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Details-First, Show Context, Overview Last: Supporting Exploration
of Viscous Fingers in Large-Scale Ensemble Simulations
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Abstract— Visualization research often seeks designs that first establish an overview of the data, in accordance to the information
seeking mantra: “Overview first, zoom and filter, then details on demand ”. However, in computational fluid dynamics (CFD), as well as
in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the
experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the
specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution,
we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those
features, and finally move to a potentially unfamiliar summarization overview. In a model instantiation, we show how a computational
back-end can identify and track over time low-level, small features, then be used to filter the context of those features while controlling
the complexity of the visualization, and finally to summarize and compare simulations. We demonstrate the effectiveness of this
approach with an online web-based exploration of a total volume of data approaching half a billion seven-dimensional data points, and
report supportive feedback provided by domain experts with respect to both the instantiation and the theoretical model.

Index Terms—theory, visualization design, details-first model, discourse paper, computational fluid dynamics

1 INTRODUCTION

A common goal in visualization is the design of techniques that pro-
vide both overview visualizations and support for feature exploration.
Overviews can help the user find regions where further investigation in
more detail might be productive [48]. Spatial features are, in turn, at the
very core of most engineering and biomedical visualization endeavors,
from vortices in flow simulations to bonding sites in protein structures.

While many such visualization designs follow the information seek-
ing mantra: “Overview first, zoom and filter, then details on de-
mand” [61], there are situations where providing an initial overview is
not relevant or practical for users, while providing details is paramount.
For instance, in a wide class of problems, including the problem illus-
trated in this paper, details do not have a precise definition, and their
identification relies on internalized knowledge in the domain expert’s
head. As further argued by van Ham and Perer [66] in their alternative
“Search, Show context, Expand on Demand” mantra for large graphs,
there is also a significant class of scientific users who are not interested
in global patterns in the data, but have specific questions about one or
several specific data points. As a practical example, an astronomer who
studies a class of quasars is typically not interested in an overview of the
entire observable universe [36]. A step further, in computational fluid
dynamics (CFD), domain scientists often work on the same problem for
months, and have a good mental overview of the underlying data [15].
From an information theory perspective, Chen et al. [15] argue briefly
that in such a case, having the direct ability to reach a detailed view
(details-first) would reduce the cost of step-by-step zoom operations.
Nevertheless, visualization textbooks only report the Overview-first
mantra and the Search-first mantra [48].

Other arguments against first presenting global overviews to users
are of a more practical nature. As illustrated in this paper, overviews
may be derived from imprecisely-defined details and thus may not be
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readily available. In the case of large-scale multidimensional datasets,
creating an overview may also not be feasible, in particular when a large
dataset is being maintained at a centralized location, and transferring it
to multiple client machines is not an option [41, 45, 66]. Last but not
least, in some scientific problems, for instance in simulation ensemble
visualization [52], the problem overview is not one spatial dataset, but
a collection of datasets, whose summarization in an overview is not
necessarily clear to the domain expert.

This discourse paper provides theoretical and practical evidence to
support an alternative approach to the two established design mantras,
Overview-first and Search-first. This alternative can be defined as
“Details-first, Show context, Overview last”, and supports situations
where the main user workflow is oriented along spatial or spatiotem-
poral feature analysis, while the problem overview can only take the
form of a summary. In this model, the analysis starts with the spatial
feature(s) of interest, with the help of a computational back-end that can
help identify and track those features over space and time. The detail
features are then used to automatically filter the feature-context in space
and time, while controlling the complexity of the visualization. Last,
detail-derived calculations are used to summarize and compare collec-
tions of features and potentially datasets, presenting a summarization
overview to the user.

We construct this alternative model with the help of scientific work-
flow theory [56] and of a practical example in the CFD domain, the
exploration of viscous fingers in large-scale ensemble simulations [1].
Viscous fingers are areas of high concentration formed when a higher
density fluid (e.g., oil) is poured into a lower density fluid (e.g., water);
the fingering process is nondeterministic, and can lead to instabil-
ity. To study this process, multiple stochastic simulations with non-
deterministic properties must be executed, resulting in a simulation
“ensemble.” In turn, these simulation ensembles are nearly impossible
to analyze computationally, due to the large number of parameters
involved and the ill-defined nature of both the analysis process and the
finger structures themselves.

Using this problem as a vehicle, the Details-first model allows do-
main scientists to explore a total volume of data approaching half a
billion multi-dimensional data points through an interactive web-based
application. The contributions of this work are:

• A Details-first, Show context, Overview-last model for the explo-
ration of large-scale spatial data;

• A constructive instantiation of this model, using scientific work-
flow theory and the problem of viscous finger exploration; the
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instantiation constructs methods for identifying and tracking fin-
ger structures over time, for filtering the spatiotemporal context
of the computed features, and for supporting overview summa-
rization;

• An evaluation of this model on a large-scale dataset, including
feedback from CFD researchers on both the instantiation and the
underlying theoretical model;

• A discussion of the merits, applicability and limitations of this
approach, and of its fit with existing models.

2 BACKGROUND AND RELATED WORK

We begin our discussion with a brief review of relevant terminology
and paradigms in visualization design. We then highlight representative
work on detail identification for spatiotemporal CFD visualization; we
follow with a summary of representative work that uses CFD details to
visually filter data, and of work in ensemble visualization.

2.1 Relevant paradigms and terminology

Because the terms overview, context, and detail are overloaded in the
literature, we describe briefly the two dominant design paradigms, give
descriptions for each term below, and clarify their meaning and usage
in the scope of this work.
Overview-First paradigm. Among the detail, context and overview-
related guidelines for how to design visual interfaces, few are as
widely cited as Shneiderman’s 1996 Visual Information Seeking mantra:
“Overview first, zoom and filter, then details on demand” [61]. The
mantra provides an intuitive guideline to the interplay between the
need for “a broad awareness of the entire information space” [48] and
the need to see details, with a recommendation to designers that they
should provide an initial overview to users. Multiple “uses of the term
overview are found in the literature” [29].
Search-First paradigm. Shneiderman’s overview-first guideline is
most useful when handling datasets of moderate size [48]. In the
case of large datasets, creating a useful overview for top-down anal-
ysis may simply not be feasible. For such situations, an alternative
mantra is van Ham and Perer’s 2009 approach to the exploration of
large graphs: “Search, Show Context, Expand on Demand” [66]. This
second approach to visual analysis is similar to the online map search
process, where search results provide the starting point for exploring
local neighborhoods. The mantra does not provide a formal definition
for context.
Overview. The meaning of overview is diverse in the visualization
literature. As Hornbaeck [29] notes, many authors [61, 63, 65] write
about users gaining an overview of the information space, a process
which Hornbaeck identifies as “overviewing”. This process is akin
to the design concept of “knowledge in the head” or “internalized
knowledge” [50]. Yet Greene et al. [24] and Shneiderman [61] also
note that “an overview is constructed from, and represents, a collection
of objects of interest”. Munzner’s [48] discussion of overviews touches
on both aspects: “broad awareness of the entire information space [...]
and all items”, but also “When the dataset is sufficiently large, some
form of reduce action must be used in order to show everything at once.”
Last, while Shneiderman [61] discusses overviewing in his mantra
paper as “seeing the entire collection”, the mantra and subsequent
examples refer to overview in the sense of a technical, user interface
component (“knowledge in the world” [50]).

In this work, we adopt the Munzner dual definition. To distinguish
between the two common uses, “spatial overview” denotes the spatial
overview of one simulation (often internalized by domain experts), and
“summarization overview” denotes a collection of objects of interest,
constructed through reduction of the entire information space.
Detail. In general, detail denotes an individual feature, fact or item. In
the Shneiderman mantra [61], detail is “implicitly defined in contrast
to overview” [29]. Contrary to Shneiderman and Spence [63], Tufte
does not contrast between overview and detail, and instead suggests
that “to clarify, add detail”. Munzner describes “a more detailed view
that shows a smaller number of data items with more information about

each one” [48]. In scientific visualization and in this work, details are
often spatial features, as described below.
Spatial Features as Details. In the context of information theory and
CFD, Chen et al. [15] directly relate details to spatial features. Ober-
maier and Peikert [68] further note that the concept of feature in scien-
tific visualization is derived from its definition in computer vision [12],
where it describes a salient feature of an image, such as an edge or a
ridge. For example, features in flow visualization include vortices,
shock waves, isosurfaces, separation lines, and statistical features.
Features and Soft-knowledge. Obermeier and Peikert [68] note that in
the ideal case, features have a precise mathematical definition which
does not depend on any “tuning” parameters. In contrast, other feature
definitions involve a parameter and “require a visualization system
where parameters can be controlled by the user.” [68]. Similarly, We-
ber and Hauser [68] define features as data subsets of interest to the
user, sometimes “due to prior knowledge”. Last, Chen and Golan [16]
introduce “soft information, knowledge, and priors” in the context of
information theory in visualization, to capture known theories, intuition,
belief, and meta-knowledge about a system.

In our work, details denote spatial features. Following Chen and
Golan, soft-knowledge features denote those spatial features whose
definition involves one or more parameters controlled by the user. The
“soft” qualifier refers to the fact that this type of knowledge is difficult
to capture and represent computationally.
Context. In general, context can denote either 1) a global setting, or
2) a local circumstance. In the visualization literature, the concept is
similarly used. When describing the concept of focus+context, Card
et al. [13] equate context with overview (a global view at reduced
detail). Doleisch et al. [20] also describe context as “the rest of the
[spatial] data”, at a lower resolution, or in reduced style, for example
using translucency. More generally, Furnas [22] explains that context,
conceptually, is ”any presentation of an information structure” that
helps the user ”to extract meaning, to understand something about
[another focused/original] structure.”

The van Ham and Perer [66] construction and usage of context is
consistent with the locality aspect of the general vocabulary definition.
In our work, context is defined similarly, along its locality aspect.

2.2 CFD Visualization
Feature Extraction. A common practice in the visual analysis of CFD
spatiotemporal relationships is the detection, extraction, and exploration
of features of interest over time [5,6,44]. Oftentimes, these approaches
require the presence of clearly defined features in isomorphic structures,
and are not directly relevant to our illustrative example: finger structures
are soft-knowledge features. Favelier et al. [21] and Lukasczyk et
al. [37] use an adaptation of Shepard’s kernel method [59] to identify
such features based on concentrations. Both these works rely on user-
defined thresholds. In our recent work, neural networks have been
trained to identify shock features based on descriptors such as the strain
tensor and schlieren value at each timestep [45]. In a similar machine
learning approach, Maries et al. [41] utilize K-means clustering to
group and label points in areas of interest based on the velocity stress
and strain tensor. Our finger identification method resembles Maries
et al.’s [41] in that we define features based on groups of points with
similar salt concentrations. However, we threshold the feature groups
based on local-proximity and point concentration.
Feature Tracking. Most methods extract soft-knowledge features from
each timestep separately and track how they progress over time [30, 57,
62]. These methods rely on the temporal and/or spatial coherence of
attributes and location of the feature as it moves through time and space.
Other methods [9, 25, 69, 70] use a contour-based, merge-tree ideology
to enable tracking of regions of interest in combustion simulations.
Our finger tracking solution builds upon the combined success of these
spatiotemporal feature graphs.
Feature-based Filtering. CFD data is multivariate and dense, causing
visual occlusion even at modest scales. In consequence, the body of
work that uses details for filtering flow data is enormous. Here we
report only on the works most relevant to our approach, where the
features do not have a pre-defined formula for extraction. Multiple

Fig. 1. The Details-first, Show Context, Overview Last model supports the interactive, web-based exploration of ensemble simulations. From left to
right: detail and spatial-context panel comprising two 2D slices and a 3D flow view; a temporal-context panel comprising a time chart and a finger
forest; overview panel showing a small multiple of Kiviat diagrams. Linked interaction and a computational back-bone allow users to identify fingers
and track their evolution over time, and to analyze the data at multiple levels of detail.

coordinate views (MCV) have been deployed simultaneously to explore
multivariate data and identify potential regions of interest [20]. These
approaches harness linking-and-brushing techniques [27] to select and
filter features between the multiple views. Furthermore, many of these
approaches follow a focus+context style, where a general view or
physical view is brushed to uncover specific features [27, 33, 52].

