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Fig. 1: The Tree-Speculation View is used to compare two topic models and shows the differences. Deleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branches are blurred,
while moved, newly added and removed nodes and keywords are highlighted. To efficiently guide users towards perceivable model
quality improvements, our system automatically proposes optimizations like the merge of two topics depicted here. By visualizing
model uncertainties and low quality topics, we foster trust in the model and empower users to directly address these shortcomings.

Abstract— To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish
the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper
presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decision-
making process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its
inner-workings. We support the active incorporation of the user’s domain knowledge in every step through explicit model manipulation
interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization,
the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever
the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect
on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement
for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.

1 INTRODUCTION

In the context of visual text analytics, topic modeling algorithms are
widely used as a processing step to efficiently segment document col-
lections into thematically-related groups [12]. The process of topic
modeling remains mostly concealed from end-users to disguise its algo-
rithmic complexity [48, 55]. However, treating topic models as typical
black-box machine learning components limits the trustworthiness of
their results and, in turn, of the whole system they inform [16]. Tackling
the issue of such a one-way process, several approaches have emerged,
promoting trust through linking the inputs, outputs, and parameter-
spaces of topic models into visual analytics frameworks [67]. These
techniques present a step towards truly interactive machine learning
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through enabling a human-in-the-loop process that allows users to adapt
the models to their data and tasks [24]. However, topic models typically
operate in a high-dimensional vector space defined by the keywords of
a corpus, with documents represented as frequency-distributions in that
space. The most commonly used class of algorithms are generative,
probabilistic models that create topic-document assignments in multiple
optimization iterations. Typical algorithms like latent dirichlet alloca-
tion (LDA, [10]) attribute keywords to topics, not documents, which is
not intuitive for non-machine-learning-experts to understand, let alone
optimize [62]. The main obstacle for designing effective visualizations
for such models is the discontinuity between their parameter-space
and their model-space. It is notoriously difficult to get an intuition
of the effect of changing algorithmic parameters or directly manip-
ulating the model-space on the output of these models. In addition,
“seemingly small changes on the user side could have unpredictable and
nonsensical cascading side effects” [47].

In their study on how non-experts perceive, interpret, and fix topic
models, Lee et al. recommend that “more active, mixed-initiative sup-
port may be useful during the refinement process, such as pointing
users to topics with high refinement potential and providing immedi-
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Fig. 2: The user-steerable topic modeling optimization process, includ-
ing a constant model quality monitoring that triggers speculative opti-
mization strategies, whenever the measured model quality deteriorates.

ate feedback” [47]. Hence, in order to provide complete transparency
within a visual analytics system, unveiling the inner-workings and
decision-making processes of topic modeling, there is a need for ex-
plainable and visualizable topic modeling approaches [24]. Address-
ing these challenges, we introduce the Incremental Hierarchical Topic
Model (IHTM), a deterministic, similarity-based algorithm developed
to tightly integrate the human in every step of the algorithmic decision-
making process. This user-steerable model was developed to maintain
a competitive performance with state-of-the-art topic models, while
being explainable and visualizable. Furthermore, IHTM is able to re-
quest human intervention when required, to efficiently leverage human
decision-making. Thus, we present a mixed-initiative visual analytics
technique for direct, bidirectional interactions between the visualization
and the machine learning components.

For effective human-in-the-loop decision-making, we further in-
troduce a novel visual analytics guidance mechanism. Based on the
continuous monitoring of the model stress level, the system can prompt
users when it detects a problem with the algorithmic decisions, request-
ing their feedback on a diverse set of automatically prepared model
optimizations. To support the user’s decision-making, speculations on
the effect of possible decisions are presented, allowing them to per-
form more informed refinements. This speculative execution (SpecEx)
highlights the different outputs that may emerge from a user’s feedback
before changes take effect, altering the operational-path of the model.
Hence, to estimate the potential impact of an interaction, users can
rely on SpecEx as an efficient preview instrument. In this paper, we
present a two-fold speculative execution; one on the effect of different
optimization strategies, and another temporal speculation on the next
steps of the IHTM algorithm.

Fig. 2 depicts our proposed technique for mixed-initiative topic
modeling using visual analytics. The document buffer holds batch-
segments of the corpus, ready for analysis. These could be coming
from a real document stream or a sorted document collection. Based on
the parameter space analysis proposed in our previous work [24], every
batch of documents is prepared for further processing. The IHTM then
sequentially assigns each document to a topic branch, constructing a
hierarchical topic structure. Every insertion is directly visualized, eval-
uated, and can be interactively adjusted. The model quality monitoring
(MQM) component constantly tracks twelve quality measures, evaluat-
ing the current stress-level of the algorithm. This component informs
the IHTM and visual analytics workspace of the current model qual-
ity and triggers the algorithm to halt whenever its heuristics detect a
decrease in the model quality. The main design rationale behind this
process is to target minimum feedback for maximum improvement.

We have identified several requirements for a visual analytics so-
lution incorporating SpecEx. First, it is essential that the model is
understandable, deterministic, and explainable so that users will be able
to understand how to interact with it. SpecEx analytics tools require
incremental processing, so that users can intervene and steer the model
development as the data is processed. In order to enable speculative
execution there needs to be some metrics related to the task which can
be predicted. In the topic modeling scenario, these are measures of
quality. Based on our previous work with experts in topic modeling [24]
and motivated by the tasks outlined by Liu et. al [48], we address the
following tasks: [T1] topic model understanding, [T2] model quality
monitoring (diagnosis), and [T3] topic-tree refinement.

We evaluated our technique with three different approaches, involv-

ing 13 participants and over 40 hours of studies. First, we validated
the IHTM topic model against common probabilistic models, with all
three annotators confirming that IHTM is competitive and achieves
results of comparable quality. Second, we verified that experts could
use our tool to achieve model improvements through a user study with
six participants optimizing a model of a familiar dataset, followed by
a semi-structured interview. Finally, we evaluated the model quality
improvements by having four annotators rank quality across a variety of
configurations, revealing that supervised speculative execution resulted
in better models than fully automatic approaches.

Our work makes the general contribution of SpecEx as a semi-
supervised optimization method which can reveal possible alternative
outcomes for automated processes, to inform model steering. Specif-
ically to topic modeling, our work contributes: (1) the explainable
and visualizable IHTM algorithm, including techniques for incorpo-
rating the users’ domain knowledge throughout the model-building
process; (2) a tailored visual analytics workspace for the progressive
understanding, diagnosis, and refinement of the modeling process.

2 BACKGROUND AND RELATED WORK

Our work is related to research in four areas: topic modeling algorithms,
visualizations, quality measures, and speculative execution.

