodegenerative disease and psychiatric disorders 

[32], many of which can be used to quantify the effectiveness of treatment using 

pharmaceuticals [33].

2.3 Visualization

All of these afformentioned analyses rely on accurate characterization of microvascular 

networks, which are extremely difficult to quantify. This is primarily due to two factors: (a) 

limited ability to collect large volumes of data describing microvascular structures and (b) 

inability to explore how microvascular structures vary across multiple regions or samples. 

Visualization offers a tangible solution to help experts analyze and characterize these 

networks.

Standard visualization techniques (e.g., direct volume rendering and iso-surfacing) may be 

useful for understanding small volumes. For instance, direct volume rendering methods are 

useful for selective fiber visualization that focuses on visualizing culled and partial volumes 

(Fig. 2). Jeong et al. propose a similar method for segmentation and visualization of large 

tubular structures [34]. However, their method focuses on visualizing a few fibers. It is 

unclear whether their approach can provide a clear visualization of dense and highly 

interconnected networks, as we are dealing with in this work. In practice, volume rendering 

and iso-surfacing for the networks at the scale necessary to understand micro-vascular 

morphology are difficult to interpret (Fig. 3). Other methods have used the graph-like 

structure of networks in order to selectively visualize network features [35]. This allows raw 

volumetric data to be visualized using highly compressed structures, such as OpenVDB [36], 

[37] that build a correlation between the volumetric data and a connected graph.

Most of the aforementioned existing visualization techniques focus on the exploration of 

specific physical structures. In contrast, our goal in this work is to convey to researchers how 

the statistical properties of the sub-networks vary within a large heterogeneous 

microvascular network. We focus on using local functions, in the form of tensor fields and 

spherical harmonics, and glyphs to convey local, aggregated network characteristics. 

Ropinski et al. conduct a survey of glyph-based visualization techniques for bio-medical 

data [38], including diffusion tensor imaging, diffusion weighted MRI, and CT based data. 

In contrast, we focus on making use of the extensive work on glyph-based tensor 

visualization [39], [40], [41] to handle dense and complex microvascular networks in this 

work. We aim to demonstrate that these matured glyph-based techniques (e.g., superquadric 

glyph) for DTI data are equally useful for visualizing summarized vascular information and 

conveying the necessary information.

3 NETWORK TRACKING

We are given a 3D data set Γ(x, y, z) ∈ ℝ representing a grayscale image with an intensity 

difference between pixels that lie inside Ii  and outside Io  of the network. We assume that 

the network is highly connected, i.e., any given volume contains very few disconnected 

components. Reconstructing the network from Γ requires:
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• tracing one filament given a seed location

• identifying points where filaments branch or connect

• generating new seed locations as necessary

Given an initial seed point, we track the corresponding fiber using a predictor-corrector 

algorithm [11], which calculates the movement of a tracer along the filament path. Each 

tracer has the following properties:

1) position p ∈ ℝ3 on the network

2) estimated trajectory v ∈ ℝ3 of the fiber at p

3) estimated size s ∈ ℝ at p

Given a tracer τi = pi, vi, si  at any point on the network, we update the component values 

using a predictor-corrector algorithm to obtain τi + 1 (Algorithm 1). The tracer is initialized 

at a seed point i = 0 and terminates when a stopping condition is met. In order to optimize 

data look-ups, a GPU-based algorithm is used to parallelize memory fetches [12].

Algorithm 1.

Predictor-Corrector Algorithm Used to Segment a Single Microvessel

Require: (p0, v0, s0)

Ensure: a list P = [p0,...,pn]

    a list S = [s0,...,sn]

 i = 0

 while terminating conditions are not met do

  vi+1 = Predict (pi+1, vi, si)

  pi+1 = Correct (vi, si)

  si+1 = Fit (pi+1, vi+1)

  i = i + 1

 end while

 DetectBranches

In the following Section 3.1 we outline the mathematical model used for template matching. 

We then propose several modifications from previous algorithms to significantly reduce the 

number of required samples for cost function computation (Section 3.2). In Sections 3.3, 3.4, 

3.5, and 3.6 we describe the individual steps of our predictor-corrector algorithm. Finally, 

Section 4 describes our new, automated branch-detection method.

3.1 Template Matching

The center of any shape embedded in an implicit function Γ(x, y, z) can be found by 

specifying a cost function C based on the integral of absolute differences between the image 

Γ and a template function f  that matches the desired shape
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C(T) = ∫∫∫ |Γ(Tu) − f (u) |du, (1)

where

u =

ux
uy
uz
1

,

is a position vector in some pre-defined template space such that ui ∈ [ − 1, 1], and T ∈ ℝ4 × 4

is an augmented affine transformation matrix used to transform points from the template 

space to coordinates in Γ . Any arbitrary position, orientation, and/or scale can be evaluated 

by specifying T using a single template f. The optimal transformation matrix is found by 

minimizing the cost function

argmin
T

C(T) . (2)

This optimization will find a set of transformation matrices Ti such that

pi = Ti
−1

0
0
0
1

, (3)

where all pi lie at the medial axis of the network. Note that calculating T ∈ (R)4 × 4 directly is 

a high-dimensional (16-D), optimization, which is impractical for large images. In order to 

address this we isolate the optimization to the minimal template required to identify the 

shape.

