
ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Continuous-Scale Kinetic Fluid Simulation
Wei Li, Kai Bai, and Xiaopei Liu

Abstract—Kinetic approaches, i.e., methods based on the lattice Boltzmann equations, have long been recognized as an appealing
alternative for solving incompressible Navier-Stokes equations in computational fluid dynamics. However, such approaches have not
been widely adopted in graphics mainly due to the underlying inaccuracy, instability and inflexibility. In this paper, we try to tackle these
problems in order to make kinetic approaches practical for graphical applications. To achieve more accurate and stable simulations, we
propose to employ the non-orthogonal central-moment-relaxation model, where we develop a novel adaptive relaxation method to
retain both stability and accuracy in turbulent flows. To achieve flexibility, we propose a novel continuous-scale formulation that enables
samples at arbitrary resolutions to easily communicate with each other in a more continuous sense and with loose geometrical
constraints, which allows efficient and adaptive sample construction to better match the physical scale. Such a capability directly leads
to an automatic sample construction which generates static and dynamic scales at initialization and during simulation, respectively.
This effectively makes our method suitable for simulating turbulent flows with arbitrary geometrical boundaries. Our simulation results
with applications to smoke animations show the benefits of our method, with comparisons for justification and verification.

Index Terms—multi-resolution fluid simulation, lattice Boltzmann model, adaptive refinement

F

1 INTRODUCTION

Fluid simulation in graphics has evolved for more than a
decade. Since the pioneering work of [1], fluid simulation
methods have been developed significantly, among which
directly solving the incompressible Navier-Stokes equations
(INSE) can be considered as the standard and very popular
approach to simulating fluid flows. However, under turbu-
lent conditions where the flow usually has small viscosity
and thus high Reynolds number, accurately resolving the
small-scale turbulence details in INSE effectively without
numerical diffusion becomes a great challenge. In order to
tackle this problem, different methods have been proposed
in the literature [2], [3], [4], [5], [6], [7], but usually at a cost
of more algorithmic and computational complexity. Some of
them [8], [9], [10], which are mainly based on noise models,
may not fully respect the underlying physics, making the
simulated results unnatural in some circumstances.

While a large number of methods have been proposed
to directly solve INSE, there exist other alternatives which
can bypass the difficulty of nonlinear advection and global
pressure solve in INSE, making the underlying solution
simpler and sometimes more accurate. One of these alterna-
tives is the kinetic approach based on the lattice Boltzmann
equations (LBE) [11]. Researchers from the computational
fluid dynamics (CFD) field are interested in such a method,
since it transforms INSE into a computationally easier set
of linear PDE system with a nonlinear source term, and
without any global pressure solve. In addition, it is usually
formulated by an explicit time evolution with a constant

• Wei Li, Kai Bai are both with the School of Information Science and Tech-
nology, ShanghaiTech University, and Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Science, Shanghai,
China, as well as University of Chinese Academy of Sciences.
E-mail: {liwei, baikai}@shanghaitech.edu.cn.

• Xiaopei Liu is with the School of Information Science and Technology,
ShanghaiTech University, Shanghai, China.
E-mail: liuxp@shanghaitech.edu.cn and aurorean.xp@gmail.com

• Corresponding author: Xiaopei Liu.

time step, which is much simpler to solve with only local
updating dynamics. This facilitates the development of a
simple and conservative numerical scheme based on LBE,
which is formulated as:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = Ωi(ρ,u), (1)

where fi is the i-th velocity distribution function associated
with the i-th lattice velocity ci; Ωi is the collision operator
designed to be conservative and important to approximate
INSE; ∆x = ∆t with proper ci should be strictly satis-
fied for stability (CFL=1, with CFL a number defined as
CFL=u∆t/∆x [12], where u is the flow speed; larger CFL
number indicates larger time stepping and faster simulation
over time); ρ and u are the macroscopic density and velocity
computed as ρ =

∑
i fi and u =

∑
i cifi/ρ. Eq. 1 is usually

accurate and stable in the incompressible limit (the entire
flow speed is small, e.g., 0.1, as compared to the speed of
sound cs = 1/

√
3 in normalized lattice units).

Solving fluid flows using LBE has several known advan-
tages. In addition to the benefits introduced before, the local
treatment of boundary conditions leads to effective simula-
tions with arbitrary geometrical boundaries and with effi-
cient implementations for parallelism. It is well known that
the stability and accuracy of Eq. 1 largely depends on the
modeling of Ωi, where traditionally the Bhatnagar-Gross-
Krook (BGK) [11] and multiple-relaxation-time (MRT) [13]
models were often used, but the inherent inaccuracy and in-
stability prevent their wide-spread use in graphics. Thuerey
et al. [14], [15] and Zhao et al. [16], [17] ever promoted the
use of LBE in graphics, but only for flows with moderate
Reynolds numbers. Liu et al. [18] and Guo et al. [19] also
proposed to use LBE for graphical applications, but with
more empirical approaches, resulting in less realistic results
in some circumstances.

In this paper, we aim to solve fluid flows using the
kinetic approach. However, to promote the practical use
of such an approach for graphical fluid flow simulations,
we need to improve the stability, accuracy and flexibility.

ar
X

iv
:1

80
7.

02
28

4v
1

 [
cs

.G
R

]
 6

 J
ul

 2
01

8

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

To achieve higher stability and accuracy, a more suitable
collision operator Ωi should be developed in order to
approximate INSE more closely and suppress ghost and
ringing artifacts more appropriately. To achieve computa-
tional flexibility, easy and more continuous adaptation of
sample resolutions should be achieved in order to resolve
the physical details during simulations. The solution to the
above problems form the core contributions of this paper:

• To significantly increase the stability and accuracy
over the traditional BGK and MRT models, we
employ a novel non-orthogonal central-moment-
relaxation (CMR) model for LBE [20], which has
higher convergence to INSE given appropriate relax-
ation parameters, and with simpler algebra. However,
like in MRT model, not all the relaxation parameters
can give satisfactory results for CMR model, and
determining the appropriate relaxation parameters is
crucial to retain turbulence details with both stability
and accuracy. With the observation that CMR model
conducts relaxations independently for different or-
ders of moments, and high-order moments influence
the turblence details significantly, we propose to de-
termine the high-order relaxation parameters adap-
tively according to the local velocity gradient in order
to produce stable yet accurate flows under turbulent
conditions, which makes the method practical for
graphical applications.

• On the other hand, traditional LBE simulations usu-
ally solve the fluid flows with a uniform lattice,
which is hard to adapt computations to spatially
and temporally varying physical details. Multi-block
approaches [15], [21] solve this problem by dividing
a large-scale cell into a multiple of integer small-
scale cells with strict geometrical alignment along
the scale boundary, which is not flexible and vio-
lates the continuous-scale nature of fluid flows, re-
sulting in undesirable discontinuous structures in
turbulent flows. In this work, we propose a novel
continuous-scale formulation, which allows samples
in arbitrary scales to communicate with each other
without strict spatial constraint, where mappings
and interpolations of distribution functions are prop-
erly handled. By “continuous-scale”, we mean that
the ratio between different scales could be arbitrary
rather than only integral. This immediately enables a
fully automatic scheme to first generate static scales
at initialization that transit more continuously based
on domain geometries and inlet positions, and then
refine the scales dynamically at runtime during the
simulation, which is particularly useful in boundary-
induced turbulent flow simulations.

To justify our arguments, we present the results by
applying our method to smoke simulations, where stable
solutions can be readily achieved with sufficient turbulence
details and over arbitrary geometries, see Fig. 1 for an exam-
ple of our simulated smoke passing through a turning tube,
where the boundary layer induces small vortices, and higher
resolution samples are placed along the tube boundary. Note
that in our approach, no turbulence nor noise models are

Fig. 1. Smoke simulation using our continuous-scale kinetic fluid simu-
lator. The smoke is injected from the inlet of the tube and follows the air
flow into the tube. The boundary of the tube generates chaotic smoke
turbulence patterns. Note that we can easily place higher resolution
samples along the tube boundary to have more accurate computations.
This example also demonstrates the capability of our method to simulate
flows under complex geometric boundaries.

used to resolve the fluid details. As a verification, our results
are compared to the existing methods for smoke simula-
tions [7], [22], [23], which suggest that more appropriate
visual details can be achieved with less number of samples
and with higher computational efficiency.

2 RELATED WORK

There are a vast number of research work on fluid sim-
ulations in graphics. Here, we summarize the works that
are quite related to our work on single-phase turbulent
flow simulations, and ignore those that deal with multi-
phase flows. In addition, we categorize the related methods
into direct approaches where INSE is directly solved, and
indirect approaches where other equations are solved in
order to approximate the solution of INSE.

2.1 Direct approach
To solve INSE directly, Stam [1] proposed the uncondi-
tionally stable semi-Lagrangian advection scheme, with
the major drawback of excessive numerical diffusion. To
overcome such a problem, many different algorithms have
been proposed. Vorticity confinement [8], [24] was the early
attempt to add fluid details by artificial force, which was
later extended by noise-based approaches [9], [10] where the
Kolmogorov energy spectrum is respected. To have better
results around object boundary, turbulence models [4], [25]
and pre-computed artificial boundary layer method [26]
were proposed. However, all of these methods do not
fully respect the underlying physics, making the simulation
sometimes not realistic.

To preserve fluid details without artificial modeling,
different classes of methods were proposed. One class of
such methods try to increase the accuracy of non-linear
advection where BFECC [27] , MacCormack [22] and high-
order WENO schemes [28] , as well as improved high-
order constrained interpolation profile (CIP) methods [10],
[29] were used. Heo and Ko [30] combined polynomial
representation with a high-order re-initialization method to
preserve detailed structures of the fluid interface. However,
the more widely-adopted approach is the hybrid method
where advection is solved using particles while pressure

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

and other parts are solved using grids [31], [32]. Jiang et
al. [33] presented a novel technique to preserve linear and
angular momentum in the hybrid approach in order to
better resolve the details. Such a technique has later been
extended to a more generalized local function to greatly
improve the energy and vorticity conservation [34]. Vortex
methods are also appealing to preserve fluid details [35],
[36]. Vortex filaments [5] and vortex sheets [6], [37] are both
effective ways to solve for turbulent flows with reduced
computation. To improve the efficiency for solving Poisson
equation, Zhang and Bridson [38] proposed a hybrid PPPM
algorithm. More recently, Zhang et al. [7] proposed the
IVOCK scheme to preserve more turbulence details based
on the velocity correction from the vorticity equation.

In addition to the above methods, adaptive ap-
proaches [2], [39], [40] try to put more computations on fine
structures to capture flow details. Zhu et al. [41] presented
an adaptive grid to create a far-field coarse grid with fine
grid at the focus of the simulation. Setaluri et al. [42]
introduced a new data structure for adaptive grids with
compact storage and efficient stream processing . Recently,
Zhang et al. [23] proposed an adaptive particle-grid scheme
to capture boundary layer dynamics more accurately.

