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Figure 1: DimReader explains non-linear dimensionality reduction methods by illustrating the effects of user-designed
perturbations of the input dataset. It provides an answer to the question “if the input data had been slightly different in a
particular way, how would the plot have changed?”. In the case of traditional scatterplots, it recovers exactly the axis lines
being displayed. In the case of non-linear methods, DimReader recovers generalized axes, which indicate how dimensions
of interest behave. Examples of these axes are shown in (A) for the x, y, and z dimensions of the S Curve (an S shaped 3
dimensional manifold). These axes also allow for the comparison of different projection methods. This is exemplified in
(B), where the petal length axis of the iris dataset is shown for three projections. Petal length is well behaved in t-SNE but
not in the other projections . We also provide a technique for discovering good perturbations of the input (perturbations that
change the projection the most). The top of (C) shows an example of a discovered perturbation. In context, shown at the
bottom of (C), this perturbation shows us that t-SNE is sensitive to flat shoes v.s. heels. The perturbation wants to change
the original image from a heel to a flat by filling in the arch.

Abstract- Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization
researchers and experienced data analysts, but present serious problems of interpretation. In this paper, we present
DimReader, a technique that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal
perturbations of the dataset with respect to variables of interest. The perturbations define exactly how we want to change
each point in the original dataset and we measure the effect that these changes have on the projection. The recovered axes
are in direct analogy with the axis lines (grid lines) of traditional scatterplots. We also present methods for discovering
perturbations on the input data that change the projection the most. The calculation of the perturbations is efficient and
easily integrated into programs written in modern programming languages. We present results of DimReader on a variety
of NDR methods and datasets both synthetic and real-life, and show how it can be used to compare different NDR methods.
Finally, we discuss limitations of our proposal and situations where further research is needed.

1 Introduction

One of the central promises of data visualization is that its
techniques will help users and analysts make sense of large,
complicated datasets. Data visualization, and specifically
techniques in dimensionality reduction, are routinely used
in practice during exploratory data analysis of challenging
datasets.

Classical linear methods such as Principal Components
Analysis have existed for more than a century, but recent
advances from non-linear methods that started with Tenen-
baum et al’s Isomap [47] have revolutionized the practice
of dimensionality reduction. The potential to understand

high dimensional data via low-dimensional representations
is clearly attractive. But just what, exactly, are these non-
linear dimensionality reduction (NDR) methods showing?
This is the fundamental question that drives the work we
report here. Data scientists and analysts use NDR’s in an at-
tempt to create a nice 2-dimensional representations for their
data in hopes of learning some of the underlying structure of
the data. The NDR’s often result in nice pictures but give no
indication why the NDR placed things the way it did and no
context to the input.

Consider van der Maaten and Hinton’s t-SNE, arguably
the most powerful and currently most popular method for
NDR [35]. Although practical experience attests to t-SNE’s
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Figure 2: In traditional scatterplots, the grid lines (or axes lines) exist to explain what the plot is showing. Equivalently,
they capture infinitesimal perturbations of the dataset in specific directions, because they are always perpendicular to the
directions of movement. DimReader extends the same principle to non-linear dimensionality reduction (NDR) methods,
and recovers generalized axis lines, which help explain NDR methods in terms of interpretable data transformations.

power to uncover cluster relationships in very challenging
datasets, its sensitivity to the hyper-parameters is remark-
able [52]. If small changes in parameter settings produce
plots that are fundamentally different, we must ask ourselves:
are some results generated by NDR methods just bad? Do
different parameter settings show different features of the
data? More importantly, how do we even answer these ques-
tions?

In this work, we design data transformations, which in-
duce transformations on the visualization itself, elucidating
the behavior of the NDR method (this is the perspective in-
troduced by Kindlmann and Scheidegger’s algebraic design
process [31]). Specifically, we use infinitesimal perturba-
tions — small changes of the data in its original space — to
produce infinitesimal changes of the visualization. We then
show how these visualization changes can be interpreted as
producing effective, non-linear axis legends. In this way,
our non-linear axes explain the NDR plot in the same way
that axis legends explain the positional encoding in scat-
terplots. As a result, analysts can understand and evaluate
dimensionality reduction plots similarly to how they evalu-
ate linear methods. In fact, we show in Section 3 that our
methods exactly recovers the gridlines of typical scatterplots.
DimReader is quite general, and can be applied to many dif-
ferent NDR techniques, only requiring access to the source
code of its implementation. Specifically, we use a method
known as automatic differentiation to produce the necessary
gradients for calculating the infinitesimal changes of the
visualization [26]. An overview of the process is given in
Figure 2.

