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Robust Non-Rigid Registration with Reweighted
Position and Transformation Sparsity

Kun Li, Member, IEEE, Jingyu Yang, Senior Member, IEEE,

Yu-Kun Lai, Member, IEEE, and Daoliang Guo

Abstract—Non-rigid registration is challenging because it is ill-posed with high degrees of freedom and is thus sensitive to noise and

outliers. We propose a robust non-rigid registration method using reweighted sparsities on position and transformation to estimate the

deformations between 3-D shapes. We formulate the energy function with position and transformation sparsity on both the data term

and the smoothness term, and define the smoothness constraint using local rigidity. The double sparsity based non-rigid registration

model is enhanced with a reweighting scheme, and solved by transferring the model into four alternately-optimized subproblems which

have exact solutions and guaranteed convergence. Experimental results on both public datasets and real scanned datasets show that

our method outperforms the state-of-the-art methods and is more robust to noise and outliers than conventional non-rigid registration

methods.

Index Terms—Non-rigid registration, noise and outliers, deformation, position sparsity, transformation sparsity

✦

1 INTRODUCTION

Non-rigid registration is an active research area in computer

graphics and computer vision [17], [24], [32], [37], and is a key

technique for dynamic 3-D reconstruction using a depth camera.

Commodity depth sensors, e.g., Microsoft Kinect, become cheaper

and more widely used, but depth images and reconstructed point

clouds captured by such devices contain much noise. Hence, non-

rigid registration methods robust to noise and outliers are highly

desirable to scan dynamic scenes with deformable objects.

Given two input 3-D shapes, one as the template shape

and the other as the target shape, non-rigid registration aims

to find a suitable transformation that when applied deforms the

template shape to be aligned with the target shape. Non-rigid

registration is often formulated as an optimization problem. Most

methods formulate some energy functional with both position and

transformation constraints. The position constraint measures the

closeness of the transformed template shape and the target shape,

and the transformation constraint measures the fitness to model,

which might include the smoothness, namely the total energy of

transformation differences of all the local neighbors. Most work

uses the classic squared ℓ2-norm in the position constraint and the

transformation constraint [21], [3], [33]. However, the quadratic

energy functional is more easily affected by noise and outliers. To

address this problem, Yang et al. [40] propose a sparse non-rigid

registration (SNR) method with an ℓ1-norm regularized model for

the transformation constraint. However, their position constraint

is still based on the ℓ2-norm. In practice, e.g. for near piece-wise

rigid deformation, which is common for real-world deformable

objects, the positional error tends to concentrate on small regions.

This cannot be modeled well using the ℓ2-norm.
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In this paper, we propose a non-rigid registration method with

sparsity-regularized position and transformation constraints. The

distribution of positional errors and transformation differences

for typical non-rigid deformation can be well modeled using the

Laplacian distribution, or equivalently, the ℓ1-norm should be

used to measure both the positional errors and transformation

differences. To promote the sparsity, we adopt a reweighted

sparse model, which is solved by the alternating direction method

of multipliers (ADMM). The proposed method is evaluated on

public datasets [10], [38] and real datasets captured by a RGB-

D depth sensor. The results demonstrate that the proposed method

obtains better results than the state-of-the-art non-rigid registration

methods.

The main contributions of this work are summarized as:

• We propose a non-rigid registration method on both po-

sition and transformation sparsity. The proposed model is

robust against outliers as the sparsity terms allow a small

fraction of regions with larger deviations.

• We incorporate orthogonality constraints in the sparsity-

inducing non-rigid registration framework to promote lo-

cally rigid transformations.

• We equip the proposed non-rigid registration model with

a reweighted scheme to iteratively enhance sparsity in the

series of alternating optimization subproblems.

2 RELATED WORK

3-D shape registration consists of rigid registration and non-rigid

registration. Rigid registration aims to find a global rigid-body

transformation, while non-rigid registration needs to find a set of

local transformations that align two shapes.

In rigid registration, the 3-D shapes are assumed to be aligned

by a Euclidean transformation, including rotation and translation.

Iterative Closest Point (ICP) and its variants [5] are the dominant

algorithms for rigid registration. This kind of methods alternates

between two steps: 1) finding closest points and 2) solving the

optimal transformation. As an improved method of ICP, Chen et
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(a) Source and target (b)        sparsity (c) Group sparsity

Figure 1. Normalized histograms and the associated fitted Laplacian and Gaussian distributions of positional errors measured in the ℓ1 norm (with
equal contribution from each dimension) (b) or with Euclidean distance (c) for Bouncing dataset (a). The graphs show proportion of correspondences
(y-axis in logarithmic scale) with specific positional errors (x-axis).

al. [12] minimize the shortest distance between a point in the

template and the tangent plane of the closest point on the target.

Pottmann et al. [28] propose a registration method with quadratic

convergence, which gives faster and more stable convergence

than the standard ICP [27]. Bouaziz et al. [8] propose a new

variant of the ICP algorithm, which uses sparsity-inducing norms

to represent the positional constraint and achieves better results for

the situation with noise and outliers. Their work focuses on rigid

registration with low degrees of freedom, and hence regularization

is not necessary.

When shapes have large deformations from template to target,

automatic non-rigid registration is necessary. It is more chal-

lenging due to its high degrees of freedom, and an appropriate

deformation model is the key for an efficient and robust algorithm.

Some methods compute global rigid transformations for bones

and local non-rigid transformations near joints, which is essen-

tially a piecewise rigid transformation model. Allen et al. [1] place

markers on the object to help reconstruct the pose of scan and use

it as a basis for modeling deformation. Pekelny et al. [26] use

predefined bone information to find bone transformations.