There are also many Lagrangian particle solvers for
INSE, which are mainly based on smoothed particle hydro-
dynamics (SPH), and are naturally spatially adaptive, e.g.,
Becker [43] presented a weakly compressible form of the
SPH method for fluid flows based on the Tait equation; So-
lenthaler [44] presented a novel incompressible SPH method
for fluid simulations based on prediction-correction scheme;
Ihmsen [45] proposed a novel formulation of the projection
method for SPH; and Winchenbach [46] introduced a novel
method for adaptive incompressible SPH simulations.

Another new approach to solving INSE is the data-
driven approach based on machine learning [47], [48], which
can produce fast solutions, but the results may contain
unexpected artifacts.

Compared to the existing approaches above, our method
does not solve the INSE directly, which overcomes the diffi-
culty of handling nonlinear advection and global pressure
solve with sufficient accuracy and stability. More impor-
tantly, we propose an efficient adaptive scale refinement
formulation, which allows continuous-scale construction
with loose geometrical constraint. This facilitates flexible
and more efficient simulations.

2.2 Indirect approach

INSE can also be solved indirectly by other model equations,
among which the kinetic approach based on LBE is one
alternative. The early work of LBE-based approach was
pioneered by BGK model [11]. To improve stability and
accuracy, MRT model [13] was proposed. However, the most
significant progress for LBE modeling is the cascaded model
with central-moment relaxation [49], [50]. Very recently,
De Rosis [20] proposed a non-orthogonal central-moment-
relaxation model with simple algebra. Turbulence models,
on the other hand, can also be used to stabilize LBE and
retain fluid details especially in coarse grid simulations [51],
[52], but may introduce numerical artifacts. In this paper,
we employ the non-orthogonal central-moment relaxation

Fig. 2. The lattice structure (D3Q27) used in our 3D kinetic fluid simula-
tions, where ci is the discretized microscopic velocity. Note that each fi
is associated with a corresponding ci.

model, but propose an adaptive relaxation scheme without
the aid of turbulence models for graphical flow simulations,
which respects the underlying physics more appropriately.

To enable adaptive computation, multi-block-based grid
refinement [17], [21], [53], [54], [55], and unstructured mesh
formulations [56], [57] were proposed for LBE. While multi-
block formulation lacks scale-continuity and has strict align-
ment constraint between scales, unstructured mesh formu-
lation requires complicated meshing/re-meshing process,
which is difficult for dynamic refinement. Compared to
these methods, we propose a novel continuous-scale for-
mulation that allows arbitrary scales to communicate with
each other without strict spatial constraint. As described in
Section 1, this immediately allows flexible scale construction
and dynamic refinement to resolve turbulent flow details
more appropriately with structure continuity.

There are some other works that deal with the interaction
between fluid flows and solid objects using LBE approach
in graphics. For example, Wei et al. [16] presented an ap-
proach for simulating natural dynamics that emerge from
the interaction between a flow field and immersed objects.
Zhao et al. [17] provided a physically-based framework for
simulating natural phenomena related to heat interaction
between objects and the surrounding air. In addition to
kinetic approaches, incompressible nonlinear Schrödinger
equation has been recently employed in graphics to solve
for inviscid fluid flows [58] with more accurate advection.

3 FUNDAMENTALS

Before presenting our approach, we first introduce the
fundamentals on the non-orthogonal central-moment relax-
ation model for LBE as well as the multi-block formulations.
They also serve as a reference to differentiate our formula-
tion with the existing ones.

3.1 Non-orthogonal central-moment relaxation model
As introduced before, central-moment relaxation (CMR)
models have superior performance than BGK and MRT
models in terms of stability and accuracy, and in particular,
we employ the non-orthogonal CMR model [20], which is
constructed with simpler algebra and sufficient stability.

Unlike the traditional MRT model, the non-orthogonal
CMR model constructs the central-moment space with
translated lattice velocities: c̄i = ci − u, where ci is the

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

original lattice velocity (we use D3Q27 lattice velocity model
for 3D simulations, see Fig. 2), and u is the macroscopic
velocity. The collision is performed in the central-moment
space, and thus a transformation of the distribution function
fi into central-moment space should be performed.

To obtain such a transformation, a matrix M is first
constructed as: Mi,j = c̄mx,ic̄

n
y,ic̄

p
z,i, where {x, y, z} indexes

the corresponding velocity component; m,n, p ∈ {0, 1, 2}
are the orders of moments, and j = (m+1)(n+1)(p+1)−1
indexes different components. Then, we perform m = MT f
where f and m aggregate all values for fi and mi to
perform the transformation. By constructing an inverse ma-
trix T = (MT)−1, we can transform the moment vector
back to the distribution functions by f = Tm. Note that
the analytical forms for both M and T can be explicitly
obtained, which are directly used during the simulation.

To model collision, the equilibrium state is constructed
in central-moment space as meq and the collision vector Ω,
which contains all the collision operators Ωi, is constructed
by a relaxation process in central-moment space as:

Ω = −TS(m−meq), (2)

where S is a diagonal relaxation matrix. Note that some
relaxation parameters are related to the kinematic viscosity:

ν =
1

3

(
1

Si
− 1

2

)
, i ∈ {4, 5, 6, 7, 8}, (3)

thus, Si = S(i ∈ {4, 5, 6, 7, 8}) are all of the same value.
Parameters for conservative quantities Si(i ∈ {0, 1, 2, 3})
can be arbitrary, and we set them to be 0. Other parameters
Si(i > 8) are for high-order moments, which can be freely
tuned within the range (0, 2) to achieve different accuracy
and stability. The specific forms of M, T, m and meq can be
found in Appendix.

3.2 Multi-block lattice Boltzmann formulation

As mentioned in Section 2.2, adaptive approaches have been
proposed to simulate LBE in order to save computation,
among which multi-block formulations were often used due
to simplicity especially considering dynamic refinement. In
multi-block formulation, the uniform grid is subdivided
in an octree manner. Fig. 3 (a) gives an example of grid
refinement with two scales, where the coarse scale (orange
one) is subdivided into the fine scale (blue one), with their
boundaries matched (see the green line), and the ratio
between different scales be strictly integral.

The idea behind multi-block formulation is to keep lo-
cal Reynolds number invariant at the same sample point
between different scales, which results in a mapping of fi
at overlapped sample points between different scales (the
green line in Fig. 3 (a)). There have been derivations of such
a mapping for BGK [53], [59] and MRT [21], [52] models, but
no derivation for non-orthogonal CMR models yet.

Our continuous-scale approach is based on multi-block
formulation. To explain it, we first define some notations: s
indicates a specific scale; c and f indicate the coarse and fine
scales; ∆xs and ∆ts denote the grid spacing and time step
at scale s; α is the ratio of spacings between two scales.

Fig. 3. Spatial scale mapping for multi-block and our continuous-scale
simulations: (a) multi-block formulation: fine and coarse scales coincide
with their boundaries (the green line) and α is strictly an integer value
(α = 2 in this example). (b) our continuous-scale formulation: α can
be arbitrary (α = 1.4 in this example), and the scales do not need to
coincide with their boundaries; in this case, interpolation from the nearby
samples is required before mapping.

To obtain the mapping of fi for MRT model, the invari-
ance of local Reynolds numbers between coarse and fine
scales leads to [21]:

1/Sf
i − 1/2 = α (1/Sc

i − 1/2) , (4)

with α = ∆xc/∆xf . To further maintain continuity of
macroscopic variables across scales, it is derived in [21] that:

mneq,c
i = α

Sf
i

Sc
i

mneq,f
i , (5)

which results in a diagonal mapping matrix of all the
non-equilibrium components in moment space from fine to
coarse scales as: mneq,c = Kf→cmneq,f . Similarly, we can
obtain a diagonal mapping matrix from coarse to fine scales.
Returning back to the space of f and following [21], the
mapping from fine to coarse scales after collision is:

f̃ c =Tmc −TSc(mc −meq,c)

= T(meq,c + mneq,c)−TScmneq,c

= Tmeq,f + T(I− Sc)Kf→cmneq,f ,

(6)

where tilde indicates post-collision state and I is the identity
matrix. This immediately expresses mneq,c and mneq,f as:

mneq,c = (I− Sc)−1(m̃c −meq,c),

mneq,f = (I− Sf)−1(m̃f −meq,f).
(7)

Then, we can rewrite f̃ c as:

f̃ c = T

(
meq,f + (I− Sc)Kf→c m̃f −meq,f

I− Sf

)
. (8)

Defining K̂f→c = (I − Sc)Kf→c(I − Sf)−1 and m̃neq,f =
m̃f −meq,f , the mapping from fine to coarse scales can be
rewritten as:

f̃ c = T
(
meq,f + K̂f→cm̃neq,f

)
. (9)

The mapping from coarse to fine scales can be constructed
and formulated similarly.

To summarize, in general, given two scales si and sj , the
mapping from si to sj after collision can be given by:

f̃sj = T
(
meq,si + K̂si→sjm̃neq,si

)
, (10)

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 4. Comparison of cross-section 3D velocity fields among simulations from MRT and non-orthogonal CMR models with different relaxation
parameter settings (resolution: 196× 98× 98, viscosity: ν = 10−4). (a) MRT with Smagorinsky model where ringing artifacts are strong and all over
the field (see the green boxes); (b) non-orthogonal CMR model with the original relaxation parameter setting from [20], which over-smooths the flow
field; (c) non-orthogonal CMR model with our fixed relaxation parameter setting, where ringing artifacts may still persist (see the yellow boxes); (d)
non-orthogonal CMR model with our adaptive relaxation, which suppresses most ringing artifacts while preserving turbulence details.

where

K̂si→sj = (I− Ssj)Ksi→sj (I− Ssi)−1, (11)

and Ksi→sj is a diagonal matrix with

diag{Ksi→sj} = {1, ..., Ssi
4

αS
sj
4

, ...,
Ssi
8

αS
sj
8

, ..., 1}, (12)

and α = ∆xsi/∆xsj is the ratio of spacings between scales
si and sj .

4 OUR FORMULATIONS

Based on the above fundamental descriptions, we derive
our own formulation for LBE, which can achieve stable and
accurate simulations, with flexible sample placement and
refinement, making our simulator more efficient to produce
turbulent flows.