3.2 Cost Function Sampling

The template function f is typically symmetric. In our work, we opt for a cylindrical 

template function symmetric about (and independent of) the z-axis

f (u) = f |u | where u =
ux

uy
. (4)

Thus, f depends only on the x and y components |u | = ux
2 + uy

2 (Fig. 4), resulting in the 

simplified cost function
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C(T) = ∫∫∫ |Γ(Tu) − f ux
2 + uy

2 |du . (5)

Consider a two-dimensional slice through the center of C at uy = 0 (Fig. 4a)

c T, ux, uz = Γ T

ux

0
uz

1

− f ux . (6)

If a symmetric fiber is aligned with f , the cost function can be approximated by integrating 

the volume of revolution

C(T) ≈ π∫ ux
2∫ |c T, ux, uz |duzdux . (7)

However, a single template cross-section is insufficient to guarantee that the central template 

coordinate lies at the fiber center, since any cylindrical cross section oriented along uz will 

produce a matching pattern (Fig. 4c). Two cross-sections are therefore required to ensure 

correct localization of the vessel center line, resulting in a pair of two-dimensional cost 

functions used to approximate the volumetric result (Fig. 4d)

C1(T) = ∫ ux
2∫ Γ T

ux

0
uz

1

− f |ux| duzdux (8)

C2(T) = ∫ uy
2∫ Γ T

0
uy

uz

1

− f |uy| duzduy (9)

C(T) ≈ π C1(T) + C2(T) . (10)

This allows us to approximate a cylindrical fit by minimizing two orthogonal 2D integrals, 

rather than a single 3D integral as is previously proposed [12]
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argmin
T

C1(T) + C2(T) . (11)

3.3 Predict—Estimate Fiber Orientation

Given a position pi and size si of tracer τi, an estimate of the fiber trajectory vi is calculated. 

To find the optimal direction vector vi, we choose a series of N unit vectors 

V = v1, v2, v3, …, vn] uniformly distributed within a solid angle θ [12].

For each vector vn ∈ V, we create a transformation matrix Tn that aligns the template 

function f  to the current tracer position pi, with size si and along the candidate orientation 

Vn . Evaluating the cost function (Equation (10)) for each candidate vector produces a set of 

corresponding cost values cn ∈ C, where i = mini ci ∈ C  corresponds to the direction vi of the 

tracer (Algorithm 1).

3.4 Correct—Estimate Fiber Medial Axis

Based on the position and orientation of the current tracer τi, an initial guess p′ of the next 

tracer position is estimated using Euler’s method

p′ = pi + Δτvi, (12)

where Δτ = δsi is the update step size (0 < δ < 1) . This position is then corrected by sampling 

a uniform set of N points pn on the plane orthogonal to vi and within distance si from p′ . A 

transformation matrix Tn is calculated for each candidate point pn using orientation vi and 

scale si. The point corresponding to the minimum cost value (Equation (10)) is used for the 

new tracer position pi + 1 (Algorithm 1).

3.5 Fit—Estimate Fiber Size

The final step adjusts the scale parameter of the tracer to obtain a better fit to the fiber. The 

new scale value si + 1 is estimated by sampling M uniformly with samples sm ∈ si ± δsi .

Corresponding transformation matrices Tm are generated using the position pi + 1 and 

orientation vi + 1 . After evaluating the cost function for all M samples, si + 1 is set to the scale 

value associated with the minimum (Algorithm 1).

3.6 Termination Conditions

The functions Predict(·), Correct(·), and Fit(·) (Algorithm 1) continue until one of four 

conditions is satisfied:
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1. C(T) > λ where λ is a maximum cost value allowed for a successful template 

match.

2. pi goes outside of the bounds of the image Г.

3. The tracer intersects a previously segmented filament.

4. If the size of the template changes too quickly over a short number of steps.

The most used termination conditions are (3) intersecting a previously traced vessel and (2) 

hitting the boundary of the traceable volume. Encountering the case where C(T) > λ is 

generally due to an image or tissue preparation artifact. In the case of India ink perfusion 

[42], this artifact may be a bubble in the dye or a burst vessel. If λ is properly calibrated, this 

condition is rarely triggered. This threshold will be much smaller than the maximum 

possible cost. For example λ ≪ 23 if both the image and template are normalized: 

Γ ∈ [0, 1] and f ∈ [0, 1].

Condition (3) for termination is critical for reconstructing network connectivity. 

Intersections are detected during tracing using a nearest-neighbor search. If an intersection is 

identified, tracing is terminated and the network connectivity is updated (see Appendix, 

available in the online supplemental material).

The last condition is used as a failsafe to stop segmentation in areas of poor staining, where 

the microvessel becomes indistinguishable from the background. In this case the FIT step 

will choose the largest size of the template to maximize the difference between the template 

and the sample. This signals that the algorithm has lost track of the microvessel, and the 

segmentation from the current seed point is then terminated.

4 BRANCH DETECTION

When a termination condition is satisfied, our algorithm automatically looks for potential 

seed points. This process is called branch detection. Note that there is no automatic branch 

detection in the previous method [12]. Since the network is highly connected, we expect 

candidates to be adjacent to the traced fiber defined by centerline P ∈ p0, …, pn  and radii 

S ∈ s0, …, sn , found by the Fit and Correct functions (Algorithm 1).