In summary, our contributions are:

• A general framework to explain plots generated by
non-linear dimensionality reduction, using infinitesimal
perturbations

• A practical implementation of the framework using
automatic differentiation

• A method for discovering good perturbations for a
given dataset, useful when the input lacks easily in-
terpretable dimensions (and hence, lacks easily-defined
perturbations)

• An experimental study of the effectiveness and effi-
ciency of DimReader using three well-known NDR
methods: Isomap [47], LLE [39], and t-SNE [35].

2 Related Work
Projection methods have received a considerable amount of
attention in information visualization. In this section, we
review the work that is most directly related to our research,
but cannot hope to cover the entirety of the field. For a
comprehensive view on multidimensional scaling and di-
mensionality reduction, we recommend Born and Grönen’s
textbook [5], and Fodor’s survey [23].

Projection methods in information visualization The
observation that pairwise similarities (or distances) can be
converted into low-dimensional representations by a math-
ematical formulation comes from Torgerson and his now-
classical theory of multidimensional scaling [48]. In infor-
mation visualization, force-directed methods have long been
used as a dimensionality reduction technique, from fully-
automatic methods [12, 28, 36], to methods which take some
amount of interaction, either through placement of exem-
plar points [21, 30, 37] or through direct interaction with
projection parameters [29]. Although interactive methods
offer a better hope for understandability because the pertur-
bation analysis we discuss can happen “in the analyst’s head”
during interaction, we argue that the visual encoding these
techniques provide can still be unclear. The technique we
propose here can be applied to essentially all of the methods
above, and offers an attractive complement to both auto-
mated and interactive projection methods.

Perturbation Analysis for data science The idea of un-
derstanding a system by examining its behavior under pertur-
bations is well-established in the engineering and statistics
literature. In the 1970’s, Cook introduced the notion we now
know as Cook’s distance [17], which measures the influence
of a point on the parameters of linear regression models. In
the context of visualization, Bergner et al. point to sensi-
tivity analysis as one of the requirements in understanding
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Figure 3: An overview of DimReader. For a given NDR method, we 1) compute its position using the original implementa-
tion; 2) compute perturbation directions for the input points with the transformed version of the implementation which uses
dual numbers (We discuss how to choose appropriate perturbations in Section 3.2.2); 3) compute the scalar field whose
gradient best matches the perturbation vectors in a least-squares sense; and finally 4) compute its isocontours. Section 3
explains these steps in detail.

computer simulations [4]. In this paper, we use perturbation
analysis as a central tool to recover readable axes from NDR
methods, in a sense incorporating sensitivity analyses into
familiar visual metaphors.

Automatic Differentiation Perturbation analysis is
clearly an important tool for understanding systems, but the
issue of how to implement it in existing computer systems
is crucial. Automatic differentiation (which we explain in
detail in Section 3) provides a way to compute derivatives
of arbitrary functions in a computer program, provided
access to the source code (or similar structural information
about the computation) is available [26]. To the best of our
knowledge, the most mature software library employing
automatic differentiation is Ceres, written in C++ and
employing template metaprogramming [1]. DimReader is
implemented in Python for simplicity and terseness, but
could easily be redesigned in C++.

Guidance and validation of projection results One of
the issues with NDR is that it’s hard to know what a plot
is actually showing [50]. This has resulted in a variety of
papers which offer guidance and design principles on how
to interpret projections, based on a combination of real-
world experience, synthetic examples, and theoretical argu-
ments [9, 33, 40, 42, 43]. This work is essential to the current
practice, we argue, because current NDR methods do not
offer explanations of their own results — there are much
fewer research papers offering guidance for understanding
and interpreting traditional scatterplots. As we show in Sec-
tion 4, our technique provides a way for a projection method
to explain itself. Although analyst guidance and validation
will always be a part of a well-designed analysis infrastruc-
ture, our technique could mitigate some of the problems
that have been observed in deployed systems, where projec-
tion methods are ultimately discarded because of readability
issues [7, 27].