4.1 Adaptive relaxation
Traditional MRT model for LBE is unable to simulate fluid
flows with small viscosity, which is mainly due to the
violation of Galilean invariance, leading to ghost modes
that induce instability. Even though turbulence models (e.g.,
Smagorinsky model) can stabilize the dynamics, it produces
strong ringing artifacts, see Fig. 4 (a), which contaminates
the whole velocity field (readers are suggested to see the sup-
plementary video for more obvious ringing artifacts). The non-
orthogonal CMR model can significantly reduce the ghost
modes, and thus the ringing artifacts, but the selection of the
relaxation parameters is crucial. Improper selection of these
parameters may lead to over-smoothed results, see Fig. 4 (b)
with the original parameter setting from [20].

To preserve turbulence details while reducing ringing
artifacts, it is essential that the high-order relaxation param-
eters Si(i > 8) should be carefully tuned [20]. However,
how these parameters are set to maintain stability while
preserving turbulence details is still unknown. By our anal-
ysis, we noticed that each high-order relaxation parameter

Si(i > 8) effectively corresponds to a diffusion viscosity
ν′i similar to Eq. 3, which acts like an artificial viscosity
to control high order oscillation modes (ringing artifacts).
In practice and with our numerical experiments, to ensure
stability and retain accuracy, ν′i should be progressively
increased with respect to the order, and should be relatively
large (e.g., ν′max = 0.01) for the highest order parameter
Si(i = 26), and relatively small (e.g., ν′min = 0.005) for the
lowest order parameters Si(i = 9, 10, ..., 16). For orders in
between, we linearly interpolate them based on these two
values and their corresponding orders. This can effectively
stabilize the dynamics while retaining sufficient turbulence
details, but may not be able to fully suppress the ringing,
see Fig. 4 (c) for an example.

To further reduce ringing artifacts, we propose to per-
form adaptive relaxation, meaning that instead of using fixed
relaxation parameters, we adjust the relaxation for high-
order moment adaptively according to the flow. In prin-
ciple, fluctuating regions may generate strong numerical
waves that propagate to other smoother regions, resulting
in noticeable ringing artifacts. To suppress these rings, we
can give more diffusion to the smoother regions, which
has the effect of preventing rings from propagating out.
Thus, we should set larger ν′i for smoother regions, but the
inter-relationship among the high-order parameters should
be maintained in proportion to our previous setting in
order to have stable simulations. Hence, we uniformly scale
the previous artificial viscosity setting ν′i(i > 8) for high-
order moments according to the velocity gradient, and for
samples with smaller gradients, larger scaling factors are
given in front of the original ν′i. This results in the following
formulation of the new artificial viscosity ν̂′i for Si(i > 8):

ν̂′i =

(
a
|∇u|
gmax

+ b

)
ν′i, i > 8, (13)

where a = −4 and b = 5 are model parameters that
can be tuned; gmax ∈ [0.1, 0.13] is the maximum gradient
magnitude for normalization.

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 4 (d) shows the simulation result for the velocity
field with such an adaptive relaxation, which is clear that
ringing artifacts have been significantly suppressed. Note
that such an adaptive relaxation method cannot be applied
to the traditional MRT model since the moment of different
orders are coupled for MRT, while in non-orthogonal CMR
model, these high-order moments are more independent.

4.2 Continuous-scale formulation
By using non-orthogonal CMR model with our adaptive
relaxation, we can obtain stable turbulent flow simulations
with sufficient fine details. However, such a simulation is
only performed on a uniform grid, and as argued before, it is
difficult to adapt computations to spatially and temporally
varying fluid flows with different physical details. In reality,
a fluid flow may contain both laminar and turbulent regions,
as well as the transition region between them. The variations
of flow quantities (such as velocity) are different, leading to
the concept of “fluid scale”, which indicates the frequency of
such variations. It is well known that in real fluid flows, the
scale variations are continuous [60].

In principle, the sample resolution should vary with
respect to the fluid scale, where turbulent regions should
have more samples. As introduced in Section 3.2, multi-
block formulation [21], [61] has been proposed to achieve
this goal. While such a formulation is relatively simple,
the scales do not respect the continuous-scale nature of fluid
flows. To retain scale continuity, unstructured-mesh for-
mulations [57] were proposed, but they all inherited the
difficulties for mesh construction and adaptive refinement.

In this paper, we propose a novel method from the idea
of multi-block formulation, but allow sample resolutions
(scales) to be constructed more continuously, with the ratio
between different scales α no longer restricted to integer
values. By breaking such a restriction, we have two impor-
tant benefits: i. the sample scales can be more continuous
in order to better respect the physical scale; ii. as depicted
in Section 5, efficient and flexible scale construction and
refinement schemes can be developed in order to dynam-
ically adapt sample scales and place more computations on
turbulent fine-scale regions.

4.2.1 Mapping distribution functions
To achieve continuous-scale formulation, we need first de-
rive the mapping of distribution functions between different
scales for the non-orthogonal CMR model with our adaptive
relaxation. Similar as the derivation for MRT model in
Section 3.2, we start from the invariance of local Reynolds
numbers between a coarse and a fine scale, which leads
to Eq. 4. Then, we will derive the relationship of non-
equilibrium states between mneq,c

i and mneq,f
i for the non-

orthogonal CMR model in order to obtain the mapping, like
the relation in Eq.5.

From [62], we know that fi = feqi + εf
(1)
i +O(ε2), where

ε � 1 can be identified by the Knudsen number [63]. We
also know that εf (1)i is given by:

εf
(1)
i =

wi

2c4s
Qi : Π(1), (14)

where wi is the lattice weight originally present in BGK
model; cs is the speed of sound, Qi = cici − c2sI and

Π(1) =
∑

i cicjεf
(1)
i are related to the strain rate tensor

Ŝ through the relation:

Π(1) = −2c2sρŜ/S, (15)

where S is related to the kinematic viscosity as in Eq. 3, and
the strain rate tensor is defined as Ŝ = (∇u + (∇u)T)/2.
Since fi ≈ feqi + εf

(1)
i , we can find that fneqi = εf

(1)
i is

proportional to the gradient of the macroscopic velocity, and
it is therefore necessary to be rescaled when communicating
between different scales. By assuming fneq,fi = λfneq,ci and
using Eqs. 14 and 15, we have:

1

Sf
Qi : Ŝf = λ

1

Sc
Qi : Ŝc, (16)

where Ŝf and Ŝc represent the same strain rate tensor with
lattice units at fine and coarse scales respectively, which can
be renormalized by ∆xf and ∆xc, leading to:

∆xf
Sf

Qi : Ŝ = λ
∆xc
Sc

Qi : Ŝ, (17)

where Ŝ is the strain rate tensor in physical units. Thus, we
have:

λ =
∆xf
∆xc

Sc

Sf
=

Sc

αSf
. (18)

Finally we get:

fneq,fi =
Sc

αSf
fneq,ci . (19)

Converting to the central-moment space by multiplying the
central-moment matrix MT on both sides, we have:

mneq,c
i = α

Sf

Sc
mneq,f

i . (20)

This is exactly the same relation expressed in Eq. 5 for MRT
model. With the derivation in Section 3.2, we arrive at the
same mapping expression for f from si to sj as given by
Eq. 10 for the non-orthogonal CMR model.

The meaning of Eq. 10 is that when computing fluid
flows with two different scales, in addition to interpolating
f from one scale to another, we need to apply another
mapping in order to obtain the correct f , which is Reynolds
number consistent. As an illustration, take Fig. 3 (a) for an
example, which shows the setting for traditional multi-block
method, where α = 2, and the mapping happens only at the
coincided boundary. The coarse scale sc iterates first before
the small scale sf starts. When sf iterates, its f values at the
boundary, e.g., point pf , should first be interpolated from
the nearby points of sc along the boundary, and then apply
Eq. 10 to map from sc to sf , which provide the necessary
boundary values for iterations at sf . After iterations at sf ,
the f values at the boundary points of sc, e.g., point pc, are
first copied from the overlapped point at sf , and then apply
Eq. 10 to map from sf to sc to update the boundary values
of sc. We call the mapping from sc to sf as “prior-mapping”
and the mapping from sf to sc as “post-mapping”.

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 5. Comparison of transition between scales: (a) multi-block for-
mulation (two scales) with a small portion of the overlapped region,
where structure discontinuity is obvious across scales; (b) multi-block
formulation (two scales) with mapping in the entire small-scale region,
which reduces the blurriness but structure discontinuity still persists;
(c) our continuous-scale formulation (four more continuous scales) with
mapping in the entire overlapped region, which produces smooth scale
structure transition with sufficient details in the small-scale regions.

4.2.2 Spatial scale mapping

As argued before, multi-block formulation with α restricted
to integers is problematic especially for turbulent flows.
Fig. 5 (a) shows an example of the simulation with multi-
block method (α = 2) where turbulence structures are
suddenly lost when transiting from fine to coarse scales
due to the violation of scale-continuity. As shown later,
this discontinuity can be avoided or much reduced by
constructing a more continuous-scale setting and employing
our continuous-scale formulation, see Fig. 5 (c), where four
scales are used and turbulence structures are more contin-
uous across the scales with details better preserved even at
the coarse scale region, see the red box.

When α is not restricted to an integer and the boundaries
between two scales do not coincide with each other (see
the dark blue and red lines in Fig. 3 (b)), we arrive at our
continuous-scale setting. In such a case, the coarse scale sc
still iterates first before the small scale sf , but the prior-
mapping at the boundary of sf , e.g., at point pf , requires
the interpolation from the eight corner points of the 3D cell
at scale sc where pf locates, and then again apply Eq. 10
to map from sc to sf . The similar procedure applies for the
post-mapping at the boundary of sc, e.g., at point pc.

4.2.3 Transition between scales

The descriptions above assume that the mapping between
two scales only happen at the scale boundaries, which is
not suitable for turbulent flows, as structure discontinuity
may occur at the boundary and vortices may sometimes
be blocked from going through the scale boundaries. To
avoid these artifacts, we can extend the scales with sufficient
overlaps as suggested in [64], which results in overlapped

Fig. 6. Temporal alignment and scale mapping in our continuous-scale
formulation: (a) temporal alignment and scale mapping for all sample
points at the scale boundary; (b) temporal alignment and scale mapping
for overlapped inner sample points.

inner samples (samples in the overlapped regions except at
the boundaries), e.g., point p′f in Fig. 3 (b), where f values
should be mapped from sf to sc after iterations at sf . In
practice, we always overlay small-scales onto the large scales and
overlap the entire small-scale regions.

To justify such a treatment, Fig. 5 makes a compari-
son, where Fig. 5 (a) shows multi-block formulation with
a small portion of the overlapped region along the scale
boundary for mapping, which is obvious that the scale
boundary blocks some flow structures from successfully
going through, leading to structure discontinuity artifacts.
This can also lead to blurriness inside the small-scale region.
With mapping in the entire overlapped region, such artifacts
are reduced, but cannot be removed, see Fig. 5 (b). This
indicates that scale continuity can be important to preserve
consistent turbulence structures across the scale boundaries.
With our continuous scale setting, we still map distribution
functions in the entire overlapped region, but with more
continuous scale transition (four scales rather than two), see
Fig. 5 (c). It is clear that our continuous-scale setting and the
related treatment can result in more consistent flow struc-
tures across different scale boundaries, making the entire
fluid flow more reasonable. Note that all the simulations in
such a comparison are produced with the non-orthogonal
CMR model and with our adaptive relaxation.