However, this approach is difficult in the case of temporal features—
users have to mentally integrate multiple samples across timesteps
to understand the feature over time [46]. In our work, the data is
automatically filtered based on the finger structures we extract.
Ensemble Visualization. Multiple simulations are often used to quan-
tify and mitigate uncertainty in models that contain stochastic ef-
fects [53]. The resulting multiple simulation runs (collectively termed
“a simulation ensemble”) are often large, multivariate, multivalued and
time-varying, and have been described as “awkward” [71] and diffi-
cult to visualize [32, 51]. Many ensemble visualizations aim to reduce
complexity by presenting basic derived statistics such as the mean
and standard deviation of observed properties [52, 53]. Alone, these
techniques can capture ensemble variations between runs and provide
strong indications of overall ensemble behavior. However, unlike our
work, they may not capture more nuanced changes across time-steps or
among ensemble members, and do not attempt to display user-defined
spatial features.

Basic visual abstractions such as line charts, quartile charts, and his-
tograms are commonly used in ensemble visualization to encode statis-
tical parameters [28], as well as reduced spatial aggregate views [19,37]
to display specific attributes at a specific time and location. To facilitate
further exploration of ensemble members across space and time, these
aggregate views are linked to range-based representations [26]. These
representations may include colored overlays, multidimensional scaling
projections [8], and various types of tracking graphs [9, 37, 69]. We use
similar encodings for several of the features we compute.

3 MODEL INSTANTIATION

3.1 Constructive Example and Workflow Analysis

We illustrate the Details-first approach on a constructive example from
the IEEE VIS 2016 Scientific Visualization Contest [1]. The visual-
ization design (Fig. 1) was created in close collaboration with a CFD
researcher with over seven years of experience in turbulent flow com-

putational research, who is a co-author on this work.
Data and Tasks. The contest problem is centered on the spatiotempo-
ral exploration of viscous fingers in large-scale ensemble simulations.
One of the datasets provided is a simulation ensemble containing mul-
tiple stochastic simulation runs. Each simulation run in the ensemble
captures the diffusion of an infinite salt source placed at the top of
a cylinder filled with pure water. Over time, the higher-density salt
diffuses into the water, forming structures known as viscous fingers.
Each simulation is run using a Finite Pointset Method (FPM) approach
with 250,000 points at the lowest resolution, and over 120 timesteps per
simulation. In this ensemble, “the behavior of so-called viscous fingers
is of primary interest. The six-dimensional nature and size of the data
is the main challenge for visualization. Effective browsing, summa-
rization, and data reduction strategies are needed to obtain meaningful
insight into the data” [1]. The simulation ensemble cannot be analyzed
purely computationally, due to the large number of parameters involved
and the ill-defined nature of both the analysis process and the finger
structures themselves.
Model Perspective. From a model perspective, the finger structures
are defined based on soft-knowledge on the user side. Finger structures
are typically visualized and identified via the use of concentration
thresholds and contours. In this approach, a threshold is specified, and
the structures are identified at the interface where concentrations are
greater than or less than the threshold. This approach, which is not an
exact formula for finger structure, is based on the knowledge that a) the
features have higher concentration than surrounding areas, and that b)
the features form blobs that are similar in shape to fingers. In other
words, the finger structures are features that depend on the expert’s
soft-knowledge.

The second aspect weighing into the model perspective is that the
details are here the finger structures and their evolution over time. The
context is likely the physical volume around the spatial features, respec-
tively the features’ behavior over time across simulations. The overview,
in turn, can be considered at two levels: 1) the spatial overview of all
simulations, respectively 2) a summarization of the simulations. The
spatial overview (a plain upright cylinder with 250K points) poses
clutter and rendering time challenges, and its overall structure is also
familiar to the domain experts. The summarization overview, in con-
trast, will likely be encoded by a visual abstraction unfamiliar to a CFD
expert.
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instantiation constructs methods for identifying and tracking fin-
ger structures over time, for filtering the spatiotemporal context
of the computed features, and for supporting overview summa-
rization;

• An evaluation of this model on a large-scale dataset, including
feedback from CFD researchers on both the instantiation and the
underlying theoretical model;

• A discussion of the merits, applicability and limitations of this
approach, and of its fit with existing models.

2 BACKGROUND AND RELATED WORK

We begin our discussion with a brief review of relevant terminology
and paradigms in visualization design. We then highlight representative
work on detail identification for spatiotemporal CFD visualization; we
follow with a summary of representative work that uses CFD details to
visually filter data, and of work in ensemble visualization.

2.1 Relevant paradigms and terminology

Because the terms overview, context, and detail are overloaded in the
literature, we describe briefly the two dominant design paradigms, give
descriptions for each term below, and clarify their meaning and usage
in the scope of this work.
Overview-First paradigm. Among the detail, context and overview-
related guidelines for how to design visual interfaces, few are as
widely cited as Shneiderman’s 1996 Visual Information Seeking mantra:
“Overview first, zoom and filter, then details on demand” [61]. The
mantra provides an intuitive guideline to the interplay between the
need for “a broad awareness of the entire information space” [48] and
the need to see details, with a recommendation to designers that they
should provide an initial overview to users. Multiple “uses of the term
overview are found in the literature” [29].
Search-First paradigm. Shneiderman’s overview-first guideline is
most useful when handling datasets of moderate size [48]. In the
case of large datasets, creating a useful overview for top-down anal-
ysis may simply not be feasible. For such situations, an alternative
mantra is van Ham and Perer’s 2009 approach to the exploration of
large graphs: “Search, Show Context, Expand on Demand” [66]. This
second approach to visual analysis is similar to the online map search
process, where search results provide the starting point for exploring
local neighborhoods. The mantra does not provide a formal definition
for context.
Overview. The meaning of overview is diverse in the visualization
literature. As Hornbaeck [29] notes, many authors [61, 63, 65] write
about users gaining an overview of the information space, a process
which Hornbaeck identifies as “overviewing”. This process is akin
to the design concept of “knowledge in the head” or “internalized
knowledge” [50]. Yet Greene et al. [24] and Shneiderman [61] also
note that “an overview is constructed from, and represents, a collection
of objects of interest”. Munzner’s [48] discussion of overviews touches
on both aspects: “broad awareness of the entire information space [...]
and all items”, but also “When the dataset is sufficiently large, some
form of reduce action must be used in order to show everything at once.”
Last, while Shneiderman [61] discusses overviewing in his mantra
paper as “seeing the entire collection”, the mantra and subsequent
examples refer to overview in the sense of a technical, user interface
component (“knowledge in the world” [50]).

In this work, we adopt the Munzner dual definition. To distinguish
between the two common uses, “spatial overview” denotes the spatial
overview of one simulation (often internalized by domain experts), and
“summarization overview” denotes a collection of objects of interest,
constructed through reduction of the entire information space.
Detail. In general, detail denotes an individual feature, fact or item. In
the Shneiderman mantra [61], detail is “implicitly defined in contrast
to overview” [29]. Contrary to Shneiderman and Spence [63], Tufte
does not contrast between overview and detail, and instead suggests
that “to clarify, add detail”. Munzner describes “a more detailed view
that shows a smaller number of data items with more information about

each one” [48]. In scientific visualization and in this work, details are
often spatial features, as described below.
Spatial Features as Details. In the context of information theory and
CFD, Chen et al. [15] directly relate details to spatial features. Ober-
maier and Peikert [68] further note that the concept of feature in scien-
tific visualization is derived from its definition in computer vision [12],
where it describes a salient feature of an image, such as an edge or a
ridge. For example, features in flow visualization include vortices,
shock waves, isosurfaces, separation lines, and statistical features.
Features and Soft-knowledge. Obermeier and Peikert [68] note that in
the ideal case, features have a precise mathematical definition which
does not depend on any “tuning” parameters. In contrast, other feature
definitions involve a parameter and “require a visualization system
where parameters can be controlled by the user.” [68]. Similarly, We-
ber and Hauser [68] define features as data subsets of interest to the
user, sometimes “due to prior knowledge”. Last, Chen and Golan [16]
introduce “soft information, knowledge, and priors” in the context of
information theory in visualization, to capture known theories, intuition,
belief, and meta-knowledge about a system.

In our work, details denote spatial features. Following Chen and
Golan, soft-knowledge features denote those spatial features whose
definition involves one or more parameters controlled by the user. The
“soft” qualifier refers to the fact that this type of knowledge is difficult
to capture and represent computationally.
Context. In general, context can denote either 1) a global setting, or
2) a local circumstance. In the visualization literature, the concept is
similarly used. When describing the concept of focus+context, Card
et al. [13] equate context with overview (a global view at reduced
detail). Doleisch et al. [20] also describe context as “the rest of the
[spatial] data”, at a lower resolution, or in reduced style, for example
using translucency. More generally, Furnas [22] explains that context,
conceptually, is ”any presentation of an information structure” that
helps the user ”to extract meaning, to understand something about
[another focused/original] structure.”

The van Ham and Perer [66] construction and usage of context is
consistent with the locality aspect of the general vocabulary definition.
In our work, context is defined similarly, along its locality aspect.

2.2 CFD Visualization
Feature Extraction. A common practice in the visual analysis of CFD
spatiotemporal relationships is the detection, extraction, and exploration
of features of interest over time [5,6,44]. Oftentimes, these approaches
require the presence of clearly defined features in isomorphic structures,
and are not directly relevant to our illustrative example: finger structures
are soft-knowledge features. Favelier et al. [21] and Lukasczyk et
al. [37] use an adaptation of Shepard’s kernel method [59] to identify
such features based on concentrations. Both these works rely on user-
defined thresholds. In our recent work, neural networks have been
trained to identify shock features based on descriptors such as the strain
tensor and schlieren value at each timestep [45]. In a similar machine
learning approach, Maries et al. [41] utilize K-means clustering to
group and label points in areas of interest based on the velocity stress
and strain tensor. Our finger identification method resembles Maries
et al.’s [41] in that we define features based on groups of points with
similar salt concentrations. However, we threshold the feature groups
based on local-proximity and point concentration.
Feature Tracking. Most methods extract soft-knowledge features from
each timestep separately and track how they progress over time [30, 57,
62]. These methods rely on the temporal and/or spatial coherence of
attributes and location of the feature as it moves through time and space.
Other methods [9, 25, 69, 70] use a contour-based, merge-tree ideology
to enable tracking of regions of interest in combustion simulations.
Our finger tracking solution builds upon the combined success of these
spatiotemporal feature graphs.
Feature-based Filtering. CFD data is multivariate and dense, causing
visual occlusion even at modest scales. In consequence, the body of
work that uses details for filtering flow data is enormous. Here we
report only on the works most relevant to our approach, where the
features do not have a pre-defined formula for extraction. Multiple

Fig. 1. The Details-first, Show Context, Overview Last model supports the interactive, web-based exploration of ensemble simulations. From left to
right: detail and spatial-context panel comprising two 2D slices and a 3D flow view; a temporal-context panel comprising a time chart and a finger
forest; overview panel showing a small multiple of Kiviat diagrams. Linked interaction and a computational back-bone allow users to identify fingers
and track their evolution over time, and to analyze the data at multiple levels of detail.

coordinate views (MCV) have been deployed simultaneously to explore
multivariate data and identify potential regions of interest [20]. These
approaches harness linking-and-brushing techniques [27] to select and
filter features between the multiple views. Furthermore, many of these
approaches follow a focus+context style, where a general view or
physical view is brushed to uncover specific features [27, 33, 52].