Some models take more generic deformations into considera-

tion. Chui et al. [14] use the thin-plate spline (TPS) as the non-

rigid transformation model. Papazov et al. [25] allow points to

move freely and use an additional uniform distribution to limit

noise and outliers, and propose an ordinary differential equation

(ODE) model. Local affine transformations [2] are also frequently

used in non-rigid registration. Liao et al. [22] use differential

coordinates as local affine transformations with smoothness con-

straints. Amberg et al. [3] use a stiffness term to ensure similarity

of adjacent transformations. Rouhani et al. [29] model non-rigid

deformation as an integration of locally rigid transformations. In

our work, we use local affine transformations with an orthogonal-

ity constraint as it allows more flexibility to capture fine surface

details while keeping local shapes.

Non-rigid registration is often formulated as an energy func-

tional with data and regularization terms. Most of the non-rigid

registration work models the data term in the ℓ2-norm in a least-

squares sense [34], [3].

Regularization terms help to preserve smoothness, making the

optimization more robust to noise and outliers, and ℓ2-norm is

also widely used in regularization terms. Süßmuth et al. [35] use

a generalized as-rigid-as-possible energy [33] to promote smooth-

ness. Liao et al. [22] define a transformation model using the

TPS [14], and use graduated assignment for non-rigid registration

and optimization. Wand et al. [39] take a set of time-varying point

data as input, and reconstruct a single shape and a deformation

field that fit the data. To improve robustness, Li et al. [21]

solve correspondences, confidence weights, and a deformation

field within a single optimization framework using ℓ2-norm. Their

method however requires adjacent frames to be sufficiently close

to work effectively. Hontani et al. [18] propose a statistical shape

model (SSM) which is incorporated into the nonrigid ICP (NICP),

and outliers can be detected based on their sparseness. Based on

the observation that many deformable objects, in particular human

bodies, have near articulated motions, Guo et al. [17] introduce

ℓ0 regularization for motions which provide more accurate and

robust tracking in dynamic 3D reconstruction. However, since

their method is based on a tracking pipeline, adjacent frames are

required to have high similarity. Moreover, their sparse regular-

ization is only applied to motions. Yang et al. [40] propose

a sparse non-rigid registration (SNR) method with an ℓ1-norm

regularized model for the smoothness. However, their ℓ2-norm

position constraint cannot model the concentration of positional

errors well.

Non-rigid registration is also related to and often an important

component in dynamic 3D (or 4D) reconstruction. Li et al. [20]

propose a pioneering solution to dynamic reconstruction from a

sequence of depth images captured by a single depth camera.

The method produces impressive results but requires to capture

the coarse 3D template of the deforming object. It also assumes

adjacent scans are reasonably close. More recently, the work [41]

achieves real-time reconstruction with GPU acceleration. How-

ever, the method still requires the complete template model to be

scanned in advance. To reconstruct dynamic 3D deforming objects

without a template prior is still challenging, and state-of-the-art

techniques such as [15] utilize multi-camera systems (24 cameras

producing 8 depth streams are used in [15]) to achieve real-time

4D performance capture. Our work considers general non-rigid

registration where scans can have substantial deformation and no

template prior is required.
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In this paper, based on the observation that the deformations

of 3-D surfaces vary smoothly and the positional distances and

transformation differences are sparse, we propose a non-rigid

registration method with sparse position and transformation con-

straints. The model is efficiently solved by the alternating direction

method under the augmented Lagrangian multiplier framework.

3 MOTIVATION

The data terms in previous shape registration models [17], [21],

[40] are quadratic, which implicitly assumes the Gaussian distri-

bution of positional errors. However, transformations in certain

common scenarios, such as articulated motion of humans, are

largely piecewise smooth signals residing on 3D surfaces, re-

sulting in larger positional errors for geometric details and joints

and smaller errors for the remaining surfaces. This suggests that

the positional errors are sparse, and should be modeled by a

heavy-tailed distribution, rather than being dense and modeled

by a rapidly vanishing Gaussian distribution. This is verified in

Fig. 1(b). We uniformly pick up 10% ground truth matchings

(vertices) as correspondences, and solve for the transformations

using the SNR method [40] which measures the positional errors

in the standard quadratic term to avoid bias towards the ℓ1-norm.

The Laplacian distribution fits the histogram of positional errors

significantly better than the Gaussian distribution, suggesting the

use of sparsity-promoting ℓ1-norm in the data term.

Let di = (x̃i, ỹi, z̃i) be the difference between the ith trans-

formed template vertex position and the position of its correspond-

ing target vertex. Our ℓ1-norm sparsity measures equally the sum

of coordinate differences in each dimension for all the correspond-

ing vertices (i.e., E1 =
∑
i

‖di‖1 =
∑
i

(|x̃i|+ |ỹi|+ |z̃i|)).
Another possibility is to use the sum of Euclidean distances (group

sparsity) between corresponding points (i.e., Eg =
∑
i

‖di‖2 =

∑
i

√
x̃2
i + ỹ2i + z̃2i ), which also well fits the distribution of posi-

tional errors as shown in Fig. 1(c). The group sparsity advocates

sparsity for each Euclidean distance as a whole, while the ℓ1-

norm allows a large distance along a particular dimension. In

this sense, ℓ1-norm is more flexible to preserve large non-rigid

deformation along some dimensions. Such an advantage is also

observed in the anisotropic total variation (TV) [16] that applies

the ℓ1-norm to the image gradient over the isotropic TV [30] that

measures TV as the sum of ℓ2-norm (not squared). Birkholz [6]

showed that anisotropic TV achieves better denoising performance

in preserving the geometries of corners in images. We choose the

ℓ1-norm to measure the positional errors for its potential flexibility,

and also for its easier and faster implementation with an element-

wise shrinkage (cf. Table 5 for statistics of running times).