4.2.4 Temporal alignment and scale mapping

Mapping distribution functions spatially only addresses the
spatial consistency of local Reynolds number. However,
there are still temporal alignment and consistency problems
during iterations. To solve these problems, we should first
select a reference scale s0 with the reference time-step
∆t0 = ∆x0, see the yellow time-line in Fig. 6 (a). Denote
αc ∈ (0, 1) and αf > 1 to be the ratios between scale
s0 and any other scales larger (sc with ∆tc) and smaller
(sf with ∆tf) than s0, respectively, see the red and green
time-lines in Fig. 6 (a). In multi-block formulation, s0 is
selected as the largest scale, so we only have scale sf with
αf restricted to an integer. This makes temporal alignment
simple since after αf iterations, scale sf naturally aligns
with ∆t0. However, in our continuous-scale setting, we can
select any scale to be s0, and have both αc and αf which
are not restricted to integers. This raises the problem that
after integer number of iterations, the temporal evolutions
of sc and sf may not align with ∆t0, and thus temporal
interpolation is needed. Moreover, after each iteration at

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 7. Handling multiple overlapped scales: (a) three scales are over-
lapped, where p is the overlapped inner sample and p′ is the sample
at the scale boundary; (b) handling scale mapping at scale s2 where
s′k(k ∈ {0, 1, 2}) indicate the states of the corresponding scales after
iterations. Note that the prio-mapping to s2 only happens at the scale
boundary while the post-mapping from s2 to other larger scales happens
at the entire overlapped regions.

scale sc and sf , we need to update the boundary values
from s0 to maintain local Reynolds number consistency.

To do this, note that ∆tc and ∆tf are determined by
∆tc = ∆xc and ∆tf = ∆xf , respectively, which can be
arbitrary. Before any iteration of scales sc and sf , we need to
perform prior-mapping only on the scale boundaries except
the overlapped inner samples, see the arrows at time tn in
Fig. 6 (a), which is beneficial for preserving fluid details.
To handle the overlapped inner samples for scale sc at time
tn+∆t0, we always iterate scale sc for one time step ∆tc and
linearly interpolate back at time tn + ∆t0 using its f values
at tn and tn + ∆tc, see the dotted line at scale sc in Fig. 6
(b). At the boundary of scale sc, no temporal interpolation
is needed, and their f values are directly mapped from scale
s0 at time tn + ∆t0, see the arrow at time tn + ∆t0 from
scale s0 to scale sc in Fig. 6 (a). For scale sf at time tn, we
iterate l = b∆t0/∆tfc + 1 times, which may exceed ∆t0
by a fractional time-step of ∆tf . To obtain f values of the
overlapped inner samples at time tn+∆t0, we use quadratic
interpolation based on the points tn, tn + (l − 1)∆tf and
tn + l∆tf , see the dotted line at scale sf in Fig. 6 (b). At the
boundary of scale sf , temporal interpolation of f values at
scale sf is not needed either, and their values are directly
mapped from scale s0 at time tn + ∆t0. For the first l − 1
iterations of scale sf , f values at the boundary should be
updated before the iteration by first interpolating from scale
s0 temporally using two points at tn and tn + ∆t0, and
then mapping from the interpolated values. Before the final
fractional time-step iteration of scale sf to reach the time
tn + ∆t0, we directly map f values from scale s0 at tn + ∆t0
to the boundary of scale sf , see the arrows from scale s0 to
scale sf in Fig. 6 (a).

4.2.5 Handling multiple scales

In practice, there can be multiple rather than two regions
with continuous scales overlapping with each other at the
same point, see Fig. 7 (a). To allow flexibility and adaptivity
for complex domains, we construct scales such that small-
scales always superimpose over large-scales with mapping
in the entire overlapped regions, and the reference scale
s0 occupies the entire domain, which is very efficient to
determine the overlapped regions between scales. In such
a case, a specific mapping scheme should be developed.

Fig. 8. Static scale construction: The scale samples at initialization
are constructed according to the domain geometry as well as the inlet
position. In this example, since the solid ball is the object boundary, very
dense samples are placed there. In addition, more samples are placed
in the wake flow region in order to capture the wake turbulence.

Taking point p and p′ in Fig. 7 (a) for an example, where
three scales (s0 > s1 > s2) are overlapped, and p is the
overlapped inner sample and p′ is the scale boundary point.
Now we consider the iterations at scale si (si < s0). Note
that the reference scale s0 should always be iterated first
before any other scales si. Prior-mapping at si only happens
at the scale boundary, so it is performed only at p′, where
f values should always be mapped from the nearest coarse
scale sj , j = argminj{|sj − si|, sj > si, j ∈ Λ(p′)}, and
Λ(p′) is the set of all overlapped scales at p′. For post-
mapping, both p and p′ are needed, and all the scales larger
than si (sk, k ∈ 0, 1, ...i− 1) should be updated by map-
ping from si directly to these scales in all the overlapped
samples, but excluding the scale boundary (otherwise the
fluid field may be over-smoothed), see Fig. 7 (b) for an
example where si = s2. For si > s0, the process is reversed
for prior- and post-mappings. For prior-mapping, we map
all the overlapped regions from s0 to si instead; however,
for post-mapping, we only update the boundaries of scales
smaller than si. The above procedure ensures reasonable
continuous-scale simulations with any number of continu-
ous scales in arbitrary overlaps, without noticeable artifacts
and excessive smoothing.

Note that Zhao et al. [65] employed the integral-scale
multi-block approach to simulating fluid flows in graphics,
with spatial interpolation along grid lines only and without
any temporal interpolation. They also applied scale map-
ping but with prior-mapping only. Although our spatial and
temporal interpolations may introduce a certain amount of
numerical viscosity, the influence is not obvious. In addition,
since we involve post-mapping, the fluid flow information
can be transferred from small scales back to large ones, and
thus the simulated flows can be more turbulent.

5 SCALE CONSTRUCTION

The continuous-scale formulation proposed in Section 4
immediately allows us to have flexible scale construction
since it looses the geometrical restriction between scales. In
principle, two types of scale construction schemes can be
used for simulation. During initialization, static scale con-
struction, where the scales are purely determined by domain
geometries (the shapes of objects inside the fluid region and
the domain boundary) and inlet positions, is performed to
place finer scale samples around object boundaries and the

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 9. Dynamic scale construction for a jet flow: Based on the initial static scale samples, the fine scale samples with higher resolutions can be
dynamically overlaid onto all the other scales, which capture fine turbulence details only when necessary. In this example, two dynamic scales are
created, which track the evolution of the turbulence, see the green and red samples.

Algorithm 1 Pseudo-code for our continuous-scale kinetic
fluid simulation method

Initialize density ρ and velocity u for all scales;
Initialize distribution functions fi with their equilibrium
states according to Section 6.1;
Define the reference scale in DOI and scales in FFD
according to Section 5;

while iteration ≤ max iteration number do
Proceed one time-step for the reference scale and scales
in FFD with boundary conditions specified in Sec-
tion 6.1;
Construct dynamic scales and overlay them on all other
scales (optional);
Set current scale = reference scale;
while current scale ≥ smallest scale do

Proceed to the next overlapped smaller scale;
Perform prior-mapping on current scale from the
overlapped nearest larger scale according to Sec-
tion 4.2.5;
Proceed several time-steps for the current scale to
match the temporal boundary of the reference scale
according to Section 4.2.4 with boundary updates;
Update the overlapped scales larger than the current
scale according to Section 4.2.5;

end while
end while

wake-flow regions behind them, as well as coarser scale
samples for fields far from the simulation domain. During
the simulation, dynamic scale construction, which refines the
scales over time, adapts scale samples dynamically to track
the turbulence details.

Static scale construction. To construct static scales, we
rely on the distance map of the domain geometry, where
each point in the domain is given the shortest distance to
the object or domain boundaries, which is an indicator of
scales, where smaller distance implies smaller scales. Such a
distance field is then quantized and mapped to N discrete
scales, where N is manually determined (e.g., N = 5).
To decide the exact spacing for each scale, we assign the
smallest and largest spacings for the smallest and largest
scales respectively, and linearly interpolate the spacings for
scales in between.

In case of wake flows where turbulence could be strong,
we determine the scales like a soft shadow in rendering,

where the inlet is taken as an area light source, and the
scale becomes small when a point is in the “umbra” region
behind the object and gradually increases for points in the
“penumbra” region. In addition, for practical simulations
where the open space is usually configured, we divide the
whole simulation domain into domain of interest (DOI)
and far-field domain (FFD), like in [41]. In DOI, the largest
scale is taken as the reference scale, and in FFD, scales are
increased from the boundary of DOI and becomes very large
at its outer boundary to damp out turbulent variations to
approximate a real open space.

Fig. 8 demonstrates an example of static scale construc-
tion for flows around a solid ball, where five static scales
are created. As mentioned in Section 4, we always overlay
the entire regions of small-scales over large-scales. With
such a setting, boundary induced turbulence can be better
resolved. Note that the samples in Fig. 8 are for illustration
only; the true number of samples is several times denser.

Dynamic scale construction. The dynamic scales are fine
scales that are dynamically created and overlaid onto all the
other scales, which may change over time, and are beneficial
to have necessary computations only when needed. The
dynamic scales are more complicated to construct and so-
phisticated methods are required to create sufficiently con-
nected and large enough regions. In this paper, we develop
a simple dynamic scale construction method particularly for
jet flows, which are very efficient to compute.

To create such scales, we first compute the gradient
magnitude of the entire velocity field. Then we select a
threshold to remove samples with the gradient magnitude
below such a threshold. This is to ensure that the dynamic
scales are constructed only in sufficiently fluctuating regions
to capture the turbulent flow details. For the remaining
samples, we threshold again, but instead based on the
velocity magnitude, to further remove samples that have
velocity magnitude smaller than the threshold. This is to en-
sure that the dynamic scales are constructed with sufficient
spatial continuity. After these two thresholding processes,
the remaining samples form one dynamic scale region.
In practice, multiple thresholds can be selected to create
multiple dynamic scales, and such a process is repeated for
every 40 iterations in our practical simulations.

Fig. 9 shows a typical dynamic scale construction process
for a jet flow, where two time-varying dynamic scales are
constructed, see the green and red samples, where sufficient
flow details can be captured inside these regions. As can
be seen in the timing statistics later in the next section, the

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

dynamic scale construction effectively saves computations
to solve for turbulent flows, which occupy only a portion of
the entire flow region.