However, this approach is difficult in the case of temporal features—
users have to mentally integrate multiple samples across timesteps
to understand the feature over time [46]. In our work, the data is
automatically filtered based on the finger structures we extract.
Ensemble Visualization. Multiple simulations are often used to quan-
tify and mitigate uncertainty in models that contain stochastic ef-
fects [53]. The resulting multiple simulation runs (collectively termed
“a simulation ensemble”) are often large, multivariate, multivalued and
time-varying, and have been described as “awkward” [71] and diffi-
cult to visualize [32, 51]. Many ensemble visualizations aim to reduce
complexity by presenting basic derived statistics such as the mean
and standard deviation of observed properties [52, 53]. Alone, these
techniques can capture ensemble variations between runs and provide
strong indications of overall ensemble behavior. However, unlike our
work, they may not capture more nuanced changes across time-steps or
among ensemble members, and do not attempt to display user-defined
spatial features.

Basic visual abstractions such as line charts, quartile charts, and his-
tograms are commonly used in ensemble visualization to encode statis-
tical parameters [28], as well as reduced spatial aggregate views [19,37]
to display specific attributes at a specific time and location. To facilitate
further exploration of ensemble members across space and time, these
aggregate views are linked to range-based representations [26]. These
representations may include colored overlays, multidimensional scaling
projections [8], and various types of tracking graphs [9, 37, 69]. We use
similar encodings for several of the features we compute.

3 MODEL INSTANTIATION

3.1 Constructive Example and Workflow Analysis

We illustrate the Details-first approach on a constructive example from
the IEEE VIS 2016 Scientific Visualization Contest [1]. The visual-
ization design (Fig. 1) was created in close collaboration with a CFD
researcher with over seven years of experience in turbulent flow com-

putational research, who is a co-author on this work.
Data and Tasks. The contest problem is centered on the spatiotempo-
ral exploration of viscous fingers in large-scale ensemble simulations.
One of the datasets provided is a simulation ensemble containing mul-
tiple stochastic simulation runs. Each simulation run in the ensemble
captures the diffusion of an infinite salt source placed at the top of
a cylinder filled with pure water. Over time, the higher-density salt
diffuses into the water, forming structures known as viscous fingers.
Each simulation is run using a Finite Pointset Method (FPM) approach
with 250,000 points at the lowest resolution, and over 120 timesteps per
simulation. In this ensemble, “the behavior of so-called viscous fingers
is of primary interest. The six-dimensional nature and size of the data
is the main challenge for visualization. Effective browsing, summa-
rization, and data reduction strategies are needed to obtain meaningful
insight into the data” [1]. The simulation ensemble cannot be analyzed
purely computationally, due to the large number of parameters involved
and the ill-defined nature of both the analysis process and the finger
structures themselves.
Model Perspective. From a model perspective, the finger structures
are defined based on soft-knowledge on the user side. Finger structures
are typically visualized and identified via the use of concentration
thresholds and contours. In this approach, a threshold is specified, and
the structures are identified at the interface where concentrations are
greater than or less than the threshold. This approach, which is not an
exact formula for finger structure, is based on the knowledge that a) the
features have higher concentration than surrounding areas, and that b)
the features form blobs that are similar in shape to fingers. In other
words, the finger structures are features that depend on the expert’s
soft-knowledge.

The second aspect weighing into the model perspective is that the
details are here the finger structures and their evolution over time. The
context is likely the physical volume around the spatial features, respec-
tively the features’ behavior over time across simulations. The overview,
in turn, can be considered at two levels: 1) the spatial overview of all
simulations, respectively 2) a summarization of the simulations. The
spatial overview (a plain upright cylinder with 250K points) poses
clutter and rendering time challenges, and its overall structure is also
familiar to the domain experts. The summarization overview, in con-
trast, will likely be encoded by a visual abstraction unfamiliar to a CFD
expert.
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Fig. 2. Workflow decomposition of the finger calculation and exploration process along the main axes of scientific workflows: data, control, and
(human) resource components. An additional column maps the data elements to the design components corresponding to overview, context and
details. The Resource column only shows the steps where humans are involved; the remaining steps are computational. Note how the details F
travel down the control flow, and up the data and the interface elements.

Scientific Workflow Analysis. Given these observations, let us con-
sider the problem from a workflow perspective [39]. In particular, the
finger calculation and exploration process can be decomposed along
the main axes of scientific workflow theory [56]: data, control, and
(human) resource components. In scientific workflow theory, data
captures the information that is required during the execution of a work-
flow; control-flow describes the set of steps that make up the process
and the way in which the thread of execution is routed between them;
resource identifies the people and facilities that actually carry out the
process. Figure 2 captures the data, control and resource elements for
this problem, with an additional column mapping the data elements to
the design components corresponding to overview, context and details.

This decomposition captures a number of traits of this workflow.
First, the spatial features (i.e., details, highlighted in green in Fig. 2) are
central to the entire process. Simulation summaries are a function of the
finger characteristics, and the ensemble is a function of the simulation
summaries, and thus also a function of the finger characteristics. In
other words, the context is a function of details (S(F)), and the overview
is a function of details (E ∼ (S(F))).

Second, a human is involved in all the analysis steps. Because
finger structures are identified empirically, human input is necessary
at that stage. Human input is necessary when selecting the set of
measures used to characterize the finger structures. A human is further
necessary when analyzing a simulation and extracting the measures that
characterize the simulation in terms of its fingers, and when analyzing
the entire ensemble.

In the following sections, we describe briefly the computational and
human-input steps in this example, along with the visual encodings for
each output, and then the resulting visualization design.

3.2 Finger Segmentation and Spatial Context Calculation

The description of the segmentation step captures the close interplay
between human input and the feature identification process. In order to
identify features within the data using the definition of a viscous finger
(a contiguous area of “high” concentration), we run a custom clustering
algorithm on the data. Along with determining the finger structures,

this process simultaneously allows us to calculate the spatial context of
the fingers.

Because the simulation data is mesh-free, and provided in the form
of a seven-dimensional point cloud (point position, velocity and con-
centration), the first step was to construct an adjacency network that
captures the local neighborhood of each point. Next, a simple clustering
algorithm was run on this adjacency network, grouping together those
points within the network which had a high concentration of above
µ +σ/k, where µ and σ are the mean and standard deviation of con-
centration for that timestep, respectively, and k = 7 was an empirical
value determined through visual analysis. The clustering algorithm
iteratively connects the nodes of the graph into clusters, based on the
relative position of each point to its neighbors. For each point, the
heuristic polls the cluster to which the neighboring points belong. If
only one neighbor belongs to a cluster, the heuristic adds the point to
that cluster. However, if the neighbors of the current point all belong to
a different cluster, the heuristic combines those clusters and adds the
current point to it.

Using the concentration heuristic alone can lead to all clusters near
the saline top (which is a constant source of high saline concentration)
being grouped together. To circumvent this artifact, the algorithm ig-
nores points within 0.5 units of the top of the cylinder. In particular, the
CFD expert noted that ignoring points immediately near the boundary
condition is logical and acceptable because, by any definition of a fin-
ger, a constant source would satisfy the finger concentration condition.
These empirical thresholds for the clustering can be calibrated, however
the data will need to be reprocessed to perform the clustering again
with the new thresholds.

The final clusters that result from this algorithm form the viscous
fingers for that timestep. The algorithm assigns each cluster a unique
cluster identifier. By keeping track of both cluster identifiers and point
IDs, we can track the points whether or not they appear in one of the
clusters as they move through time.
Finger Visualization. Finger structures and their spatial context are
visually represented using 3D and 2D views (Fig. 3).
3D View and Context. Finger structures can be inspected in a 3D Flow
View. Users can select the specific simulation and timestep to view.

Fig. 3. Detail and spatial context. The 3D Flow View (right) provides
the spatial context of finger structures. A vertical slab can be used to
analyze finger structures in detail using 2D Views (left). This snapshot
captures the formation of two large finger structures.

The cylindrical 3D view provides the context of the simulation domain,
with the saline layer displayed at the top. Each point color is mapped to
the concentration of that point. To provide further context, we display
points considered by the finger clustering algorithm in gray (i.e., points
of higher concentration).
Vertical Slab and 2D Views. To alleviate cluttering, a 3D vertical slab
(cutting plane with depth) is used to carve out a subset of points for
in-depth analysis. The slab points can be analyzed through linked
views which show the concentration heatmap and velocity vector field
of the data contained in the slab. We chose the slab representation,
as opposed to a plane, because fingers are not restricted to 2D; the
slab can be used to capture the finger depth along the cylinder cross
diameter as well. The linked 2D views aggregate over the slab width
the average value of the concentration and velocity, and help analyze
in detail the finger concentration and velocity. Fingers may be viewed
by moving the slab onto a specific viscous finger, which in turn allows
the user to view the concentration heatmap and velocity vector field
of the slab containing the finger. All viscous fingers are displayed by
default. Specific viscous fingers can be also interactively highlighted
in the 3D Flow view through the Finger Forest view described further
below. Selecting a specific node of a tree highlights the finger in color
(mapped to concentration).
Finger Properties and Analysis. To locate each cluster in the next
timestep, several properties of each cluster are calculated and used, with
input from the domain expert. From the finger segmentation output,
this approach produced for each finger an attribute set which includes:

• the number of points

• the total concentration

• the concentration-weighted average position of points

• the concentration-weighted average velocity of points

• the average magnitude of velocity

• the concentration-weighted average magnitude of velocity

• an axis-aligned bounding box around the feature

The first property is an average position of the points within the cluster,
weighted by the concentration of the points. Second, the average
velocity of the points in the cluster is calculated, also weighted by the

concentration of the points. To find the cluster nearest to another in a
different time step, the centers of concentration of the clusters are used,
which are both corrected for the difference in time by adjusting the
coordinates using the average velocity of the each cluster. The output
of these algorithms are multiple clusters of points for each timestep,
as well as the information linking these clusters to each other across
multiple timesteps. The results of the data preprocessing are used for
feature tracking, as well as in the simulation summarization.

From a model perspective, notice how extracting the details relies
on soft knowledge on the user side; and how the domain expert input
is essential to extracting the measures to characterize the features and
their context.

3.3 Finger Tracking and Temporal Context Calculation

To track the fingers’ evolution across a simulation, we run a two-stage
algorithm on the finger clusters that were identified in the previous step.
This process allows us to determine the temporal context of the finger
evolution. This temporal context captures the appearance, dissipation,
merging, and splitting of fingers.

The two-stage algorithm is based on the tracking graph algorithm
proposed by Bremer et al. [9]. The algorithm first uses the size, position,
concentration, and average velocity of the viscous fingers to label each
cluster in each timestep with an ID, unique to each viscous finger over
the course of the simulation; in other words, fingers within a single
timestep can not share an ID, but fingers between timesteps can. In the
second stage, these IDs are used to index the fingers into an adjacency
list per timestep. A grouping procedure is then run on each pair of
consecutive timesteps, constructing relationships between the fingers,
over time. For each of the M-1 pairs of consecutive timesteps, the
algorithm iterates over the two lists, comparing both finger properties
and IDs. If the procedure finds a match between both properties and
IDs, then the corresponding finger persisted between the timesteps
and the two adjacency list entries for that ID are linked. Similarly, if
the procedure finds a match between properties but not IDs, then the
finger in the earlier timestep has merged into the finger in the later
timestep, and the two adjacency list entries are connected. Finally, the
procedure treats all unmatched nodes as either having split or dissipated,
depending on whether the unmatched node is present in the later or
prior timestep, respectively.