In this paper, we make the assumption that the surfaces to

be registered undergo transformations which are near piecewise

smooth. This covers a broad range of practical scenarios ranging

from common (near) articulated deformations such as human

bodies to certain non-articulated deformations such as facial ex-

pressions. In such cases, substantial changes of transformations or

large registration errors occur in relatively local areas. Note that

our model does not require such consistency to satisfy entirely,

and can well cope with situations such as muscle bulge, change

of local shapes at joints, etc. Our assumptions also fit well with

inaccurate correspondences and sparse noise/outliers, as they also

induce sparse distributions of errors.

4 THE PROPOSED METHOD

4.1 Iterative Framework

We iteratively compute the deformation between the template

shape and the target shape. Each iteration consists of two steps.

In the first step, the correspondences between template and target

are estimated using the registration result obtained from the last

iteration. At the beginning of the iteration, we use a technique

based on local geometric similarity and diffusion pruning of

inconsistent correspondences [36] as it often provides reliable cor-

respondences. Alternative correspondence techniques or manual

specification of a few correspondences may instead be used (an

example is shown in Fig. 5). These computed correspondences are

used to initialize the correspondence mapping, referred to as f .

Then, during the iterative process, we update f by using the closest

points between template and target shapes to find additional

correspondences similar to ICP. In the second step (Sec. 4.2),

we propose an energy-minimization approach based on double

sparsity representation to estimate the non-rigid transformations

using the correspondences obtained from the first step.

4.2 Deformation Estimation

Let vi , [xi, yi, zi, 1]
⊤ be a 3D point in the homogenous

coordinates. Denote by V , {v1, · · · ,vN} a template set of

3D points and by U , {u1, · · · ,uM} a target set of 3D points,

where N and M are the numbers of points. Denote by uf(i) ∈ U
the correspondence of vi ∈ V . Define f : {1, · · · , N} 7→
{0, 1, · · · ,M} as the index mapping from the template points

to the target points, where f(i) = 0 means the corresponding

vertex cannot be found for the i-th vertex. Denote by Xi the 3×4
transformation matrix for point vi. Define X , {X1, · · · ,XN}
as the set of non-rigid transformations. For compact notation,

we define X , [X1, · · · ,XN ]
⊤

as a matrix containing the N

transformation matrices to be solved. The proposed method is to

find non-rigid transformations X that transform the template V
into the target U as accurately as possible, given a correspondence

mapping f .

The non-rigid registration is formulated as the minimization of

the following energy function:

E (X; f) = Edata (X; f)+αEsmooth (X)+βEorth (X) , (1)

where Edata (X), Esmooth (X) and Eorth (X) are data term,

smoothness term, and orthogonality constraint, respectively. α

and β adjust the importance of different terms. The data term

measures the position accuracy, the smoothness term imposes

a smoothness constraint so that the original ill-posed problem

(defined by only the data term) is now well-posed, and the

orthogonality constraint promotes locally rigid transformations,

which is particularly needed for underconstrained scenarios such

as partial meshes.

Data term: We measure the accuracy of deformation as the

closeness of the transformed points to their corresponding target

points. We assign a weight, denoted by wi, for each point. The

weight wi is one if there is a corresponding point on the target

shape for vi, and zero otherwise. Hence, we propose the following

data term

Edata (X; f) =
∑

vi∈V

wi

∥∥Xivi − ũf(i)

∥∥
1
, (2)

where ũf(i) is the Cartesian coordinate of uf(i).
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For the compact representation in algorithm derivation, we

define the following matrix/vector form of the variables to refor-

mulate data term (2):

W = diag (
√
w1, · · · ,

√
wN ) ,

V = diag
(
v⊤
1 , · · · ,v⊤

N

)
,

Ũf =
[
ũf(1) · · · ũf(N)

]⊤
,

(3)

where diag(·) is a diagonal matrix containing the input elements

as diagonal entities. Then, the data term can be rewritten as

Edata (X; f) =
∥∥∥W

(
VX− Ũf

)∥∥∥
1
. (4)

Smoothness term: In the smoothness term, local rigidity is as-

sumed: for vertex vi, the transformations of neighboring vertices

vj ∈ Ni should have very close transformed positions when

applied to vi. Therefore, we define the following smoothness term:

Esmooth (X) =
∑

vi∈V

∑

vj∈Ni

∥∥Xivi −Xjvi

∥∥
1
.

(5)

Define a graph G , (V, E), where the vertices of the graph

are the 3D points in V , and the edges of the graph are denoted

by E . For a 3D mesh, edges of the graph are simply defined by

the edges of the mesh; for 3D point clouds, edges can be defined

by connecting each vertex with its K-nearest neighbors (K is

typically set to 6). Denote the neighborhood of vertex vi by Ni,

and an edge eij is defined between each neighboring vertex vj

and vi. So, we have E = {eij | vj ∈ Ni,vi ∈ V}. Similar to the

data term, we define a differential matrix K ∈ {−1, 1}|E|×|V|

on the graph G for concise presentation. Concretely, each row of

K corresponds to an edge in E and each column corresponds to

a vertex in V . Each row in K has only two nonzero entries. For

example, assuming the rth row in K is associated with edge eij ,

then the entry related to the reference vertex vi is set at 1, while

the one related to the neighboring vertex vj is set at -1, i.e. kri = 1
and krj = −1. Let ki: denote the ith row of K. We introduce a

matrix B ∈ R|E|×4|V|, where the ith row of B is defined as

bi: := ki:⊗v⊤
i and ⊗ denotes the operator of Kronecker product.