We first parametrize the surface surrounding the fiber as a 2D manifold R(t, θ) that forms a 

generalized cylinder around the centerline P, where the distance between pi ∈ P and the 

closest point on R is proportional to si (Fig. 5). We establish this parameterization by 

creating four continuous functions used to build a local, rotation minimizing Frenet frame 

using a quaternion to avoid orientation flips [43]:

• p(t): continuous centerline for the fiber

• d(t): local tangent to the centerline

• n(t): normal vector

• s (t) : radius of R
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The intensity value of any point on the surface R(t, θ) can be calculated using

R(t, θ) = Γ(x)
x = p(t) + v
v = s (t)[n(t)cosθ + n(t) × d(t)sinθ],

(13)

where x is the position of R(t, θ) in Γ and v is the surface normal of R. In our implementation 

p(t) and s (t) are piecewise linear functions generated from P and S, respectively using linear 

interpolation. The derivative function d(t) is calculated using finite differences along P. 

Finally, the normal n(t) is the result of a quaternion transformation from an initial arbitrary 

orientation n t0  perpendicular to d t0 . All functions are continuous along the interval 

t ∈ t0, t1 .

To find the locations of candidate seed points, we use Laplacian of Gaussian (LoG) blob 

detection by finding the local maxima of the separable convolution

argmax
t, θ

− R(t, θ) * 1
πσ4 1 − x2 + y2

2σ2 e
− x2 + y2

2σ2
. (14)

Candidate seed points are placed at the corresponding 3D location in Г (Equation (13)). The 

initial fiber direction v0 = v (Equation (13)) is the surface normal at R.

We implemented the above segmentation and network construction framework using GPUs. 

The implementation details of those critical steps, such as sampling, cost function evaluation 

and branch point detection are provided in the Appendix, available in the online 

supplemental material. A reference implementation (with source code) can be accessed via a 

link provided in the Appendix, available in the online supplemental material.

5 VISUALIZATION

After applying the above segmentation and network tracking algorithm to the input data, 

large and complex micro-vascular networks are obtained. As discussed earlier, direct volume 

rendering or iso-surfacing (Fig. 3) of such networks cannot effectively convey important 

biological information. To address that we instead focus on aggregating and visualizing 

multimodal statistical information regarding a number of important characteristics of 

microvascular networks, such as blood flow volume and vessel orientation. The following 

strategies also work on other statistical features important to biologists as long as they can 

be decomposed into a vector representation. We employ two strategies to generate the visual 

representation for the aggregated information. First, based on the extracted vessels and their 

directional information we fit a second-order symmetric positive definite (s.p.d) tensors, 

from which superquadric glyphs are constructed to convey the general trends of the vessel 

orientation. Second, we estimate the distribution of the directional information of the fibers 
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within a local region (e.g., a data block of the entire data set) using spherical histograms, 

based on which we fit a spherical harmonic function to create a glyph. This glyph enables 

the representation of the aggregated multimodal vessel characteristics represented by the 

shape and other statistics using a projected colormap on the glyph. Both strategies preserve 

the multimodality of the underlying distributions, a necessity for distinguishing between 

regions. In the following we provide more details on these two visualization strategies.

5.1 Anisotropic Statistics

Vessel orientation or directionality is of particular interest when attempting to differentiate 

two networks [44], or when creating artificial (synthesized) microvascular networks that are 

statistically similar to real tissues. Such an artificial microvasculature is important for 

understanding the physiological properties of red blood cells [45] and tissue fabrication [46]. 

Visualizing directionality information is a complex endeavor as the network cannot be 

represented by a continuous vector field (Fig. 3) and the local propagation trend is not 

clearly identifiable using volume rendering.

In order to extract the directional information, we decompose every vessel into a collection 

of vectors. Any given vessel P = p0, …, pn  can be decomposed into n − 1 segments, each of 

which is defined as pi−pi+1. Given this decomposition we are now able to analyze statistics 

associated with directional information. Flow volume, for example, is a scaling of the 

directional information relative to the size of the vessel. This can be quite unintuitive to 
visualize because the thicker vessels need not carry the larger flow since the 
microvasculature is much more dense.

To demonstrate the presence anisotropy, we bin each segment according to its direction in 

spherical coordinates (θ, ϕ) to create a spherical histogram. To account for ambiguous flow 

direction, each vector is binned along with it’s inverse. We project the resulting histogram 

onto the surface using both color mapping and deformation (Fig. 6).

The resulting histogram provides an overview of the orientation of microvessels. Many 

regions in normal tissue have highly oriented microvessels, while others are isotropic. The 

histogram also suggests that the orientation can be multimodal. Because of this 

heterogeneity and multimodality, researchers attempt to quantify vessel orientation in order 

to characterize tissue [13], generally using 1D angular histograms. In the following sections, 

we describe two strategies for visualizing this aggregated anisotropic information of the 

network, both of which employ the glyph representations to achieve an abstract visualization 

while using different mathematical models to map the anisotropic information to glyphs.

