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Fig. 1. Example of a MotionRug applied to swarm data comprising 151 golden shiner fish swimming through a water tank. Each frame
of the data is represented as one vertical slice, and all slices are aligned sequentially on a time axis. The color encodes the speed
of the fish, leading to this visual representation. We selected six frames that indicate the overall states and movement of the fish,
as shown above the MotionRug. Below the MotionRug, we highlight key areas of the visualization: Overall, there is a strong spatial
dynamic at the beginning. First, the fish are slow as they approach the right wall of the tank. Then, the fish speed up slowly and slow
down when hitting the next wall. The fish repeat this behavior when approaching the wall on the left. Arrived, the fish show a spatial
stagnation, meaning as a whole, the group remains in one place. Trends are typically indicated by tapered feature values.

Abstract—Understanding the movement patterns of collectives, such as flocks of birds or fish swarms, is an interesting open research
question. The collectives are driven by mutual objectives or react to individual direction changes and external influence factors and
stimuli. The challenge in visualizing collective movement data is to show space and time of hundreds of movements at the same
time to enable the detection of spatiotemporal patterns. In this paper, we propose MotionRugs, a novel space efficient technique
for visualizing moving groups of entities. Building upon established space-partitioning strategies, our approach reduces the spatial
dimensions in each time step to a one-dimensional ordered representation of the individual entities. By design, MotionRugs provides
an overlap-free, compact overview of the development of group movements over time and thus, enables analysts to visually identify
and explore group-specific temporal patterns. We demonstrate the usefulness of our approach in the field of fish swarm analysis and
report on initial feedback of domain experts from the field of collective behavior.

1 INTRODUCTION

Rapid advances in image analysis and small-scale GPS tracking devices
allow us to capture groups of entities and their movement behavior at
large scale: team sports games, bird flocks, fish swarms, or any other
collective formed of multiple entities that mutually influence each
other’s movement. A challenging key task in understanding group
behavior is to explore sudden changes in the spatial configuration and
other factors that influence decision making, as for example Sumpter
describes in his standard reference “Collective Animal Behavior” [43].
Visualization helps to explore the basic movement data evolving over
time and track changes to get an understanding of the underlying group
dynamics and behavior. In addition, visual analysis approaches can
be used to provide an overview of large amounts of data and to reveal
singular, preeminent behavior events at the same time.
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Several visualization techniques have been developed to provide
an overview for tracked entities that move over time. For example,
static trajectory or space-time cube [30] visualization techniques show
how entities move through space and time. However, occlusion issues
increase with both the amount of considered entities and the length of
the observed time period. An additional challenge is the concurrent
comparison of features that are encoded on the trajectories by color
or annotations, due to the problems mentioned before. Andrienko et
al. state that static representations are “restricted to relatively simple
trajectories and to a small number of moving objects for keeping the
representation legible” [3, p.517]. In the field of collective behavior
analysis, where the amount of entities to be observed is larger, these
issues are critical when trying to find sudden structural changes in the
observed behavior and causes for the same. Similar to static approaches,
animation-based techniques have been found the “least effective form”
for trend analysis [40] as they fail to provide a temporal overview that
enables comparison between remote points in time. In contrast, small
multiples [47] apply discretization to provide an overview. However,
they additionally discretize continuous changes making it difficult to
determine the right number of multiples. With MotionRugs, we aim
to address these issues by providing a visual at-a-glance overview
representation for groups of entities that evolve over time.

MotionRugs is a generic approach to compactly display changes
in spatiotemporal data of multiple entities based on space partitioning
techniques. The general idea is to transform the spatial representation of
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all entities into a one-dimensional (1D) ordered slice for each moment
in time separately. In each slice, the entities are presented as colored,
vertically arranged rectangles. Color encodes a user-defined feature
value such as speed, acceleration, or direction, for example. To enable
comparison between different features, several MotionRugs can be
grouped vertically, each showing a different feature (compare Figure 8).
While the appearance of a MotionRug naturally is a direct consequence
of the requirements we explain in Section 3, the technique also has
some resemblance to van Gogh’s painting style.

With MotionRugs, we present a static, space-efficient overview vi-
sualization for spatiotemporal data that enables the identification of
trends and patterns in groups of larger numbers of entities at a glance.
Instead of a spatial representation as truthful as possible, MotionRugs
rather aims to emphasize changes in the behavior of the visualized
entities, yet retains the spatial context in an aggregated form. While
conceptually also applicable to three-dimensional movements, for now,
we restrict ourselves to movements in two dimensions focusing on the
explanation of visual patterns in group movement. In summary, we
contribute a novel visualization technique for the visual abstraction of
evolving spatial data. We discuss a choice of space partitioning strate-
gies that can be employed to derive the 1D order MotionRugs depends
on, and we provide an initial set of methods for the quantification of
the visual quality of the results, which the spatial ordering strategies
generate. Further, we explain the patterns generated by our technique
by the example of a fish swarm. We report on initial feedback provided
by domain experts on the applicability of our approach showing that
MotionRugs helps to understand collective trends in space and time.

2 RELATED WORK

The initial motivation for MotionRugs has its roots in the research
area of Collective Animal Behavior, which aims to decode and explain
the mechanisms and coherences of collectives formed by individual
entities. A good overview of this field and its methods is provided
by Sumpter [43]. Fundamentally, the first step to gain insight into
Collective Behavior is the exploration of records of movements of
observed entities as expression of their behavior, with the goal to find
generalizable rules for modeling the same. Thus, before being able to
model the observed behavior, the challenge is to review large amounts
of records containing large amounts of moving entities over longer time
spans, while looking for general behavior as well as unusual events like
unexpected outliers or loss of coherence in a group. Characterizing
interactions and extracting behavior from movements is an established
field, and an extensive introduction and overview is given by Laube [33].
Still, algorithmic approaches are based on assumptions that have to be
established first exploratively - and thus, visually.

Yet, many state-of-the-art approaches in visual spatiotemporal data
analysis treat moving entities as individuals without regarding mutual
influences. However, taking these coherences between the entities into
account is crucial for the analysis of groups, where one has to consider
that single members or external events can affect the overall behavior
and motion. In the following, we first discuss related approaches from
the general field of spatiotemporal data visualization before treating
such with a focus on entity interactions.