The trees output by the algorithm capture the evolution of each
viscous finger throughout a simulation. We assign each tree the same
ID as the viscous finger that is mapped by the tree root. By binding
the finger structures to the trees, we can track the spatial features as
they evolve. The linked IDs also allow us to select a node in the tree
interactively and highlight that specific viscous finger in the 3D Flow
view and 2D feature views.
Simulation Analysis. To analyze the finger evolution over time, we
turn again to input from the domain expert. We will use two of the
finger properties previously derived, as well as an additional parameter.
These properties are: the number of points in each finger, the average
concentration of the points in each finger, and now also the total number
of fingers in the simulation.
Temporal Context Visualization and Filtering. The temporal con-
text calculated in this step is shown in a temporal-encoding panel. The
panel contains one horizontal, time-aligned tree for each finger in the
simulation, as well as a Time Chart which can be used to control the
temporal context shown.
Time Chart View. The Time Chart can be used to select the range of
timesteps to be graphed in the Finger Forest. The number of fingers
in each timestep is graphed for all simulations, with the graph for the
current simulation highlighted in color.
Finger Forest View. The Finger Forest (Fig. 4) displays a set of hor-
izontal, time-aligned trees that encode the evolution of fingers in a
simulation, over the time interval selected in the Time Chart. Each
node in a tree represents one viscous finger as that timestep, similar to
the graphs of Bremer et al. [9]. The nodes are colored by the average
concentration of the points in the finger, and the radius of each node is
scaled by the number of points in the finger. The trees may merge or
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Fig. 2. Workflow decomposition of the finger calculation and exploration process along the main axes of scientific workflows: data, control, and
(human) resource components. An additional column maps the data elements to the design components corresponding to overview, context and
details. The Resource column only shows the steps where humans are involved; the remaining steps are computational. Note how the details F
travel down the control flow, and up the data and the interface elements.

Scientific Workflow Analysis. Given these observations, let us con-
sider the problem from a workflow perspective [39]. In particular, the
finger calculation and exploration process can be decomposed along
the main axes of scientific workflow theory [56]: data, control, and
(human) resource components. In scientific workflow theory, data
captures the information that is required during the execution of a work-
flow; control-flow describes the set of steps that make up the process
and the way in which the thread of execution is routed between them;
resource identifies the people and facilities that actually carry out the
process. Figure 2 captures the data, control and resource elements for
this problem, with an additional column mapping the data elements to
the design components corresponding to overview, context and details.

This decomposition captures a number of traits of this workflow.
First, the spatial features (i.e., details, highlighted in green in Fig. 2) are
central to the entire process. Simulation summaries are a function of the
finger characteristics, and the ensemble is a function of the simulation
summaries, and thus also a function of the finger characteristics. In
other words, the context is a function of details (S(F)), and the overview
is a function of details (E ∼ (S(F))).

Second, a human is involved in all the analysis steps. Because
finger structures are identified empirically, human input is necessary
at that stage. Human input is necessary when selecting the set of
measures used to characterize the finger structures. A human is further
necessary when analyzing a simulation and extracting the measures that
characterize the simulation in terms of its fingers, and when analyzing
the entire ensemble.

In the following sections, we describe briefly the computational and
human-input steps in this example, along with the visual encodings for
each output, and then the resulting visualization design.

3.2 Finger Segmentation and Spatial Context Calculation

The description of the segmentation step captures the close interplay
between human input and the feature identification process. In order to
identify features within the data using the definition of a viscous finger
(a contiguous area of “high” concentration), we run a custom clustering
algorithm on the data. Along with determining the finger structures,

this process simultaneously allows us to calculate the spatial context of
the fingers.

Because the simulation data is mesh-free, and provided in the form
of a seven-dimensional point cloud (point position, velocity and con-
centration), the first step was to construct an adjacency network that
captures the local neighborhood of each point. Next, a simple clustering
algorithm was run on this adjacency network, grouping together those
points within the network which had a high concentration of above
µ +σ/k, where µ and σ are the mean and standard deviation of con-
centration for that timestep, respectively, and k = 7 was an empirical
value determined through visual analysis. The clustering algorithm
iteratively connects the nodes of the graph into clusters, based on the
relative position of each point to its neighbors. For each point, the
heuristic polls the cluster to which the neighboring points belong. If
only one neighbor belongs to a cluster, the heuristic adds the point to
that cluster. However, if the neighbors of the current point all belong to
a different cluster, the heuristic combines those clusters and adds the
current point to it.

Using the concentration heuristic alone can lead to all clusters near
the saline top (which is a constant source of high saline concentration)
being grouped together. To circumvent this artifact, the algorithm ig-
nores points within 0.5 units of the top of the cylinder. In particular, the
CFD expert noted that ignoring points immediately near the boundary
condition is logical and acceptable because, by any definition of a fin-
ger, a constant source would satisfy the finger concentration condition.
These empirical thresholds for the clustering can be calibrated, however
the data will need to be reprocessed to perform the clustering again
with the new thresholds.

The final clusters that result from this algorithm form the viscous
fingers for that timestep. The algorithm assigns each cluster a unique
cluster identifier. By keeping track of both cluster identifiers and point
IDs, we can track the points whether or not they appear in one of the
clusters as they move through time.
Finger Visualization. Finger structures and their spatial context are
visually represented using 3D and 2D views (Fig. 3).
3D View and Context. Finger structures can be inspected in a 3D Flow
View. Users can select the specific simulation and timestep to view.

Fig. 3. Detail and spatial context. The 3D Flow View (right) provides
the spatial context of finger structures. A vertical slab can be used to
analyze finger structures in detail using 2D Views (left). This snapshot
captures the formation of two large finger structures.

The cylindrical 3D view provides the context of the simulation domain,
with the saline layer displayed at the top. Each point color is mapped to
the concentration of that point. To provide further context, we display
points considered by the finger clustering algorithm in gray (i.e., points
of higher concentration).
Vertical Slab and 2D Views. To alleviate cluttering, a 3D vertical slab
(cutting plane with depth) is used to carve out a subset of points for
in-depth analysis. The slab points can be analyzed through linked
views which show the concentration heatmap and velocity vector field
of the data contained in the slab. We chose the slab representation,
as opposed to a plane, because fingers are not restricted to 2D; the
slab can be used to capture the finger depth along the cylinder cross
diameter as well. The linked 2D views aggregate over the slab width
the average value of the concentration and velocity, and help analyze
in detail the finger concentration and velocity. Fingers may be viewed
by moving the slab onto a specific viscous finger, which in turn allows
the user to view the concentration heatmap and velocity vector field
of the slab containing the finger. All viscous fingers are displayed by
default. Specific viscous fingers can be also interactively highlighted
in the 3D Flow view through the Finger Forest view described further
below. Selecting a specific node of a tree highlights the finger in color
(mapped to concentration).
Finger Properties and Analysis. To locate each cluster in the next
timestep, several properties of each cluster are calculated and used, with
input from the domain expert. From the finger segmentation output,
this approach produced for each finger an attribute set which includes:

• the number of points

• the total concentration

• the concentration-weighted average position of points

• the concentration-weighted average velocity of points

• the average magnitude of velocity

• the concentration-weighted average magnitude of velocity

• an axis-aligned bounding box around the feature

The first property is an average position of the points within the cluster,
weighted by the concentration of the points. Second, the average
velocity of the points in the cluster is calculated, also weighted by the

concentration of the points. To find the cluster nearest to another in a
different time step, the centers of concentration of the clusters are used,
which are both corrected for the difference in time by adjusting the
coordinates using the average velocity of the each cluster. The output
of these algorithms are multiple clusters of points for each timestep,
as well as the information linking these clusters to each other across
multiple timesteps. The results of the data preprocessing are used for
feature tracking, as well as in the simulation summarization.

From a model perspective, notice how extracting the details relies
on soft knowledge on the user side; and how the domain expert input
is essential to extracting the measures to characterize the features and
their context.

3.3 Finger Tracking and Temporal Context Calculation

To track the fingers’ evolution across a simulation, we run a two-stage
algorithm on the finger clusters that were identified in the previous step.
This process allows us to determine the temporal context of the finger
evolution. This temporal context captures the appearance, dissipation,
merging, and splitting of fingers.

The two-stage algorithm is based on the tracking graph algorithm
proposed by Bremer et al. [9]. The algorithm first uses the size, position,
concentration, and average velocity of the viscous fingers to label each
cluster in each timestep with an ID, unique to each viscous finger over
the course of the simulation; in other words, fingers within a single
timestep can not share an ID, but fingers between timesteps can. In the
second stage, these IDs are used to index the fingers into an adjacency
list per timestep. A grouping procedure is then run on each pair of
consecutive timesteps, constructing relationships between the fingers,
over time. For each of the M-1 pairs of consecutive timesteps, the
algorithm iterates over the two lists, comparing both finger properties
and IDs. If the procedure finds a match between both properties and
IDs, then the corresponding finger persisted between the timesteps
and the two adjacency list entries for that ID are linked. Similarly, if
the procedure finds a match between properties but not IDs, then the
finger in the earlier timestep has merged into the finger in the later
timestep, and the two adjacency list entries are connected. Finally, the
procedure treats all unmatched nodes as either having split or dissipated,
depending on whether the unmatched node is present in the later or
prior timestep, respectively.

The trees output by the algorithm capture the evolution of each
viscous finger throughout a simulation. We assign each tree the same
ID as the viscous finger that is mapped by the tree root. By binding
the finger structures to the trees, we can track the spatial features as
they evolve. The linked IDs also allow us to select a node in the tree
interactively and highlight that specific viscous finger in the 3D Flow
view and 2D feature views.
Simulation Analysis. To analyze the finger evolution over time, we
turn again to input from the domain expert. We will use two of the
finger properties previously derived, as well as an additional parameter.
These properties are: the number of points in each finger, the average
concentration of the points in each finger, and now also the total number
of fingers in the simulation.
Temporal Context Visualization and Filtering. The temporal con-
text calculated in this step is shown in a temporal-encoding panel. The
panel contains one horizontal, time-aligned tree for each finger in the
simulation, as well as a Time Chart which can be used to control the
temporal context shown.
Time Chart View. The Time Chart can be used to select the range of
timesteps to be graphed in the Finger Forest. The number of fingers
in each timestep is graphed for all simulations, with the graph for the
current simulation highlighted in color.
Finger Forest View. The Finger Forest (Fig. 4) displays a set of hor-
izontal, time-aligned trees that encode the evolution of fingers in a
simulation, over the time interval selected in the Time Chart. Each
node in a tree represents one viscous finger as that timestep, similar to
the graphs of Bremer et al. [9]. The nodes are colored by the average
concentration of the points in the finger, and the radius of each node is
scaled by the number of points in the finger. The trees may merge or
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Fig. 4. Temporal context visualization. A Finger Forest shows one
horizontal, time-aligned tree for each finger in the simulation. Each node
in a tree represents one viscous finger as that timestep. Nodes are
colored by the average concentration of the points in the finger, and the
radius of each node is scaled by the number of points in the finger. The
trees may merge or split according to the finger evolution over time. A
vertical bar indicates the current timestep.

split according to the finger evolution over time. A vertical bar indicates
the current timestep.