Augmented visual representations There is another av-
enue of attack on the readability problem of NDR methods.
Often, researchers will augment the results of the projec-
tions with visual diagnostics that pinpoint potential problems.
Seifert et al. augment the projection by showing how the

projection’s stress (roughly the discrepancy between source-
space distances and target-space distances) varies spatially
in the NDR plot [44]. In [3] and [34], the projection is
augmented to show uncertainty measures and distortions in
NDR’s respectively. Cutura et. al’s VisCoDeR allows users
to compare and explore different dimensionality reductions
by augmenting the projection to allow users to explore how
dimensions are mapped in the dimensionality reduction re-
sults as well as the high-dimensional proximity of projected
points to a selected point in the projection [19]. Stahnke and
co-authors described methods to probe a projection, through
carefully designed user interactions and custom visual en-
codings [46]. Our method for extracting effective axes can
be seen as a way to allow any NDR method to augment itself
with metaphors that have a well-defined analogy in the linear
case, as can be seen in Section 4, and Figure 7 specifically.
In Section 4.3, we provide a more direct comparison to some
of the methods used in Stahnke et al.’s work.

Explainable visualizations Every plot assumes an audi-
ence that can read it, and visualization literacy remains an
active area of research [6]. Often, novel metaphors are nec-
essary because of the data or task complexity [8]. We argue
that generalizing well-established techniques such as axis
legends to NDR can help explain those techniques. Gle-
icher’s Explainers take user interaction to design specific
projections for input data [24]. In contrast, our technique ex-
tracts axes inherent in the non-linear projections. Coimbra et
al. explain projections through enhanced biplots [16]. Simi-
lar to our technique, they show axes for the dimensions of the
input data in the low dimensional plot. Because of the non-
linearity of these dimensionality reductions, the biplot axis
will change based on the projected position of the sampled
point whereas our technique captures the axis lines for the
entire projection. A similar approach is proposed by Cavallo
and Demiralp in Prolines, a technique for interacting with
data points in both low- and high-dimensional spaces [11].
Prolines allow efficient, direct manipulation of the output
points, but require access to efficient forward and backward
projection, limits its applicability. Flow-based scatterplots
[13] and Generalized Sensitivity Scatterplots [14] show the
sensitivity of a dimension in a scatterplot with respect to
other dimensions in the dataset. Similar to our technique,
these methods use derivatives to determine the sensitivities.
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Our technique differs by showing sensitivity of the projec-
tion with respect to the original data rather than sensitivity
between dimensions in the original data. The data context
map from Cheng et. al. provides a way to simultaneously
look at clusters of data points and the location of the most
dominant values of each attribute with the assumption that
the attribute values always decrease as points move farther
away from it. [15]. Our technique differs by showing the
behavior of a dimension throughout the entire projection,
not just the location of the most dominant value.

3 Technique

Our technique is broken into two parts: (1) explaining an
NDR method using a known perturbation (DimReader ) and
(2) searching for good perturbations when there is no known
perturbation (after which DimReader can be applied).

In principle, all that DimReader requires is the ability
to compute derivatives of the projection coordinates with
respect to each of the input points. For extremely simple
techniques (such as scatterplots and other fixed linear pro-
jections), these derivatives can easily be evaluated in closed
form. However, more sophisticated methods such as Isomap,
LLE, and t-SNE involve long computation chains, for which
the evaluation of the derivative would introduce significant
development overhead. Instead of trying to solve them in
closed form, we take central advantage of automatic differen-
tiation. [26]. As we describe next, automatic differentiation
allows us to calculate the derivative of a projection with
minimal implementation effort.

3.1 Automatic Differentiation

In this paper, we use a particular form of automatic differen-
tiation known as forward-mode automatic differentiation. In
what follows, we will refer to it as “autodiff”.

In forward-mode autodiff, the program’s derivative with
respect to a specified variable is computed alongside the
function value, by using an extended number system. In
this system, we replace numbers in the program with dual
numbers that have the form x = (a,b) where a holds the
original value of the number and b carries the derivative of x
with respect to our variable of interest. When we initialize
a variable y, we set b to one if that is the variable we want
to differentiate with respect to (since dy/dy = 1) and zero
otherwise. When the projection is run with dual numbers
in place of regular numbers, in addition to calculating the
projected points, it calculates their derivatives through appli-
cations of the chain rule and derivative rules (product rule,
quotient rule, etc.).

Note that autodiff is always performed at a specific value,
and with respect to a specific variable. It produces two num-
bers as a result: the function value and the partial derivative
with respect to the chosen variable. This has two important
consequences for our design. First, we need to decide over
exactly which variables we will take derivatives. Second, we
need to execute the program many times in order to evaluate
many different derivatives. This will become important in
Section 4.4.