Therefore, the cost of transformation smoothness is rewritten as

Esmooth (X) =
∥∥BX

∥∥
1
. (6)

Orthogonality constraint: Especially for partial meshes with large

motions, the problem may be underconstrained leading to large

distortions. In this case, the orthogonality constraint as defined

below is effective in better preserving local shapes and making the

solution more reasonable.

Eorth (X;Ri) =
N∑

i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0, (7)

where Ri is a 3 × 3 rotation matrix, and S =
[ 1 0 0 0
0 1 0 0
0 0 1 0

]
is a

constant 3× 4 matrix that extracts the rotation component of Xi.

det(Ri) > 0 ensures that Ri is a rotation matrix, not a reflection

matrix.

The final energy function has the following compact form with

matrix-vector notations:

min
X,Ri

∥∥∥W
(
VX− Ũf

)∥∥∥
1
+ α

∥∥BX
∥∥
1
+ β

N∑

i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0. (8)

Algorithm 1. Algorithm of reweighting non-rigid registration

1. Input: template V , target U .
2. While not converged do

3. Find correspondence mapping f (l) : V 7→ U ;

4. Update W
(l)
D and W

(l)
S acco. to (10) and (11), resp.

5. Solve transformations X(l) via Algorithm (2);
6. End while
7. Output: X

Algorithm 2. ADMM algorithm to solve (9)

1. Input: Ũ
f(l) ∈ RN×3, V ∈ RN×4N , B ∈ R|E|×4|V|;

2. Initialize: X(l,0) = X(l−1), Y
(0)
1 ,Y

(0)
2 = 0;

µ1, µ2 > 0, ρ1, ρ2 > 1;
3. While not converged do

4. Solve C(l,k+1) by (16);

5. Solve A(l,k+1) by (18);

6. Solve R
(l,k+1)
i by (19);

7. Solve X(l,k+1) by (21)∼(22);

8. Update µ
(k+1)
1 , and µ

(k+1)
2 according to (15);

9. Update Y
(k+1)
1 , and Y

(k+1)
2 according to (15);

10. End while

11. Output: X(l).

Reweighting: In a sparse representation, the gap between the

convex ℓ1-norm and the noncovex ℓ0-norm in measuring sparse-

ness could be filled by reweighting the ℓ1-norm [11]. To further

promote sparsity, both the data term and the smoothness term

are weighted, and the weighting matrices are updated at each

iteration of non-rigid registration. The weighted version of the

double sparsity model (8) is defined as follows:

min
X,Ri

∥∥∥WD

(
VX− Ũf

)∥∥∥
1
+ α

∥∥WSBX
∥∥
1
+ β

N∑

i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0. (9)

where WD and WS are diagonal weighting matrices for the data

term and smoothness term, respectively. The weighting matrices

are updated according to the ℓ1-norm of the corresponding entries.

For the data term, the weights are updated as

W
(l)
D (i, i) =





1
∥

∥

∥
X

(l−1)
i vi−ũ

(l)

f(i)

∥

∥

∥

1
+ǫD

, f(i) 6= 0,

0, f(i) = 0,
(10)

where l represents the index of iteration, ǫD is a constant to avoid

the division-by-zero issue, and is set as 0.01 in the experiments.

Similarly, the weights for the smoothness term are updated as

W
(l)
S (i, i) =

1∥∥∥X(l−1)
i vi −X

(l−1)
j vi

∥∥∥
1
+ ǫS

, (11)

where ǫS is a constant which is set as 0.01 in the experiments, and

the rth row of matrix BX is associated with edge eij between

vi and vj . The reweighting scheme is incorporated into the

iterative registration framework, which only slightly increases the

computation to calculate the weights. The reweighted ℓ1-norm is

also related to robust kernels [41] in suppressing the influence of

outliers, although we propose a different formulation that works

well in our sparse non-rigid registration framework.
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Figure 2. (a) Template (top) and target (bottom) shapes, (b)-(d): Compar-
ison results (top) and registration errors (bottom) of (b) ℓ2-norm method,
(c) SNR method [40] and (d) Our method on Cat dataset.

To solve the problem, we first transform the minimization (9)

into the following form with auxiliary variables A and C:

min
X,C,A,Ri

∥∥C
∥∥
1
+ α

∥∥A
∥∥
1
+ β

N∑

i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. C = WD

(
VX− Ũf

)
,

A = WSBX,RT
i Ri = I, det(Ri) > 0.

(12)

Then, we solve the constrained minimization (12) using the

augmented Lagrangian method (ALM) [4]. The ALM method

converts the original problem (12) to iterative minimization of

its augmented Lagrangian function:

L(X,C,A, {Ri},Y1,Y2, µ1, µ2) =
∥∥C
∥∥
1
+ α

∥∥A
∥∥
1

+
〈
Y1,C−WD

(
VX− Ũf

)〉

+
µ1

2

∥∥∥C−WD

(
VX− Ũf

)∥∥∥
2

F

+ 〈Y2,A−WSBX〉+ µ2

2

∥∥A−WSBX
∥∥2
F

+ β

N∑

i=1

∥∥SXi −Ri

∥∥2
F
,

s.t. RT
i Ri = I, det(Ri) > 0,

(13)

where (µ1, µ2) are positive constants, (Y1,Y2) are Lagrangian

multipliers, and 〈·, ·〉 denotes the inner product of two matrices

considered as long vectors. Under the standard ALM framework,

(Y1, Y2) and (µ1, µ2) can be efficiently updated. However,

each iteration has to solve A, C, {Ri} and X simultaneously,

which is difficult and computationally demanding. Hence, we

resort to the alternate direction method of multipliers (ADM) [9] to

optimize A, C, {Ri} and X separately at each iteration. Detailed

derivation of the ADMM algorithm is referred to Appendix A.