In order to minimize edge-crosses, we balance the trees using a
heuristic similar to Widanagamaachchi et al.’s [69, 70]. The heuristic
begins with the fingers in the last timestep and recursively enumerates
and sorts the children of each finger based on the latest timestep in
which that finger appears. For each enumerated finger, the heuristic
then splits the nodes into two groups and positions them above and
below the parent so that the oldest fingers are closest to the parent, and
the most recent ones are furthest from the parent.

We note that both rendering a spatial overview and rendering a
complete temporal overview would be impractical in this setting. A
spatial overview of the entire information space would be affected by
cluttering and rendering constraints. Similarly, a complete temporal
overview would be affected by rendering constraints (computation time,
minimal node size for visibility, minimizing edge crossings). From
a model perspective, filtering by spatial and temporal context helps
control visual complexity; these contexts are derived based on detail
calculations.

3.4 Simulation Summarization and Ensemble Analysis
The last stage of the control-flow in our workflow decomposition (Fig 2)
seeks to summarize the properties of the simulations that form the
ensemble. These properties are derived from the finger properties, with
input from the human expert. One of these properties characterizes the
simulation as a whole; five additional properties are computed for each
timestep, and averaged over the duration of the simulation:

• the total number of unique fingers over the entire simulation

• the number of fingers in each timestep

• the average concentration of fingers in each timestep

• the average concentration of points in viscous fingers in each
timestep

• the average finger speed (points’ average magnitude of velocity)
in each timestep

• the number of merges (not including fingers which disappear) in
each timestep

Ensemble Analysis. The simulation properties are summarized in a
small-multiple overview panel. The panel comprises one Kiviat dia-
gram [34] per simulation. Kiviats are a graphical method of displaying
multivariate data in the form of a two-dimensional chart, in which three
or more quantitative variables are represented on axes starting from the
same point. Unlike most radial plots, which tend to capture temporal
sequences, the Kiviat relative position and angle of the axes is typi-
cally uninformative. Kiviat are equivalent to a parallel coordinates plot
(PCP) in polar coordinates, and are seldom effective when more than
two Kiviats are overlaid [42]. However, due to their closed polygon
shape, which is a preattentive feature, Kiviats are particularly effective
in small multiple form [40]. The axis ordering is not an issue, be-
cause each Kiviat uses the same axis ordering across the small multiple,
resulting in similar polygon shapes for similar simulations.

Each Kiviat axis is mapped to one of the simulation properties.
Hovering over each Kiviat axis shows how each property was computed.
The Kiviats are further color-mapped to a simulation property selected
by the domain expert, for example the total number of fingers in each
simulation. In Fig. 1 right, note the similarity (diagram shape and
color) between simulations 1, 3, 6, and 14. Simulation 12 stands out
as an outlier. Simulations 13 and 15 are empty (no content at the
250K resolution). Through this small-multiple panel summarization,
simulation properties can be compared between ensemble members.
From a model perspective, these properties were also derived from
detail calculations.

3.5 Design and Implementation
The model instantiation was developed through a parallel prototyping
approach, which included 1) exploring encodings and potential proper-
ties, 2) evaluation with a computational flow dynamics (CFD) expert
and revising properties, and 3) discarding a variety of measures as well
as encodings (including parallel coordinate plots and scatterplots). The
work benefited from repeated evaluation with and feedback from the
CFD expert.

Figure 5 shows three iterations through the design process; the final
design is shown in Fig. 1. Given that CFD experts were unlikely
to be familiar with abstract representations of ensemble simulations,
the original top-level design for the application adopted a multiple
coordinated views approach. The approach has been shown to support
visual scaffolding [38]—helping domain experts build from familiar
visual representations towards unfamiliar representations. Within this
approach, the design then tried to follow, left-to-right, an Overview-first,
Filter, Details-on-Demand paradigm (Fig. 5 top and middle). Multiple
cycles with the domain expert made it clear that, linked-views or not,
their analysis always started with the finger structures, i.e., the details.
The Details view was also the interface area where the domain expert
spent most time. As in an Overview-first paradigm, subsequent analysis
steps switched repeatedly between details, context, and overview.

Following a workflow decomposition along scientific workflow the-
ory (Section 3.1), a Details-first design emerged (Fig. 5 bottom), which,
unsurprisingly, turned out to be successful. A last attempt to emphasize
the overview through an eye-catching color-scheme (Fig. 5 bottom,
Kiviat panel) still failed to produce a single expert workflow that would
lead with the overview, when evaluated with a small group of CFD
researchers (Section 4). In the final design (Fig. 1), the color scheme
for the overview is de-emphasized, completing the “Details-first, Show
Context, Overview Last” model instantiation.

In this instantiation, the detail, context, and overview are tied to-
gether through brushing, linking and filtering. Specific viscous fingers
can be highlighted in the 3D Flow View by selecting a node in the For-
est Tree. If the selected viscous finger is from a different timestep than
those currently displayed, the corresponding timestep is loaded into the

Fig. 5. Three snapshots through the design process. Top: Filter/Context-
First, Details-Last iteration. Middle: Overview-First, Zoom and Fil-
ter/Context, Details-on-Demand iteration. Bottom: Details-first, Show
Context, Emphasized Overview (through bold, eye-catching colors) itera-
tion. The final design (de-emphasized overview) is shown in Figure 1.

3D Flow View, and the selected finger is highlighted. Selecting a finger
from the Finger Forest also updates the 2D views by automatically
moving the slab over the selected finger.

To implement this web-based instantiation, we used the d3.js and
three.js Javascript libraries. The data provided by the contest website
was downloaded as individual simulation packs, at its lower 250K
resolution due to the size limitation of the web-based platform. We did
not process and visualize every resolution of the data due to limitations
in the amount of data a web-browser can import and render while still
maintaining semi-realtime interaction rates. These limitations are a
product of the environment we chose for development and, potentially,
would not be a issue in a higher-performance setting. The analyses
reported below were performed at interactive rates (2 fps under Google
Chrome, Windows 10, 8GB, Intel i7-3537u @ 2.9 GHz).

4 EVALUATION

Visualization theories and models span a wide range, from mathemati-
cal abstractions and frameworks to guidelines and novel interpretations
of different aspects of the development of visualizations in particu-
lar contexts [2, 3]. Validations of the resulting theories and models
also cover a range of approaches. The “notable theoretical develop-
ment” [18] of the Overview-first mantra was not accompanied by sup-
porting evidence [61]. The Search-first mantra was introduced along a
constructive example in the domain of large graphs of citations [66],

with reported usage cases and no domain expert feedback. Last but
not least, in the visualization design literature, a model or theory can
be acceptably supported by as little as one to a few concrete examples
coming from the experience of one to a few authors [35, 47, 54, 58].

In this work, in addition to the constructive example, we present
as supporting evidence two scenarios performed by our CFD expert
co-author, using the model instantiation. We further report instantiation
feedback from senior CFD researchers, and theoretical model feedback
from the CFD community. The evaluation is rounded by considering
further evidence from reports in the visualization literature.

The scenarios below were completed online through web-based
exploration of a total volume of data approaching half a billion seven-
dimensional data points. The two analyses were conducted by the
domain expert using a 18 panel tiled display wall at 21.9 feet by 6.6
feet and 6144 by 2304 pixels; the application used the full height and 2/3
length of the tiled display. The visualization researchers took detailed
notes. The usage of interface components (detail, context, overview)
was noted based on both the expert’s discourse and the physical motion
cues as the expert walked from one interface area to another. The
observed wall-display usage was consistent with the expert’s observed
interface usage on a regular display.

4.1 Domain Expert Scenarios
Exploring Finger Formation. In a first phase, we used the system
repeatedly, over several weeks, to identify, define and refine the finger
structures, and to derive the relevant characteristics used to generate
the context and summarization overview. In this second phase, we
investigate viscous finger formation throughout the first simulation run
in the ensemble. After loading the run, the investigation begins with the
Detail panel, where we notice the appearance of several fingers around
timestep 25. Moving the 2D slab from side-to-side, we examine the salt
concentration and velocity in detail. A large finger (Fig. 3) catches our
interest: it appears larger and with higher concentration than others.

To get a better sense of the spatial and temporal context of this finger
snapshot, we rotate the 3D Flow cylinder to center the finger in the slab,
and also examine the temporal context panel. We notice a downward
spike in the finger count between timesteps 20 and 40 in the Time Chart,
so we center the Finger Forest over that range and advance the 3D Flow
View to timestep 25.

We suspect that the decrease in fingers resulted from a few of the
fingers merging together to form larger ones, so our analysis moves
back from the 3D Viewer to the Finger Forest. As suspected, we notice
that many of the nodes between timestep 20 and 40 have merged to
form larger nodes. For example (Fig. 4), fingers 7 and 21 merge into a
single larger node at timestep 22, shown close to the top of the view.

Another spike in the node count is around timestep 95, so we change
the range of the Finger Forest to center around that timestep. We again
notice that many of the smaller fingers begin to merge into one into one
much larger finger by timestep 100. However, we also notice that many
smaller fingers begin to form close to timestep 105, which appears to
have the most new fingers. Sure enough, we observe in the 3D Flow
View that while many of the fingers began to merge at the bottom of
the cylinder, many new fingers began to form near the salt source.
Similar Simulation Analysis. In the second study we investigate two
similar simulation runs. Again, we use the application URL to load
the first run and visit the detail finger structures. Noticing low finger
formation between timesteps 40 and 60, we center the context Finger
Forest using the Time Chart. We observe that timestep 44 appears to
have the highest finger formation in the selected range, so we next load
that timestep into the 3D Flow View. We hypothesize that the decrease
in finger count was caused by large fingers breaking apart to spawn
smaller structures. Sure enough, the 3D Flow View displays larger
fingers near the edges of the cylinder, with smaller fingers above and
below. The Finger Forest further validates this inference, showing us
that the majority of the structures in the range have both average high
point counts and high concentrations.

Intuitively, we suspect that simulations with similar global properties
might exhibit similar merge behavior, so we move to the diagrams in the
overview panel. We begin to investigate the other simulations by hover-
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Fig. 4. Temporal context visualization. A Finger Forest shows one
horizontal, time-aligned tree for each finger in the simulation. Each node
in a tree represents one viscous finger as that timestep. Nodes are
colored by the average concentration of the points in the finger, and the
radius of each node is scaled by the number of points in the finger. The
trees may merge or split according to the finger evolution over time. A
vertical bar indicates the current timestep.

split according to the finger evolution over time. A vertical bar indicates
the current timestep.

In order to minimize edge-crosses, we balance the trees using a
heuristic similar to Widanagamaachchi et al.’s [69, 70]. The heuristic
begins with the fingers in the last timestep and recursively enumerates
and sorts the children of each finger based on the latest timestep in
which that finger appears. For each enumerated finger, the heuristic
then splits the nodes into two groups and positions them above and
below the parent so that the oldest fingers are closest to the parent, and
the most recent ones are furthest from the parent.

We note that both rendering a spatial overview and rendering a
complete temporal overview would be impractical in this setting. A
spatial overview of the entire information space would be affected by
cluttering and rendering constraints. Similarly, a complete temporal
overview would be affected by rendering constraints (computation time,
minimal node size for visibility, minimizing edge crossings). From
a model perspective, filtering by spatial and temporal context helps
control visual complexity; these contexts are derived based on detail
calculations.