# Basic method, O(numPoints) runs

for i in range(0, numPoints):

points = copy(inputPoints)

points[i] = perturb(points[i], perturbation)

projection = project(points) # project uses autodiff

dx, dy = projection.derivative[i]

projectionVectors[i] = vector(dx, dy)

return projectionVectors

# Improved method, O(log(numPoints)) runs

counts = zero_array(numPoints)

projectionVectors = zero_matrix(numPoints , 2)

while any(counts < 1):

points = copy(inputPoints)

for i in range(numPoints):

if random() < 0.5: # perturb each point with probability 0.5

perturbed[i] = true

points[i] = perturb(inputPoints[i], perturbation)

projection = project(points) # project uses autodiff

for i in range(numPoints):

if perturbed[i]: # only store vectors of perturbed points

dx, dy = projection.derivative[i]

projectionVectors[i] += vector(dx, dy)

counts[i] += 1

for i in range(numPoints): # average all perturbations performed

projectionVectors[i] /= counts[i]

return projectionVectors

%\end{minted}

Figure 4: Although a basic implementation of DimReader
is easy to understand (top), it only extracts one perturbation
vector at a time. A more efficient implementation (bottom)
extracts half of the perturbation vectors from the input at
once. To remove possible correlations between the outputs,
we choose which points to include at random, and iterate
until all points have been included. The expected time in
this case is logarithmic on the size of the input point dataset.

3.2 DimReader Process
3.2.1 Overview of the process

To apply DimReader to an NDR method, there are four steps.
Each of these steps is discussed in a subsection below.

• A user chooses a perturbation of interest, which defines
an infinitesimal change for each data point (possibly in
different directions).

• The NDR method is executed many times using dual
numbers, from which we obtain the perturbation vec-
tors, one for each input point.

• From the perturbation vectors, a scalar field whose
gradient matches the perturbation vectors is computed.

• The isolines of this scalar field, which are perpendicular
to the gradient, are extracted using Marching Squares.
They form the effective axes.

3.2.2 Choosing which perturbation to use

The first step of our method involves a choice of the pertur-
bation of the dataset. A perturbation is a small change to a
specific dimension (or set of dimensions) for each data point
in the original, high-dimensional space. Thus, the choice of
perturbation corresponds, effectively, to an analyst answer-
ing the following question: “if each data point were slightly
different in this specific way, what would happen to the visu-
alization?” In order to recover different features of the NDR
method and its effect on the dataset of interest, different
perturbations can be designed. In the following, we discuss
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(A) Values of Perturbations on 
Corresponding Projected Point

(B) Values of Perturbations on 
All Other Projected Points

Figure 5: (A) shows the effect sizes of perturbing point pi
on its corresponding projected point, vi. DimReader uses
these values in its computations: note their large magnitude
(values outside of the displayed range are clamped at -.5
and .5). (B) shows the effects sizes of perturbing point pi
on all projected points aside from vi. DimReader assumes
these values are zero and discards them: note their small
magnitude.

choosing a perturbation in a dataset with interpretable di-
mensions. We discuss discovering perturbations for other
datasets in Section 3.4. In automatic differentiation, per-
turbations are represented by the derivative part of the dual
number for the original data points. The perturbation of a
data point with d dimensions has the form of a unit vector
with d elements where the value of each element specifies
how much the corresponding dimension is perturbed relative
to the rest of the dimensions.

Datasets with interpretable dimensions Some datasets
have interpretable columns. Take the iris dataset, for exam-
ple, which is used in Figure 2. In that case, a perturbation
that changes each of the input points in the direction of
a given dimension will reconstruct, for an NDR method,
curved axes lines that correspond, roughly to the linear grid
lines in scatterplots. Concretely speaking, we evaluate each
input point pi as (pi,(0, · · · ,0,1,0, · · · ,0)), where the value
1 is positioned at the dimension of interest.

3.2.3 Extracting derivatives from NDR methods

In this section, we describe two techniques used in Dim-
Reader to extract the perturbation vectors ,the changes
to the projected coordinates resulting from a perturbation
on the input, for a given projection. The first technique is
simple, straightforward, and provides a good intuition for
the overall strategy. Unfortunately, this technique requires
as many executions of the NDR method as there are input
points in the dataset, which often means the overall perfor-
mance can suffer. The second technique, on the other hand,
only requires as many runs as the logarithm of the number
of input points. We give pseudo-code for the two approaches
in Figure 4.