Topic Modeling Algorithms Topic modeling is a special case of
document clustering that adds label generation [1]. Most commonly,
topic modeling is understood as a soft clustering problem, i.e., with
probabilistic membership assignment of documents to topics. However,
other classes of algorithms are also applicable to achieve a meaning-
ful partitioning of corpora. More specifically, four different classes
of clustering algorithms can be distinguished: (1) Generative cluster-
ing algorithms are probabilistic and include the popular LDA topic
model [10] and its diverse extensions (hierarchical [8], temporal [9],
with metadata [60], for spoken text [59]) as well as many other mod-
els (Pachinko allocation [52], Author Topic Model [61], HDP [65],
pLSI [19]). (2) Spectral clustering approaches like NMF [40, 68],
divide and merge clustering [15] or fuzzy co-clustering [41] perform
a segmentation-based clustering based on a dimensionality reduction
of the data. (3) Discriminative distance-based clustering works on
concept-, document- or keyword-distances [25, 28]. (4) Finally, word-
and phrase-based clustering incorporates text semantics or linguis-
tic knowledge into the clustering process [5, 32]. Independent of the
clustering algorithm used, labels for any topics can be created by spe-
cialized algorithms [44, 45]. Probabilistic models often produce results
of higher quality at the expense of reproducibility and the understand-
ability of the algorithm. They often require the specification of the
expected number of topics before the start of the modeling process.
This makes these models harder to use in visual analytics systems pro-
moting understanding and interactivity. As a result, we have devised
a novel topic modeling algorithm tailored to the incorporation into a
visual analytics pipeline, that will be presented in the following section.

Visual Analytics for Topic Modeling To date, many visualiza-
tions of topic model results have been proposed: ParallelTopics [20],
LDAExplore [27], VISTopic [69], Hiérarchie [63], and TopicViz [23],
among others. Another set of systems does not only interactively
visualize the modeling results, but also allows users to change or re-
generate the underlying model. Such interactions can add new model
constraints to group keywords in a single topic [34], produce more
detailed subtopics [39], manually merge or split topics [21, 33], or
modify weights for individual keywords [35]. In our previous work, we
have optimized two competing topic models by letting users rate their
respective results [24]. However, all of these systems recompute at
least parts of the model after every interaction. For an effective visual
analytics process we enable active steering of the modeling process
while it is making decisions, as proposed by Mühlbacher et al. [55],
allowing our system to quickly provide feedback on user interactions
and avoid waiting times, or even restarting the modeling process. Liu
et al. note that “most users often treat a machine learning model as a
black box” [48] and have thus defined understanding, diagnosis and
refinement as three important tasks for visual analytics systems. Our
workspace addresses these three tasks with tailored visualizations and



interactions for different stages of the modeling process. Lee et al. [47]
specify refinement operations for topic modeling that are intuitive for
non-expert users, including splitting and merging topics or adding and
removing keywords that have all been implemented in our system.

Measuring Topic Quality In order to speculate alternative paths
to guide the analysis, our system needs a way to differentiate potential
modeling strategies. One way to do this is to preview how each strategy
will affect the model quality downstream. Assessing the quality of a
topic model can be achieved using one of several available metrics or a
combination thereof. While each of the metrics studied by Chang et
al. [14] addresses some aspect of quality, they found the measures did
not capture the human intuition of quality well, thus these measures
alone cannot be used to optimize a model toward human expectations.
We have implemented twelve different model quality metrics. Some
of them measure structural properties of the topic tree, while others
operate on the keyword level within the topic descriptor keyword list.
Pointwise Mutual Information [11] measures the co-occurrence of
the most frequent keywords in a topic. Mimno et al. claimed to achieve
better performance with their definition of topic coherence [53] which
measures the conditional probability of keywords given more frequent
ones from the same topic. Coherence performs especially well for
very small and specific topics as well as large, generic ones [57]. As
a complement, we have implemented a measure we call separation,
which measures the inter-topic separability of keywords of a topic. We
aim for coherent yet separable topics and call the ratio between the
two metrics distinctiveness. In our previous work we have introduced
certainty [24] as a metric that asserts the uniqueness of keywords
for their respective topics. Additionally, we use the variance of the
similarities between subtopics of one parent-topic as an indicator for
topics that only contain equally similar subtopics.

To measure structural properties of the tree we employ graph mea-
sures. The ‘fan-out’ of tree nodes is measured by the branching factor.
Compactness, defined as the ratio between leaf nodes and inner nodes
is helpful to avoid document chaining artifacts that introduce sparse
and deep trees. In addition, we use the number of topics, the average
topic size [50] and, if available, the number of authors or speakers. Ad-
ditional metrics include the document entropy [50], the word mover’s
distance [42], and the topic distribution size. As these are focused on
probabilistic models, they are not implemented in our system.

Speculative Execution Speculative execution, in parallel comput-
ing (e.g., [13,58]), is used to reduce latency in I/O tasks by pre-fetching
and executing probable instructions. In visual analytics, we propose to
adapt speculative execution to provide real-time previews of multiple
paths to guide user decisions. Gleicher et al. argue against too much
guidance and seek to foster serendipitous interactions for exploratory
tasks [2]. For the model optimization task, however, a more guided
approach may be helpful. Lee et al. introduce preview mechanisms
for topic modeling [47]. Building on this, our speculative execution
provides previews of alternative paths for topic model optimizations.

3 INCREMENTAL HIERARCHICAL TOPIC MODELING

We introduce the Incremental Hierarchical Topic Model (IHTM)
(Algo 1) as the foundation of our mixed-initiative visual analytics
technique. This explainable model progressively builds a hierarchical
topic-tree by iteratively inserting each document from a collection.
The leaf nodes of the tree represent individual documents, while all
inner nodes group these documents into topics. The root node is thus
an aggregation of the entire corpus. The document-inserts are based
on a monotonic similarity-function, making the output of the algo-
rithm deterministic, with each document belonging to exactly one topic.
Documents contributing to multiple topics can be segmented into sub-
documents using a topic-based document split routine [26], with each
sub-document being inserted into one topic. Cosine similarity is our
default similarity function, but can be exchanged to suit the task and
genre. Documents are represented as weighted keyword-vectors, as
proposed in our previous work [24]. The keyword-vector V ∈ R

w of
each inner-node i is the sum of the vectors of all its leaf-node children
l(i): Vi = ∑c∈l(i)Vc. Here, w is the number of keywords in the corpus.