3.4 Simulation Summarization and Ensemble Analysis
The last stage of the control-flow in our workflow decomposition (Fig 2)
seeks to summarize the properties of the simulations that form the
ensemble. These properties are derived from the finger properties, with
input from the human expert. One of these properties characterizes the
simulation as a whole; five additional properties are computed for each
timestep, and averaged over the duration of the simulation:

• the total number of unique fingers over the entire simulation

• the number of fingers in each timestep

• the average concentration of fingers in each timestep

• the average concentration of points in viscous fingers in each
timestep

• the average finger speed (points’ average magnitude of velocity)
in each timestep

• the number of merges (not including fingers which disappear) in
each timestep

Ensemble Analysis. The simulation properties are summarized in a
small-multiple overview panel. The panel comprises one Kiviat dia-
gram [34] per simulation. Kiviats are a graphical method of displaying
multivariate data in the form of a two-dimensional chart, in which three
or more quantitative variables are represented on axes starting from the
same point. Unlike most radial plots, which tend to capture temporal
sequences, the Kiviat relative position and angle of the axes is typi-
cally uninformative. Kiviat are equivalent to a parallel coordinates plot
(PCP) in polar coordinates, and are seldom effective when more than
two Kiviats are overlaid [42]. However, due to their closed polygon
shape, which is a preattentive feature, Kiviats are particularly effective
in small multiple form [40]. The axis ordering is not an issue, be-
cause each Kiviat uses the same axis ordering across the small multiple,
resulting in similar polygon shapes for similar simulations.

Each Kiviat axis is mapped to one of the simulation properties.
Hovering over each Kiviat axis shows how each property was computed.
The Kiviats are further color-mapped to a simulation property selected
by the domain expert, for example the total number of fingers in each
simulation. In Fig. 1 right, note the similarity (diagram shape and
color) between simulations 1, 3, 6, and 14. Simulation 12 stands out
as an outlier. Simulations 13 and 15 are empty (no content at the
250K resolution). Through this small-multiple panel summarization,
simulation properties can be compared between ensemble members.
From a model perspective, these properties were also derived from
detail calculations.

3.5 Design and Implementation
The model instantiation was developed through a parallel prototyping
approach, which included 1) exploring encodings and potential proper-
ties, 2) evaluation with a computational flow dynamics (CFD) expert
and revising properties, and 3) discarding a variety of measures as well
as encodings (including parallel coordinate plots and scatterplots). The
work benefited from repeated evaluation with and feedback from the
CFD expert.

Figure 5 shows three iterations through the design process; the final
design is shown in Fig. 1. Given that CFD experts were unlikely
to be familiar with abstract representations of ensemble simulations,
the original top-level design for the application adopted a multiple
coordinated views approach. The approach has been shown to support
visual scaffolding [38]—helping domain experts build from familiar
visual representations towards unfamiliar representations. Within this
approach, the design then tried to follow, left-to-right, an Overview-first,
Filter, Details-on-Demand paradigm (Fig. 5 top and middle). Multiple
cycles with the domain expert made it clear that, linked-views or not,
their analysis always started with the finger structures, i.e., the details.
The Details view was also the interface area where the domain expert
spent most time. As in an Overview-first paradigm, subsequent analysis
steps switched repeatedly between details, context, and overview.

Following a workflow decomposition along scientific workflow the-
ory (Section 3.1), a Details-first design emerged (Fig. 5 bottom), which,
unsurprisingly, turned out to be successful. A last attempt to emphasize
the overview through an eye-catching color-scheme (Fig. 5 bottom,
Kiviat panel) still failed to produce a single expert workflow that would
lead with the overview, when evaluated with a small group of CFD
researchers (Section 4). In the final design (Fig. 1), the color scheme
for the overview is de-emphasized, completing the “Details-first, Show
Context, Overview Last” model instantiation.

In this instantiation, the detail, context, and overview are tied to-
gether through brushing, linking and filtering. Specific viscous fingers
can be highlighted in the 3D Flow View by selecting a node in the For-
est Tree. If the selected viscous finger is from a different timestep than
those currently displayed, the corresponding timestep is loaded into the

Fig. 5. Three snapshots through the design process. Top: Filter/Context-
First, Details-Last iteration. Middle: Overview-First, Zoom and Fil-
ter/Context, Details-on-Demand iteration. Bottom: Details-first, Show
Context, Emphasized Overview (through bold, eye-catching colors) itera-
tion. The final design (de-emphasized overview) is shown in Figure 1.

3D Flow View, and the selected finger is highlighted. Selecting a finger
from the Finger Forest also updates the 2D views by automatically
moving the slab over the selected finger.

To implement this web-based instantiation, we used the d3.js and
three.js Javascript libraries. The data provided by the contest website
was downloaded as individual simulation packs, at its lower 250K
resolution due to the size limitation of the web-based platform. We did
not process and visualize every resolution of the data due to limitations
in the amount of data a web-browser can import and render while still
maintaining semi-realtime interaction rates. These limitations are a
product of the environment we chose for development and, potentially,
would not be a issue in a higher-performance setting. The analyses
reported below were performed at interactive rates (2 fps under Google
Chrome, Windows 10, 8GB, Intel i7-3537u @ 2.9 GHz).

4 EVALUATION

Visualization theories and models span a wide range, from mathemati-
cal abstractions and frameworks to guidelines and novel interpretations
of different aspects of the development of visualizations in particu-
lar contexts [2, 3]. Validations of the resulting theories and models
also cover a range of approaches. The “notable theoretical develop-
ment” [18] of the Overview-first mantra was not accompanied by sup-
porting evidence [61]. The Search-first mantra was introduced along a
constructive example in the domain of large graphs of citations [66],

with reported usage cases and no domain expert feedback. Last but
not least, in the visualization design literature, a model or theory can
be acceptably supported by as little as one to a few concrete examples
coming from the experience of one to a few authors [35, 47, 54, 58].

In this work, in addition to the constructive example, we present
as supporting evidence two scenarios performed by our CFD expert
co-author, using the model instantiation. We further report instantiation
feedback from senior CFD researchers, and theoretical model feedback
from the CFD community. The evaluation is rounded by considering
further evidence from reports in the visualization literature.

The scenarios below were completed online through web-based
exploration of a total volume of data approaching half a billion seven-
dimensional data points. The two analyses were conducted by the
domain expert using a 18 panel tiled display wall at 21.9 feet by 6.6
feet and 6144 by 2304 pixels; the application used the full height and 2/3
length of the tiled display. The visualization researchers took detailed
notes. The usage of interface components (detail, context, overview)
was noted based on both the expert’s discourse and the physical motion
cues as the expert walked from one interface area to another. The
observed wall-display usage was consistent with the expert’s observed
interface usage on a regular display.

4.1 Domain Expert Scenarios
Exploring Finger Formation. In a first phase, we used the system
repeatedly, over several weeks, to identify, define and refine the finger
structures, and to derive the relevant characteristics used to generate
the context and summarization overview. In this second phase, we
investigate viscous finger formation throughout the first simulation run
in the ensemble. After loading the run, the investigation begins with the
Detail panel, where we notice the appearance of several fingers around
timestep 25. Moving the 2D slab from side-to-side, we examine the salt
concentration and velocity in detail. A large finger (Fig. 3) catches our
interest: it appears larger and with higher concentration than others.

To get a better sense of the spatial and temporal context of this finger
snapshot, we rotate the 3D Flow cylinder to center the finger in the slab,
and also examine the temporal context panel. We notice a downward
spike in the finger count between timesteps 20 and 40 in the Time Chart,
so we center the Finger Forest over that range and advance the 3D Flow
View to timestep 25.

We suspect that the decrease in fingers resulted from a few of the
fingers merging together to form larger ones, so our analysis moves
back from the 3D Viewer to the Finger Forest. As suspected, we notice
that many of the nodes between timestep 20 and 40 have merged to
form larger nodes. For example (Fig. 4), fingers 7 and 21 merge into a
single larger node at timestep 22, shown close to the top of the view.

Another spike in the node count is around timestep 95, so we change
the range of the Finger Forest to center around that timestep. We again
notice that many of the smaller fingers begin to merge into one into one
much larger finger by timestep 100. However, we also notice that many
smaller fingers begin to form close to timestep 105, which appears to
have the most new fingers. Sure enough, we observe in the 3D Flow
View that while many of the fingers began to merge at the bottom of
the cylinder, many new fingers began to form near the salt source.
Similar Simulation Analysis. In the second study we investigate two
similar simulation runs. Again, we use the application URL to load
the first run and visit the detail finger structures. Noticing low finger
formation between timesteps 40 and 60, we center the context Finger
Forest using the Time Chart. We observe that timestep 44 appears to
have the highest finger formation in the selected range, so we next load
that timestep into the 3D Flow View. We hypothesize that the decrease
in finger count was caused by large fingers breaking apart to spawn
smaller structures. Sure enough, the 3D Flow View displays larger
fingers near the edges of the cylinder, with smaller fingers above and
below. The Finger Forest further validates this inference, showing us
that the majority of the structures in the range have both average high
point counts and high concentrations.

Intuitively, we suspect that simulations with similar global properties
might exhibit similar merge behavior, so we move to the diagrams in the
overview panel. We begin to investigate the other simulations by hover-
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ing over the individual axes of the first Kiviat diagram. Starting at 12
o’clock and rotating clockwise, we observe the six computed summary
statistics for average finger velocity, average finger density, total finger,
fingers per timestep, merge factor, dissipation factor, average finger
concentration, and average finger point concentration, respectively. The
interface allows us to change the colormap of the diagrams based on
one of the derived statistics. Changing the map to “Merge Factor”, we
observe the color and shape of runs 1, 3, 6 and 14 are similar (Fig. 1).

We decide to investigate simulation 14 in more detail, so we select
its Kiviat diagram to load the data into the other views. To our surprise,
we notice that the merge tree of run 14 differs from the previous run,
over a similar range. Moving back to the 3D Flow View, we notice
significantly more finger structures than in run 1, many of which are
smaller in size and still forming at the top of the cylinder. These
differences indicate that despite having similar global properties, the
fingers of run 14 and run 1 do not follow the same structural formation
and evolution.

4.2 Domain Expert Feedback
Instantiation Expert Feedback. We have collected feedback on this
instantiation from two CFD researchers who worked directly with the
online system, and two small groups of researchers (5 to 6 participants)
who were given demonstrations of the work. One of the groups spe-
cialized in advanced computing at a national research laboratory, and
included two CFD researchers; the second group consisted of three
domain experts and two visualization researchers, as part of the SciVis
Contest 2016. The feedback, reported below, was enthusiastic.

The first CFD researcher is a co-author on this work, and exclaimed
repeatedly “I want this!” (for exploring supersonic and hypersonic
flows and turbulent combustion), in particular with respect to the
Details-first and temporal context exploration capabilities of the system.
He noted that “Oftentimes in CFD we are details first because we are
already familiar with the simulation and wish to investigate specific
features in the data” and then: “When I say details first I mean that we
look at specific regions or quantities. We are often interested in specific
things happening at specific locations or specific times. A [summariza-
tion] overview without physical context lacks specificity and therefore
is hard to extract meaning from, so we often perform [such] overviews
at a later stage.” “It is often very impractical to create an overview of
the data as well. Seeing many, or all variables at many (or even some)
times is extremely costly in real world datasets, e.g., 10.5TB.” The
expert noted that “This type of visualization can be used to investigate
underlying physics of the temporal evolution of features of interest.
It has applications to a wide range of CFD problems, notably vortex
pairing and turbulent mixing.”

The second CFD researcher is a senior investigator who studies com-
putationally turbulence in the aerodynamics of aircrafts. His research
involves running multiple dynamic simulations with soft-knowledge
spatial features. He noted that standard CFD visualization systems (Par-
aview [4], VisIt [17]) are frequently employed in a typical CFD work-
flow to identify simple areas of interest (“Details-first”). Sometimes
those features are then used offline to summarize multiple outcomes.
However, that summarization is usually in the context of simulations
that can be “easily summarized in terms of mean and standard devi-
ation values while discarding lower-level features”. In contrast, our
instantiation “enabled analysis at multiple scales”, allowed repeated
refining of soft-knowledge features “within their original spatial setting”
and the fluid reuse of those “spatially-derived characteristics to summa-
rize multiple outcomes”, well beyond state-of-the-art capabilities. The
researcher was keen to have a similar system for his work.