DimReader needs access to the source code for the NDR
method at this step so the method can be executed with
dual numbers. In principle, the source code can be executed
without any modifications aside from converting the input
points into dual numbers. In practice, some issues arise
because of efficiency concerns and library limitations. We
discuss these issues at length in Section 4.

Perturbing one point at a time After a perturbation is
chosen, the NDR technique is executed with automatic dif-
ferentiation for every point in the dataset. On execution i,
the point pi is perturbed (that is, we replace pi with (pi, p̄i)

where p̄i is the specified perturbation of pi). The NDR tech-
nique will return the projection coordinates, v, for all points,
along with the derivative of the projection coordinates with
respect to the perturbation of pi, dv

d pi
. We use the derivative

of each coordinate in the reduced point vi as the vector that
describes the change in the coordinate, and discard the rest
of the information of the run. The pseudocode for this is
given on the top half of Figure 4.

Perturbing many points at a time The method described
above is inefficient, requiring O(n) evaluations of the NDR
method. A naive attempt to optimize the method would
evaluate the projection derivatives with respect to all of the
points (and hence all of the per-point perturbations) at once,
and only run the autodiff version of the code once. Unfortu-
nately, this does not work for many perturbations, because
most DR methods are invariant to dataset translations. The
perturbation of only one input point at a time offers inter-
esting insight into the NDR method, but if we move all of
the points at once in the same direction, NDR methods such
as Isomap, LLE, and t-SNE will produce exactly the same
projection (the perturbation vectors will be all zeros).

We solve this problem by adding a small amount of ran-
domization. Instead of perturbing one point at a time, we
can choose half of the points at random to perturb, while
the other half does not change. We then store the projec-
tion vectors for the points we chose to perturb, and repeat
the process until we have actually perturbed all of the input
points. After each round, we expect to halve the number
of unperturbed points, which gives an expected number of
repeated runs which is logarithmic on the number of input
points. The pseudocode for this is given on the bottom half
of Figure 4. We found that the DimReader plots produced
by perturbing many points at a time are indistinguishable
from the plots produced by perturbing one point at a time.

Ignoring changes in unperturbed points In some cases,
perturbing a point pi has an effect on points other than its
corresponding projected point vi. However, the effects on
other points are small enough that we can effectively ignore
them. In Figure 5, we show that the effect of perturbing
each point pi on the other points, v j (i 6= j) tends to be near
zero and very rarely is significant. We show this result for
the iris dataset, but have found it to be true in general for
t-SNE in all datasets we checked. Intuitively, we expect a
good dimensionality reduction to be robust to a small change
in a single point, and thus the residual effect on the rest of
the points to be insignificant.

3.2.4 Reconstructing the direction field

Once we have the projected points and their derivatives (that
is, the perturbation vectors), we need to reconstruct the direc-
tion field, in order to extract perpendicular lines. We achieve
this by computing a scalar field whose gradient best matches
the vectors. We use a simple least-squares reconstruction
technique, adapted from Ferreira et al.’s vector-field clus-
tering work [22], which we illustrate in Figure 6. We first
decompose the output plane in a rectangular grid, and split
each grid square into two triangles, giving a triangular mesh
of the output space. The resolution of this grid needs to
be decided ahead of time, and we use a 10x10 grid in our
examples for this paper. We model a scalar field on the

5



a) b)

c) d)

Figure 6: An illustration of the process to recover general-
ized axes. Given the point positions and perturbation vectors
(a), we construct a triangular mesh and interpret each vector
as a linear constraint on the gradient of a function (b), which
gives values on each of the vertices (c). From these values,
we can extract lines perpendicular to the perturbation vectors
using marching squares.

output plane as a piecewise-linear function on the grid val-
ues. Each point and its perturbation vector is interpreted
as a linear constraint on the vertices of its corresponding
triangle. To find the best-fitting scalar field, we solve it in
a least-squares sense, regularizing the system to ensure a
unique solution [22].

3.2.5 Extracting perpendicular lines

The final step is quite simple. With the scalar field expressed
as values in a triangular mesh, we can use marching squares
to extract isocontours [2]. By construction, the gradient of
this scalar field matches the perturbations. Since isolines
are perpendicular to a function’s gradient [41], the resulting
curves will tend to be perpendicular to the perturbations.
As we show in Figure 2, these isoline can be thought of as
generalized axes lines.