2.1 Visualization of Change in Spatiotemporal Data
Research on the visualization of spatiotemporal data has a long history.
A comprehensive overview and systematization of fundamental static
and interactive visualization approaches was carried out by Andrienko
et al. [1]. Based on the conventional approaches discussed in the in-
troduction of this work, and their limitations, further techniques aim
to alleviate the mentioned shortcomings. For example, Tominski et
al. [46] introduce an improvement for the overplotting issues based
on stacking in the third dimension. The authors enable the efficient
comparison of features between multiple trajectories. Yet, the approach
is best suited for spatially coincident movements tied to structures like
streets. Moreover, due to occlusion, crossing trajectories are hard to
interpret or compare. Another static approach towards the visualization
of movement data by Willems et al. [51] is based on density fields.
Yet, static techniques are typically lacking the possibility to encode

temporal aspects without interaction or other supplemental techniques.
An interaction-centered approach to organizing large amounts of tra-
jectories is presented by Hurter et al. [22], who combine brushing and
linking interactions with boolean logic operators to reduce the complex-
ity of the data and provide query functionality. However, the approach
makes it easy to miss unexpected behavior by filtering it away and
also, the temporal aspect is not supported sufficiently for the analysis
of unknown behavior. Two additional well-known approaches to show
changes in moving entities are animation [32] and small multiples [47].
For both techniques, it is difficult to track changes over longer time
periods. Small multiples, however, additionally discretize continuous
changes, making it difficult to determine the right number of multiples.
Thus, small multiples are typically encountered in combination with
other techniques or a focus on origin-destination data as proposed by
Wood [52]. Also, scalability issues for both small multiples and anima-
tion approaches are documented, e.g. by Harrower [19] or Archambault
et al. [5]. Due to the sequential spatial ordering introduced by Motion-
Rugs, temporal aspects of the data can be explored without interaction
or occlusion. Because MotionRugs is a dense representation, the com-
parison of different moments in time is independent of animation or
the cumbersome selection of the right amount of small multiples.

2.2 Visualization of Spatiotemporal Interactions

The aforementioned techniques focus on presenting single or multiple
movements by treating each entity trajectory independently. However,
there is also research focusing on interaction spaces and dependencies
between the entities. In one of the very few publications on the topic,
Andrienko et al. [2] compute a central trajectory for a group, arrange the
entities around this center, and visualize the results in a space-time cube
like representation. However, their focus lies more on the exploration
of individual relative movements within the group. As well, on page
2, the authors state, that they “have found only one visual analytics
paper [...] specifically addressing group movement” [2, p.2]. This
finding coincides with our expectation to find more specific techniques
directly intended for the analysis of group movements. The mentioned
paper authored by von Landesberger et al. [49] focuses more on an
exploration of the feature space of collective behavior and automatic
extraction of interesting events. Contrary to that, MotionRugs is a
purely visual technique which can be applied to arbitrary features.

Other techniques are not directly related to group behavior but still
take into account coherences between the moving entities. Etienne et
al. [13] compute a median trajectory from individual movements and
combine it with box-plot representations showing the spatial and tem-
poral spread around the median trajectory. Here, individual behavior
gets lost in the aggregation and the technique does not offer any feature
(e.g. speed) or feature development visualization. Krüger et al. [31] ag-
gregate movers spatially and extract common event sequences through
frequent pattern mining of predefined POIs both in space and time.
Haag et al., [18] provide a query language for event sequences in space
and time. Yet, information on individual behavior of entities within
a group is lost. Konzack et al. [28] compare the interaction between
trajectories using a VA approach focusing on reaction delays, but their
approach is limited to two moving entities at a time.

Crnovrsanin et al. [10] abstract the movement by proximity to im-
portant events in a sparse line chart. Time is mapped to the x-axis and
the distance to a single event is mapped to the y-axis. This approach
enables the analysis of entity interactions for an event, yet does not
allow to track general behavior over time or space. Another way to
consider entities as a group is to connect them in a network and then
draw conclusions from network changes. But understanding struc-
tural changes in dynamic networks still poses a challenge. Burch et
al. [9] propose to draw the graphs side by side, but neglect a special
ordering and thus mutual dependencies. In contrast, Elzen et al. [48]
build on top of the node ordering based on edge length. The visu-
alization reveals highly communicating (connected) node pairs. The
approach of Cui et al. [11] is closest to our visual result and depicts
the evolution of nodes within a dynamic network. The authors order
the nodes based on graph metrics and create a smoothed vector field.
The flow indicates the temporal change in ordering. Dynamic network



Fig. 2. Comparison of the results of ordering the movement of a group of 151 fish over the course of several minutes time. While the spatial dynamic
can only be vaguely perceived for the R-Tree strategy, the Point-QuadTree suffers from artifacts. For the Z-Order Curve we found that it is prone to
produce “Phantom-Splits”, visual artifacts creating the impression of a physical split of the entities when there is none. The Hilbert Curve instead
displays the spatial dynamic better than the Point-QuadTree and shows fewer artifacts than the Z-Order.

visualizations typically consider connections between nodes. In this
paper, entities move independently but are organized in groups. This
means that entities share spatial relations but are not directly connected,
which represents the main difference to dynamic networks. Instead,
we build a topology using spatial indexing and partitioning that we
map to a static visualization. This way, we capture spatial changes and
dynamics. Another related approach to MotionRugs are the Slit-Tear
Visualizations introduced by Tang et al. [44]. A scanline is drawn at
a fixed position in a video to create a composite image of the entire
video stream. Compared to MotionRugs, the slit-tear approach enables
the identification of changes at a fixed location in the video, ignoring
changes in the remaining video. MotionRugs explicitly follows and
adapts to changes of moving entities.

Approaches in sports analytics, such as by Perin et al. [39] or Janet-
zko et al. [24] apply aggregation or classification to extract meaningful
events and behavior. Still, aggregating multiple trajectories and incom-
plete event definitions hinder the exploration of unknown collective
behavior. With MotionRugs, we intend to overcome the named issues
by aggregating the spatial dimensions of the data, resulting in a dense
spatial representation. Our technique can thus be considered a dense
pixel display as defined by Keim et al. [25]; each pixel represents a
data point, and the arrangement plays a key role in the technique. For
example, dense pixel displays have been applied in various areas in-
cluding text analysis and financial data visualization [42]. Yet, dense
pixel displays for spatial data (e.g. [26]) are rare and typically focus
only on one of the mentioned aspects. Visually similar techniques have
been presented, for example, by Köthur et al. [29], who unify the cross-
correlation between two time series in one plot. In contrast, Luboschik
et al. [35] visualize chaotic movements with respect to the development
of parameters over time. However, their representation results from a
different incentive and is not connected to group movements.