6 RESULTS AND DISCUSSIONS

With our continuous-scale formulation and scale construc-
tion methods, we can realize our fluid simulator, and Al-
gorithm 1 gives the pseudo-code as a reference for imple-
mentation. Note that when implementing our method, we
need to first select a domain with a physical size which
could be arbitrary, and then determine the physical spacing
∆x̃i for each scale, which is finally used to determine the
overlap and resolution of each scale. Note that in our kinetic
simulator, ∆x is normalized and always set to 1; when we
specify different scales, we use ∆x̃i instead.

We implement our simulator on a computer installed
with an Intel Xeon E5-2630 v3 @2.4GHz CPU and 48 GB
system memory. Our method is easily parallelizable and the
main iterations are implemented on an NVIDIA GTX 1080
GPU with 8 GB onboard memory, where our simulations
take from 2 to 7 GB memory with overall number of samples
from around 1.5×106 to 6.8×106 depending on the scenario
we simulate. For each iteration of the entire domain to
finish with respect to the reference scale including the FFD
scales, our method takes around 0.4 to 2.3 seconds, without
rendering. To visualize the velocity field, we take a cross-
section and use direct color-mapping. Note that to produce
one animation frame, we usually have around 10 iterations.

6.1 Initialization and boundary treatment
To initialize the fluid flow field, we first give a constant ini-
tial density ρ0 = 1, and a calm velocity field u0 = 0 except
at the inlet where the velocity is set as u0 ∈ [0.1, 0.13], which
is also taken as the Dirichlet boundary to keep injecting the
flow into the domain. These macroscopic fields are then con-
verted to distribution functions for each sample based on the
equilibrium state of the CMR model: f0 = Tmeq(ρ,u). For
boundaries around objects including the ground, we apply a
second-order no-slip boundary treatment method described
in [62], which is more accurate. Note that the traditional no-
slip bounce-back boundary treatment is first-order accurate
only and cannot give stable simulations. For FFD boundary,
we use the Neumann condition. It should be noted that
although standard boundary conditions (slipping and no-
slip conditions) can be easily applied in our solver, some
particular boundary conditions should be further derived
and may not be straightforward to apply, which can be a
potential drawback of the kinetic approach for simulating
fluid flows in more complex environments.

6.2 Stability and accuracy
With our adaptive relaxation in non-orthogonal CMR
model, stability and accuracy can be retained, which allows
very small viscosities (e.g., 10−6) or even zero viscosity with
small vortices, and with arbitrary boundary geometries. Our
method does not rely on any turbulence model for stabiliza-
tion, which reduces the uncertainty during simulations. As
an example, Fig. 12 shows a rotating vortex ring from the
boundary layer induced smoke flow with rotating structures

around the ring, which can be generated only with accurate
advection solvers especially at the boundary, and could be
preserved with our method for a long time even in regions
with coarse resolutions. However, the transition between
scales rely on interpolation, which may break the conserva-
tion of the original LBE and introduce a certain amount of
numerical diffusion that may smear out small-scale details.

When we say our solver is more accurate than the tradi-
tional ones, we mean it can faithfully preserve the necessary
small-scale structures for more visual realism without the
aid of any other empirical models. From the computational
side, the model accuracy is reflected in two aspects: i.
the collision model responsible for approximating INSE is
more accurate, where non-orthogonal CMR model with our
adaptive relaxation greatly reduces the ghost modes and
ringing artifacts, and has a higher approximation order to
the corresponding INSE; ii. the discretization on both space
and time are second order including the boundary treat-
ment, with conservative advection, which are also important
to preserve turbulence structures. The main influence on
discretization accuracy is the interpolation when mapping
among different scales, but not obvious in practice.

6.3 Parallel implementation
Since our method is local in dynamics, it is easy to be par-
allelized on the GPU for fast computation. Since scales are
coupled in overlapped regions in our method, we start from
the reference scale and progress gradually to the smaller and
larger scales in a serialized order. However, at each scale,
we iterate the dynamics in parallel. If one scale has multiple
regions, these regions are also iterated in parallel. Note that
in our parallel implementation, we do not have any code
or hardware-level optimizations, and the timings presented
later are based on such a straightforward implementation,
which could be further improved in the future.

6.4 Smoke simulation
To demonstrate the applicability, we apply our method to
smoke simulations, where we inject around 2, 000 to 5, 000
smoke particles per iteration into the domain from a user
specified smoke inlet (note that the smoke inlet can be
different from the velocity inlet, where we ignore com-
bustion). The particles move by integrating their positions
with respect to the velocity field by 3rd-order Runge-Kutta
method [66], and are rendered with particle renderer from
[7], where the average rendering time is 6 to 40 seconds on
the CPU per animation frame (we iterate around 10 times to
generate one such frame) depending on different scenarios.
Our scale construction can easily allow dense samples to be
placed around the complex object with sufficient flexibility,
which improves the accuracy of the important flow field,
and thus more plausible visual effects around complex
object boundaries can be obtained.

Fig. 10 shows the snapshots of a smoke simulation with
an inlet in the left of the domain. In order to capture
sufficient details and reduce storage and computation cost,
we employ dynamic scales which are overlaid onto the
reference scale and are evolving over time. The spacing for
the reference scale is ∆x̃0 = 3 and the spacings for the
dynamic scales are ∆x̃i = {1.8, 1.1}. No FFD scales are

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 10. Smoke simulation without obstacles: the air flow with smoke particles is injected from the left side of the domain and evolves to the right. In
order to capture fine turbulence details while reducing the computational cost, we employ dynamic scales which are overlaid onto the static scale
and evolve over time. The smoke is rendered with tracing particles.

Fig. 11. Smoke simulation with a ball obstacle: the air flow is injected from the left side of the domain and evolves to the right. The smoke source is
placed around the surface of the ball. In order to capture fine turbulence details, more samples with continuous scales are placed around the ball
surface as well as the wake-flow region behind the ball, which captures the fine details of the smoke. In addition, a vortex ring, as indicated by the
red box, is produced and evolves over a long time.

Fig. 12. Vortex ring in our simulated boundary layer induced smoke. The
smoke vortex ring is generated at the very early stage of the simulation
due to the shearing of the boundary layer. But it evolves and is well
preserved by our solver for a long time, even at the region which is four
times sparser in sample resolution than the region around the ball.

used. There are 1.5 × 106 samples used in the simulation
with 4 seconds on average to produce one animation frame,
and the maximum memory cost is 3 GB on both CPU and
GPU. It is clear that the fine details can be well preserved.

While Fig. 10 shows a smoke simulation without any
object inside, Fig. 11 shows the smoke simulation where a
ball object is placed inside the domain and the smoke is
injected from the surface of the ball. In such a case, we use
static scales only and place dense samples around the ball as
well as its wake-flow region. The reference scale is ∆x̃0 = 2;
the spacing for the FFD scale is ∆x̃i = 4; and the rest
static scales are: ∆x̃j = {1.4, 1, 0.8, 0.5}. There are 4.8× 106

samples used in the simulation with 12 seconds to produce
one animation frame, and the memory cost is 5 GB on both
CPU and GPU. It is clear that boundary layer turbulence
details can be well preserved. It can also be noticed that a
clear rotating vortex ring is produced and maintained for
a long time, see Fig. 12. Note that only high resolution
simulation with sufficient accuracy around the ball can
produce such a vortex ring. Due to our solver flexibility
to place higher resolution samples near the ball and thus
higher accuracy, the vortex ring can be well generated, and

due to conservative advection with more accurate collision
model in each scale in our method, the vortex ring can be
preserved without over smoothing even in the region with
coarse grid resolution (the right region of the domain) which
is four times sparser than the resolution around the ball.

The more powerful capability of our solver is to tackle
arbitrary geometrical boundaries in an efficient manner.
Figs. 13 & 14 give two examples of air flows passing through
objects with complex shapes, where smokes are injected
near the boundary. For clarity, we only inject smokes over
the small area near the object in Fig. 14 . In Fig. 13, the
spacing for the reference scale is ∆x̃0 = 2 and we use
two FFD scales which are ∆x̃i = {3, 4.5}; the spacings
for the rest static scales are: ∆x̃j = {1.1, 1, 0.8, 0.5}, with
CPU and GPU cost of 6.2 GB for 5.7 × 106 samples, and it
takes 16 seconds to produce one animation frame. In Fig. 14,
the spacing for the reference scale is ∆x̃0 = 2 and we use
two FFD scales which are ∆x̃i = {3, 4.5}; the spacings for
the rest static scales are: ∆x̃j = {1.6, 1, 0.7, 0.5}, with CPU
and GPU cost of 5.3 GB for 5 × 106 samples, and it takes
13 seconds to produce one animation frame. It is clear that
visually appealing smoke patterns can be produced. Readers
are suggested to refer to the supplementary video for these ani-
mations, and for smoke motion in Fig. 14 and in the related
animation, it can be observed that the swirling feature of the
smoke due to concave geometry can be faithfully resolved.

6.5 Comparisons
To verify our method, we conduct comprehensive com-
parisons with the well-known unconditionally stable Mac-
Cormack method [22] as well as the more recent work
from Zhang et al. [7], [23] for smoke simulations, where
similar initial and boundary conditions as well as averaged
resolutions are used between their simulations and ours,
see Fig. 15. Note that the combustion force in the original
simulations of these existing methods is ignored in all following

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 13. Boundary layer turbulence of a complex object. The smoke is injected near the surface of the object, and then follows the wake flow to
generate complex turbulence patterns. Note the smoke details as illustrated in the red box.

Fig. 14. Smoke simulation over a bunny object which is of complex shape. The smoke starts from a source behind the front ear of the bunny model.
Note that due to the accuracy of our solver to address boundary layer flows more appropriately, the vortices around the concave region produce
complex swirling motion, see the red rectangle box region and the related animation in the supplementary video.

comparative simulations in order to demonstrate and compare the
capability of capturing self-initiated turbulence without external
activation. We also compare boundary-induced turbulence
under different resolutions to highlight the advantage of
flexibility for our method, see Fig. 17. Readers are suggested to
see the supplementary video for animations of these comparisons.

Comparisons with MacCormack advection scheme. In
Fig. 15 (a) & (d), we simulate jet flows and boundary
layer induced smoke motion respectively both by solving
the incompressible Euler equation using the well-known
second-order unconditionally stable MacCormack advec-
tion scheme, which is the standard approach for smoke
simulations in graphics. In Fig. 15 (a), 2 × 106 samples
(100 × 200 × 100) are used to obtain the result. Since the
advection is not accurate enough, turbulence is activated
very late, and less small-scale vortices are created, which
makes the simulation not quite realistic. With the same
setting, we obtain our simulation result in Fig. 15 (c), where
we use only 1.5 × 106 samples in the maximum case with
three scales (the reference scale is ∆x̃0 = 3 and the other
scales are ∆x̃i = {1.8, 1.1}, without FFD scales) to simulate
the smoke motion since we apply dynamic scales in this
simulation. Since our method solves INSE, we use a very
small viscosity (10−5) to approximate the result, which leads
to a Reynolds number of 106.