Algorithm IHTopicModeling(document-buffer)
1 root = initialize the topic-tree with an empty root;
2 while document-buffer is not empty do
3 node = create node from next doc; // incoming node
4 if numKeywords(node) ≥ minKeywords then
5 similarNodeSet = recursiveTreeDescend(node,root);
6 updateTree(node,similarNodeSet); // insert
7 extractTopicDescriptors(root); // update topics
8 updateMQM(); // calculate all metrics

9 else unclusteredNodes.add(node) // doc too short
10 updateVisualisation(); // show insert decisions
11 if qualityDeclined() then
12 optimize(); // trigger optimization

13 incorporateUserFeedback(); // bidirectional

14 applyFinalTreePruningAndSegment(); // best tree cut
15 return extractTopicDescriptors(root);

Algo 1: Incremental Hierarchical Topic Modeling

When inserting new documents, the algorithm determines
the similarity between the new document node and existing
tree-nodes based on the similarity of their respective keyword-
vectors. Starting with the root, the model finds the most
similar branch within the tree for inserting the incoming node.
To guarantee finding these branches without hav-
ing to compare every node to the whole tree, we
rely on the monotonicity property of the similar-
ity function [4]. It is defined as: ∀d, p,c ⊆ T :
min(sim(d, p),sim(d,c))≥ sim(d, p∪c), with d as
incoming document-vector and p,c as direct parent and child nodes in
the tree (T ), respectively — p∪ c is the normalized sum of the vectors
of p and c. This guarantees that the similarity cannot increase when
going from leaf nodes to the root, making each parent node in the
tree more general than its child. Hence, for every new insertion, the
algorithm starts with the root, calling a recursive insertion function
recursiveTreeDescend. It evaluates the similarity of the incoming
node to the current node and all its direct children. If one of the chil-
dren is found to be more similar than the current node, the algorithm
descends its respective tree-branch, otherwise recursion is terminated.

The result of this similarity computation is a set containing a
single most similar node, or a set of equally-similar nodes, called

(1a) (1b)

similarNodeSet. The model then distinguishes
between three cases to complete the insert in the
updateTree routine, as described in the following.
(1) If the incoming node is similar to one other node,
it differentiates whether the similar node is an inner-
node or a leaf-node. In case of an inner-node, the
incoming node gets appended as a direct child (1a).

(2a) (2b)

Otherwise, a new mutual parent for the incoming
node and the similar leaf-node is created to ensure
that every document remains a leaf-node in the tree
(1b). (2) If multiple sibling nodes are equally sim-
ilar, the incoming node is appended depending on
whether these are the only children of their parent
or only a subset of the children. For the former, the
node gets inserted as another sibling node (2a), and as for the latter, the
node and all similar siblings get inserted under a new parent (2b) (which
becomes a direct child of the previous parent of these siblings). (3) If
the tree has more than one equally-similar node and not all of them are
siblings, heuristics determine the most likely insert branch, selecting
one node (e.g., closest time-stamp or same author) and proceeding with
the first insert strategy.

We measure the quality of the model after an insert by calculating
multiple quality metrics introduced in Sect. 2 (updateMQM()) and
evaluate the last insert position using the insert certainty:

insert certainty(d) =
maxn∈similarNodeSet (sim(d,n))(

∑n∈m sim(d,n)
||m||

)

with m as the set of all nodes visited by recursiveTreeDescend.
It measures how certain the insertion into a topic was by comparing



Fig. 3: The visual analytics workspace. New documents are added to the document-log on the right-hand side before they are shown in the
topic-tree, the central component of our workspace. It shows both the model space and the algorithms decision making process, as well as
topic hierarchies, keywords and uncertainties. The model quality timeline tracks the metric development over time and forecasts the effects of
speculative executions (see Sect. 5). A control panel on the left hand side ranks optimizations based on their effectiveness for the current model
and enables steering the speculative execution: Optimizations can be viewed �, accepted � and rejected �. The control panel on top allows
pausing the modeling process �, setting its speed �, and manually triggering a speculative execution �. A color map shows which document
group the nodes in the tree belong to. Unclustered nodes that have not yet been added to the model are listed and can be added via drag and drop.

the similarity to the chosen parent node with all other similarities en-
countered during the insertion process. This triggers an update of the
visual analytics workspace (updateVisualization()), as discussed
in the next section. As our system is uncertainty-aware, it automati-
cally pauses the computation whenever necessary, requesting the users’
feedback. The IHTM treats all direct children of the root as high-level
topics and uses a scoring function (log-likelihood ratio [49]) after each
document-insertion to extract the top keywords for these topics as
descriptors (extractTopicDescriptors()).

Following the recommendation of Lee et al. [47], our model is de-
signed to be an explainable topic modeling approach and support all
their suggested update and refinement operations, including adding,
removing, and changing keywords; moving documents within the topic
hierarchy; and lastly, splitting, merging, removing, and creating topics.
Thus, the IHTM can be tightly coupled with a visual analytics system
that constantly interacts with the algorithm throughout its progressive
model-building process. IHTM is based on an iterative, distance-based
clustering technique that yields a visualizable model-space — in con-
trast to typical probabilistic, generative topic models. As documents
are incrementally inserted into the tree, the IHTM does not require the
specification of an expected number of topics before the start of the
modeling process. This is an important property for the use of topic
models in a streaming context or when visualizing every model-decision
step iteratively, as is described in the next section.

4 VISUAL ANALYTICS WORKSPACE

The visual analytics workspace is the primary window of interaction
with which the users have to steer the topic modeling process. Sup-
porting this complex task, we strive for a single screen interface to
reduce the users’ cognitive-load during the analysis. As motivated in
the introduction, the visual analytics workspace supports three analysis
tasks, namely [T1] Topic Model Understanding, [T2] Model Quality
Monitoring, and [T3] Topic-Tree Refinement. Thus we designed dif-
ferent visualization components, tailored to aid in performing these
tasks. Fig. 3 shows an overview of the visualization interface, including

all views. In addition to this interface, panels on each side of the screen
open up on demand, enabling users to adjust parameters (settings-bar,
right) and see details of interactively selected items (details-bar, left).

Depending on the current state of the topic modeling, the workspace
enters one of two modes, varying the functionality of the views and,
in turn, the possible interactions. First, the operation-mode, is the
primary state in which the IHTM is running, updating one model.
Second, the speculation-mode is a state where the IHTM is waiting
for the user’s feedback, showing candidate-models as alternatives that
the user can compare and choose from. While the users can incorporate
their feedback in both modes, the type of expected interactions and
feedback is different. In the operation-mode, only one instance of the
topic-tree is available for interaction. Therefore, the workspace supports
more fine-grained, direct tree manipulations, as described in Sect. 4.2.
In contrast, in the speculation-mode many different candidates trees
are available as possible optimizations of the current tree. The central
target for the interaction in this mode is the comparative analysis of
two trees. This is supported by tailored difference-visualizations, e.g.,
Fig. 1. This section focuses on describing the visual workspace while
in the default operation-mode, followed by Sect. 5 that describes the
system state while in speculation-mode.