3.3 Interpreting DimReader Plots

In our plots, the projected points would move perpendicular
to the isolines nearest to them if the input were perturbed in
the specified way. An increase in the corresponding dimen-
sion would move the point from light to dark. The relative
density of the isocontours can be interpreted similarly to
the behavior in scalar fields. Narrowly-spaced isocontours
indicate a high sensitivity to changes in the independent vari-
able, (in our case, projection coordinates). Widely-spaced
isocontours indicate low spatial sensitivity: a change in the
projection coordinates is not expected to change the outcome
variable by much. Curved isolines indicate that the same per-
turbation has a different effect on different points. Isolines
that fan out (go from narrowly-spaced to widely-spaced as in
Figure 8) indicate that the sensitivity of the plot is changing
from more sensitive on one side to less sensitive on the other.

Is
om

ap
LL

E
t-S

N
E

PC
A

 Sepal Width & Length Petal Length & Width

se
to
sa

ve
rs
ic
ol
or

vi
rg
in
ic
a

Figure 7: Extracting axes from the Iris dataset with four
projections: PCA, Isomap, LLE, and t-SNE. We only show
petal length and sepal width because petal width is extremely
similar to petal length and sepal length is very similar to
sepal width. We discuss how to interpret these plots in
Section 4.1

3.4 Discovering Good Perturbations

We may not always know good perturbations for a dataset,
such as the MNIST digits where it is not clear what the best
way to perturb each image would be. To help solve this
problem, we offer two methods to recover good perturba-
tions. We define good perturbations as perturbations on the
input that change the projection the most under the given
constraints. Both of the methods require that we have a tan-
gent map, M, for the projection. The tangent map allows for
efficient calculation of the perturbation vector, v̄, for a given
projection, without running the projection itself. Given a
perturbation on the input p̄, M · p̄ results in the perturbation
vector v̄, i.e. v̄ = dv/d p where v is the projected coordinates.
The vector p̄ consists of the perturbation of each input point
concatenated into a single vector (end to end) and the per-
turbation vector v̄ consists of the perturbation vector v̄i of
each projected point (vi) concatenated into a single vector.
A single column of M can be recovered by a perturbation
vector that has a single entry of 1 and the rest zeros (i.e.
perturbing a single dimension of a single point). By doing
this for each dimension of every point, the entire tangent
map can be recovered.

One observation about the tangent map is that the values
we need for calculating the perturbation vectors lie in k×d
blocks along the diagonal, where k is the dimension of the
projection (typically 2) and d is the dimension of the input
data. Because we ignore the effect a given perturbation on
all other points (as discussed in 3.2.2), we set the rest of the
matrix to zero. We exploit the block structure of the tangent
map in both of our methods for finding the best perturbation.
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Petal Length & Width Sepal Length & Width

setosa versicolor virginica

Small
Perturbation

Large
Perturbation

Figure 8: The best perturbation for the iris dataset. The left
plot is the DimReader plot for this perturbation. In the two
plots on the right, the color of each point shows how much
the point is perturbed for the specified dimension. We see
that the sepal width and sepal length are perturbed more in
the Red cluster (the Setosa cluster) than the petal dimensions
which means that, for this cluster, the projection is sensitive
to changes in the Sepal dimensions. The perturbations for
the points in the other cluster are insignificant. This tells
us that perturbing only the Setosa points will change the
projection the most.

3.4.1 Perturb all points in the same direction

The first method for recovering the best perturbation is to
find the single perturbation that when applied to all points
changes the projection the most. The formulation for this
method is:

argmax
v̄∈Rd

∑ ||Biv̄||2 s.t ||v̄2||= 1

where Bi is the block on the diagonal of M for point i. This
can be rewritten as ∑i v̄T BT

i Biv̄+ λ (v̄T v̄− 1). To find the
maximum, we take the derivative with respect to v̄ and set it
to zero: d

dv̄ ∑i v̄T BT
i Biv̄+λ (v̄T v̄−1) = ∑2BT

i Biv̄−λ2v̄ = 0.
The best perturbation vector is the eigenvector of the matrix
∑i BT

i Bi with the largest eigenvalue. This gives us a single
perturbation, v̄, that when applied to all points maximizes
the change in the projection. v̄ is constrained to have unit
length to prevent the method from choosing an arbitrarily
large perturbation.