The iterative non-rigid registration with reweighting is summa-

rized in Algorithm 1, and the algorithm for minimizing the Eq. (9)

is summarized in Algorithm 2 (see the Appendix for the detailed

derivation).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

method on clean datasets (Section 5.1), noisy datasets (Section

5.2), and real scans (Section 5.3). Running times of our method

are reported in Section 5.4. All the experiments are performed on

a desktop computer with an Intel i5 3.2GHz CPU and 8GB RAM.

The numbers of inner and outer iterations of our method are both

set as 20.

Figure 3. (a) Template (top) and target (bottom) shapes, (b)-(d): Compar-
ison results (top) and registration errors (bottom) of (b) ℓ2-norm method,
(c) SNR method [40] and (d) Our method on Jumping dataset.

(a) (b) (c) (d)

Figure 4. Comparison results on Bouncing dataset: (a) Template and
target, (b) The method in [21], (c) SNR method [40], and (d) Our method.

Figure 5. Comparison results on Jumping dataset with 35 manually-
specified correspondences: (a) Given correspondences, (b) ℓ2-norm
method, (c) SNR method [40], and (d) Our method

5.1 Results on Clean Datasets

We evaluate the proposed method on two datasets: TOSCA high-

resolution dataset [10] and a human motion dataset [38]. Fig. 2 and

Fig. 3 give the registration results on a particular pair of cat and

jumping datasets, compared with the classic ℓ2-norm regularized

non-rigid ICP method and the SNR method [40]. The results

are shown as the overlap of the deformed template shape (blue)

and the target shape (gray) and the registration errors are color-

coded on the reconstructed mesh for visual inspection. Denote

gi as the ground-truth correspondence of vi. For a vertex vi,

the registration error is defined as ‖Xivi − gi‖22. The compared

classic ℓ2-norm based non-rigid ICP method [7] is formulated as
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Figure 6. Registration results on Jumping dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP + ℓ0-norm
method [17], (c) Diffusion pruning (DP) + ℓ0-norm method [17], (d) The SNR method [40], and (e) Our method.

(a) (b) (c) (d)

0

2.0

0.2

                

avg_error=0.1300

avg_error=0.0663

avg_error=0.3372

avg_error=0.1882

avg_error=0.0186

avg_error=0.0238

avg_error=0.0324

avg_error=0.0547

avg_error=0.0208

avg_error=0.0164

avg_error=0.0034

avg_error=0.0071

avg_error=0.0429

avg_error=0.0036

avg_error=0.0011

Figure 7. Registration results on TOSCA dataset: (a) Template and target, (b) Diffusion pruning (DP) + ℓ0-norm method [17], (c) The SNR method
[40], and (d) Our method.

optimizing:

min
X

∥∥W(VX− Ũf )
∥∥2
F
+ α

∥∥BX
∥∥2
F
. (14)

The smoothness constraint of this kind of methods is imposed

on the transformation differences. To ensure fair comparison, we

adjust the weight α until we get the most accurate registration

without loss of smoothness for each method. The result shows that

our method achieves the best results with less registration errors in

the areas with intensive deformations than the SNR method [40]

and the classic ℓ2-norm regularized non-rigid ICP method, such as

the tail of the cat and the wrinkles around the waist of the person

highlighted in rectangles.

We compare our method with a state-of-the-art non-rigid

registration method [21] in Fig. 4. Obvious registration errors

can be seen in the result of the method in [21], especially in

the right foot (top) and head (bottom), while the methods with
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0.1

0.05

0

(a) (b) (c) (d) (e) (f)

Figure 9. Comparison results with and without reweighting scheme on Bouncing dataset: (a) Template, (b) Target, (c) Registration result without
reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f) Registration errors
with reweighting scheme.

(a) (b) (c) (d)

0

0.2

0.08

Figure 10. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) ℓ2-norm method, (c)
SNR method [40] and (d) our method on Bouncing whole-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as
targets.

Figure 8. Fraction of correspondences within the error threshold. The
graph shows the fraction of correspondences (y-axis) within the error
threshold (x-axis).

sparse representation (SNR [40] and our method) achieve better

registration results. The method in [21] works effectively when

the template and target shapes are close so that good initial cor-

respondences can be obtained, but the pose changes substantially

in this example. Moreover, our result is more accurate and better-

distributed for the whole body than the SNR method [40], due to

the sparse constraint on the position.

To evaluate the robustness of the proposed method, we manu-

ally assign 35 correspondences on Jumping dataset, and compare

the result of our method with the SNR method [40] and the ℓ2-

regularized method. As shown in Fig. 5, our method achieves

the best result, especially around the places with substantial

deformation, e.g., the right knee.

We also compare our method with a state-of-the-art method

[17] that uses ℓ0 norm in Fig. 6. The code from the authors

is used. The original method [17] uses ICP correspondences.

When registering scans with large deformations, correspondences
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(a) (b) (c) (d)

0.2

0.08

0

Figure 11. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) ℓ2-norm method, (c)
SNR method [40] and (d) Our method on Bouncing part-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as
targets.

(a) (b) (c) (e)

0

0.3

0.15

(d)

Figure 12. Registration results on Bouncing whole-to-part dataset with deformation degree increases from top to bottom: (a) Template and target,
(b) ICP + ℓ0-norm method [17], (c) Diffusion pruning (DP) + ℓ0-norm method [17], (d) The SNR method [40], and (e) Our method.

derived from intrinsic geometric properties can be more effective.