Both the simulations are implemented on the same GPU,
where the unconditionally stable MacCormack scheme with
preconditioned conjugate gradient (PCG) pressure solver

takes around 3 seconds with 2 iterations to produce one
animation frame while our method takes around 4 seconds
with 10 iterations. Note that for unconditionally stable Mac-
Cormack scheme, we can use larger CFL number and we
choose CFL=3 to balance between efficiency and accuracy.
Although our method is slower than this traditional scheme,
more reasonable turbulence patterns can be generated for
our method in both horizontal and vertical directions, mak-
ing our simulated smoke motion more plausible. The mem-
ory usage for Fig. 15 (a) & (c) are 0.4 GB on average and 3
GB in the maximum, respectively.

We also simulate the boundary layer induced smoke
motion by solving the incompressible Euler equation with
with around 4 × 106 samples (128 × 256 × 128) using the
unconditionally stable MacCormack scheme, with boundary
treatment method by [67], which is shown in Fig. 15 (d). In
Fig. 15 (f), we obtain our simulation result with the same
setting using 3.8 × 106 samples and 7 number of static
scales (the reference scale is ∆x̃0 = 2 and FFD scales are
∆x̃i = {3, 5}; the other scales are ∆x̃j = {1.5, 1, 0.8, 0.5}).
Both simulations are also implemented on the same GPU,
where it takes around 9.8 seconds with 4 iterations for
Fig. 15 (d) to produce one animation frame with CFL=5,
while our method takes 10 seconds with 15 iterations to
produce result in Fig. 15 (f). The memory usages for Fig. 15
(d) & (f) are 1 GB and 4 GB, respectively. Unlike the pre-
vious comparison, the unconditionally stable MacCormack
scheme in this boundary layer simulation case has almost
similar computational time on the GPU as our method, but

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Fig. 15. Comparisons of smoke simulations with the unconditionally stable MacCormack scheme (a) & (d) and recent work of Zhang et al. [7], [23]
(b) & (e). In (a) & (d), the incompressible Euler equation is solved with the method of unconditionally stable MacCormack scheme for flows without
and with objects, while in (b) & (e), the flows with the same setting are solved using IVOCK scheme from [7] and adaptive grid method from [23],
respectively. We simulate the corresponding flows with our solver and with the same setting to produce results in (c) & (f). In (c), we set a very
small viscosity to approximate the incompressible Euler equation, while in (f), we set the same viscosity as in (e). It is clear that more appropriate
turbulence details can be resolved with our method, especially around the object in (f).

unable to capture sufficient turbulence details.
To further capture fine turbulence details for the un-

conditionally stable MacCormack scheme, we can either
reduce CFL number or increase the sample resolution. Both
methods will significantly increase the required computing
time. For example, Fig. 16 makes a comparison of simulation
results between our method (Fig. 16 (b)) in Fig. 15 (f)
(3.8 × 106 samples) and higher resolution unconditionally
stable MacCormack scheme (Fig. 16 (a), four times higher
than the simulation in Fig. 15 (d) with 1.6× 107 samples). It
can be seen that Fig. 16 (a) produces more turbulence details
than Fig. 15 (d) and is closer to our simulation result, but it
also takes much more computing time on GPU (35 seconds
per animation frame) with 3.5 GB memory usage. Thus, the
advantage of our method is obvious.

Comparisons with methods of Zhang et al. To preserve
vortices and retain more turbulence details with the same
CFL number and sample resolution, the unconditionally
stable MacCormack scheme can be enhanced by the IVOCK
scheme proposed Zhang et al. [7], which is demonstrated
in Fig. 15 (b), where 2 × 106 samples (100 × 200 × 100)
are used to obtain the simulation result, which is equal to
the number of samples in Fig. 15 (a). It is clear that the
turbulence structures are more reasonable compared to the
result from the unconditionally stable MacCormack scheme
in Fig. 15 (a), but some small-scale details are still missing.
In addition, due to the involvement of vorticity correction
for IVOCK scheme, much more computation is added to
the solver. Since the IVOCK scheme is more difficult to
have a GPU implementation, we run it on a CPU with 2.3

Fig. 16. Comparison of smoke simulations between high resolution
unconditionally stable MacCormack scheme (four times higher in res-
olution than Fig. 15 (d), around 1.6× 107 samples) and our method. It is
clear than high resolution MacCormack scheme produces more vortices
than Fig. 15 (d) and is closer to our method, but it also costs much more
computing time and more memory usage than that in Fig. 15 (d).

GHz frequency, but with parallel execution on 20 cores to
maximize its performance. It costs around 50 seconds with
2 iterations and fixed CFL number (CFL=3) for the method
of Zhang et al. [7] to produce one animation frame, which
costs 2 GB memory, while our solver costs around 4 seconds,
which is much faster, but with more memory (4 GB). If we

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

offload the IVOCK scheme to the GPU and considering
that a GPU implementation of an incompressible Euler
equation solver is generally only several times faster than
its CPU equivalent, our solver is still very promising in
performance while capturing even more turbulence details
than the IVOCK scheme.

To enhance the simulation for boundary layer induced
smoke motion, we employ the method of Zhang et al. [23]
for comparison, and Fig. 15 (e) shows such a simulation with
3.7 × 106 samples (two scales), which is almost equivalent
to the number of samples in our simulation in Fig. 15 (f). To
increase turbulence details, we set zero viscosity for Fig. 15
(e) and a viscosity of 10−4 for Fig. 15 (f), which results in
a Reynolds number of 5 × 105. From the comparison, it is
clear that our solver can capture much more boundary layer
turbulence details, especially in the wake flow region. Since
the solver by Zhang et al. [23] is also more difficult to be
implemented on the GPU, we still run it on a CPU with 2.3
GHz frequency, but with 20 cores for parallel execution to
maximize its performance, and it costs around 80 seconds
with 1 iteration for the method of Zhang et al. [23] to
produce one animation frame with 3 GB memory, while our
solver costs around 10 seconds and 4 GB memory, with 15
iterations per animation frame. Such a solver can be im-
plemented on the GPU, and as argued similarly before, the
performance can only be several times faster than its CPU
equivalent. In this case, our solver is also very promising in
performance for boundary layer flow simulations.
Comparison under different resolutions. In addition to the
comparisons above, it is also interesting to compare our
solver under different resolutions, where Fig. 17 (a) & (c)
show the smoke simulations passing though a ball, which
are solved on uniform grids only without any adaptive
refinement, but with higher (around 6×106 samples in DOI
region in Fig. 17 (a)) and lower (around 1 × 106 samples
in DOI region in Fig. 17 (c)) resolutions respectively, while
Fig. 17 (b) shows the simulation result with our continuous-
scale setting, but with higher resolution near the ball and the
total number of samples (3.5 × 106 samples in DOI region)
is almost in the middle between those in Fig. 17 (a) & (c).

It is clear that with our continuous-scale setting and
flexible sample placement around object boundary (the reso-
lution around the ball is even higher than the one in Fig. 17
(a)), more plausible turbulence structures can be captured
around the ball, which is closer to the high resolution result
in Fig. 17 (a), with even finer details. Such a turbulence
structure can also be transmitted to the wake flow region far
behind the ball, where we use a very coarse grid (four times
sparser than the region around the ball), but the fluctuation
can also be well preserved without significant diffusion
due to conservative advection and collision in each scale.
Considering that almost half number of samples are used in
our simulation to produce a result even better than the one
with uniform high resolution grid, our method obviously
has performance gains.

6.6 Advection efficiency

In traditional kinetic approach with lattice Boltzmann
method, the advection is under the restriction of CFL=1,
which does not allow flexible tuning of time steps, and may

Fig. 17. Comparison of flows passing through a ball with different res-
olutions and sample placement. (a) uniform grid with high resolution
(around 6 × 106 samples in DOI region); (b) our adaptive resolution
with much less number of samples (3.5 × 106 samples in DOI region)
and thus less computation time, but higher resolution around the ball; (c)
uniform grid with low resolution (around 1×106 samples in DOI region).
It is clear that, our simulation produces closer vortex structures around
the ball to the high resolution simulation, with even finer details, which is
much better than the low resolution simulation result.

first seem to be slow. However, considering the balance
between efficiency and accuracy, we usually do not set a
very large CFL number for traditional macroscopic solvers,
and the maximum CFL number is usually set around 3 or
even smaller. In this case, kinetic solver is not really slow,
especially considering the adaptive continuous scale setting
where the reference scale is usually much coarser than the
smallest scale, resulting in relatively large time steps for one
iteration of the entire domain. The parallel implementation
is also straightforward, and the whole solution is almost
conservative, which is beneficial for turbulent flows. The
comparisons in Section 6.5 verified above arguments.

6.7 Limitations
Our method also suffers from several limitations. First, due
to interpolations among scales, some small-scale features
may be smoothed out. Currently, this can only be improved
by increasing the sample resolution of the corresponding
scale. Second, since we use D3Q27 lattice structure, and we
always overlay small scales onto large ones, more mem-
ory will be used than the corresponding INSE approaches.
Third, although we parallelize our method on the GPU, the
computation is still serialized among different scales, which
could be further accelerated in the future.

7 CONCLUSION

In this paper, we propose a novel continuous-scale kinetic
approach to simulating fluid flows with flexible sample
placement. To significantly increase the stability and accu-
racy for turbulent flow simulations with kinetic approaches,
we propose to employ a non-orthogonal central-moment

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

relaxation model where we develop a novel adaptive relax-
ation method to retain stability while preserving sufficient
turbulence details. To respect scale continuity, we propose
a new continuous-scale formulation that can easily combine
different scales together with loose geometrical constraint,
which directly leads to a flexible scale construction and
refinement scheme to adapt scales according to the domain
geometries and the flows in simulation in a more continuous
manner. The application to smoke simulations demonstrates
the effectiveness of our method, with comprehensive com-
parisons to the existing methods to verify our advantages.

ACKNOWLEDGMENT

The authors would like to thank all reviewers for their
constructive comments, as well as Dr. Xinxin Zhang from
University of British Columbia for sharing his fluid simu-
lation codes for comparisons. This work is supported by
the National Natural Science Foundation of China (NSFC)
- Outstanding Youth Foundation (Grant No. 61502305), as
well as the startup funding of ShanghaiTech University.