5.2 Superquadrics

The spherical histograms discussed in the previous section, while precise in visualizing the 

directional details of a single tissue section, are not particularly effective for larger 

heterogeneous samples where multiple histograms would be useful to capture the changing 

statistics. Spherical histogram representations only convey directional information and its 

visualization quality depends purely on perspective, while the surface deformations lack 

uniformity and consistency in shape (Fig. 6). The histogram’s ability to display 
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heterogeneity is achievable with glyphs, which are commonly used for tensor and vector 

field visualization. In what follows, we describe a glyph representation to convey the 

aggregated directional statistics within a local region. Our first strategy resorts to 

superquadrics to represent the above aggregated information. In particular, we place glyphs 

within the individual data blocks, which allows us to obtain an overview of fiber directions 

for a large heterogeneous data sets as well as their change due to locality.

In this work we chose to represent vessel flow-distance (G0) and flow-volume (G1), because 

they are generally considered both biologically useful for pathologist classifying blood 

vessel degenerative diseases, as well as neurological models used in fields, such as fMRI, 

and are difficult to characterize using traditional visualization methods. The local 

information for both of these quantities can be encoded in a tensor

G0 = 1
N − 1 ∑

di ∈ D
didi

T (15)

G1 = 1
N − 1 ∑

di ∈ D
didi

TV i (16)

Vi = π
3 |di| sn

2 + sn + 1
2 + snsn + 1 ,

where Vi is the volume of a frustum made from two circles of radius sn and sn+1. The flow-

volume tensor is similar to the flow-distance tensor, however thick microvessels have a 

significantly larger effect in this representation. Due to the nature of the superquadric 

representation we are still able to visualize sections of tissue with microvessels propagating 

in multiple directions.

For each cube of data we create a single tensor representation using the above formulation. 

Due to the symmetric nature of the problem, we only keep 6 of the 9 entries for each tensor 

in a cube. For tissue blocks composed of multiple sections we stitch the tensor 

representations into a rectilinear grid and export the resulting binary file for visualization 

using Amira [48]. The results of this visualization technique for a 2 × 9 × 1 grid of 5123 

pixels is shown in Fig. 7 with intermediate values being interpolated.

5.3 Spherical Harmonics

Superquadrics are well understood in visualization, however the statistical distributions of 

features like flow volume and flow direction are not clearly conveyed due to their 

multimodality. In order to achieve a visual representation of the mean and variance of these 

anisotropic features, we use spherical harmonics (SH) [49] to generate smoothed spherical 

functions capturing these distributions.
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To find a set of SH coefficients that best represents the overall directionality, we consider all 

of the decomposed vessels in a segmented region as a set of measurements 

Si ∈ S = s1, θ1, ϕ1 , s2, θ2, ϕ2 …, sN, θN, ϕN  where si scales the directional segments θi, ϕi

in spherical coordinates. Each scale si is weighted by the length of the segment described by 

θi, ϕi  and a weight wi which is calculated by

wi = ∑
j = 0

N Si • S j
( Si )( S j )

k
, (17)

where k is some scaling factor. The contribution of S j to wi is higher if S j and Si are parallel 

with a perpendicular vector contributing nothing. The model function is a spherical 

harmonic of order L given by

s(θ, ϕ) = ∑
i = 0

B − 1
ciyi(θ, ϕ), (18)

where B = L(L + 2) + 1. yi(θ, ϕ) is the formulation of spherical harmonic Y l
m functions of the 

order l and degree m.

In order to align the functions with the direction of the fibers we use the tesseral spherical 

harmonics. The real form is given by

yi(θ, ϕ) = yl(l + 1) + m(θ, ϕ) = yl
m(θ, ϕ) (19)

yl
m(θ, ϕ) =

ABPl
|m|cosθsin( |m |ϕ), if m < 0

APl
mcosθ, if m = 0

ABPl
mcosθcos(mϕ), if m > 0

A = (2l + 1)
4π

B = 2 (l − |m | )!
(l + |m | )! ,

(20)

where Pl
|m| is the associated Legendre polynomial. For the rest of the formulation we will be 

using the 1D index i = l(l + 1) + m . We define the least squares cost function as the difference 

between the model function s(θ, ϕ) and each sample sn as
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K(c) = ∑
n = 1

N
∑
i = 0

B − 1
ciyi θN, ϕN − sn

2
, (21)

where c ∈ ℝB − 1 . Note that the cost function K(c) is quadratic in terms of coefficients 

C ∈ ℝB − 1, meaning there is only one minimum in the first derivative. We minimize the cost 

function by setting the first derivative dk/dc to 0 and simplifying

∑
n = 1

N
y j θn, ϕn ∑

i = 0

B − 1
ciyi θn, ϕn = ∑

n = 1

N
snY j θn, ϕn . (22)

Equation (22) yields a linear system of equations that we can solve for all cj in c ∈ ℝB − 1 .
This solution represents the spherical harmonic that optimally fits the samples in S.

We used a Python implementation [50] to directly compute Y l
m as well as solve the linear 

system of equations. A large value of N provides higher accuracy, while a large value of L 

provides sharper features and a closer fit to the histograms as presented in Figs. 6b and 6d. 

However, this can result in overfitting, with a lobe around every sample if the number of 

samples is too small. The number of samples required to accurately model the underlying 

distribution increases exponentially as a factor of L, which is the main limitation of the 

algorithm. Aside from this limitation spherical harmonic glyphs offer all the same 

advantages as their superquadric counterparts, including interpolation. Typically for a 

network consisting of 50,000 samples, an appropriate choice for L is 100, i.e the degree of 

the spherical harmonic basis equaling to 9. The set S is typically composed of all the fibers 

in a particular segmentation blocks. The scaling factor k is chosen to be 200 in our 

simulations.