In conclusion, an abundance of related work in the visualization of
spatiotemporal data exists [6]. Still, traditional approaches like static
visualizations suffer from overplotting and occlusion issues, whereas
our approach provides a dense, yet spatially aggregated view over large
amounts of entities and longer periods of time. To some extent, visually
similar solutions exist in the area of dynamic graphs [11]. However,
their construction and intent are inherently different to our technique.
These shortcomings have led to the development of MotionRugs, which
leverages the advantages of dense pixel displays to enable compact
overviews over large amounts of data points and features.

3 MOTIONRUGS TECHNIQUE

MotionRugs provides a space-efficient, at-a-glance overview over large
amounts of moving entities over longer periods of time. Building
upon state-of-the-art, we encode both the temporal and spatial dimen-

sions. To enable the comparison of arbitrary moments of time that
are not prone to the drawbacks of animation, we aim for a static, two-
dimensional representation. The notion of “two-dimensional” suggests
encoding two dimensions, in this case on the x- and y-axes of the
Cartesian coordinate system. As usual in mathematics, we encode
the independent variable, which here is the time, on the x-axis. This
leaves us with the y-axis to represent the spatial context per time point.
Encoding the third dimension (z-axis) is possible as well. However, as
discussed extensively in Section 2, the result introduces occlusion and
perspective issues, thus not meeting our aim. Hence, we reduce the
spatial dimensions to a single dimension through transformation.

Our approach follows a three-step pipeline depicted in Figure 3: (1)
First, we consider each movement data frame as a single time instant.
For each frame, we transform the locations of the moving entities into a
spatial data structure. (2) Then, the resulting data structure is traversed
based on a deterministic strategy to derive a one-dimensional ordering
of the entities’ locations in the given frame. The ordering is organized
vertically in a one-dimensional slice. Each entity is represented as
a filled rectangle, which can be scaled down to the size of a pixel,
and color-encodes a pre-defined, motion-specific feature such as entity
speed or orientation. (3) In the last step, we align all slices side by
side on the temporal axis (x-axis), creating a rug-like aggregation of
time-slices. Key aspects of this approach are:

Space Partitioning & Transformation To transform the spatial
dimensions to a one-dimensional slice, we apply space partitioning
methods such as spatial tree indices and space-filling curves. Then, we
traverse the resulting structure using deterministic methods, whose vis-
iting order determines the order in the slice. Choice and parametrization
of the partitioning techniques directly impact the visual outcome.

Strategy Selection The choice of the ordering strategy is key
because it not only affects the visual outcome but can also change
the visual interpretation of the same. In general, we can distinguish
between strategies that take into account the entire available space
versus strategies that adapt to the structure of the moving entities. We
introduce means to assess the quality of proposed strategies and provide
reasoning for making a well-founded choice.

Feature Encoding & Visual Interpretation Each rectangle rep-
resenting an entity in one time slice is colored according to a feature
value that applies to the entity at the given time. Arbitrary features can
be chosen, but we focus on features that can potentially express the
entities behavior, e.g. speed, acceleration or orientation. The colormap
choice (e.g., sequential, diverging or qualitative) depends on the se-
lected feature. The combination of spatial ordering strategy, visualized
feature, and color map results in patterns explained in Section 3.4 and
4.1. Following, we give an in-detail overview of these identified key
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Fig. 3. The MotionRugs technique in principle: Given a large spatiotemporal dataset, our approach follows a three-step pipeline, where we process
all time frames of the data successively. For each frame, we (1) first index the location of the data points using a spatial abstraction strategy. The
depicted pipeline shows the application of the Hilbert Curve, a space-filling curve approach. (2) By traversing the spatial structure, we then derive a
1D ordering of the data – in this case, a slice for the frame at t = 20. Each data entity is represented by a rectangle, which can encode any respective
data feature using color. (3) Finally, we align the generated slice with all other ones on the temporal axis.

Fig. 4. Left: Spatial partitioning created by a Point-QuadTree and the
tree representation. A DFS preorder traversal strategy (blue dotted line)
determines the order of the entities. Right: A Hilbert and a Z-order curve
and how they can be used to derive a one-dimensional order of entities.
In the Hilbert curve, the next curve abstraction level is highlighted in grey.

aspects. We outline two state-of-the-art space partitioning classes in
Section 3.1, in particular, tree structures and space-filling curves. Then,
we introduce measurements for the ordering quality and provide results
for the presented strategies in Section 3.2. Finally, we discuss the
encoding of specific features and how to identify and interpret patterns
in the visual representation, which we refer to as a MotionRug.

3.1 Space Partitioning & Transformation

We make use of spatial indexing data structures to transform the 2D
data to a 1D ordered slice for each point in time. Therefore, we build
upon the classification of spatial indices introduced by Lu and Ooi [34].
The authors distinguish between two main approaches used to partition
a given 2D space: space-filling curves and tree-based structures, both
organizing the spatial objects with respect to their location. Space-
filling curves, such as the Hilbert Curve [21], are laid directly on top
the 2D canvas ensuring each data point lies on the curve. Traversing the
curve provides a natural 1D ordering. This is different for tree-based
structures: After the data is mapped to a tree with each leaf represent-
ing one entity, an additional traversal step is required to generate a 1D
ordering. Lu and Ooi also delineate hash-based approaches, which
we omit due to their disregard of location. In another comprehensive
publication on spatial orderings and quality measures, Guo and Gahe-
gan [16] compare space-filling curves and clustering-based ordering
approaches at the hand of two classes of quality measures comparing
the distances between the entities in the original space versus those
in the aggregated ordering. The authors state, that the Hilbert curve
“avoids long jumps” [16], which, amongst other factors, is important
for the continuity of the visual representation of a MotionRug. While
the authors find, that the Hilbert curve performs less favorable for
SS measures, it performs well in ordering, which is what we aim for.
Other compared methods perform better than the Hilbert curve for
some measures, but are clustering based. We intentionally omit these
methods, since their results are often parameter-dependent (e.g. shared
nearest neighbors SNN) and thus prone to generate different orders
between two frames - and consequently, discontinuity in the visual
result. Following, we discuss different approaches for the generation of

a 1D ordering based on space-filling curves and trees. We discuss and
showcase their effect regarding the resulting ordering and the ability to
uncover visual patterns.