3.4.2 Perturb each point individually

The second method for recovering the best perturbation is to
find different perturbations for each point that collectively
change the projection the most constrained so that points
that are projected to similar places have similar perturbations.
The formulation is as follows:

argmax
v̄∈Rd

∑
i
||Biv̄i||2−λ ∑

i
∑

j
||v̄i− v̄ j||2S(i, j) s.t ||v̄2||= 1

where Bi is the block on the diagonal for point i, v̄i is
the perturbation for the point i, λ is a free parameter for
how much smoothing we want, and S(i, j) is the similarity
between the projection of points i and j, pi and p j. This
similarity is defined as S(i, j) = e−||pi−p j ||2/σ2

. σ2 is a free
parameter set by the user that determines how close points
have to be in the projection to be considered similar. We can
rewrite the above equation as follows:

argmax
v̄∈Rd

∑
i

v̄iBT
i Biv̄i−λ ∑

i
∑

j
〈v̄i− v̄ j, v̄i− v̄ j〉S(i, j)

s.t ||v̄2||= 1

We observe that ∑i ∑ j〈v̄i− v̄ j, v̄i− v̄ j〉S(i, j) takes form
similar to a Laplacian matrix, Ls multiplied by the entire
perturbation vector v (the concatenation of all of the indi-
vidual perturbations, v̄i) on both sides: v̄T Lsv̄. Ls differs
from a standard Laplacian matrix in that rather than having
diagonal values ∑ j 6=i S(i, j) and off diagonal values −S(i, j),
it has diagonal values I ∗∑ j 6=i S(i, j) and off diagonal values
I ∗−S(i, j) where I is d×d identity matrix.

Furthermore, the equation can be rewritten in terms of the
whole matrix, M, and the entire perturbation vector, v̄ giving
us the following equation which incorporates the constraint
on the length of v̄:

argmax
v̄∈Rd

v̄T MT Mv̄−λ v̄T Lsv̄−λ2v̄T v̄−1

Taking the derivative with respect to v̄ and setting it to
zero, we get

v̄T (MT M−λLs)−λ2v̄ = 0

The entire perturbation vector, v̄, is the eigenvector of the
matrix MT M−λLs with the largest eigenvalue.

Choosing λ and σ . σ controls the width of a gaussian
centered on each point. Examining the results of the projec-
tion itself gives some information about plausible values for
σ . For example, points outside further than three standard
deviations from each other are essentially treated indepen-
dently, but at the same time, we don’t want a σ that creates
a gaussian which covers the entire projection. For choosing
λ , we should be looking at the resulting perturbations. If a
single point is heavily dominating the perturbation (i.e. it
moves much more than the rest of the points) then λ is likely
too small. In contrast, if all points are perturbed in almost
exactly the same way, this is an indication that λ may be too
large.

4 Implementation and Experiments
In this section, we discuss the implementation of our tech-
niques along with a suite of experiments designed to explore
the capabilities, performance, and limitations of DimReader.
We will show how DimReader directly addresses the fol-
lowing gaps identified in Sedlmair et al.’s interview study
about gaps between theory and practice in dimensionality
reduction (DR) [42]. These include the interpretation gap:
“what do the results mean?”; guidance gap, “what algorithm
to use?”, and the non-linear unmapping gap: “how do pro-
jection dimensions relate to input dimensions?”.

Our current prototype for DimReader is implemented
in Python and numpy [51]. Our t-SNE implementation is
closely based on van der Maaten’s Python code [49], while
the LLE and Isomap implementations are from-scratch. The
entire method takes about 3,500 lines of Python, includ-
ing implementations of Marching Squares, the classes for
autodiff, and the linear solvers described below.

4.1 DimReader
In the following we look at a well known dataset, the iris
dataset, with known perturbations, and simple projection
algorithms, in order to better understand the behavior of the
technique [32].
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4.1.1 Linear projections

We start with showing results of linear projections as a basic
sanity check on the behavior of DimReader. Figure 7 shows
a typical example of the axes reconstructed by DimReader
when using linear projections. Since linear projections can
be exactly represented by a matrix multiplication, the deriva-
tives of input points position with respect to one direction
will always be constant vectors. As a result, the recon-
structed scalar field is almost (except for the influence of the
regularization terms) a linear ramp, and so the contour lines
are evenly spaced and parallel, which indicate that changes
in the input variable will behave identically across the entire
field. Despite their limited power, this property is one of the
main advantages of linear projections.