Since each individual harmonic is created for a smaller sub-volume composing a larger 

tissue section and the sub-volumes are uniformly spaced, we form a rectilinear grid. The 

colormaps in Fig. 8 are also calculated as a spherical harmonic. The volume of each fiber 

segment is calculated as a conical frustum and stored as a separate set of Ym
l  coefficients, 

meaning that each point in the rectilinear grid is composed of two spherical harmonics, one 

representing the shape of the glyph, another representing the colormap for that glyph. As 

described in Equation (20) each harmonic is stored as a set of coefficients multiplied by 

static functions, meaning that by storing the numerical coefficients we can interpolate 

between functions on our rectilinear grid. Since the colormap is an independent spherical 

harmonic, we can also interpolate between two color harmonics.

6 RESULTS AND DISCUSSION

In this section, we report the results of our segmentation and visualization framework, along 

with an expert evaluation (Section 6.1). To quantitatively assess performance, we report the 
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average timing of the segmentation process (Section 6.2) and study its accuracy (Section 

6.3) by comparing our method with the previous methods. Finally, we perform a parameter 

study to assess the stability of our algorithm, which provides users a guidance on selecting 

appropriate input parameters for their specific data (Section 6.4).

6.1 Evaluation

We have applied the proposed algorithms to several data sets visualized using superquadric 

(Fig. 7) and spherical (Fig. 8) glyphs, respectively. These results were submitted to domain 

experts for comments. The review process was composed of a short tutorial in which we 

explained the visualization mapping. The tutorial was composed of Fig. 9, demonstrating the 

resulting glyphs encoding the summarized characteristics for different microvascular 

networks. Following this explanation we allowed the experts to conduct their visual analysis 

without interference, and asked them specific questions regarding homogeneity and 

heterogeneity of the regions represented by our visualization. Each glyph was shown first 

without the accompanying maximum intensity projection (MIP) image. High resolution and 

low resolution MIP images were shown afterwards, allowing experts to validate their 

comments and to gain additional insights. Visualizations were shown in the following order:

1) Tutorial image (Fig. 9)

2) 200 × 3000 × 200 micron tissue section visualized using superquadrics (Figs. 7b 

and 7d)

3) the accompanying high and low-resolution maximum intensity projections (Figs. 

7a, 7c, and 7d)

4) a 200 × 3000 × 200 micro section visualized using spherical harmonic glyphs 

(Fig. 8c)

5) the MIP of the same region (Fig. 8b).

Using the superquadrics visualization (Fig. 7b), experts were able to easily discriminate 

between normal and transgenic mice, since the flow was “of a consistent orientation” in 

control animals. They were also able to ascertain that there were three regions represented in 

the brain: (1) caudoputamen (Fig. 7c-i), (2) white matter (Fig. 7c-ii), (3) and cortical surface 

(Fig. 7c-iii). In addition, the experts found that the “visual 744 flow could be used to select 
regions for further analysis and could be used to extract information about underlying 
structures,” such as in the caudoputamen. They were able to select regions of interest based 

on their homogeneity and heterogeneity. As for the MIP image (Fig. 7c), Expert 1 indicated 

that it was difficult to identify a predominant direction of the fibers due to the vascular 

density. The MIP images tend to draw the attention of the viewer to the large vessels, 

however, “seeing the large vessels is not as important since the majority of pathological 
vascular changes are associated with alterations in capillary structures in these models”. One 

limitation of both the MIP images and the superquadric glyphs indicated by our experts is 

that the quality of analysis was dependent on the view perspective that was presented.

When presented with the spherical glyph visualization (Fig. 8c), the experts noted that they 

preferred the spherical harmonic representation over the the superquadric approach. 

Specifically, spherical harmonics provided “a clearer visual representation of the 
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homogeneity and heterogeneity of the capillary structure, while showing the position of the 
larger vessels that exist perpendicular to the capillaries” than using superquadrics. The 

experts agreed that the “information represented by the superquadrics and spherical 
harmonics appears to be similar to the MIP images but that the spherical harmonics 
approach simplified the detection of microvascular heterogeneities, and offered clearer 
representation of vascular microvasculature flow”; however, both experts mentioned that 

they would need the MIP to provide more content for the analysis. After seeing the 

accompanying maximum intensity projection, one expert said that “with enough training it 
would be viable to analyze the data without the MIP”. They did, however, mention that it 

would be useful to have the superquadric visualization as “a supplement to the MIP”.

6.2 Timing

The algorithm performs well. Tables 1 and 2 provide the timing information of our 

segmentation algorithm tested on a section of tissue with 512 × 512 × 300 pixels in size 

containing fibers. Table 1 shows the breakdown of the performance on the individual steps 

of our algorithm, while Table 2 shows the averaged per fiber segmentation time over every 

fiber in a 3.7 Gb India Ink data set and a 6.7 Gb Thionin data set respectively. The total 

segmentation time of the India Ink data is 1.6 hours, and 2.8 hours for the Thionin data set. 