APPENDIX

In our continuous-scale kinetic fluid simulation, we use the
non-orthogonal central moment relaxation (CMR) model for
the collision [20]. Here we give a more detailed description
about the construction and application of the model. For
the derivation, please refer to the paper directly. Like in
MRT model, the CMR model first define the central moment
space with the following lattice velocity definition based on
the D3Q27 lattice structure:

cx = [0, 1,−1,0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1,

0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]T ,

cy = [0, 0, 0, 1,− 1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,

− 1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1]T ,

cz = [0, 0, 0, 0,0, 1,−1, 0, 0, 0, 0, 1, 1, 1,−1, 1,

1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1]T ,

(21)

where cx, cy and cz are the x-, y-, z-component of the
27 lattice velocities ci. These velocities are then translated
with the flow velocity u to define a set of translated lattice
velocities:

c̄i = ci − u. (22)

The central moments are then defined by constructing a
transformation matrix M which transforms the velocity
distribution functions to central moment space as:

mi = MT f , (23)

where f = [f0, f1, ..., f26]T and m = [m0,m1, ...,m26]T

are vectors collecting all the components of the distribution
functions and their corresponding central moments, and
each component of Mij is defined as:

Mi,j = c̄mx,ic̄
n
y,ic̄

p
z,i, (24)

where {x, y, z} indexes the corresponding velocity compo-
nent; j = (m+ 1)(n+ 1)(p+ 1)− 1; and m,n, p ∈ {0, 1, 2}.
Note that i ∈ 0, 1, ..., 26 indexes the 27 velocities and
j = (m+ 1)(n+ 1)(p+ 1)− 1 ∈ 0, 1, ..., 26 indexes different

moments. By expanding different orders of moments, the
specific forms for Mij is defined as follows:

Mi,0 = c0i , Mi,1 = c̄xi, Mi,2 = c̄yi,

Mi,3 = c̄zi, Mi,4 = c̄xic̄yi,

Mi,5 = c̄xic̄zi, Mi,6 = c̄yic̄zi,

Mi,7 = c̄2xi − c̄2yi, Mi,8 = c̄2xi − c̄2zi,

Mi,9 = c̄2xi + c̄2yi + c̄2zi, Mi,10 = c̄xic̄
2
yi + c̄xic̄

2
zi,

Mi,11 = c̄2xic̄yi + c̄yic̄
2
zi, Mi,12 = c̄2xic̄zi + c̄2yic̄zi,

Mi,13 = c̄xic̄
2
yi − c̄xic̄

2
zi, Mi,14 = c̄2xic̄yi − c̄yic̄

2
zi,

Mi,15 = c̄2xic̄zi − c̄2yic̄zi, Mi,16 = c̄xic̄yic̄zi,

Mi,17 = c̄2xic̄
2
yi + c̄2xic̄

2
zi + c̄2yic̄

2
zi,

Mi,18 = c̄2xic̄
2
yi + c̄2xic̄

2
zi − c̄2yic̄

2
zi, Mi,19 = c̄2xic̄

2
yi − c̄2xic̄

2
zi,

Mi,20 = c̄2xic̄yic̄
2
zi, Mi,21 = c̄xic̄

2
yic̄zi,

Mi,22 = c̄xic̄yic̄
2
zi, Mi,23 = c̄xic̄

2
yic̄

2
zi,

Mi,24 = c̄2xic̄yic̄
2
zi, Mi,25 = c̄2xic̄

2
yic̄zi,

Mi,26 = c̄2xic̄
2
yic̄

2
zi,

(25)
where the vector c0i = 1. After we convert the distribution
functions f to the central moment space m by m = MT f ,
we can model the collision operator Ω which gathers all the
collision operators for each fi as:

Ω = −TS(m−meq), (26)

where S is a diagonal matrix defining the relaxation param-
eters for different orders of moments and meq

i is a vector
defining the equilibrium state in central moment space by:

meq
0 = ρ,

meq
1 = meq

2 = meq
3 = meq

4 = meq
5 = meq

6 = meq
7 = meq

8 = 0,

meq
9 = ρ,

meq
10 = −ρux(u2

y + u2
z),

meq
11 = −ρuy(u2

x + u2
z),

meq
12 = −ρuz(u2

x + u2
y),

meq
13 = −ρux(u2

y − u2
z),

meq
14 = −ρuy(u2

x − u2
z),

meq
15 = −ρuz(u2

x − u2
y),

meq
16 = −ρuxuyuz,

meq
17 =

ρ

3
(9u2

xu2
y + 9u2

xu2
z + 9u2

yu
2
z + 1),

meq
18 =

ρ

9
(27u2

xu2
y + 27u2

xu2
z − 27u2

yu
2
z + 1),

meq
19 = 3ρu2

x(u2
y − u2

z),

meq
20 = 3ρu2

xuyuz,

meq
21 = 3ρuxu2

yuz,

meq
22 = 3ρuxuyu

2
z,

meq
23 = −ρ

3
ux(18u2

yu
2
z + u2

y + u2
z),

meq
24 = −ρ

3
uy(18u2

xu2
z + u2

x + u2
z),

meq
25 = −ρ

3
uz(18u2

xu2
y + u2

x + u2
y),

meq
26 = ρ(10u2

xu2
yu

2
z + u2

xu2
y + u2

xu2
z + u2

yu
2
z +

1

27
),

(27)

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

and T is an inverse transformation matrix to transform
moment space vectors back to distribution functions, which
is defined as T = (MT)−1. Originally, since M is defined
with c̄i which is related to the macroscopic velocity u, it
is spatially and temporally varying, and T must be solved
for every iteration, which is costly. However, analytical
expression of T exists which can be obtained by using
Matlab function call “simplify(...)”. Since the expression is
really long, we do not include in this appendix. After we
obtain the collision operator Ω, the LBE is iterated as:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = Ωi(ρ,u). (28)

Note that there are 27 relaxation parameters in S that
should be further specified. By definition, m0 to m3 cor-
respond to macroscopic density ρ and velocity u which
are all conserved. Thus, any values for these relaxation
parameters can be used, and we set S0 to S3 to be 0. m4

to m8 correspond to physical stress terms, which should be
relaxed by macroscopic viscosity ν which is defined as

Si = (3ν + 1/2)
−1
, i ∈ 4, 5, 6, 7, 8. (29)

For other components in central moment space m9 to m26,
they correspond to higher order moments, their relaxation
parameters m9 to m26 are determined by some artificial
viscosities ν′i as:

Si = (3ν′i + 1/2)
−1
, i ∈ 9, 10, ..., 26. (30)

As argued in the main paper, the responsibility of ν′i is to
damp out higher order oscillations. The higher the order
in moment construction, the larger the artificial viscosity ν′i
should be given. In practice, we should gradually increase
ν′i from small value to relatively large value to stabilize
the dynamics by suppressing high order oscillations while
maintaining sufficient accuracy. In our method, we use
the four artificial viscosities which interpolate between the
lowest and highest orders in moment space, and the specific
setting used in our experiments are as follows:

ν′i = 0.005, i ∈ 9, 10, ..., 16,

ν′i = 0.007, i ∈ 17, 18, ..., 22,

ν′i = 0.009, i ∈ 23, 24, ..., 25,

ν′i = 0.01, i = 26,

(31)

which are a good balance between stability and accuracy,
and from our various experimental results, together with
the adaptive relaxation scheme, the whole dynamics is
stable and accurate enough without any blow-up, even with
complex geometrical boundaries.

REFERENCES

[1] J. Stam, “Stable fluids,” in Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 121–128.

[2] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and smoke
with an octree data structure,” in ACM Transactions on Graphics
(SIGGRAPH 2004). New York, NY, USA: ACM, 2004, pp. 457–
462.

[3] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method
for smoke, water and explosions,” in ACM Transactions on Graphics
(SIGGRAPH 2005). New York, NY, USA: ACM, 2005, pp. 910–914.

[4] H. Schechter and R. Bridson, “Evolving sub-grid turbulence
for smoke animation,” in Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2008,
pp. 1–7.

[5] S. Weißmann and U. Pinkall, “Filament-based smoke with vor-
tex shedding and variational reconnection,” ACM Transactions on
Graphics (SIGGRAPH 2010), vol. 29, no. 4, pp. 115:1–115:12, Jul.
2010.

[6] T. Pfaff, N. Thuerey, and M. Gross, “Lagrangian vortex sheets
for animating fluids,” ACM Transactions on Graphics (SIGGRAPH
2012), vol. 31, no. 4, pp. 112:1–112:8, Jul. 2012.

[7] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vor-
ticity in advection-projection fluid solvers,” ACM Transactions on
Graphics (SIGGRAPH 2015), vol. 34, no. 4, pp. 52:1–52:8, Jul. 2015.

[8] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of
smoke,” in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. New York, NY, USA: ACM,
2001, pp. 15–22.

[9] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for pro-
cedural fluid flow,” in ACM Transactions on Graphics (SIGGRAPH
2007), vol. 26, no. 3. ACM, 2007, p. 46.

[10] T. Kim, N. Thürey, D. James, and M. Gross, “Wavelet turbulence
for fluid simulation,” ACM Transactions on Graphics (SIGGRAPH
2008), vol. 27, no. 3, pp. 50:1–50:6, Aug. 2008.

[11] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid
flows,” Annual review of fluid mechanics, vol. 30, no. 1, pp. 329–364,
1998.

[12] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference
equations of mathematical physics,” IBM journal of Research and
Development, vol. 11, no. 2, pp. 215–234, 1967.

[13] D. d’Humières, “Multiple–relaxation–time lattice Boltzmann mod-
els in three dimensions,” Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 360, no. 1792, pp. 437–451, 2002.

[14] N. Thuerey, K. Iglberger, and U. Ruede, “Free surface flows with
moving and deforming objects for LBM,” Proceedings of Vision,
Modeling and Visualization 2006, pp. 193–200, Nov 2006.

[15] N. Thuerey and U. Ruede, “Stable free surface flows with the lat-
tice Boltzmann method on adaptively coarsened grids,” Computing
and Visualization in Science, vol. 12 (5), 2009.

[16] X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. E.
Kaufman, “Lattice-based flow field modeling,” IEEE Transactions
on Visualization and Computer Graphics, vol. 10, no. 6, pp. 719–729,
2004.

[17] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y.-C. Kuo, A. E. Kaufman, and
K. Mueller, “Visual simulation of heat shimmering and mirage,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 1, 2007.

[18] X. Liu, W.-M. Pang, J. Qin, and C.-W. Fu, “Turbulence simulation
by adaptive multi-relaxation lattice Boltzmann modeling,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 2,
pp. 289–302, Feb 2014.

[19] Y. Guo, X. Liu, and X. Xu, “A unified detail-preserving liquid
simulation by two-phase lattice Boltzmann modeling,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 23, no. 5, pp.
1479–1491, May 2017.