To ensure fair comparison, we compare our method with two

versions of the ℓ0-norm method: ICP + ℓ0-norm method that

uses ICP to compute correspondences, and Diffusion pruning (DP)

+ ℓ0-norm method that computes correspondences using [36] as

initialization like our method. Fig. 6 gives the registration results

for three different degrees of deformation (increasing from top to

bottom). It can be seen that with moderate deformation (top row),

both variants of [17] work reasonably well. However, when the

deformation is large, the method fails to align the two surfaces,

resulting in large errors. On the contrary, our method achieves

more accurate results than the other methods. The quantitative
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0.1

0.05

0

(a) (b) (c) (d) (e)

Figure 13. Comparison results on Jumping dataset with partially incorrect correspondences: (a) Template and target, (b) SNR method [40] result
with one third SHOT correspondences, (c) Our method result with one third SHOT correspondences, (d) SNR method [40] result with all SHOT
correspondences, and (e) Our method result with all SHOT correspondences.

(a)

(b) (c) (d) (e) (f)

Figure 14. Comparison results on Bouncing with noise (σ = 0.3, 0.7, 1). (a) Template and target, (b) Curves of registration errors vs. normalized
noise levels, (c) Target with noise, (d) ℓ2-norm method, (e) SNR method [40], and (f) Our method.

evaluation (the mean of registration errors over all the vertices) is

shown in Table 1. While diffusion pruning helps reduce the errors

of [17] in most cases, our method has significantly smaller errors

than both variants and the SNR method [40].

Table 1
Quantitative evaluation for Fig. 6.

Mean Error
Deformation

ICP + ℓ0-norm DP + ℓ0-norm SNR Ours

Small 0.0148 0.0142 0.0121 0.0003

Median 0.1707 0.0371 0.0221 0.0023

Large 0.2011 0.2029 0.0247 0.0038

To more comprehensively evaluate the proposed method, we

test our method on five sets of shapes from the TOSCA high-

resolution dataset [10], compared with the Diffusion pruning

(DP) + ℓ0-norm method [17] and the SNR method [40]. The

initial correspondences are uniformly selected 5% ground-truth

correspondences. We test every pair of models in each set (treating

one as template and the other as target), and the quantitative

evaluation (the mean of registration errors over all the vertices

for all the models) is shown in Table 2. Some examples are given

in Fig. 7. The average errors are shown in the subfigures. Fig. 8

shows the fraction of correspondences (y-axis) within the error

threshold (x-axis) [19]. Our method (green curve) detects nearly

100% correct correspondences for a small threshold of 0.05. The

results show that our method achieves the most accurate and robust

non-rigid registration.

To evaluate the effectiveness of the proposed reweighting

scheme, we compare the registration results with and without

reweighting on Bouncing dataset in Fig. 9. The parameters ǫD

and ǫS are set as 0.01. As shown in the figure, the reweighting

scheme significantly improves the registration results.

We also evaluate our method on the harder whole-to-part and

part-to-part registration problems. Since the 3D models in the
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(b)

(a)

(c) (d) (e) (f)

Figure 15. Comparison results on Bouncing with 1%, 2%, 5% outliers. (a) Template and target, (b) Curves of registration errors vs. normalized noise
levels, (c) Target with noise, (d) ℓ2-norm method, (e) SNR method [40], and (f) Our method.

0.1

0.05

0

(a) (b) (c) (d) (e) (f)

Figure 16. Comparison results with and without reweighting scheme on Bouncing dataset with noise (σ = 1): (a) Template, (b) Target, (c)
Registration result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme,
and (f) Registration errors with reweighting scheme.

0.1

0.05

0

(a) (b) (c) (d) (e) (f)

Figure 17. Comparison results with and without reweighting scheme on Bouncing dataset with 50% outliers: (a) Template, (b) Target, (c) Registration
result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f)
Registration errors with reweighting scheme.

Table 2
Quantitative evaluation for five sets of shapes from the TOSCA dataset.

Method Cat Centaur Gorilla Horse Wolf

DP + ℓ0-norm 2.6366 0.7311 22.1740 6.6398 0.0545

SNR 0.0902 0.1799 5.364 0.0865 0.0359

Ours 0.0090 0.0297 0.5315 0.0089 0.0012

public dataset are complete, we obtain partial models by extracting

the visible part of each complete model with a virtual depth

camera rotating around the model, while keeping the ground truth

correspondences. Fig. 10 and Fig. 11 give the whole-to-part and

part-to-part registration results on the Bouncing dataset which has

a total of 172 models. We use a systematic approach that takes the

models at frames 1-86 as templates and the models at frames 87-

172 as targets such that frame t is registered to frame t+ 86. We

have compared the methods on all the models in this dataset, and

Fig. 10 and Fig. 11 show the registration results for 4 frames. The

mean of registration errors over all the vertices in the overlapping

regions for all the models in the entire dataset of ℓ2-norm method,

SNR method [40] and our method in the whole-to-part case are

0.0323, 0.0324 and 0.0262, respectively. The mean of registration

errors over all the vertices in the overlapping regions for all the

models in the entire dataset of ℓ2-norm method, SNR method [40],

and our method in the part-to-part case are 0.0380, 0.0381 and

0.0318, respectively. It can be seen that our method achieves the

best registration with the smallest errors among these methods. For

part-to-part registration, our method reduces errors by more than a

half, compared with state-of-the-art sparse non-rigid registration
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method [40]. We also compare with the ℓ0-norm method [17]

for the whole-to-part case in Fig. 12. The quantitative evaluation

(the mean of registration errors over the whole model) is shown

in Table 3. The ℓ0-norm method [17] has similar limitations to

handle large deformations, while our method gives more accurate

and robust results.

Table 3
Quantitative evaluation for Fig. 12.