The time spent per cube is difficult to average since the actual performance depends on the 

number of fibers inside each individual volume rather than the size of the data. Hence, Table 

2 is a better representation of the timing. Compared to Mayerich’s approach [12], our new 

segmentation algorithm achieves about 50 percent speedup in total performance (Table 1), 

while our method is about 10x faster than Mayerich’s approach in the predict and correct 

steps and at least 3x faster in other steps (Table 2). The most time consuming stage of our 

segmentation is the collision detection. The amount of time spent on rendering the entire 

network to detect collisions increases as more fibers are segmented. This is due to the 

current collision detection framework implemented via OpenGL selection mode, which we 

plan to improve in the future.

6.3 Accuracy

To evaluate the accuracy of our method, we manually segmented the aforementioned test 

volume Г using a simple application we developed specifically for that purpose. The 

program allows a user to cycle through the image stack composing Г and click on the 

approximate center of each fiber at the location in the image stack. This process was used to 

segment every fiber and was repeated multiple times with differences in results merged in 

order to achieve complete accuracy. The resulting volume was rechecked again to make sure 

the tissue block was completely segmented. Connectivity information was ignored since the 

extracted point where one fiber merges with the other was often difficult to distinguish. The 

fiber was simply ended in the location where two fibers start merging, since this area is 

clearly distinguishable for every fiber merging, resulting in approximate connectivity 

information. This may cause a slightly higher False Positive Rate (FPR) error in areas where 

the fibers interconnect. The algorithm showed a high accuracy as compared to manual 

segmentation: 4.769 percent FPR and and False Negative Rate (FNR) of 8.054 percent. The 

FNR statistic is of significant importance as it shows where the algorithm fails to detect the 

fibers. The areas of error are generally located in the corners and the edges of the volume, 
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where fibers from adjacent volumes enter, but do not connect to the main network. Because 

each execution of our algorithm uses a single seed point, the algorithm will only find the 

interconnected fibers. Any fibers at the edge of the volume that enter and exit without 

connecting to the main bulk of fibers are invisible to the segmentation algorithm. This can be 

alleviated by adding multiple seed points, one for every fiber at the edge of the volume T 

using an LoG filter, a process similar to branch detection. The results in Fig. 10 show both 

the regions with high error that are heavily localized to the edge of the volume. We 

hypothesize that the majority of these can be removed by using multiple seeds.

Another source of error is due to bad staining. Regions of a poorly stained fibers that 

become indistinguishable from the background for a significant length cause the algorithm 

to terminate. While using the manual segmentation tool, the user can easily predict where 

the fiber is based on where it becomes indistinguishable and where it continues, in most 

cases this distance is only a few pixels in length, which is still enough for the algorithm to 

lose track. Such staining artifacts result in an inflation of the FNR ratio.

Our algorithm does miss some fibers that are not a result of border issues. These tend to be 

exceptionally small fibers interconnecting with thicker vessels. When the fiber has a large 

radius during the branch-detection phase, smaller interconnections on the surface of the 

larger fiber are lost due to under sampling. In most case, these lost fibers are handled when 

another fiber of similar radius connects with them at a different point. In cases when the 

prior condition is not met those fibers are lost permanently. Large fibers may occasionally 

cause errors, specifically around thick fibers where the tracer may segment the same large 

fiber multiple times and artificially creates a connection to a neighboring fiber of similar 

thickness (2). This can possibly be avoided by implementing collision detection using 

cylinders, instead of line segments. Mayerich et al., did not report accuracy in their work.

We performed the segmentation and timing using NVidia GTX 1080 GPU and an Intel i7–

5820K CPU and 32 GB of RAM under Ubuntu 16.04. During testing we found that the type 

of processor did not have an noticeable effect on the performance. RAM was also not the 

limiting fact since the majority of the memory allocation is isolated to the GPU. 

Additionally the algorithm was tested and timed on other GPU configurations including: 

NVidia GTX 1070, Nvidia Titan X, and Nvidia GeForce 700 with no noticeable 

performance difference. The choice for using the Nvidia GeForce 700 was to compare with 

the hardware available during the publication of the previous paper [12].

6.4 Parameter Study

In this section we study how various parameters in our algorithm affect the result on KESM 

data. As with Lagrangian particle advection, the most important parameter is Δτ, which in 

our implementation is set directly by tweaking the parameter δ. In our algorithm the 

parameter δ is constrained by 0 < δ ≤ 1. Values above 1 are not recommended as it would 

advance the tracer across regions of the data set that have not been sampled. While setting a 

smaller δ can increase the accuracy of the segmentation, it may lead to oversampling, hence 

adversely affecting the performance. We chose δ = 0.30 for all the tracing performed in this 

work, as it achieves a good trade-off between accuracy and performance.
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Another important parameter to consider is the sampling resolution (i.e., the size of the 

templates in terms of pixel resolution). This parameter has very little effect in the xy plane, 

but is important in the z plane (i.e., along the filament), especially for noisy data. A larger 

value provides smoother integration along the filament length, and therefore a higher 

accuracy in noisy data sets with the cost of more computation time on sampling and cost 

evaluation. We chose values that are multiples of 8 to maximize the occupancy in the 

CUDA-based cost evaluation (see Appendix, available in the online supplemental material, 

for more details). For high contrast data a parameter of 8 is often adequate. However, 

because the cost and evaluation processes of the algorithm are relatively cheap we found that 

using 16 px produced the best result, while values higher than 16 px did not result in a 

significant increase in accuracy for our KESM data sets, an example of which was shown in 

Fig. 3.