Space-Filling Curves Space-filling curves are a class of con-
tinuous, 1D mathematical functions that aim to cover a two- to n-
dimensional space while preserving object proximity as accurate as
possible [41]. By definition, a point-based space-filling curve is able to
pass through each point in space once. Ideally, the proximity between
points in space is also reflected by the curve, which can be achieved by
adapting the resolution of the curve according to the amount and density
of data points. Two well-known representatives of the space-filling
curve family are the Z-Order Curve [38] and the Hilbert Curve [21].
Both curves are well-known and widely used. For example, they play a
role in signal processing, load balancing applications or data compres-
sion tasks as for example Eavis and Cueva [12] demonstrate. While
the Z-Order curve is favorable computation-wise through simple bit
interleaving, studies by Jagadish [23] indicate that the Hilbert curve
preserves locality best. We can apply both approaches to generate a
1D ordering. For both, we start the traversal of the curve in the upper
left corner of the given space and recursively determine the necessary
resolution according to the visualized data. The space-filling curves
are defined only once using the resolution of the spatial coordinate
systems in which they are applied. An example of how we generate the
1D ordering using space-filling curves is depicted in the right half of
Figure 4. The left curve outlines space traversal using the Hilbert curve,
the right curve using the Z-Order curve. In Section 3.2 we contrast the
two approaches and compare their result to tree-based structures.

Spatial Tree Structures Tree-based structures are well-known for
storing and retrieving data points in large datasets. Commonly used tree
structures for spatial data are QuadTrees [15] (2D) and Octrees [37]
(3D), R- and R*- Trees [7, 17], as well as variations of each, such as
optimized octrees used for efficient isosurface generation [50]. The
commonality between named approaches is that they reflect the spatial
proximity between points in their structure. For example, R- and R*-
Trees aim to find minimum bounding rectangles, whereas QuadTrees
and Octrees recursively divide the space into four (2D) or eight (3D)
areas until each area contains exactly one data point. Figure 4 on the
left shows the spatial partitioning and the generation of a tree structure
based on the QuadTree approach. In the visualization domain, the
application of spatial tree structures serves a wide range of purposes,
including the calculation of distance fields and reduction of visual
clutter [53] or surface reconstruction for 3D models [54].

Compared to space-filling curves, spatial tree structures do not pro-
vide an inherent 1D ordering. However, and as mentioned before, such
structures aim to preserve the spatial property of the data, which is why
we can use the tree representation as means to generate a 1D order-
ing with a certain degree of positional retention. The special property
of trees we can leverage is their universal traversability, expressed as
different strategies to visit each node of the tree exactly once, thus



Fig. 5. Excerpt of vertical position changes of entities for the same time
interval throughout a MotionRug compared for an R-Tree ordering as well
as the Hilbert Curve ordering strategy. We generated this representation
by introducing empty space between the ordered entities, then drawing
their progress through the visualization. The colored pixels can still be
seen in the background. For the same time interval, the R-Tree generates
more and larger jumps of the entities back and forth through the visual-
ization as the Hilbert Curve, resulting in a diffuse spatial representation.
The impact of these findings can be compared in Figure 2.

creating a 1D ordering. Depth-first traversal strategies (DFS) consider
the branch structure of a tree, while breadth-first traversal (BFS) strate-
gies ignore branch separations. Yet, the branch structure encodes the
neighborhood information in a spatial tree. For example, jumping back
and forth between individual leafs of a QuadTree can result in groups
of data points from different quadrants that break neighborhood rela-
tions. As a result, we can omit a discussion of strategies that break
the spatial relations and adhere to DFS strategies for the rest of this
paper. Further detail about graph traversal strategies can be obtained
from the book of Even [14]. Generally speaking, we can apply any
spatial tree structure for the generation of MotionRugs. However, other
approaches, among them the UB-tree by Markl [36] or the k-d-Tree by
Bentley [8], are specialized for multi-dimensional data, which is why
we compare only the most representative ones, namely the QuadTree
and the R-Tree. Since the common implementation QuadTree approach
generates the same order as the Z-Order curve, we are concentrating
on the Point-Quadtree [15], which splits the space at the location of
inserted points. Also, data is not only stored in the leaf nodes, thus
potentially generating a different order than the Z-Order at traversal.

3.2 Strategy Selection
Based on an initial ordering strategy, we generate a 1D slice for each
point in time. The sequential alignment of all generated 1D slices cre-
ates a MotionRug – a visual representation of collective spatiotemporal
movement. However, the choice of the ordering strategy affects the
overall visual outcome and can influence the way we interpret occurring
patterns (we discuss spatial patterns in Section 3.4). As depicted in Fig-
ure 2, the ordering strategies produce different visualization results due
to the differences of how they abstract space. For trees, this difference
lies mainly in the way they split the space, while for space-filling curves
the question is how they traverse it. In the following, we compare the
approaches using spatiotemporal fish data. The data was recorded in 25
frames per second, so that between two ordered slices, 40ms pass. For
our calculations, we analyze 12 minutes of data, or 18000 frames. For
both the Point-QuadTree and the R-Tree approach a preorder depth-first
search (DFS) was used to determine the order for each time slice. A
fixed insertion order by their sorted unique id of the entities was used
for both trees in every frame to ensure a consistent treatment and com-
parability of results. For the R-tree, the original approach described by
Guttmann [17] was used for each time slice.

Judging from the visual outcome depicted in Figure 2, it seems that
the space-filling curves approximate the spatial dimension more effec-
tive than trees, and the R-Tree seems to produce more diffuse results
compared to the Hilbert Curve. Below, we provide a quantification of
this coherence to provide a step towards an objective degree of qual-
ity for an ordering strategy. In a MotionRug, entities are aligned on
the y-axis, and thus can only move vertically between points in time.

Z-Order PQ-Tree Hilbert R-Tree

Kendall’s τ Median 0.9922 0.9922 0.9912 0.9846

Mean 0.9900 0.9896 0.9886 0.9090

Max 1 1 1 1

σ 0.0085 0.0112 0.0095 0.1609

Crossings Median 44 44 50 87

Mean 56.63 58.69 64.43 515.7

Max 533 1677 433 6806

σ 48.34 63.62 53.77 911.80

Skips Median 82 82 94 160

Mean 103.8 107.9 116.5 789.6

Max 1810 3032 672 9196

σ 83.32 112.81 91.11 1322.19

Table 1. Statistics generated by the quality metrics we apply for or-
dering strategies. Values for Kendall’s τ can range from -1 (complete
dissimilarity) to 1 (identical rank orders). Values for crossings and skips
are absolute numbers of occurrence. The R-Tree generally performs
worse than the other strategies. The other strategies are closer but
distinguished by the maximum values for crossings and skips, which is
an indicator for the impact of artifacts generated by the technique. The
maximum values for Kendall’s τ are uniformly 1, since every strategy
created at least once the exact same order in two adjacent frames.