Design Rationale To achieve a simple yet expressive design, we
incorporated a set of visual cues throughout the interface. The first and
most important cue is the highlighting of keywords and descriptors in
all visualization components. This provides the users with an intuition
of the unit of analysis considered by the topic modeling, i.e., users
should become aware that topic models reduce documents to vectors of
keyword frequencies. To highlight this, we designed keyword-glyphs
that encode the global (topic-model relevance score; cf., [24]) and
local (frequency in the document) importance score of keywords. Both
scores are discretized onto a five-point scale, encoding the global score
to the outside of the glyph (black circle-border) and the local score
to the inside of the glyph (gray circle), e.g., (global score
1, local score 4) and (global score 5, local score 2) . These
glyphs are positioned on top of keywords in several view components,



Fig. 4: To prime the model with their domain knowledge, users can provide a topic backbone consisting of expected topics, each characterized
by representative keywords. On the side we list the most important keywords of the corpus, from where they can be dropped into the topics.
Keywords are colored based on whether they originate from the corpus or have been added manually or through word2vec as similar keywords.

as in Fig. 3. They are used, for example, on hover, in detail-bars, and
in the document-log — our close-reading [37] view.

In addition, as the IHTM computes uncertainty information for
nodes, edges, and insert-operations, we designed uncertainty-aware
visualization components using a concept of visual-fuzziness, as intro-
duced by Vehlow et al. [66]. The different visual elements encoding
this uncertainty information will be introduced within the remainder
of this section. Lastly, we strive for complete transparency when dis-
playing the results of the modeling. We, therefore, include information
on unclustered documents or backbone topics that users expect but that
have not been detected by the algorithm in a panel for investigation.

Interaction Design All visualization components are highly in-
teractive to support the users’ exploration and analysis. For example,
as shown in Fig. 3, each document is represented in three coordinated
views in the workspace: in the document-log, in the topic-tree (as a
leaf node), and in the timeline. In addition to linking-and-brushing,
we provide two levels of details-on-demand for topics and documents.
First, a detail-panel on hover that contains only essential information
such as keyword distributions, second, a detail side-bar with all relevant
quality measures and other statistics. To further reduce complexity,
the workspace is initialized with sensible default parameters for all
components. However, we also provide an expert-interaction mode that
shows a wide range of controls for more advanced adaptations of the vi-
sualization, or of the algorithm. Lastly, to ensure data-provenance [64]
tracking and trust-building, we track and show all user interactions,
displaying all instances of optimization and direct model-manipulations
in the timeline view (see Sect. 4.3).

4.1 IHTM-Backbone Priors
As motivated by Andrzejewski et al. [3], introducing “must-link” and
“cannot-link” constraints to topic models yields substantial improve-
ment as it introduces a user-defined notion of relevance for the semantic
of the document-collection at hand. However, Lee et al. found that this
method of specifying complex semantics is unintuitive to users [47]. Ja-
garlarmudi et al. [36] suggest allowing users to generate topic keyword
lists to direct models. The IHTM algorithm was, therefore, designed
with this concept of domain-knowledge incorporation in mind. Based
on our experience working with social-science scholars [24] on topic
model tuning, we deduced that one potential place to include users’
feedback on their expected topics in a corpus is before starting the
model-building. Hence, we introduce topic backbone priors as a tech-
nique to prime the model, avoiding a cold-start. Fig. 4 shows the inter-
face in which users can construct the topic backbones. They can create
a hierarchical topic structure through adding topics. These could
be derived from an external data source (e.g., a discussion-agenda), or
could be automatically computed by our system using heuristics and
other topic models. For example, users can provide some represen-
tative documents and determine a topic distribution using LDA [10].
They can then directly adapt the suggestion in-place, through editing
the keywords manually, declaring topics as irrelevant, or completely
removing them. They are additionally assisted by an automatically-
ranked keyword list that extracts the most discriminative keywords
based on the G2-metric [22]. Similar keywords could be computed
using Wordnet [51] to support the users in generating a comprehensive

backbone. Users can specify names for the backbone topics, which are
visualized in the topic-tree, as discussed in Sect. 4.2.

The backbone technique allows the users to adapt and guide the
IHTM to their preferred topic granularity. For example, when analyz-
ing news articles, users might choose to create a high-level backbone
(sports, technology, crime, etc.), or they might prefer a more specific
one about concrete events (a particular game, new phone, etc.). This
allows the users to adjust the topic modeling process to their data
and tasks for a more targeted analysis. The backbone keywords are
weighted and used to initialize the IHTM topic-tree before starting the
document insertion-loop of the algorithm. However, these backbones
are weighted-in merely as subtle indicators for the model. Hence, if the
model recognizes documents as not being similar to any user-defined
backbone topic, it will construct a new topic branch. Therefore, users
cannot accidentally manipulate the model into generating nonexistent
topics. Unseen backbone topics are indicated in the visual interface to
guide the user (see Fig. 3). Finally, any backbone topics that users have
created can be saved and loaded back in the next session, enabling users
to create collections of their domain knowledge that can be modularly
applied to their data.

4.2 Model-Space View

As described in Sect. 3, the IHTM algorithm updates the visual
workspace on the internal state of the model and all performed tree-
update operations after each insert-step. Visualizing the model-space
of the algorithm, the radial topic-tree is incrementally built as a central
part of the workspace, as depicted in Fig. 3. To guarantee scalabil-
ity, the tree is placed on a zoomable canvas and users can collapse
branches interactively to hide topics or remove tree imbalances. The
tree-root represents an aggregation of the entire corpus, while leafs are
documents, and the inner-nodes represent the topic-hierarchy.

The default color scheme of the topic-tree mirrors the distribution to
document-authors (or utterance-speakers for conversation transcripts)
per node. The node colors can be changed to show the inner-node vari-
ance. In addition, the size of each node represents the amount of text
accumulated in all of its associated children. Applying the metaphor of
node-fuzziness [30], we encode the within-cluster diversity, which we
described to users as uncertainty for simplicity of explanation, of each
topic (variance of pairwise-similarities of its children) to differentiate
nodes with potential for improvement from certain topic-nodes .
The same concept is applied to branches using squiggly-lines on the
outside of the tree. Line-segments showing higher fre-
quency and amplitude indicate noisiness or higher variance in sub-topic
branches. In addition to such confidence-indicators, the outside of the
tree shows three levels of keywords and descriptors, as shown in Fig. 5.
The keywords closest to the tree (on the inside of the line) correspond
to the second-level sub-topics in the tree, i.e., the different branches
of the main topics, which are, in turn, all direct children of the root.

Due to space constraints we only show these keywords for
larger topics, and not for every leaf node. The main topic
descriptors are represented as an array on the outside of
the line, e.g., [coal, oil]. Users can choose to name each

topic. These names are then shown on the outermost segment, e.g.,
Energy. Besides getting the topic names directly from the user, the



algorithm derives names for the topics based on defined backbone
priors (Sect. 4.1). To reduce visual clutter, the topic tree only depicts
the top keywords and descriptors for topics and sub-topics,
respectively. Keywords appearing in multiple topics are
highlighted with a glyph . However, these first few
keywords of the topic vectors might not reveal the nu-
anced differences between their content. We, therefore,
integrate a rich set of interactions. This includes hov-
ering over keyword vectors and topic names to reveal
more descriptors. In addition, all nodes in the tree show
a detail-box on hover to enable understanding why they
were positioned in their respective branch in the tree.
Furthermore, by clicking an element on the topic tree, a
detail-panel is opened from the left side of the screen.