The last parameters that we studied are the numbers of templates for direction, correction 

and fitting. An advantage to using the predictor-corrector algorithm is the high tolerance for 

inaccuracies. Any error in the direction prediction is corrected during the later steps, for that 

reason the number of direction templates is generally kept high, while the number of 

correction templates is kept much lower. The cost on sampling is still relatively small 

compared to other stages of the algorithm, but in general we found that the ratio 1/0.5/0.25 

for Predict/Correct/Fit is most ideal for our data sets. One thing to keep in mind is the size of 

the texture that the GPU can handle. We tested values of 1,000, 500, 250 and 100, and we 

found that keeping the value of 250 was optimal for tracing the entire network. Setting larger 

values resulted in unnoticeable increase in accuracy, at the cost of oversampling and a slight 

decrease in performance.

The cost value is a user-selected parameter, but has no influence to the performance. This 

parameter needs to be tuned for every specific data set. The maximum value depends on the 

sampling resolution and the template type. For a uniform template of size 16 the maximum 

value is 256, considering that the sampled data is complete opposite of the template. For the 

KESM data set this algorithm was tested on the value between 190 and 200, and we chose 

198 for the best results. This value was used across the entire data set and not only the sub-

volume displayed previously. For glyph visualization we used 100,000 samples to create the 

spherical harmonics.

7 CONCLUSION AND FUTURE WORK

Our main goal is to provide an efficient network tracking framework to address the 

increasing abundance of large high-throughput microscopy data sets. We also present a 

number of glyph-based visualization techniques to represent the aggregated, biologically 

relevant information of the extracted network to aid the inspection and comparison of these 

complex networks. This is an important problem for researchers exploring the statistical and 

morphological variations in microvasculature, but lack the tools to do so efficiently. We 

apply our segmentation and visualization techniques to a large data set obtained using 

KESM to demonstrate their efficacy. Our aggregation strategies for generating glyphs using 

spherical harmonics, superquadrics and binning, present statistical information about large 

interconnected microvascular networks embedded in tissue. We show that our techniques are 
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robust enough to reduce the amount of visualized data without losing detail about local and 

global microvascular trends.

There are a number of limitations to the current approach. First, our framework is currently 

implemented using an OpenGL/CUDA inter-operability framework, which might not be 

optimal. We plan to further improve the performance by performing all sampling in CUDA 

or to explore the recent release of Vulkan by the Kronos group [51]. Second, our 

visualization strategies remove most information about the connectivity of individual 

microvessels, while the segmentation portion of our toolset retains connectivity information. 

In the future, we plan to use layout generation algorithm and clustering algorithms to enable 

the exploration of the networks as graph structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A cropped section of two different KESM data sets using different stains: India-Ink (a) and 

Thionin (b) collected using KESM. Poor staining can lead to a loss of fibers (blue), while 

striping can lead to over002dsegmentation (red), our algorithm was tested on both of these 

data sets.
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Fig. 2. 
Heterogeneity in microvessel structure. Examples of mouse microvessels stained using 

Collagen IV antibody, from age-matched wild-type (a) and 12-month-old APdE9 

(Alzheimer’s Disease) (AD) models (b). Close-ups show vessel sparsity and fragmentation 

(fr) in the AD model (c-d). Structural variations are also seen in different brain regions, 

including caudoputamen (e) and basolateral amygdaloid nucleus (f).
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Fig. 3. 
KESM image of a mouse brain (top left) shown as a maximum intensity projection over 

1,000 slices (top right). The total depth of the image stack is 7,000 slices. Traditional 

approaches rely on extracting a sub-volume (bottom left) to generate an iso-surface for 

visualization (bottom right). Here, color mapping is based on vessel radius. As the volume 

size increases, the visualization quickly becomes GB to interpret.
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Fig. 4. 
Simplification of 3D volumetric template matching to a 2D integral with a 1D template. (a) 

The entire template is shown, with the coordinates ux, uy, uz  given in a consistent template 

space. Cross-sections of the template are shown along the y(b) and x(c) axes. Note that the 

template at ux = 0 and uy = 0 are identical (d), while the template function itself can be 

expressed as a 1D function of distance from ux, uy = (0, 0) .
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Fig. 5. 
The vessel centerline (a) is used to define a 2D manifold R that takes the form of a 

generalized cylinder (b). This cylinder is unwrapped into a flat image R(t, θ) (c, bottom). 

Candidate seeds are found using LoG blob detection (c, top). These candidate seed points in 