Figure 5 visualizes this vertical movement for the R-Tree and Z-Order
curve strategy using the same subset of the data used in Figure 2 as
well. It is obvious that besides the physical movement of an entity,
the vertical movement also depends on the kind of applied ordering
strategy. For the R-Tree, the entities change their positions rapidly and
over larger distances, thus causing jumps in the visual depiction. In
contrast, for the Z-Order curve fewer jumps and a lot of continuity can
be observed. Continuity refers to the consistent location of entities in
the 1D ordering, meaning that they maintain almost the same position
across frames. Since the fish move continuously in the physical space
between frames, the observed artifacts stem from the applied ordering
strategy and occur mainly when a large tree split is traversed (meaning
a large distance between two objects) or at a switch between hierarchy
levels of the Hilbert curve.

Quality Measurements Based on these observations, we measure
the quality of ordering strategies for the generation of MotionRugs by
quantifying the amount of vertical change between neighboring frames
in three different measures: Kendall’s τ [27] is a rank correlation
coefficient representing the difference of concordant and disconcordant
(order-reversed) pairs between two orderings in relation to the total
number of pairs. For a more fine-grained evaluation of the nature of
reversals we also give the absolute number of disconcordant pairs, i.e.,
pairs of fish whose trajectories cross in the MotionRug, and the total
number of rows skipped by all fish between consecutive columns. High
amounts of changes or crossings result in less visual coherence between
two slices. Note that a certain number of changes in the ordering is
to be expected as the fish move through space. Changes in relative
position lead to changes in the orderings that are not a problem of the
linearization strategy but reflect actual movement in the swarm. Other
changes, however, are due only to sensitivity of the strategy. Since all
strategies are compared on the same data, we are underestimating their
stability but their quality ranking is maintained.

Results and Conclusion The results of the comparison are shown
in Table 1. The results for the Kendall’s τ coefficient show less rank
correlation between the orderings for the R-Tree strategy than for
the three other strategies, implying an increased visual incoherence
between frames. To back this finding, we have conducted two one-way
ANOVA to compare the effects of the Z-Order (Z), Point-QuadTree (Q),
Hilbert (H) and R-Tree (R) strategies on the spatial ordering results
between 18000 continuous frames taken from the dataset described
in Section 4.1. We have conducted the ANOVA for both the changes
and crossings measure. The pure statistical results can be seen in
Figure 6 on the left. The results show that there was a significant
effect of strategy choice at the p<0.01 level for both the crossings
as well as the changes/skips measures. While ANOVA can only tell
the existence of a significant effect, we apply Post-hoc Tukey HSD



Fig. 6. One-Way ANOVA (left) and Tukey HSD results (right) for all compared strategies and changes and crossings measures. For ANOVA, we
report the sum of squares as the total variance in the observations, degrees of freedom df as number of parameters that may vary independently,
total mean square as sample variance, and F-statistic and p-value to estimate the result significance. For Tukey HSD, we compare the studentized
range distribution Q and the resulting p-value to judge the significance of differences between the chosen strategies for changes and crossings.

comparisons to determine the effects between the individual strategies.
The comparisons to be seen in Figure 6 on the right show that for
each case, we can conclude that the R-Tree ordering strategy performs
significantly worse (** p< 0.01 for each comparison with the R-Tree)
than the three others. Hence, these strategies provide a more continuous
aggregation of the spatial dimensions, while the R-Tree can be deemed
unsuitable as ordering strategy due to its lack in neighborhood retention.

While consequently, we can rule out the R-Tree, the differences
between Hilbert curve, Z-Order and Point-QuadTree prove to be statis-
tically insignificant. Still, there are visual differences between them, as
Figure 2 shows. While the averages lie closer together, the differences
between the maximum values have a visible impact on the visualiza-
tion, on average and maximum generating larger jumps between the
time steps for Z-Order and Point-QuadTree than the Hilbert curve.
Consequently, for the compared ordering techniques, we assume the
Hilbert Curve as best option from the compared ones to retain a spatial
aggregation as continuously as possible.

Visual Artifacts Building upon these findings, we observe visual
parameters that require further evaluation. In the Point-QuadTree ex-
ample in Figure 2, a significant artifact is magnified, which appears
to show several entities shifted by a few units. Such artifacts can be
caused by branch-splitting and reorders, where entities are re-shifted
through the tree branches. Also, the spatial dynamic of the entities is
not represented as smoothly as in the other two strategies. Another,
more prominent artifact are visual splits in the rug visualization as high-
lighted in Figure 2. We call such splits “Phantom-Splits”, because they
give the impression that the entities split up in individual groups. Yet,
this artifact can be caused either by the spatial aggregation function, or
by differences in the feature distribution amongst the moving entities
themselves. In the latter case, the representation is an accurate repre-
sentation of group composition and trend progression. For the former,
the reason for such “Phantom-Splits” lies in the spatial discretization
and occurs as soon as root-separated branches in a tree need to be
crossed. As for space-filling curves, this phenomenon occurs when
hierarchy levels have to be crossed. For example, Figure 4 exemplifies
this coherence in the Z-Order curve between entity #4 and entity #5,
where the curve jumps to lower left corner. Also note how Z-Order and
Hilbert curves may produce locally different orders. We provide further
discussion on the issue and possible treatment in Section 5. Judging
from the statistics and our observations, the Hilbert Curve ordering
generates the most favorable results of the selected strategies with the
least amounts of shifting or splitting artifacts.

3.3 Visual Encoding of Motion-Features
The MotionRugs technique reduces time-dependent spatial locations of
entities to a one-dimensional, ordered pixel display. While the subse-
quent ordering of entities inherently encodes overall position changes
of the group, it remains challenging to draw conclusions regarding the
underlying behavior like group coherency or leading entities. For this
reason, we encode all entities as pixels with group-specific features
using color. Captured data of entity groups typically comprise the enti-
ties as well as associated location, time stamp, and orientation. From
these basic records, fundamental features can be derived that enable the
characterization of the development of the observed behavior. Amongst
these basic features, we primarily consider: (1) The distance between

each entity and the group centroid gives evidence for the coherency of
the group. (2) The speed (distance of the entities’ position between
frames) of entities states the overall flux of the group. (3) The direction
change of entities allows to draw conclusions whether the flux remains
static, and (4) the acceleration can point analysts to leading entities.
Figure 8 shows examples for the speed, distance to centroid and direc-
tional change. Note that the spatial dynamic of the entities is preserved
for each feature. To meet the task of comparison [45] and because
the data types are diverging, we implement a diverging colormap from
red to blue. The colormap highlights structural changes in the overall
group, as depicted for example in Figure 7. In this Figure, analysts can
detect changes in the underlying group behavior by inspecting both
color and orientation of entities. When analyzing behavior, an analyst
usually wants to learn about the turning points in the behavior and how
these were initiated. Diverging color maps help to find these points
by providing distinctions like “near versus far” or “slow versus fast”.
At the same time, the choice of color map is sensible and should be
adjusted to the task.