Mean Error
Deformation

ICP + ℓ0-norm DP + ℓ0-norm SNR Ours

Small 0.0279 0.0275 0.0269 0.0261

Median 0.0413 0.0541 0.0249 0.0195

Large 0.3390 0.0977 0.0430 0.0284

5.2 Results on Noisy Datasets

1) Correspondences with partially incorrect matchings:

It is common to include incorrect correspondences using

established methods. We simulate this in two cases. In the first

case, we obtain two thirds of correspondences using diffusion

pruning [36] and the remaining one third using local geometric

feature matching based on SHOT signatures [31]. The majority

of correspondences from the former are correct while many

correspondences from the latter are incorrect due to the ambi-

guity of local features. In the second case, we generate all the

correspondences using SHOT signatures. Fig. 13 gives the results

for the two cases in a difficult situation which involves very

complex transformations from template to target. As shown in

the figure, our method is significantly more robust than the SNR

method [40] with respect to incorrect correspondences. The mean

of registration errors over all the vertices for the four cases in Fig.

13 (b-e) are 0.038, 0.012, 0.047, and 0.032, respectively.

2) Target shapes with noise or outliers:

In the first case, 3-D shapes of targets are polluted with dense

noise along the normal directions of the associated vertices. All the

target vertices are perturbed with Gaussian noise. The standard

deviation of the noise σ is normalized by l̄, where l̄ is the

average length of triangle edges on the associated target mesh,

and chosen in the range of [0.1, 1]. Fig. 14 gives the registration

results compared with the SNR method [40] and the ℓ2-norm

regularization method. The results show that our method is more

robust to noise, performing significantly better for models with

high noise levels.

In the second case, 3-D shapes of targets are polluted with

sparse outliers along the normal directions of the associated

vertices. Fig. 15 gives the results for the situations when 1%,

2%, 5% of target vertices are perturbed with Gaussian noise. The

results show that our method is more robust than the other two

methods, particularly for cases with larger proportion of outliers.

To evaluate the effectiveness of the proposed reweighting

scheme, we also compare the registration results with and without

reweighting for noise and outlier cases on Bouncing dataset in

Fig. 16 and Fig. 17. The parameters ǫD and ǫS are set as 0.01. The

standard deviation of the noise σ is set as 1, and the percentage of

outliers is set as 50%. It can be seen that the reweighting scheme

contributes significantly to improving the registration results for

the dataset with noise and outliers.

We compare the registration results with different parameter

settings for the reweighting scheme on Bouncing dataset with

50% outliers in Fig. 18 to evaluate the influence of the paremeters

ǫD and ǫS. To make experiments more tractable, we adjust both

parameters consistently (i.e. ǫD = ǫS = ǫ). It can be seen that

the best setting is 0.006 for this case, which has the smallest

registration errors. However, the performance is quite close, and

0.01 is a generally good choice (found in experiments).

0.1

0.05

0

(b) (c) (d)(a)

Figure 18. Comparison results with different parameter settings for the
reweighting scheme on Bouncing dataset with 50% outliers: (a) Curves
of registration errors vs. ǫ values, (b) Registration result with ǫ = 0.006,
(b) Registration result with ǫ = 0.01, and (d) Registration result with
ǫ = 0.05.

(a) (b) (c) (d)

Figure 19. Comparison results on Kinect datasets: (a) Template and
target, (b) ℓ2-norm method, (c) SNR method [40], and (d) Our method.

5.3 Results on Real Scans

Fig. 19 presents the results on real scans generated by Kinect Fu-

sion [23] using Kinect V2.0. The real scans are very challenging,

because they have much noise and a large number of outliers.

Moreover, each mesh is incomplete and the topology between

the template and the target is inconsistent. Hence, it is difficult

to obtain sufficient and reliable correspondences. The overlap of

the deformed template and the target shows that the ℓ2-norm

regularization method and the SNR method present misalignments

around the hands, arms and some other joints which have large

deformations, while the result of our method is well-distributed

and better registered.

We also compare our method with the ℓ0-norm method [17] on

the Kongfu dataset [17] in Fig. 20, where pairs of (non-adjacent)
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Figure 20. Registration results on Kongfu dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP + ℓ0-norm
method [17], (c) Diffusion pruning (DP) + ℓ0-norm method [17], (d) The SNR method [40], and (e) Our method.

(a) (c) (e)(b) (d)

Figure 21. Comparison results on Kinect datasets: (a) Base mesh and four partial color meshes, (b) Registered results of ℓ2-norm method, (c)
Registered results of SNR method [40], (d) Registered results of our method, and (e) Texture fusion results of our method.

frames with increasing degree of deformation are used as input.

Our method clearly outperforms both variants of [17], especially

for the hands where significant movements exist between scans.

The quantitative evaluation (the mean of registration errors over

the whole model) is shown in Table 4. Our method has the smallest

errors.

Table 4
Quantitative evaluation for Fig. 20.

Mean Error
Deformation

ICP + ℓ0-norm DP + ℓ0-norm SNR Ours

Small 0.0035 0.0035 0.0031 0.0033

Large 0.0039 0.0039 0.0033 0.0028

Fig. 21 gives an example of generating a complete color mesh

for a human head. A base mesh is scanned by Kinect Fusion using

Kinect V2.0, and four partial color meshes are registered to the

base mesh using our method. The textures are blended by solving

the Poisson equation over the surface of mesh [13]. As shown in

the figure, our method correctly registers the input view surfaces

with better registration than alternative methods, and successfully

generates a watertight color mesh.

5.4 Running times

We compare the running times of the proposed method with the

ℓ2-norm regularized method, SNR method, and group sparsity

method on Crane dataset. We downsample the meshes into smaller

meshes with 1K to 10K vertices. The number of NICP registration

iterations for each method is set as 20. The comparison results

are shown in Table 5. Our method has similar time complexity as

SNR.