Similar supportive feedback was collected from the larger groups.
CFD experts were particularly excited about the smooth coupling of
spatial feature characteristics to the temporal context (“extremely in-
tuitive”) and to the summarized overview. The spatial-feature based
summarization was “more powerful than anything else [they] had seen.”
As in the reports above, group members spent most time operating
in the finger detail space, where they were “immediately able to ex-
tract meaning to see the formation of fingers”, and used the temporal
context and overview mainly for navigation in the finger space. They

expressed repeatedly interest in similar analysis tools for their research
projects, which also study features based on soft-knowledge (“[the fea-
ture is] hard to define, but if you see it, you recognize it immediately”).
Last, we quote feedback from the SciVis Contest contribution [10]:
“extremely impressive due to the very well thought-out visualization
design”; “ clearly superior in visualization design”, “very good and
well-crafted”, “in particular, the presentation of the ensemble[...], as
well as the layout and linking of all views to facilitate interactive explo-
ration, by far exceed all other submissions.” This feedback attests to
the value of our instantiation as a powerful tool for CFD analysis.
Theoretical Model Feedback. Our theoretical model sparked equal
interest in the CFD community. After clarifying the visualization termi-
nology, our CFD co-author engaged in numerous background readings
and conversations with other domain experts. Particularly intrigued by
the “overview” concept, he set out to find examples of overview usage
in standard CFD visual workflows, as employed by a group of nine
CFD researchers: two doctoral researchers who use routinely Paraview,
an industry researcher and two doctoral researchers who use routinely
VisIt, one doctoral researcher who uses routinely ANSYS [64], and a
postdoctoral researcher and two senior researchers who are familiar
with a variety of platforms. Through short discussions and observa-
tions, he sought to establish what software they use, what kind of
plots they make, how do they use them, what is the first thing they
do, and where, if at all, they use spatial or summarization overviews.
He found out that no expert used spatial overviews in their everyday
work. Summarization overviews were used, when necessary, last. He
then compacted his findings in a common workflow description, best
described as: 1) Details first (narrow down what is present); 2) Create
filters, expressions, statistics within context; 3) Create a summarization
overview of features (describe behavior of features as a whole over
entire dataset); 4) Find something of interest then return to 1) Details
and Repeat. In the group’s assessment, much of this workflow stems
from the fact that, very similar to the finger instantiation, a number of
the physical phenomena they are investigating do not have concrete
definitions. These CFD phenomena (e.g., turbulence or reattachment
length) typically require a skilled user in order to be visually identified,
separated, and investigated. As a result, it becomes difficult to draw
conclusions from an overview first, when they “do not know exactly
what is present in the data.”

4.3 Supporting Evidence From the Literature

Chen et al. [15] were the first to note, in 2016, that in “many scenarios,
we often observe that an experienced viewer may find [overview first
and details on demand] frustrating, as the viewer knows exactly where
the interesting part of a detailed representation is. For example, in
flow simulation, scientists work on the same problem for months”.
Their anecdotal observation is reflected in a vast number of works in
scientific visualization that support explicitly spatial feature exploration,
and display the rest of the information primarily for context (e.g., [11,
20,27,31,33,52,60,72]). This collective evidence supports the “Details-
first, Show Context” part of our argument.

Overviews (that are not used merely as context) are conspicuously
rare in the scientific visualization literature. This observation is not sur-
prising: summarization overviews tend to correlate with the relatively
recent advent of ensembles of models and simulations. Nevertheless,
the “Overview-last” part of our argument is also implicitly supported
by a several examples of scientific visualization. While sometimes
nominally providing an overview according to the Shneiderman mantra,
these examples relegate their overview to the bottom or side of the
visual analysis interface, and allocate it significantly reduced display
space, compared to the “detailed view” [7, 19, 43, 49, 52, 67].

5 DISCUSSION

Model summary. This work is not a general critique of the “Overview
first” mantra, but of its sometimes inappropriate application, without
careful consideration of user and data workflows. At the same time,
while instantiations of our alternative model are particularly common
in flow visualization, they are in no way specific to the CFD domain:

“details-first” approaches also exist, anecdotally, in biology [14] and in
journalism [55].

The alternative “Details-first, show context, overview last” model
we advocate supports situations where the main user activities are
oriented along (spatial) feature analysis. The model specifically applies
to situations where the features are defined through soft-knowledge on
the user side, and those features drive both the relevant context for the
exploration process and the calculation of the summarization overview.

From a wider analytical perspective, the model applies to domain
expert workflows that start with an in-depth exploration of one model
or simulation, then seek to extrapolate or generalize the findings to a
collection of models. In such workflows, including in forensic analy-
sis, users may wish to start with the features of interest, in particular
when those features are ill-defined and need repeated refinement. The
relevance of user-driven refinement in our model is in agreement with
Doleisch et al.’s observation: “ for interactive analysis, in many cases,
the question of what actually is (or is not) considered to be a feature
refers back to the user: depending on what parts of the data the user
(at an instance of time) is most interested in, features are specified
accordingly.” [20]. Our model enhances this observation and frames it
in a “details-first” paradigm.

When those features have an inherent spatial structure (3D or Carte-
sian coordinates), the model further emphasizes, formally, the impor-
tance of providing the spatial and temporal context of those features.
This model aspect is also in agreement with observations in the lit-
erature: “[Feature localization] is usually provided in the context of
simulation data, that has some spatial context.” [20], and with feedback
from our CFD co-author (“CFD/ensemble features are not meaning-
ful outside of their context.”). Our model instantiation shows how a
computational back-end can help identify and track features over space
and time, and use those details to automatically filter the spatial and
the temporal context. The “Show context” step of the model has the
triple benefit of 1) helping anchor the features in space and time; 2)
reducing visual clutter by controlling complexity of the visualization;
and 3) improving rendering times for large scale datasets, in particular
in online, platform-agnostic, web-based environments.

Last, this model extends the use of spatial details into the calculation
of summarization overviews. In our model instantiation, extracted spa-
tial features and calculations over those features are used to summarize
and compare simulation ensembles.
Relationship to other models and theories. Similar to the van Ham
and Perer approach [66], the Details-first model signals a set of limita-
tions of the Shneiderman mantra [61]. In contrast to the van Ham and
Perer mantra, the present model emphasizes the importance of Details
(not Search for a particular item) for a class of problems, and the rele-
vance of user input in specifying and refining those details. In a further
departure from the van Ham and Perer approach, where overviews are
circumvented as being both impractical and not relevant under spe-
cific circumstances, our model handles situations where summarization
overviews are necessary. In particular, our model extends and provides
a frame for the use of details into the calculation of such overviews.

The Details-first model further relates to Chen et al.’s Information
Theory framework [15]. Our model encompasses their anecdotal obser-
vation that, in particular in flow visualization, the Shneiderman mantra
can be suboptimal when the user is already intimately familiar with the
overview. Beyond agreeing with their observation, this work highlights:
1) the tight connection that exists between the user “knowledge in the
head” [50] and the very definition of spatial features; and 2) how those
details can propagate into the construction of filtering operations, and
then into the construction of summarization overviews.

The model’s “overview last” aspect may also be related to the princi-
ple of visual scaffolding [38], captured by the domain experts’ typical
resistance to unfamiliar visual encodings.
Limitations and falsifiability. The different mantras have comple-
mentary strengths and limitations. Our model may not be necessary
when the analysis can be conveniently broken into two separate pro-
cesses, for example feature detection and simple statistical summariza-
tion. Our full model also does clearly not apply: to situations where
overviews are irrelevant (use Search instead, or default to Details-

first, no overview); when user prior knowledge is not relevant, when
global changes are likely, or when each search starts from scratch (use
Overview-first instead); or when the features are well-defined and com-
putable, or not at the very core of the user activity (a variety of other
approaches apply, including pure computation).

Our observational evaluation draws on a left-to-right, multi-view
instantiation, designed and evaluated with small groups of experts, sev-
eral from the same labs. Such multi-view instantiations take advantage
of the complementarity of multiple representations, and also have the
potential to facilitate multiple user workflows [38, 40]. In practice, we
have not observed domain expert analysis workflows that did not lead
with the details view. A formal user study to analyze the likelihood of
different mantras would be interesting, although beyond the scope of
this discourse paper. Any such study should take particular care in the
participant selection, given the central soft-knowledge aspects of our
model, and the limited availability of domain experts.

Although multi-views have the potential to relieve workflow-related
design constraints, we note that the model principle still applies, in
the designer-assigned color scheme, size and location of overviews
and context views in the overall design. However, extensions of this
paradigm to single-view, reduced screen space settings, may be particu-
larly limiting, considering the complementary benefits of summariza-
tion overviews. A step further, the process of overview summarization
itself may miss an unexpected global change.

Finally, this model is likely not the only other possible alternative
to the two established mantras. There may be further circumstances
under which this model will be falsified, in accordance to Karl Popper’s
assessment that a theory in the empirical sciences can never be proven,
although it can be falsified [23].

6 CONCLUSION

In conclusion, this work introduces and documents an alternative
“Details-first, show context, overview last” approach to visualization
design. The approach supports situations where the user activities are
oriented along (spatial) feature analysis. This work further highlights
the tight connection that can exist between user input and the definition
of spatial features, and then how those details can propagate into the
construction of filtering operations, and then into the construction of
overviews. A model instantiation demonstrates the effectiveness of
this approach with an online web-based exploration of a total volume
of data approaching half a billion seven-dimensional data points. The
approach is supported by endorsements from CFD domain experts. The
applicability of this model extends beyond flow visualization to domain
expert workflows that start with an in-depth exploration of one model
or simulation, then seek to extrapolate or generalize the findings to
a collection of models. Conversely, this model is not appropriate in
situations involving novice users or when features are well-defined and
computable. Overall, adoption of a particular design mantra should
take into account the benefits, limitations, and possible co-existence of
each approach, with careful consideration of data, user knowledge and
interests, and user workflows.
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ing over the individual axes of the first Kiviat diagram. Starting at 12
o’clock and rotating clockwise, we observe the six computed summary
statistics for average finger velocity, average finger density, total finger,
fingers per timestep, merge factor, dissipation factor, average finger
concentration, and average finger point concentration, respectively. The
interface allows us to change the colormap of the diagrams based on
one of the derived statistics. Changing the map to “Merge Factor”, we
observe the color and shape of runs 1, 3, 6 and 14 are similar (Fig. 1).

We decide to investigate simulation 14 in more detail, so we select
its Kiviat diagram to load the data into the other views. To our surprise,
we notice that the merge tree of run 14 differs from the previous run,
over a similar range. Moving back to the 3D Flow View, we notice
significantly more finger structures than in run 1, many of which are
smaller in size and still forming at the top of the cylinder. These
differences indicate that despite having similar global properties, the
fingers of run 14 and run 1 do not follow the same structural formation
and evolution.

4.2 Domain Expert Feedback
Instantiation Expert Feedback. We have collected feedback on this
instantiation from two CFD researchers who worked directly with the
online system, and two small groups of researchers (5 to 6 participants)
who were given demonstrations of the work. One of the groups spe-
cialized in advanced computing at a national research laboratory, and
included two CFD researchers; the second group consisted of three
domain experts and two visualization researchers, as part of the SciVis
Contest 2016. The feedback, reported below, was enthusiastic.