3.4 Visual Interpretation of a MotionRug
Collective or group behavior is characterized through the behavioral
commonality between the observed entities rather than the considera-
tion of accurate individual locations. This circumstance also implies,
that a sufficient amount of commonality has to be given in general
between the entities to be able to determine general behavior as well as
outliers in the first place. MotionRugs integrates this property in the
sense that the common behavior of entities is reflected in the visual rep-
resentation by abstracting the spatial dimension. Consequently, visual
patterns in a MotionRug can only form and be observed if the entities’
behavior shows a certain amount of coherence, meaning that a signifi-
cantly large subset of entities must demonstrate common behavior.

Prominent indicators for collective behavior that can be extracted
from movement data alone are common expressions of speed, accel-
eration, direction, and distance to the center or central entity of the
group. Further features such as distance and orientation towards a
leading entity or amount of neighbors within an entities field of view
are conceivable to be applied. Yet, such advanced features require
prior knowledge and assumptions, which is why we concentrate on
basic movement features derivable from basic movement features only.
Visualizing such features can reveal two types of patterns: First, spatial
configuration patterns are indicative of a groups movement and spatial
activity. Second, feature progression patterns allow a quantitative view
on emergence, evolution and gradual disappearance of trends. Follow-
ing, we introduce the visual patterns that a MotionRug can make visible,
and discuss their interpretation regarding their spatial configuration as
well as feature value evolution.

Spatial Stagnation Parallel horizontal lines
indicate an overall positional stagnation of the
whole group. They form when the entities vaguely
stay within their original section of the index struc-
ture. If movement occurs just within the group,
change in the visualization will only be visible in case this movement
is chaotic, generating a more diffusely colored stagnation pattern due
to the differing feature values. An example of this case can be seen
in Figure 8 in the end of the heading change case. Here, the feature



values are distributed in finer granularity since the heading change mea-
surement is more sensitive than the other shown features. Stagnation
patterns occur when a group is in a resting state or shows stationary
behavior such as “milling”, a formation when fish are turning in circles.

Spatial Change A spatial change pattern
refers to the mutual direction change of a group
and is represented as a ribbon that curves from top
to bottom or from bottom to top. Regarding the
spatial configuration, direction changes can oc-
cur when the group reacts to external stimuli such
as impeding obstacles or approach of predators,
amongst many other possible reasons. The visual
representation, thereby, reveals the evolution of
the feature values based on the spatial configuration. Features, such as
speed or distance to the group center, reveal the running aground of
entities before an obstacle. However, not all features can reveal such
behavior, which is why it is key to bring features in relation to the
overall spatial configuration.

Trend Progression A common behavior in
collectives are subgroups of entities starting or
ending a behavioral pattern. For example, a few
fish are starting to break out of a resting pattern
by getting faster and the group starts to follow.
Trend progression patterns make such events vis-
ible. Opening shapes distinctive in color from the
rest indicate that a trend has been started by a sin-
gle or few entities and many follow. Vice versa,
closing shapes show trends fading out until no entity follows them any
more. For beginning trends, the shape of the developing trend at the
start indicates the amount of entities involved. Its development (e.g.
how quickly and far the new trend stretches over the vertical space)
allows to see, how fast how many entities are following a trend and also,
whether all or only a portion of the entities are part of the trend. Taken
by themselves, trend progression patterns allow no assertion on the
spatial progression of the group, but the curvature of trends allows this
interpretation as described in spatial stagnation and change before. Vi-
sually, trend progression patterns occur when a group begins to change
its configuration. These points are of great interest, since an internal or
external factor causes the change in behavior. With a MotionRug, these
trend events can be characterized at a glance for start and end point, fea-
ture distribution and amount of participating entities over time. Figure
1 shows examples of a distinct trend begin and end when few fish start
speeding up, leading the group to follow. The spatial stagnation trend
in the end consists of the entities slowing down collectively at the same
time. Besides the local developments, a MotionRug also gives an idea
about the global feature development and distribution. In our example,
it is immediately possible to quantify slower versus faster movement
phases and durations. Global developments can be perceived at a glance
and visually correlated with the development of the other described
patterns. In comparison to split patterns, trend progression patterns can,
but do not have to start with few entities, resulting in a sharp visual
representation. As well, depending on their beginning location, trend
progression patters do not necessarily create a split impression.

Splits Splits and merges are another pattern
visible in MotionRugs. Being related to trend pro-
gression patterns, they can indicate spatial splits
and merges of entities with similar feature values.
On the other hand, a split does not necessarily
indicate a spatial separation of the entity groups.
Instead, these patterns can also occur when a trend
is starting spatially from within a group (compare
the trend progression pattern). Another possibility
are what we call “phantom-splits”, artifacts introduced by the spatial or-
dering. We previously discussed this issue in more detail in Section 3.2.
Split and merge patterns can be more or less visually prominent depend-
ing on the differences in the feature value expressions of the entities.
Depending on the use case, a suitable colormap can either emphasize

these patterns (binned and diverging color maps) or mitigate them
(linear color maps).

4 USE CASE AND INITIAL FEEDBACK

To demonstrate the applicability of our technique on a real-world
dataset, we present specific examples for the interpretation of pat-
terns as discussed in Section 3.4. The examples have been prepared in
collaboration with the same domain experts we have collected feedback
from. Since our approach is geared towards facilitating the overview
on group movements, it is prudent to collect feedback from potential
users directly, which we have documented below in Section 4.2.

4.1 Use Case
Often, the analysis of spatio-temporal data involves the exploration of
large amounts of data, which can be a very time-consuming process.
Reducing the effort in the spatial dimension (e.g. by zooming out)
or in the temporal dimension (e.g. by speeding up an animation) is
sometimes possible. Still, such measures cannot be applied to an arbi-
trary degree due to inevitable suffering spatial/temporal accuracy. As
dense overview representation of space and time, MotionRugs supports
the fast visual identification of changes in the observed movements,
allowing an analyst to skip only to parts with behavior interesting to
him. In the following, we show a practical example of MotionRugs
applied to a real-world dataset used for the exploration, analysis and
explanation of the formation of collective behavior in fish swarms.