Our visual analytics framework visualizes the process of topic
modeling incrementally. Therefore, we use staged-animations to
show each document-insertion into the topic-tree. Each docu-
ment enters the workspace as a new textbox in the document-
log. Using an animated transition, a node is formed out of this
box and traverses down the tree, from root to leaf. The visu-
alization shows all decisions the algorithm is taking during the
recursive similarity computation as described in Algo 1, line 5.

Starting from the root, similar candidate branches
are highlighted in green (darker color showing more
similarity) indicating the decision-path of the IHTM
algorithm. In addition, the most similar nodes along
this path are highlighted. After the insert-position
of the incoming node is found, we employ a clock

metaphor and place it as the rightmost child of its new parent. The
document-circle is animated into its new position and the tree updates
all keywords and node-positions. This step-by-step animation directly
explains the inner-workings of the model. To speed up the modeling
process, users can adjust the speed of the animation or skip the branch
highlighting phase, ensuring scalability to larger corpora.

While observing the model building process, users can stop the
algorithm to directly interact with the topic-tree and incorporate their
feedback. This can be done through dragging-and-dropping any node
in the tree (or any unclustered node) to a new parent. To assist this
process, the system highlights on demand the outlier children in a sub-
topic or similar nodes to a selected one, enabling users to move outlier
children to a new branch, or bring similar nodes from other branches
together. If users find a document or a sub-topic in the tree that is
incorrectly classified, they can trigger an automatic delete-and-reinsert
action. This positions the deleted node and all its children at the front
of the processing queue, forcing the IHTM algorithm to reinsert them
into the current tree. This interaction is particularly useful to overcome
earlier errors resulting from the incremental model-building process.

4.3 Model Quality Monitoring

Monitoring the quality of the topic modeling is a vital guidance-element
of our visual analytics approach. The IHTM algorithm issues an update
for the twelve model quality measures during every insert-loop (Algo 1,
line 8). To visualize and interact with these measures, we include a
timeline view, as depicted in Fig. 3. This timeline shows every inserted
document as a bar (scaled to its text length and colored like its corre-
sponding tree node), and indicates its insert-certainty as small square
below. The darker such a certainty-square, the higher the uncertainty of
the insert. In addition, to provide provenance histories, we note all in-
teraction events with icons on the bottom of the timeline. These events
include the creation of a new topic , manual movement of nodes by
the user , a node reinsert requested by the user , and the start of
a new speculative execution cycle . Furthermore, all user-selected
measures are visualized as line-charts. Due to the changing scale of
the measures during the incremental topic modeling process, all scales
are automatically stabilized, normalizing the measures between 0%
and 100%. To facilitate comparison, all measures are adjusted to be
optimized towards 100%, i.e., a rising line for a measure indicates an
improvement in quality. One measure can be highlighted (as the tracked
measure), fading-out the color for the other lines. Hovering over any

Fig. 5: IHTM result (with backbone; supervised SpecEx optimizations;
no direct tree manipulations) for the second presidential debate between
Romney and Obama in 2012 [17] in our topic-tree visualization.

position on the timeline shows details of all the measured scores for the
respective document, associated with the selected timestamp. Lastly,
as quality measurements are typically unstable for
the first documents, we fade-in the measures after
the eighth document has been inserted to avoid
misinterpretations. Through interaction with the
MQM users inherently perform a multi-objective
optimization of all metrics to their subjective notion of quality.

5 SPECULATIVE EXECUTION

As described in Sect. 2, speculative execution is a method that has long
been used in software engineering and process optimization [58]. With
our work, we showcase the application of SpecEx in a human-in-the-
loop decision-making context using visual analytics. More specifically,
for the use-case of topic model optimization, Lee et al. advise that
“one possibility to allow users to manage cascading side effects is if the
system can provide an estimate of the potential impacts of a refinement
before it is applied.” [47] Following their suggestion, we present a
two-fold speculative execution within the model-building process of
IHTM. First, the speculation shows the impact of different optimization
strategies, allowing users to compare their effect before deciding on
accepting one of them. Second, a temporal-speculation shows the
further development of different versions of the topic-tree over several
processing steps. Combining both preview mechanisms provides a
powerful tool for efficient, mixed-initiative topic model optimization.

Such a speculation can be manually triggered by the user at any
point during the incremental topic modeling. However, for a more
targeted optimization, we introduce an automatic triggering technique
that prompts the topic modeling to halt when its quality deteriorates.
The IHTM algorithm continuously assesses the change in its model
quality after each insertion. As described in Algo 1, line 11, an op-
timization can be automatically triggered when a decline is detected.
To measure this decline, we have defined and implemented 16 trigger
strategies, and evaluated their performance against a set of manually
selected trigger points on two datasets. These triggers consider moving
averages, as well as various groups of quality metrics. Some heuristics
showed promising results, with both high precision and recall values
for detecting a decline within a window of +/- 2 documents from the
manually-specified points. We, therefore, chose to combine the two
best-performing heuristics as default triggers for SpecEx. These are:



“Majority of Visible Metrics Decreases” (MVM) and “Rapidly Falling
Slope for Any Visible Metric” (RFa), reacting to quality declines of
more than five percent each, for all metrics in the timeline, and an
increasing negative delta for any metric, respectively. In combination,
they achieve an f-score of 0.706 (precision of 0.667 and recall of 0.750)
when tested against the manually annotated corpora.

When triggered, the speculative execution stops the algorithm and
starts optimizing parallel copies of the current model state. Hence, at
the time of speculation, there are multiple model candidates available,
as highlighted in Fig. 2. These candidates are generated by applying
different optimization strategies on copies of the latest topic-tree, as
introduced in Sect. 5.1. Simultaneously, the visual analytics workspace
switches from operation-mode to speculation-mode, activating compar-
ative instances of the different visualization components, as described
in Sect. 5.2. The user is then prompted to compare the different opti-
mized models to chose one of them. When a certain optimized model
is accepted by the user, the current model instance is replaced with the
chosen model. Our system guides users by ranking the optimizations
according to their potential in improving the current model quality
based on all measures (or optionally on the tracked metric). However,
choosing the optimization that yields the highest measured improve-
ment does not necessarily coincide with the users’ perceived model
quality, so exploration is suggested.