[20] A. De Rosis, “Nonorthogonal central-moments-based lattice Boltz-
mann scheme in three dimensions,” Physical Review E, vol. 95,
no. 1, p. 013310, 2017.

[21] Y. Peng, C. Shu, Y.-T. Chew, X. Niu, and X.-Y. Lu, “Application
of multi-block approach in the immersed boundary–lattice Boltz-
mann method for viscous fluid flows,” Journal of Computational
Physics, vol. 218, no. 2, pp. 460–478, 2006.

[22] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An uncon-
ditionally stable maccormack method,” J. Sci. Comput., vol. 35, no.
2-3, pp. 350–371, Jun. 2008.

[23] X. Zhang, M. Li, and R. Bridson, “Resolving fluid boundary
layers with particle strength exchange and weak adaptivity,” ACM
Transactions on Graphics (SIGGRAPH 2016), vol. 35, no. 4, pp. 76:1–
76:8, Jul. 2016.

[24] D. U. John Steinhoff, “Modification of the euler equations for vor-
ticity confinement: Application to the computation of interacting
vortex rings,” Physics of Fluids, vol. 6, pp. 2738–2744, 1994.

[25] T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross, “Scalable
fluid simulation using anisotropic turbulence particles,” in ACM

ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

Transactions on Graphics (SIGGRAPH ASIA 2010). New York, NY,
USA: ACM, 2010, pp. 174:1–174:8.

[26] T. Pfaff, N. Thuerey, A. Selle, and M. Gross, “Synthetic turbulence
using artificial boundary layers,” in ACM Transactions on Graphics
(SIGGRAPH ASIA 2009). New York, NY, USA: ACM, 2009, pp.
121:1–121:10.

[27] B. Kim, Y. Liu, I. Llamas, and J. Rossignac, “Flowfixer: Using
bfecc for fluid simulation,” in Proceedings of the First Eurograph-
ics Conference on Natural Phenomena. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2005, pp. 51–56.

[28] R. Wang, H. Feng, and R. J. Spiteri, “Observations on the fifth-
order weno method with non-uniform meshes,” Applied Mathe-
matics and Computation, vol. 196, no. 1, pp. 433–447, 2008.

[29] O.-Y. Song, H. Shin, and H.-S. Ko, “Stable but nondissipative
water,” ACM Transactions on Graphics (TOG), vol. 24, no. 1, pp.
81–97, 2005.

[30] N. Heo and H.-S. Ko, “Detail-preserving fully eulerian interface
tracking framework,” ACM Transactions on Graphics (SIGGRAPH
ASIA 2010), 2010.

[31] Y. Zhu and R. Bridson, “Animating sand as a fluid,” in ACM
Transactions on Graphics (SIGGRAPH 2005). New York, NY, USA:
ACM, 2005, pp. 965–972.

[32] K. Raveendran, C. Wojtan, and G. Turk, “Hybrid smoothed
particle hydrodynamics,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. New
York, NY, USA: ACM, 2011, pp. 33–42.

[33] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin,
“The affine particle-in-cell method,” ACM Transactions on Graphics
(SIGGRAPH 2015), vol. 34, no. 4, pp. 51:1–51:10, Jul. 2015.

[34] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran, “A polyno-
mial particle-in-cell method,” ACM Transactions on Graphics (SIG-
GRAPH 2017), vol. 36, no. 6, pp. 222:1–222:12, Nov. 2017.

[35] S. I. Park and M. J. Kim, “Vortex fluid for gaseous phenomena,” in
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. New York, NY, USA: ACM, 2005, pp.
261–270.

[36] A. Golas, R. Narain, J. Sewall, P. Krajcevski, P. Dubey, and M. Lin,
“Large-scale fluid simulation using velocity-vorticity domain de-
composition,” ACM Transactions on Graphics (SIGGRAPH ASIA
2012), vol. 31, no. 6, pp. 148:1–148:9, Nov. 2012.

[37] T. Brochu, T. Keeler, and R. Bridson, “Linear-time smoke an-
imation with vortex sheet meshes,” in Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2012,
pp. 87–95.

[38] X. Zhang and R. Bridson, “A PPPM fast summation method for
fluids and beyond,” ACM Transactions on Graphics (SIGGRAPH
ASIA 2014), vol. 33, no. 6, pp. 206:1–206:11, Nov. 2014.

[39] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun, “Energy-
preserving integrators for fluid animation,” ACM Transactions on
Graphics (SIGGRAPH 2009), vol. 28, no. 3, pp. 38:1–38:8, Jul. 2009.

[40] M. Lentine, W. Zheng, and R. Fedkiw, “A novel algorithm for
incompressible flow using only a coarse grid projection,” ACM
Transactions on Graphics (SIGGRAPH 2010), vol. 29, no. 4, pp. 114:1–
114:9, Jul. 2010.

[41] B. Zhu, W. Lu, M. Cong, B. Kim, and R. Fedkiw, “A new grid
structure for domain extension,” ACM Transactions on Graphics
(SIGGRAPH 2013), vol. 32, no. 4, pp. 63:1–63:12, Jul. 2013.

[42] R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis, “Spgrid: A
sparse paged grid structure applied to adaptive smoke simu-
lation,” ACM Transactions on Graphics (SIGGRAPH ASIA 2014),
vol. 33, no. 6, pp. 205:1–205:12, Nov. 2014.

[43] M. Becker and M. Teschner, “Weakly compressible SPH for
free surface flows,” in Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Euro-
graphics Association, 2007, pp. 209–217.

[44] B. Solenthaler and R. Pajarola, “Predictive-corrective incompress-
ible SPH,” in ACM Transactions on Graphics (SIGGRAPH 2009).
New York, NY, USA: ACM, 2009, pp. 40:1–40:6.

[45] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH fluids in computer graphics,” 2014.

[46] R. Winchenbach, H. Hochstetter, and A. Kolb, “Infinite continuous
adaptivity for incompressible SPH,” ACM Transactions on Graphics,
vol. 36, no. 4, pp. 102:1–102:10, Jul. 2017.

[47] S. Jeong, B. Solenthaler, M. Pollefeys, M. Gross et al., “Data-driven
fluid simulations using regression forests,” ACM Transactions on
Graphics (SIGGRAPH ASIA 2015), vol. 34, no. 6, p. 199, 2015.

[48] M. Chu and N. Thuerey, “Data-driven synthesis of smoke flows
with cnn-based feature descriptors,” ACM Transactions on Graphics,
vol. 36, no. 4, p. 69, 2017.

[49] M. Geier, A. Greiner, and J. Korvink, “Cascaded digital lattice
Boltzmann automata for high reynolds number flow.” Physical
review. E, Statistical, nonlinear, and soft matter physics, vol. 73, no.
6 Pt 2, pp. 066 705–066 705, 2006.

[50] D. Lycett-Brown, K. H. Luo, R. Liu, and P. Lv, “Binary droplet
collision simulations by a multiphase cascaded lattice Boltzmann
method,” Physics of Fluids, vol. 26, 2014.

[51] X. Liu, W.-M. Pang, J. Qin, and C.-W. Fu, “Turbulence simulation
by adaptive multi-relaxation lattice Boltzmann modeling.” IEEE
Transactions on Visualization and Computer Graphics, 2012.

[52] S. Geller, S. Uphoff, and M. Krafczyk, “Turbulent jet computations
based on MRT and cascaded lattice Boltzmann models,” Computers
& Mathematics with Applications, vol. 65, no. 12, pp. 1956–1966,
2013.

[53] O. Filippova and D. Hänel, “Grid refinement for lattice-BGK
models,” Journal of Computational Physics, vol. 147, no. 1, pp. 219–
228, 1998.

[54] A. Dupuis and B. Chopard, “Theory and applications of an al-
ternative lattice Boltzmann grid refinement algorithm,” Physical
Review E, vol. 67, no. 6, p. 066707, 2003.

[55] N. Thürey, T. Pohl, and U. Ruede, “Hybrid parallelization tech-
niques for lattice Boltzmann free surface flows,” Parallel Computa-
tional Fluid Dynamics 2007, pp. 179–186, 2009.

[56] Z. Fan, Y. Zhao, A. Kaufman, and Y. He, “Adapted unstructured
LBM for flow simulation on curved surfaces,” in Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation. ACM, 2005, pp. 245–254.

[57] K. Qu, C. Shu, and Y. T. Chew, “Lattice Boltzmann and finite
volume simulation of inviscid compressible flows with curved
boundary,” Adv. Appl. Math. Mech, vol. 2, no. 5, pp. 573–586, 2010.

[58] A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann,
“Schrödinger’s smoke,” ACM Transactions on Graphics, vol. 35,
no. 4, p. 77, 2016.

[59] D. Yu, R. Mei, and W. Shyy, “A multi-block lattice Boltzmann
method for viscous fluid flows,” International journal for numerical
methods in fluids, vol. 39, no. 2, pp. 99–120, 2002.

[60] S. B. Pope, “Turbulent flows,” 2001.
[61] S. Ubertini and S. Succi, “A generalised lattice Boltzmann equation

on unstructured grids,” Communications in Computational Physics,
vol. 3, no. 2, pp. 342–356, 2008.

[62] J. Latt, “Hydrodynamic limit of lattice Boltzmann equations,”
Ph.D. dissertation, University of Geneva, 2007.

[63] K. Huang, Statistical Mechanics. J. Wiley, 1987.
[64] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, “Advances

in multi-domain lattice Boltzmann grid refinement,” Journal of
Computational Physics, vol. 231, no. 14, pp. 4808–4822, 2012.

[65] Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman, “Flow simulation with
locally-refined LBM,” in Proceedings of the 2007 symposium on
Interactive 3D graphics and games. ACM, 2007, pp. 181–188.

[66] H. Lomax, T. H. Pulliam, and D. W. Zingg, Fundamentals of
computational fluid dynamics. Springer Science & Business Media,
1999.

[67] R. Bridson, Fluid simulation for computer graphics. CRC Press, 2015.

	1 Introduction
	2 Related Work
	2.1 Direct approach
	2.2 Indirect approach

	3 Fundamentals
	3.1 Non-orthogonal central-moment relaxation model
	3.2 Multi-block lattice Boltzmann formulation

	4 Our Formulations
	4.1 Adaptive relaxation
	4.2 Continuous-scale formulation
	4.2.1 Mapping distribution functions
	4.2.2 Spatial scale mapping
	4.2.3 Transition between scales
	4.2.4 Temporal alignment and scale mapping
	4.2.5 Handling multiple scales

	5 Scale construction
	6 Results and Discussions
	6.1 Initialization and boundary treatment
	6.2 Stability and accuracy
	6.3 Parallel implementation
	6.4 Smoke simulation
	6.5 Comparisons
	6.6 Advection efficiency
	6.7 Limitations

	7 Conclusion
	Appendix
	References