The first CFD researcher is a co-author on this work, and exclaimed
repeatedly “I want this!” (for exploring supersonic and hypersonic
flows and turbulent combustion), in particular with respect to the
Details-first and temporal context exploration capabilities of the system.
He noted that “Oftentimes in CFD we are details first because we are
already familiar with the simulation and wish to investigate specific
features in the data” and then: “When I say details first I mean that we
look at specific regions or quantities. We are often interested in specific
things happening at specific locations or specific times. A [summariza-
tion] overview without physical context lacks specificity and therefore
is hard to extract meaning from, so we often perform [such] overviews
at a later stage.” “It is often very impractical to create an overview of
the data as well. Seeing many, or all variables at many (or even some)
times is extremely costly in real world datasets, e.g., 10.5TB.” The
expert noted that “This type of visualization can be used to investigate
underlying physics of the temporal evolution of features of interest.
It has applications to a wide range of CFD problems, notably vortex
pairing and turbulent mixing.”

The second CFD researcher is a senior investigator who studies com-
putationally turbulence in the aerodynamics of aircrafts. His research
involves running multiple dynamic simulations with soft-knowledge
spatial features. He noted that standard CFD visualization systems (Par-
aview [4], VisIt [17]) are frequently employed in a typical CFD work-
flow to identify simple areas of interest (“Details-first”). Sometimes
those features are then used offline to summarize multiple outcomes.
However, that summarization is usually in the context of simulations
that can be “easily summarized in terms of mean and standard devi-
ation values while discarding lower-level features”. In contrast, our
instantiation “enabled analysis at multiple scales”, allowed repeated
refining of soft-knowledge features “within their original spatial setting”
and the fluid reuse of those “spatially-derived characteristics to summa-
rize multiple outcomes”, well beyond state-of-the-art capabilities. The
researcher was keen to have a similar system for his work.

Similar supportive feedback was collected from the larger groups.
CFD experts were particularly excited about the smooth coupling of
spatial feature characteristics to the temporal context (“extremely in-
tuitive”) and to the summarized overview. The spatial-feature based
summarization was “more powerful than anything else [they] had seen.”
As in the reports above, group members spent most time operating
in the finger detail space, where they were “immediately able to ex-
tract meaning to see the formation of fingers”, and used the temporal
context and overview mainly for navigation in the finger space. They

expressed repeatedly interest in similar analysis tools for their research
projects, which also study features based on soft-knowledge (“[the fea-
ture is] hard to define, but if you see it, you recognize it immediately”).
Last, we quote feedback from the SciVis Contest contribution [10]:
“extremely impressive due to the very well thought-out visualization
design”; “ clearly superior in visualization design”, “very good and
well-crafted”, “in particular, the presentation of the ensemble[...], as
well as the layout and linking of all views to facilitate interactive explo-
ration, by far exceed all other submissions.” This feedback attests to
the value of our instantiation as a powerful tool for CFD analysis.
Theoretical Model Feedback. Our theoretical model sparked equal
interest in the CFD community. After clarifying the visualization termi-
nology, our CFD co-author engaged in numerous background readings
and conversations with other domain experts. Particularly intrigued by
the “overview” concept, he set out to find examples of overview usage
in standard CFD visual workflows, as employed by a group of nine
CFD researchers: two doctoral researchers who use routinely Paraview,
an industry researcher and two doctoral researchers who use routinely
VisIt, one doctoral researcher who uses routinely ANSYS [64], and a
postdoctoral researcher and two senior researchers who are familiar
with a variety of platforms. Through short discussions and observa-
tions, he sought to establish what software they use, what kind of
plots they make, how do they use them, what is the first thing they
do, and where, if at all, they use spatial or summarization overviews.
He found out that no expert used spatial overviews in their everyday
work. Summarization overviews were used, when necessary, last. He
then compacted his findings in a common workflow description, best
described as: 1) Details first (narrow down what is present); 2) Create
filters, expressions, statistics within context; 3) Create a summarization
overview of features (describe behavior of features as a whole over
entire dataset); 4) Find something of interest then return to 1) Details
and Repeat. In the group’s assessment, much of this workflow stems
from the fact that, very similar to the finger instantiation, a number of
the physical phenomena they are investigating do not have concrete
definitions. These CFD phenomena (e.g., turbulence or reattachment
length) typically require a skilled user in order to be visually identified,
separated, and investigated. As a result, it becomes difficult to draw
conclusions from an overview first, when they “do not know exactly
what is present in the data.”

4.3 Supporting Evidence From the Literature

Chen et al. [15] were the first to note, in 2016, that in “many scenarios,
we often observe that an experienced viewer may find [overview first
and details on demand] frustrating, as the viewer knows exactly where
the interesting part of a detailed representation is. For example, in
flow simulation, scientists work on the same problem for months”.
Their anecdotal observation is reflected in a vast number of works in
scientific visualization that support explicitly spatial feature exploration,
and display the rest of the information primarily for context (e.g., [11,
20,27,31,33,52,60,72]). This collective evidence supports the “Details-
first, Show Context” part of our argument.

Overviews (that are not used merely as context) are conspicuously
rare in the scientific visualization literature. This observation is not sur-
prising: summarization overviews tend to correlate with the relatively
recent advent of ensembles of models and simulations. Nevertheless,
the “Overview-last” part of our argument is also implicitly supported
by a several examples of scientific visualization. While sometimes
nominally providing an overview according to the Shneiderman mantra,
these examples relegate their overview to the bottom or side of the
visual analysis interface, and allocate it significantly reduced display
space, compared to the “detailed view” [7, 19, 43, 49, 52, 67].

5 DISCUSSION

Model summary. This work is not a general critique of the “Overview
first” mantra, but of its sometimes inappropriate application, without
careful consideration of user and data workflows. At the same time,
while instantiations of our alternative model are particularly common
in flow visualization, they are in no way specific to the CFD domain:

“details-first” approaches also exist, anecdotally, in biology [14] and in
journalism [55].

The alternative “Details-first, show context, overview last” model
we advocate supports situations where the main user activities are
oriented along (spatial) feature analysis. The model specifically applies
to situations where the features are defined through soft-knowledge on
the user side, and those features drive both the relevant context for the
exploration process and the calculation of the summarization overview.

From a wider analytical perspective, the model applies to domain
expert workflows that start with an in-depth exploration of one model
or simulation, then seek to extrapolate or generalize the findings to a
collection of models. In such workflows, including in forensic analy-
sis, users may wish to start with the features of interest, in particular
when those features are ill-defined and need repeated refinement. The
relevance of user-driven refinement in our model is in agreement with
Doleisch et al.’s observation: “ for interactive analysis, in many cases,
the question of what actually is (or is not) considered to be a feature
refers back to the user: depending on what parts of the data the user
(at an instance of time) is most interested in, features are specified
accordingly.” [20]. Our model enhances this observation and frames it
in a “details-first” paradigm.

When those features have an inherent spatial structure (3D or Carte-
sian coordinates), the model further emphasizes, formally, the impor-
tance of providing the spatial and temporal context of those features.
This model aspect is also in agreement with observations in the lit-
erature: “[Feature localization] is usually provided in the context of
simulation data, that has some spatial context.” [20], and with feedback
from our CFD co-author (“CFD/ensemble features are not meaning-
ful outside of their context.”). Our model instantiation shows how a
computational back-end can help identify and track features over space
and time, and use those details to automatically filter the spatial and
the temporal context. The “Show context” step of the model has the
triple benefit of 1) helping anchor the features in space and time; 2)
reducing visual clutter by controlling complexity of the visualization;
and 3) improving rendering times for large scale datasets, in particular
in online, platform-agnostic, web-based environments.

Last, this model extends the use of spatial details into the calculation
of summarization overviews. In our model instantiation, extracted spa-
tial features and calculations over those features are used to summarize
and compare simulation ensembles.
Relationship to other models and theories. Similar to the van Ham
and Perer approach [66], the Details-first model signals a set of limita-
tions of the Shneiderman mantra [61]. In contrast to the van Ham and
Perer mantra, the present model emphasizes the importance of Details
(not Search for a particular item) for a class of problems, and the rele-
vance of user input in specifying and refining those details. In a further
departure from the van Ham and Perer approach, where overviews are
circumvented as being both impractical and not relevant under spe-
cific circumstances, our model handles situations where summarization
overviews are necessary. In particular, our model extends and provides
a frame for the use of details into the calculation of such overviews.

The Details-first model further relates to Chen et al.’s Information
Theory framework [15]. Our model encompasses their anecdotal obser-
vation that, in particular in flow visualization, the Shneiderman mantra
can be suboptimal when the user is already intimately familiar with the
overview. Beyond agreeing with their observation, this work highlights:
1) the tight connection that exists between the user “knowledge in the
head” [50] and the very definition of spatial features; and 2) how those
details can propagate into the construction of filtering operations, and
then into the construction of summarization overviews.

The model’s “overview last” aspect may also be related to the princi-
ple of visual scaffolding [38], captured by the domain experts’ typical
resistance to unfamiliar visual encodings.
Limitations and falsifiability. The different mantras have comple-
mentary strengths and limitations. Our model may not be necessary
when the analysis can be conveniently broken into two separate pro-
cesses, for example feature detection and simple statistical summariza-
tion. Our full model also does clearly not apply: to situations where
overviews are irrelevant (use Search instead, or default to Details-

first, no overview); when user prior knowledge is not relevant, when
global changes are likely, or when each search starts from scratch (use
Overview-first instead); or when the features are well-defined and com-
putable, or not at the very core of the user activity (a variety of other
approaches apply, including pure computation).

Our observational evaluation draws on a left-to-right, multi-view
instantiation, designed and evaluated with small groups of experts, sev-
eral from the same labs. Such multi-view instantiations take advantage
of the complementarity of multiple representations, and also have the
potential to facilitate multiple user workflows [38, 40]. In practice, we
have not observed domain expert analysis workflows that did not lead
with the details view. A formal user study to analyze the likelihood of
different mantras would be interesting, although beyond the scope of
this discourse paper. Any such study should take particular care in the
participant selection, given the central soft-knowledge aspects of our
model, and the limited availability of domain experts.

Although multi-views have the potential to relieve workflow-related
design constraints, we note that the model principle still applies, in
the designer-assigned color scheme, size and location of overviews
and context views in the overall design. However, extensions of this
paradigm to single-view, reduced screen space settings, may be particu-
larly limiting, considering the complementary benefits of summariza-
tion overviews. A step further, the process of overview summarization
itself may miss an unexpected global change.

Finally, this model is likely not the only other possible alternative
to the two established mantras. There may be further circumstances
under which this model will be falsified, in accordance to Karl Popper’s
assessment that a theory in the empirical sciences can never be proven,
although it can be falsified [23].

6 CONCLUSION

In conclusion, this work introduces and documents an alternative
“Details-first, show context, overview last” approach to visualization
design. The approach supports situations where the user activities are
oriented along (spatial) feature analysis. This work further highlights
the tight connection that can exist between user input and the definition
of spatial features, and then how those details can propagate into the
construction of filtering operations, and then into the construction of
overviews. A model instantiation demonstrates the effectiveness of
this approach with an online web-based exploration of a total volume
of data approaching half a billion seven-dimensional data points. The
approach is supported by endorsements from CFD domain experts. The
applicability of this model extends beyond flow visualization to domain
expert workflows that start with an in-depth exploration of one model
or simulation, then seek to extrapolate or generalize the findings to
a collection of models. Conversely, this model is not appropriate in
situations involving novice users or when features are well-defined and
computable. Overall, adoption of a particular design mantra should
take into account the benefits, limitations, and possible co-existence of
each approach, with careful consideration of data, user knowledge and
interests, and user workflows.
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