5.1 Automatic Optimization Strategies

As shown in Fig. 3, our framework implements six optimization strate-
gies. These have been developed based on observations of manual
optimization intentions. Each of these strategies gets automatically
applied to a copy of the current IHTM model. The visual analytics
workspace also includes the default IHTM model to allow the users to
compare the temporal-speculation of keeping the current model running
without optimization. In the following, we explain all options users
can compare and choose from during speculation-mode. (0) Default
IHTM: Shows the future of the current model without adjustments.
(1) Combine Similar Topics: Combines the most similar topics by
moving them to a common parent node. (2) Reinsert Worst Topics:
Identifies the worst topic under the currently tracked metric and redis-
tributes its documents. (3) Reinsert Small Topics: Reinserts all doc-
uments belonging to topics with three or less documents. (4) Outlier
Reinsertion: Identifies and reinserts outlier-nodes with the algorithm
used when creating the squiggly-lines in the visualization. (5) Split
Largest Topic: Splits the largest topic (by number of documents) into
two new topics. (6) Remove Topic Chains: Identifies topic-chains, a
clustering artifact, and moves the affected nodes to a common parent.

5.2 Comparative Speculation-Mode

In contrast to the operation-mode (Sect. 4), the main focus of the
speculation-mode is to facilitate comparative analysis. Users can ef-
ficiently flip through, compare, and interact with multiple optimized
models, without any of these candidates affecting the model-building
process, unless explicitly confirmed. This section describes the trans-
formation of the topic-tree and quality-timeline from single-model
visualizations into comparative views.

Timeline-Speculation View Whenever a speculative execu-
tion is triggered, the timeline shows a preview of the effects
of choosing one of the optimization strategies. In addi-
tion, supporting the two-fold speculation, the timeline
also shows how the measures would be affected over
the next ten insert operations for each optimization.
This preview relies on loading the next ten (buffer-
size) documents from the IHTM-buffer, for each op-
timization, in parallel. For a more distant look into
the future, users can request more batches of ten doc-
uments from the buffer (by clicking ∠) or increase the
buffer size. As seen in Fig. 3, all speculative measure developments are
shown after the trigger-line (which indicates the time-point the algo-
rithm was stopped). These measure-indicators get updated whenever
the user selects another optimization strategy to compare. Hence, this

Fig. 6: Extension of VA-Pipeline by Keim et al. [38] to SpexEx-VA,
with speculative execution as semi-supervised optimization technique.

view allows users to estimate the effect an optimization will have on
every measured quality metric, before accepting such an optimization.

Tree-Speculation View Comparing two topic-trees in the same
view is a challenging task, as attested by previous approaches, e.g.,
TreeVersity2 [31] or CandidTree [46]. In contrast to methods propos-
ing juxtaposed views [56], we aimed at designing a comparative tree
visualization that comprehensively highlights the differences between
two models within the same topic-tree to reduce the cognitive load, as
advised by [29]. As shown in Fig. 1, our proposed tree-speculation
view highlights the changes an optimization strategy introduces to the
current model-state. Such differences include: split, merged, deleted,
or newly-added topic-branches; changes on the document-level; or
keyword changes. Deleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branchesDeleted branches are blurred, while moved (from
a deleted branch), newly added (including ‘future documents’ from
the temporal speculation) and removed branches and keywords are
highlighted, using different colors, respectively. This design focuses
the attention of the users on the newly created (optimized) topic-tree
while promoting the tracking and spotting of changes. To further aid the
users’ understanding of the ongoing tree-transformation, we design a
set of tailored interactions. Notably, hovering a deleted or a moved node
highlights its new position in the tree and connects it with its original
position. An example of such an interaction is shown in Fig. 1, where
the (old) topics of ‘Christian’ and ‘Atheism’ were merged into a new
topic through moving their high-level topic nodes under a new, joint
parent-node. In order to focus the analysis task of this view on com-
parison, most interactions from the topic-tree component are disabled.
Hence, users cannot perform any direct tree-manipulations while in
speculation-mode. Once an optimization strategy is accepted, the tree-
speculation view transitions into a topic-tree view and all interactions
of the operation-mode get enabled again.

5.3 SpecEx as a Visual Analytics Technique
Our instantiation of SpecEx can be seen as an extension of the Vi-
sual Analytics Pipeline [38] into a mixed-initiative guidance approach.
When there are modeling decisions to make, or multiple models to
consider, SpecEx provides an additional bridge between the models and
the visualization, allowing for model speculation and leading to a semi-
supervised optimization, as shown in Fig. 6. Speculation is possible
across a number of different analytic options, such as different algo-
rithms, temporal predictions on streaming data, alternative parameter
settings, or multiple runs of non-deterministic algorithms. Speculation
may be useful in scenarios where deeper model understanding is re-
quired to build trust, such as in explainable machine learning scenarios.
Thus, SpecEx can reveal the relevant, alternative pathways considered
by a model to enhance user insight into its inner-workings.

6 EVALUATION

Due to the modularity of our framework and the subjectivity of defining
good quality topic-models, we chose to perform three independent
evaluations, each focusing on one relevant aspect of model quality. The
first study targets the evaluation of the IHTM algorithm, allowing us
to establish a baseline for the other studies. The second study is a
qualitative expert study with political scientists, linguists, and computer



Annotation Score [1-10] Improvement to LDA

Algo News [18] Debate [17] Avg News [18] Debate [17] Avg

LDA [10] 5.9 (0.5) 5.6 (0.7) 5.7 (0.6) 0% 0% 0%

HDP [65] 7.9 (1.3) 7.5 (1.2) 7.7 (1.2) 35.4% 32.9% 34.3%

hPAM [54] 6.7 (0.8) 8.0 (0.5) 7.4 (0.6) 15.2% 42.1% 28.6%

IHTM 7.7 (0.7) 8.4 (0.8) 8.0 (0.8) 31.1% 49.4% 40.3%

Table 1: Comparison of IHTM against state-of-the-art topic models.
Annotators scored the topics (scale: 1–worst, 10–best; standard devia-
tion in parenthesis). The improvement is relative to the LDA baseline.

scientists. Lastly, the third study is a controlled quantitative study to
assess the relative model quality improvement of using our system
against the IHTM algorithm baseline.

6.1 IHTM Algorithm Evaluation
To assess the correctness and perceived quality of the basic IHTM algo-
rithm, we conducted a comparative study based on expert-annotations
from three political scientists. For this study, we chose two corpora
with different characteristics, namely, (1) a collection of 200 news
articles from the COHA-corpus [18] (sorted by timestamp), and (2)
a transcribed presidential debate [17]. Where applicable, the models
where restricted to 50 and 10 topics, respectively, based on previous
knowledge of the data. All the experts were familiar with the content
of the two datasets. We asked the participants to rate the quality of
each topic (per model) on a scale from 1 (worst) to 10 (best). We gave
them printed sheets each containing the output of one topic run (on one
dataset). The sheets were randomized and anonymized. The annotators
reported their judgements were influenced by whether they could find
all expected themes in separate topics, and based on the number of
meaningful keywords per topic descriptor. This study compared the
result of the IHTM topics (no optimization, no interaction) with three
other probabilistic topic models, HDP [65], hPAM [54], and LDA [10].
These were chosen as a baseline, since they have been previously con-
sidered as reference models in other comparative evaluation studies [7].
Furthermore, as our evaluation was based on expert feedback on each
topic model result as a whole, we did not consider other clustering
techniques that do not perform a cluster-labeling step (as these would
require a time-consuming comparison of cluster-memberships).