Table 5
Comparison on running times

Num. vertices 1000 2000 5000 10000

ℓ2-norm 1.23s 3.51s 12.88s 29.78s

SNR 8.05s 17.36s 52.48s 119.06s

Group sparsity 7.39s 24.83s 59.96s 126.58s

Ours 7.17s 22.13s 55.68s 122.85s

6 CONCLUSIONS

This paper proposes a non-rigid registration method with

reweighted sparse position and transformation constraints. We

formulate the energy function with position and transformation

sparsity on both the data term and the smoothness term, and define

the smoothness constraint using local rigidity. The double sparsity

based non-rigid registration model is equipped with a reweighting

scheme, and solved by the alternating direction method under

the augmented Lagrangian multiplier framework which has exact

solutions and guaranteed convergence. Experimental results on

both public datasets and real scans show that our method provides

significantly improved results over alternative methods, especially

for more challenging cases, and is more robust to noise and

outliers.
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APPENDIX A

DERIVATION OF THE ADMM ALGORITHM

Under the ADMM framework, the augmented Lagrangian function

(13) is optimized with respect to the variables alternately, yielding

the following subproblems to optimize:





C(k+1) = argminC ‖C‖1
+
〈
Y

(k)
1 ,C−WD

(
VX(k) − Ũf

)〉

+
µ
(k)
1

2

∥∥∥C−WD

(
VX(k) − Ũf

)∥∥∥
2

F
,

A(k+1) = argminA α‖A‖1 +
〈
Y

(k)
2 ,A−WSBXk

〉

+
µ
(k)
2

2

∥∥∥A−WSBX(k)
∥∥∥
2

F
,

R
(k+1)
i = argminRi

β
∑N

i=1

∥∥∥SX(k)
i −Ri

∥∥∥
2

F

s.t. RT
i Ri = I, det(Ri) > 0

X(k+1) = argminX
〈
Y

(k)
1 ,C(k+1) −WD

(
VX− Ũf

)〉

+
µ
(k)
1

2

∥∥∥C(k+1) −WD

(
VX− Ũf

)∥∥∥
2

F

+
〈
Y

(k)
2 ,A(k+1) −WSBX

〉

+
µ
(k)
2

2

∥∥∥A(k+1) −WSBX

∥∥∥
2

F

+β
∑N

i=1

∥∥∥SXi −R
(k+1)
i

∥∥∥
2

F
,

Y
(k+1)
1 = Y

(k)
1 + µ

(k)
1

(
C(k+1) −WD

(
VX(k+1) − Ũf

))
,

Y
(k+1)
2 = Y

(k)
2 + µ

(k)
2

(
A(k+1) −WSBX(k+1)

)
,

µ
(k+1)
1 = ρ1µ

(k)
1 , ρ1 > 1,

µ
(k+1)
2 = ρ2µ

(k)
2 , ρ2 > 1.

(15)

The C-subproblem has the following closed solution:

C(k+1) =

shrink

(
WD

(
VX(k) − Ũf

)
− 1

µ
(k)
1

Y
(k)
1 ,

1

µ
(k)
1

)
,

(16)

where shrink(·,·) is the shrinkage function applied on the matrix

element-wise:

shrink (x, τ) = sign(x)max(|x| − τ, 0). (17)

The A-subproblem is solved in a similar way:

A(k+1) = shrink

(
WSBX(k) − 1

µ
(k)
2

Y
(k)
2 ,

α

µ
(k)
2

)
. (18)

The Ri-subproblem can be explicitly solved using Procrustes

projection:

(U,D,V⊤) = svd(SXk
i ),

Rk+1
i = UV⊤,

(19)

where svd(·) is the singular value decomposition. If the obtained

matrix has a negative determinant, take Ri with the opposite sign

to turn the matrix into a rotation matrix. This step is similar to [33]

for minimizing as-rigid-as-possible energy, although our overall

alternating optimization is different and more complicated.

Being quadratic, the X-subproblem can be readily solved by

using the first-order optimality condition:

(
µ
(k)
1 V⊤W⊤

D WDV + µ
(k)
2 B⊤W⊤

S WSB+ β

N∑

i=1

STS

)
X

= B⊤W⊤
S

(
Y

(k)
2 + µ

(k)
2 A(k+1)

)

+V⊤W⊤
D

(
Y

(k)
1 + µ

(k)
1

(
C(k+1) +WDŨf

))

+ β

N∑

i=1

STR
(k+1)
i .

(20)

However, the straightforward matrix inversion in solving (20) is

inefficient or even practically impossible for large-scale problems,

e.g., registration of tens of thousands of points. This can be

relieved by using the LDL decomposition:

(L,D) =

ldl

(
µ
(k)
1 V⊤W⊤

D WDV + µ
(k)
2 B⊤W⊤

S WSB+ β

N∑

i=1

STS

)
,

(21)

where L and D are the lower triangular matrix and the diagonal

matrix of the LDL decomposition. Then, the linear equations in

(20) is solved by solving the following much easier linear systems:

LQ = V⊤W⊤
D

(
Y

(k)
1 + µ

(k)
1

(
C(k+1) +WDŨf

))

+B⊤W⊤
S

(
Y(k) + µ

(k)
2 A(k+1)

)
+ β

N∑

i=1

STR
(k+1)
i

DZ = Q,

L⊤X = Z.

(22)
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animation from multi-view silhouettes. ACM Trans. Graph., 27(3):97,
2008.

[39] M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh, P. Jenke,
L. Guibas, H.-P. Seidel, and A. Schilling. Efficient reconstruction of
nonrigid shape and motion from real-time 3D scanner data. ACM Trans.

Graph., 28(2):15, 2009.
[40] J. Yang, K. Li, K. Li, and Y.-K. Lai. Sparse non-rigid registration of 3D

shapes. In Computer Graphics Forum, volume 34, pages 89–99, 2015.
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