(t, θ) are mapped back into Cartesian coordinates in Г. Their initial orientation v0 is given by 

the associated normal to R (red arrows). These serve as the starting state for candidate fibers.
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Fig. 6. 
The results of binning decomposed vessels and projecting them onto a sphere (left) as well 

as using them to create a surface (right). Color is mapped to the number of vectors in each 

bin. While using a large number of bins preserves details (a)-(b), aggregating the bins 

highlights any pattern present in the vessel decomposition (c)-(d). The ranges 

θ = [0, π] and ϕ = [0, 2π] are subdivided into 90 and 180 bins (top), respectively, and 

aggregated into 45 and 90 bins (bottom). In order to deal with the varying bin size we divide 

the contents of each bin by its calculated size (integral over the volume of the bin). Note the 

reduction in the number of artifacts as the bin size increases. All binning figures are 

symmetric since every vector and its inverse are binned, to account for ambiguous blood 

flow direction.
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Fig. 7. 
Result visualization from a large section of segmented tissue (inset-e) using superquadrics 

from several perspectives. The region is composed of multiple brain regions including 

caudoputamen (CP) (i), corpus colossum and supra-colossal white matter (ccb/scwm) (ii), 

and the cortical surface (iii). We present resampled data showing large vessels (a) and the 

actual data (c) visualized using MIP. Glyphs (b and d) show the directed volume of blood 

flow and are colored based on fractional anisotropy [47]. The volume tensor demonstrates 

the ability to extract larger trends present in the data, such as in region (2) (in (d)) where a 

color variation reveals the presence of a large central blood vessel, and perpendicular 

branching in the cortical tissue. This is further exemplified in CP (1) where a few large 

vessels heavily affect the shape of the glyphs. We note that in (2), the density of the vessels 

is much higher than in (1), which lessens the effects of large vessels. As seen by variations 

in glyph shape and size (b), superquadrics allow the user to visualize spatially varying trends 

in vascular orientation within the region.
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Fig. 8. 
Visualization of a large section of segmented tissue (e) using spherical harmonic (SH) 

glyphs from several perspectives. The visualized data covers multiple brain regions, 

including CP (i), ccb/scwm (ii), and the cortical surface (iii). We present resampled data 

showing large vessels (a) and the actual data (c) visualized using MIP. Glyphs (b and d) use 

two colormaps. (b) When the color map corresponds to the shape of the spherical function, 

the highlighted directions indicate the direction of longer vessels. (d) Alternatively, basing 

the colormap on vessel radius indicates the prominent directions of blood flow. In this case, 

the glyph shape and colormap indicate two different features: the glyph shape indicates 

vessel volume/direction, while the glyph color indicates vessel radius/direction. The size of 

the glyphs correlates with the density of the microvasculature in the region, as seen by the 

difference is density between regions (1) and (2). At the cost of complexity and size, SH 

glyphs are better than superquadrics at showing anisotropy and connectivity. The ccb/scwm 

(ii) is surrounded by smaller glyphs on the left and right, signifying a small amount of 

microvasculature connecting the structure to CP (i) and the cortical surface (iii), which is 

biologically true. Furthermore, the shape of the SH glyphs highlight the anisotropic 

characteristics of the microvascular network, such as in the cortical surface (2) where the 

vessels are more homogeneous in growth when compared the structure in region (1), where 

the vessels tend toward the y/z-plane, further supporting that the ccb/scwm structure is 

microvascularly separable from it’s neighbors in this area.
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Fig. 9. 
To demonstrate the viability of both the spherical harmonics and the superquadrics we 

display some cases of both used to represent small networks with only a few fibers (a, b, c). 

From top to bottom are length-direction superquadric, a spherical harmonic with an average 

radius color map and flow-volume superquadric superimposed over small number of 

segmented fibers (grey). We show two types of networks, a more homogeneous case (left) 

and a more heterogeneous case (right). The harmonic is generate with l = 8 and N = 100k. 

The network on the left contains fibers with relatively constant radii and the network on the 
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right contains fibers of varying radii. All three cases are presented at optimal viewing angles 

for demonstrating the shapes of the glyphs relative to the network. The color maps for such 

small network on the spherical harmonic surfaces tend to be quite sparse due to a smaller 

number of fibers. In these sparse cases they represent the actual direction of propagation of 

fibers. The volume and direction superquadrics are much better at representing the bi-

directional modality common in these mini-networks. The distinct difference between the 

volume (c) and the length (a) glyphs is a direct result of the presence of fibers with varying 

radii. This difference is a lot less prominent in a more homogeneous network.
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Fig. 10. 
A comparison of the manually traced network (left) and the predictor-corrector algorithm 

(right) using a single initial seedpoint. All brightly colored fibers on the left represent fibers 

present in the manual segmentation but absent in the predictor-corrector results contributing 

to the false-negative ratio (FNR), while bright fibers on the right are present in the 

automated segmentation but absent in the manual segmentation increasing the false positive 

ratio (FPR). Majority of the fibers found during manual segmentation are also present in the 

automatically segmented network. The major contributors to the FNR are the fibers on the 

edge of the network that are not connected to the central network.
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TABLE 1

Timing Breakdown of the Total Segmentation Time

Our
approach
(India Ink)

Mayerich’s
approach
(India Ink) [12]

Our
approach
(Thionin)

Total Time 16.975 s 30.462 s 20.323 s

Predict step 1.484 s unreported 0.869 s

Correct step 1.449 s unreported 0.858 s

Fit step 1.429 s unreported 0.807 s

Cost calculation 1.678 s unreported 3.340 s

Branch detection 0.507 s unreported 0.729 s

Collision detection 9.682 s unreported 13.720 s
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TABLE 2

Step Breakdown (Average Performance)

Our approach
(Nissl and India Ink)

Mayerich’s
approach [12]

Cost calculation 67.40 ns/step. 0.230 ms/step

Predict Step 0.123 ms/step. 1.248 ms/step

Correct Step 0.122 ms/step. 1.177 ms/step

Fit Step 0.121 ms/step. 0.994 ms/step
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