As shown in Table 1, the IHTM output achieved an average score of
8, outperforming the three other models. On average, annotators rated
IHTM 40% better than the LDA baseline (an improvement from 5.7 to
8.0), and 3.9% better than HDP (an improvement from 7.7 to 8.0). The
average inter-annotator agreement was 84%. IHTM performed best
on transcribed discourse data, as this type of text has a linear-structure
based on the social interaction between speakers. Such data aligns well
with our incremental processing approach. These results indicate that
the basic IHTM algorithm produces topic modeling results that are
competitive with state-of-the-art-models.

6.2 Qualitative Results: Expert Feedback
This study focused on participants using our framework to optimize
a topic model. We recruited six different participants from different
disciplines: two experts each from linguistics, political science, and
computer science. Each participant completed a two-hour session, in
three parts: (1) interface-explanation and first-impression feedback [30
mins], (2) using the visual workspace to optimize a topic model [60
mins], and (3) a semi-structured interview on the design and usability of
the system. All participants performed their analysis on the transcript
of the second US presidential debate between Romney and Obama
in 2012. This dataset was chosen for the familiarity of its content
and due to the corpus length (approx. 280 utterances). To set the
same baseline for the model-building process, all participants began
with predefined backbone priors that included all topics on the agenda
of this debate [17]. During all study sessions, the default automatic
triggers for speculative execution were used. Finally, all sessions were
audio-recorded, screen-captured, and logged for later analysis. In the
remainder of this section, we report aggregated feedback gathered
from all sessions combined. Fig. 5 shows one example of a topic-tree
regenerated based on the settings of the study.

Initial Feedback After explaining the task of the study and the
goals of our system, all participants immediately recognized the added
value of a visually-explainable topic modeling process. In particular,
the trust-building aspect was consistently mentioned in the feedback
from most participants. Some of them rely heavily on topic-modeling
for their research, building complex statistical models based on the
results of topic models. For example, Pol2 reported that “[he] usually
invest[s] an extensive amount of time to manually refine the results of
the topic modeling, because [he] has to ensure that the foundation of
[his] statistical computation is solid to avoid wrong inferences.” He
continued, that “[he] usually know[s] exactly which topic distribution to
expect for [his] datasets, as [he is] the one collecting the [experimental]
data.” In particular, this participant was enthusiastic about the idea
to set backbone priors for guiding the algorithm. The same general
sentiment was shared by other participants who agreed that setting a
“semantic-frame” (Ling2) to the analysis is intuitive and is expected to
yield an improvement in the modeling results.

Observations During the Optimization Process We witnessed
different patterns across the groups of participants. For example, the
linguists were tempted to analyze the keyword distributions in the topic-
tree more closely than other participants. This resulted in them using
direct tree manipulations to group different keyword clusters at the
beginning of the optimization process, extending the idea of priming
the algorithm with semantic knowledge. They also reported relying on
the document-log and the topology of the topic-tree to judge the quality
of the model. In contrast, the two computer scientists were much more
focused on choosing optimizations that did not negatively affect the
measured model quality. One of them admitted at the beginning of
the session that he would trust the system recommendations more than
his own intuition. However, through interacting with the system and
understanding the model decision-making process, this user became
more skeptical and started comparing different optimizations based
on his understanding of the data. He later reported, that “[he] would
have more confidence in the results of such a transparent process that
[he] can understand, than in a hidden model.” Lastly, a general pattern
observed in the analysis of the political scientists is that they both were
very keen on understanding the specifics of the quality measurement to
select “some important ones” to focus on. During the analysis session
with one of them, we observed that he, too, relied on the automatic
triggers to stop and judge the model quality. However, in contrast to
the computer scientists, his choice of an optimization strategy relied
mostly on a concrete action-plan which he derived from analyzing and
comparing the topic-trees. While these usage patterns are not indicative
or generalizable to research fields or broad user groups, observing the
differences showed the broad applicability of our system. Regardless
of the analysis strategies, they all reported perceiving an increase in
the model-quality, even when some of the quality metrics decreased.
Furthermore, they praised the rich set of interactions provided in the
framework and the amount of details provided.

General Assessment After going through a topic model opti-
mization process, all users confirmed that they perceived an improve-
ment in the model quality. When asked about whether they performed
the three tasks targeted by our framework, all of them confirmed that
they did. In addition, some of them said that they also did exploratory
analysis, and gained insight about both the dataset and the modeling
process. They additionally stated that they had built trust in the system:
not only did they learn to rely on its guidance (to request feedback
when the model quality declines), but most of them also learned to
have more confidence in judging when the algorithm is making wrong
decisions (e.g., because of missing semantics). They all approved of
the SpecEx process, indicating that it is intuitive to use and that it
helped them in making informed decisions. Furthermore, some experts
also suggested additional requested features to be added to the frame-
work. Notably, a score measuring the impact of the topic-backbone
on the model result, a score indicating the differences between two
topic-trees in speculation-mode, and an option to jump back in time
and change previous decisions, allowing to undo operations. All of
these suggestions are potentially useful extensions to our framework.



Corpus SpecExec User Rank Avg. Change Coherence Separation Distinct. PMI Certainty Branching Compactness Topic Size Speakers Topics

Presidential
Debate [17]

no 3.0 (0.8) 16.2% +5.95% +0.86% +7.24% +8.44% +5.19% +29.82% +19.76% +6.16% +63.64% 0%
automatic 2.75 (0.96) 22.74% +10.34% -12.73% -2.10% -4.20% +0.85% +54.09% +1.79% +51.37% +80.30% -29.41%
supervised 1.00 (0.00) 32.50% +26.40% -16.02% +14.10% +1.89% -4.65% +68.10% +18.20% +65.13% +87.33% -35.29%

AP
Corpus [6]

no 3.00 (1.41) 141.38% -33.07% +21.79% -2.63% -31.45% -38.97% +492.52% +206.52% +333.33% +368.00% -76.92%
automatic 4.50 (1.91) 172.16% -54.65% +39.18% -10.00% -45.10% -41.33% +457.14% +150.09% +550.00% +582.50% -84.62%
supervised 1.00 (0.00) 104.41% -24.58% +1.45% -18.56% -28.23% -37.65% +297.96% +148.77% +286.10% +317.30% -74.36%

20news
Corpus [43]

no 2.25 (0.50) 43.50% +11.37% +2.44% +15.59% -0.53% -7.87% +135.93% +14.59% +157.74% +67.14% -61.54%
automatic 4.25 (1.71) 80.35% +22.91% +4.21% +35.18% +6.68% -9.04% +231.02% +89.57% +236.30% +114.73% -69.23%
supervised 1.00 (0.00) 66.24% +13.80% -0.29% +15.68% +2.05% -9.85% +206.94% +59.04% +210.87% +97.32% -69.23%

Table 2: Relative quality metric change when applying a topic backbone and using SpecEx, compared to the original IHTM result as baseline. The
“user rank” (scale: 1–best, 6–worst) is not predicted by any individual quality metric, and does not align with the measured quality improvements.