Data In our use case example, we are observing 151 Golden Shiner
fish moving through a fish tank. The animals have been tracked swim-
ming through a 2.1m by 1.2m sized tank filled with 5cm of water, so
that the fish can only move in two dimensions. The movements of
the fish were recorded with 25 frames per second, resulting in 18000
frames with 2.7 million data points over the course of 12 minutes. The
fish are moving freely without obstacles throughout the tank. Golden
Shiner fish form coherently moving swarms, and it is the goal of the
experts to explain how the fish coordinate their movements by finding
points in the data where the general behavior changes.

Typical Expert Tasks The analysis of data with a temporal aspect
almost always bears the element of sifting through various amounts of
data in search of parts in the data that are of interest. These parts can
either be punctual or elongated developments in the physical or feature
space or in both, respectively, over longer periods of time. To illustrate
how such findings can be made, we produce a set of patterns from the
fish dataset that are representative for most of the patterns one can read
from a MotionRug. The referenced patterns are shown in Figure 7.

Pattern 1: Moving and turning In the first pattern, a curved red dy-
namic can be observed starting towards the lower middle while turning
blue, then bending away to the upper right again, with increasing
amounts of red pixels, while blue fades out. The correct interpretation
for this pattern is that initially, the fish slow down and turn. When the
whole group has caught up, they speed up one by one, turning again.
In the data, the fish swarm hit a wall here and turned as reaction.

Pattern 2: Breaking from stagnation Second, we see a horizontal
blue pattern that starts to bend down towards the lower right with
first few red instances in the lower half of the image. In the last third
of the image, the curve turns completely red. In this segment of the
visualization, we can observe a slowly swimming, almost stationary
group of fish milling around. At one point, few fish start to break out
of the milling by speeding up, followed by the majority which has to
accelerate quickly to keep up with the ones that swim ahead.

Pattern 3: Start and end of milling In the third pattern, we see an
initially mainly red horizontal dynamic turning blue for the majority
of the image. At half the image, some red parts appear in the upper
regions, starting to turn towards the end of the image, when all parts
turn red as well. Here, the whole fish swarm slows down almost
coincidentally, then stays milling for a longer period of time at a
certain position, until some fish start speeding up and all fish change
direction again.



Pattern 1                                                      Pattern 2

Pattern 3

Pattern 4

Examples of the patterns generated by MotionRugs. Pattern 1 on the left shows a wall
hitting event where the fish turn, slow down, turn in another direction and then speed
up again. Pattern 2 righthand shows some a few fish breaking out of a milling
formation by speeding up and changing the direction , getting the group to follow.

Pattern 3 shows fish slowing down and getting in a milling formation, globally staying
in one position, until finally some fish break out again and speed up

Pattern 4 shows the fish moving through the tank over the course of about two
minutes, changing direction and speed four times.

Fig. 7. Examples of MotionRugs from situations taken from a real-
world dataset as described in Section 4.1. Visualized feature is entity
speed with the same color map as in Figure 1. The colored arrows
indicate how the fish are moving and roughly how the visualized feature
distributes at the same time. Below the corresponding MotionRug are
the corresponding abstract patterns introduced in Section 3.4.

Pattern 4: Turning around In the fourth pattern, we see several
changes both in curvature and color distribution. In this pattern, we
can find the fish turning four times, alternating their speed in between.

In conclusion, the use cases have shown, that several properties of
the animals’ behavior can be extracted using a MotionRug. Amongst
them are the change of positional changes of the group, the feature
development and the identification of trend characteristics.

4.2 Initial Expert Feedback

Given a small amount of available domain experts for evaluation as
well as the interpretative nature of the MotionRugs technique, we are
confident that a large-scale qualitative study cannot adequately reflect
the strengths of our approach. Instead, we focus on initial feedback
given by selected domain experts. Our technique was developed with
the intention to alleviate the workflow of analysts who have to explore
large amounts of spatio-temporal data regularly to identify “interesting”

events and group configurations. To incorporate the user view and
opinions, we have asked domain experts to provide initial feedback.
Our experts consisted of a group of six academics from the field of
Collective Animal Behavior. Amongst them, there was one Master
student, two PhD students and three PostDocs. All participants are
actively involved in research on Collective Animal Behavior. Analyzing
group movement is key for all experts to understand group behavior.

Before collecting the feedback, we first introduced the technique
and educated the biologists on how to read and interpret a MotionRug.
We presented the visualization generated with the fish dataset since
the experts were familiar with it and the analysis needs tied to it. As
ordering strategy, the Hilbert curve was applied. After the introduction,
we presented a larger time interval to the experts for interpretation and
discussion. We collected the feedback on a basic questionnaire and
asked for each of the patterns noted in Figure 7 how easy the experts
judge the interpretation of the presented pattern on a five-point Likert-
Scale from “very easy” to “very hard”. Also, we provided free text
fields for qualitative feedback to query what and what not the experts
liked about the technique and what is missing. Further, we recorded the
discussion that developed during the feedback session.

In the discussion and the questionnaires, the experts stated that they
liked “to have an overview over a whole dataset” and “to instantly
see what the group does over time”. They found the technique to be
“exciting” and one of them was particularly positive about being able to
see the feature development in combination with the feature distribution
amongst the entities, comparing it to “the usual averaged line chart” the
experts employ. On the downside, some participants stated troubles
with interpreting the detailed spatial development, which one of them
found “difficult to learn” and another “hard to abstract the movement”
from individuals to the whole group from a cognitive point of view.

Wishes for additional functionality the participants had were to be
able to relate individual movements and to see the presence of envi-
ronmental references such as obstacles, as these often play a role in
their experiments. During discussion, it was interesting to see that the
experts were able to transfer their domain knowledge to interpret the
patterns. For example, they were discussing hypotheses why some-
times few and sometimes many fish speed up or slow down and found
explanations about wall-following or milling behavior. Also, they were
able to identify subgroups of fish speeding up to stay in touch with the
swarm. From this observation, we draw the conclusion that the tech-
nique can pivotally be interpreted. Altogether, the experts were able to
correctly interpret most aspects of the visualization. Two found reading
the spatial dynamic in general to be “hard”, three “easy” and one “very
easy”. Considering the short introduction time and unfamiliar way
to aggregate space, the results are reasonable, and can potentially be
improved with further training. Still, all experts were able to distinguish
between areas with high and low spatial dynamic and to draw specific
conclusions from that information. Even without animation, they were
able to identify the basic nature of the entities’ behavior.

5 DISCUSSION AND FUTURE PERSPECTIVES

The introduction of MotionRugs opens new perspectives on spatio-
temporal data by abstracting the spatial component, and the focus is
shifted from individual developments towards a profound display of the
overall behavior of the observed entities. Yet, proposing a novel and
unaccustomed representation of spatial aspects raises new issues and
challenges we discuss in the following as further research perspectives.