6.3 Quantitative Results: Model Quality Assessment
In preparation for our third study, a topic modeling expert ran six
different configurations of the modeling process for each input corpus.
Three of the configurations used a topic backbone, while the other
three did not. Within the two groups, speculative execution was once
disabled, and once performed automatically. “Automatically”, here,
means that the top-rated strategy offered by the system was always
accepted. The last two configurations used supervised SpecEx, meaning
that the expert inspected the proposed optimizations and selected the
most fitting one, performing a semi-supervised optimization.

We chose three different datasets for this study: (1) the presidential
debate from the first study, (2) a collection of 125 newsgroup articles
from the 20news dataset [43], and (3) 100 news articles from the As-
sociated Press [6]. The insert-order of the documents in both news
corpora was determined through randomly shuffling their documents.
For each corpus, we let four annotators (two topic modeling experts
and two novice users) rank the model outputs created by the expert
on a scale from one (best) to six (worst), leading to 72 annotations.
The results, presented in Table 3, are averaged over the three corpora,
sorted to the annotators’ ranking, and show that annotators rate mod-
els with a backbone higher than those without. The quality metrics
confirm this, reporting higher increases in quality for models with a
backbone when compared to an IHTM baseline with no backbone and
no SpecEx. Independently of whether a backbone was provided or not,
users preferred models with supervised SpecEx over no SpecEx, rank-
ing them 1.0 and 3.0, and 4.17 and 4.42, respectively. They even found
that automatic SpecEx deteriorated the model quality and consistently
ranked it worse than what the baseline IHTM returned, indicating that
optimizing according to numerical values without semantics does not
work with current quality measures. Contrary to the users’ perception
of quality the metrics improve most under automatic SpecEx (91.75%
and 14.6%). Nonetheless, the metrics also indicate most improvement
of quality through supervised SpecEx when compared to models with
no SpecEx, finding a 9.65% improvement if no backbone is specified.

6.4 Discussion and Lessons Learned
Through evaluating our work with three independent measures, we con-
firmed the competitiveness of IHTM and the effectiveness of our visual
analytics workspace. Using these different evaluations, we obtained
diverse perspectives on relevant quality criteria. Our quantitative evalu-
ation has established that the quality of topic modeling outputs based on
a backbone structure was better received. Furthermore, our evaluation
shows that annotators favor optimized topic structures that are com-
puted using a supervised speculative execution over fully-automated
optimizations. This, however, stands in contrast to the automatically
computed quality measures that indicate that automatic SpecEx yields
the better results. More details on the differences in the measured
quality over the three configurations of SpecEx can be found in Ta-
ble 2. The results indicate that no single metric perfectly aligns with
the human ranking, validating our claim that users should perform a
multi-objective optimization instead of focusing on a single metric. Of-
ten, metrics track opposing goals: Coherence, for example, is typically
high for very small topics and can achieve its best possible score when
attributing all documents to their own topic. Topic size, in contrast,
aims for large, general topics that provide a good overview. Both met-
rics can never be optimal at the same time, and it is the user’s task to
select a middle-ground appropriate for their use-case.

User Rank Backbone SpecExec Measured Rank Improvement

1.00 (0.00) yes supervised 2.00 (1.00) 67.72% (35.98)
3.00 (1.00) yes no 2.75 (0.97) 67.01% (65.84)
3.83 (1.64) yes automatic 1.67 (1.15) 91.75% (75.36)

4.17 (1.11) no supervised 4.33 (0.58) 9.65% (2.04)
4.42 (1.56) no no 6.00 (0.00) 0.00% (0.00)
4.83 (0.94) no automatic 4.00 (1.73) 14.6% (11.05)

Table 3: Result quality for six different models, averaged over three
corpora. Users ranked the models (scale: 1–best, 6–worst) according to
their perception of quality. The measured rank is calculated based on
the improvements in quality metric scores. For each value, the standard
deviation across the three corpora is shown in parentheses.

In addition, our qualitative study highlights the effectiveness of
speculative execution in a visual analytics system, as a mechanism
for user-guidance and trust-building. Interviewing users with different
backgrounds displayed many different usage patterns of our visual ana-
lytics framework. However, regardless of their expertise disciplines, all
users approved of our incremental, animated visualization of the model-
building process. Almost all users reported that our approach allowed
them to understand the process of topic modeling for the first time.
They also praised the different possibilities for domain-knowledge
incorporation, making use of all three methods (backbone priors, di-
rect topic-tree manipulations, and automatic optimizations) during the
model optimization sessions of the studies. Such an explainable ma-
chine learning technique does not only support users in adapting the
models to their tasks and data, but also opens up a venue for using
explorative visual analytics as an educational tool.

7 CONCLUSION

We have presented a visual analytics framework for mixed-initiative
topic model optimization. Based on our novel, explainable topic model-
ing approach, we visualize every step of the model-building, allowing
for the tight integration of the users’ feedback and domain-knowledge
into the machine learning process. We propose a tailored visual an-
alytics workspace that interactively displays all intermediate results
of the topic modeling, allowing users to understand and refine them.
In addition to direct manipulations of the built topic-tree, our system
enables users to prime the topic modeling algorithm with expected
outputs, integrating their own data-semantics into the modeling process.
For a targeted optimization, we further introduce speculative execution
as a novel concept in visual analytics that acts as a preview mechanism
for an efficient user-steerable optimization. We have evaluated our tech-
nique based on three independent studies, all confirming the validity
and effectiveness of our framework for understanding, diagnosing, and
refining topic models. Our work will be made publicly accessible as
part of the VisArgue framework: http://visargue.inf.uni.kn/.

In our future work, we would like to investigate the potential for
transferring the concept of speculative execution in visual analytics to
other problem domains. Another goal of our research is to examine
other potential model-space visualizations to foster further understand-
ing of machine learning processes, opening up black-box computations.
Furthermore, continuing this line of research, we would like to explore
other perspectives on the model-building process of topic modeling.
Lastly, for better user-guidance, we will be studying which measures
best capture the human intuition of topic model quality.
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