5.1 Scope, Comparability & Scalability
In general, MotionRugs transforms two-dimensional trajectories into
a one-dimensional, space-efficient visual representation. We applied
our technique by the example of a fish swarm dataset, and illustrated
the main advantage: the at-a-glance saliency of patterns/trends with
regard to the movement of interdependent groups of entities. Because
our technique is tailored to the movement of organized entity groups, it
facilitates the identification of patterns such as changes or stagnations.
This is different for incoherent and chaotic movements in, for example,
in traffic analysis or logistics systems. Such data is characterized by
consistent, but independent movements, which can also be reflected



Fig. 8. MotionRugs applied to the same time span encoding three different features. The spatial dynamic reveals a waveform in each feature, which
lets conclude that Speed, Distance to Centroid, and Heading Change heavily correlate. For example, the features Speed and Heading Change show
the same alternation between the colors blue and red. We reason overall that fast fish are more likely to change their heading than slow fish.

in a respective MotionRug. Although our technique is applicable to
such data, we expect no added value compared to approaches as sur-
veyed by Andrienko and Andrienko [4]. Given the initial motivation
to understand the behavior of an animal swarm, we have restricted
our initial research on a single moving group. The technique works
on spatially separate groups as well, but we anticipate, that a visually
separating element needs to be introduced for a user to tell the groups
apart. Analysts are also interested in comparing different features with
each other to get insight in the underlying behavior. We enable such
insights by visualizing multiple MotionRugs one below the other, each
encoding a different feature (as in Figure 8). Furthermore, we link the
representations, so that the analyst can hover over a point in time, and
the same point in time is highlighted in all other MotionRugs. Yet, the
dimensions of MotionRugs are restricted by the display dimensions.
While we offer smooth scrolling possibilities in x- and y-direction, in
particular the vertical comparison between feature encodings is affected.
So far, we did not encounter any problems with regard to the fish dataset
we used in this work. However, we are aware of this limitation with
respect to larger datasets and leave a solution to future works with the
initial idea to linearly downscale the visualization, which comes at the
cost of losing small outliers beyond readability.

5.2 Interpretation & Pattern Correctness
Our MotionRugs technique aggregates the motion of entity groups in
two-dimensional space, hence inevitably introducing possible ambigu-
ities regarding positions and directions of the entities. Consequently,
entity distances in a MotionRug do not necessarily correspond to the
distances in the 2D space at all times. The directional ambiguity can be
seen in the first and third turn in Figure 7, pattern 4, where the same
pattern is generated for different turns. Still, a user can immediately
identify an emerging change, then investigate in detail. For our ex-
perts, it was less important to see where the group was turning exactly,
but more when and how the change in behavior happened. Also, the
technique itself does not specifically encode the density of the entities
within a group. Yet, density can be seen as feature, and as such can be
visualized using a MotionRug, such as to be seen in Figure 8 with dis-
tance to the centroid. In conclusion, aggregation inevitably takes away
information, presenting a trade-off between overview and full detail.
For this purpose, we apply MotionRugs as overview visualization that
enables the efficient identification of trends and changes in behavior
and space. Once the analyst identifies an interesting pattern, she can
then investigate in full detail using conventional approaches.

We introduced so-called “Phantom Splits” in Section 3.2, which pose
a challenge for the interpretation of identified patterns in MotionRugs.
So far, this pattern is the only one we identified in terms of a false
interpretation. The artifact can occur from the spatial partitioning, in
particular when entities rapidly change their position across several time
frames. To overcome this issue, we compared various space partitioning
techniques, coming to the conclusion that the Hilbert Curve generates
the least instances of this effect, yet is not entirely protected against it.
We are unaware of the existence of other artifacts and plan to examine
this phenomenon further in future work including the development
of new strategies tailored to this task at hand. Specifically, we are
considering an adaptive frame-by-frame post-processing step taking

into account the visual properties of each ordered slice by detecting
visual breaks in the order. After reordering the splits to form groups of
more homogeneous values, a distance function ensures the retaining of
the spatial aspect, and if no solution can be found, a visual uncertainty
representation such as blurring an affected area can be applied to raise
a user’s awareness. The interpretation of patterns in a MotionRug
also largely depends on the color-encoding. For now, we apply a
diverging colormap from blue to red, emphasizing the extremes in
the overall group motion. For example, if a fish swarm sinks into a
stagnating state, it is of major interest to identify leading fish that break
out of the formation first and fish that follow only after the group has
started to lose coherence. With respect to the visualization of group-
specific characteristics such as speed, distance to centroid, or heading
change (compare to Figure 8), the diverging colormap highlights drastic
differences best. However, we allow the analysts to adapt the applied
colors according to the palettes offered by ColorBrewer [20], as well
as to change the diverging to a continuous colormap, if necessary.

5.3 Space Partitioning Strategy
We identified the Hilbert Curve as most suitable strategy so far to
aggregate the overall motion of entity groups based on the ordering
fluctuations caused by each space partitioning strategy. Ordering fluc-
tuations can be seen as a radical change of ordering between two time
steps, introducing artifacts into the visualization. Visually, we can
identify this phenomenon as line crossings as depicted in Figure 5. To
measure these line crossings, we applied basic statistics, showing that
we can distinguish better strategies from worse ones. However, the
expressiveness of the applied quality measures is limited when it comes
to fine-grain aspects like smaller ordering artifacts or the aforemen-
tioned “Phantom-Splits”. Hence, we intend to explore further statistics
covering these effects. Potential approaches comprise a comparison of
entity distances between normal and aggregated spatial representation,
or histogram-based continuity functions in the image space.

6 CONCLUSION

In this paper, we introduced MotionRugs, a novel visualization tech-
nique intended to provide an efficient overview of the spatio-temporal
behavior of multiple entities by abstracting the spatial dimensions. In
comparison to existing approaches, MotionRugs are dense represen-
tations of movement allowing to review and compare the behavior of
the observed entities over time. We presented several state-of-the-art
strategies for spatial aggregation from the domains of tree-based data
structures and space-filling curves and investigated quality measures to
assess the ordering strategies. Initial expert feedback we collected is
promising and outlines viable use cases and application scenarios.

Based on gathered feedback, we see MotionRugs as first step towards
the analysis of interdependent entity groups using a space-efficient
representation. MotionRugs enables the efficient exploration of spatio-
temporal data with respect to the behavior of the observed entities.
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