4.1.2 Isomap

Isomap was one of the first NDR techniques to recover
curved manifolds well in practice [47]. Isomap builds a
weighted graph which approximates the manifold, where
edges have weight equal to the distance between points, and
each point has edges to its k nearest neighbors (k is speci-
fied by the user). The global distance between two points is
defined to be the shortest-path metric on the graph. The low-
dimensional projection is constructed from the shortest-path
metric using classical MDS [5].

We implemented Isomap not only because of its histori-
cal significance and relatively high-quality results, but also
because it highlights an interesting property of automatic
differentiation: it works over code bases that we tend to
not think of as differentiable. Specifically, the operations in
Dijkstra’s algorithm for shortest paths are all well defined
for dual numbers, and so we naturally can extract the sensi-
tivity of shortest-path distances with respect to changes in
the input points [18].

Interaction with numerical linear algebra routines The
final step of Isomap is Classical MDS, and this presents
unique challenges for our autodiff implementation based on
operator overloading. Specifically, Classical MDS requires
the computation of eigenvectors, and since Python libraries
for numerical linear algebra are implemented through high-
performance libraries like Lapack, the operator-overloading
functionality is not present. To solve this issue, we im-
plement the eigenvalue computation through power itera-
tions [25], since matrix-vector multiplication of dual num-
bers has efficient dual-number implementations in terms of
matrices of values and ε terms.

Isomap Experiments Because Isomap uses classical
MDS (which is essentially a linear projection), we should
expect that, to some degree, Isomap would behave much
like linear projections. This is indeed the case with simpler
datasets, such as the Iris dataset, shown in Figure 7. How-
ever, there are some interesting differences. Consider the
generalized axis for the “sepal width” variable which Dim-
Reader recovers. Even though the point positions generated
by Isomap are quite similar to that of PCA, the sensitivity of
the projection differs dramatically from the cluster of Setosa
samples to that of Virginica and Versicolor samples. Even
more interestingly, it seems that the sensitivity is caused by
only some of the Setosa samples. This differentiation is not

A

B

Figure 9: An overview of perturbations for points in the(A)
MNIST digits and (B) MNIST fashion. There is structure in
the perturbations that our technique discovers. They often
resemble their true digit (or clothing article) but with some
variation. Darker areas are perturbed more than lighter areas.

present in the linear projection, and would not be clear from
the Isomap plot alone. In this example, DimReader helps
overcome Sedlmair’s interpretation gap by providing an ex-
planation for why Isomap spread the points in the Setosa
cluster (Isomap is sensitive to differences in the Sepal Width
in this cluster) that would otherwise be unknown.

4.1.3 Locally Linear Embedding

The next algorithm we highlight is Roweis and Saul’s Lo-
cally Linear Embedding [39] (LLE). Like Isomap, LLE uses
a nearest-neighbor graph to recover a global view of the
dataset. LLE computes edge weights for the nearest neigh-
bor graph, such that each vertex can be best reconstructed
by a linear combination of its neighbors using those weights.
On a second step, the projection coordinates are recovered by
finding positions on the plane that best respect the weights.

Interaction with numerical linear algebra routines
Similarly to Isomap, our autodiff implementation of LLE
involves a small degree of adaptation. In the case of Isomap,
we required the computation of the largest eigenvalues of a
matrix. In the case of LLE, we need to compute the small-
est non-zero eigenvalues. Our implementation uses inverse
power iteration [25]. Inverse power iteration, in turn, re-
quires a linear system solver, which presents similar issues
for dual number implementations. Our solution is to im-
plement a black-box linear system solver using conjugate
gradients [45].

LLE Experiments Locally Linear Embedding is a pop-
ular method due to its performance [39], but is known to
produce distorted projections [20]. In this section, we illus-
trate how DimReader might help pinpoint such problems.
Consider the projection of the iris dataset in Figure 7. Note
that neither of the recovered axes quite cross the projection
perpendicularly on the left side of the arc (the Versicolor
and Virginica cluster): no direction of perturbation on the
input moves the points diagonally along that cluster. This
suggests that the shape of the cluster is an artifact of the pro-
jection method. Compare this with the Isomap projection in
Figure 7: Isomap has perturbations which cross each of the
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clusters perpendicularly (Sepal Width for Setosa and Sepal
Length for Versicolor and Virginica). Thus, Isomap is more
faithful to the underlying data than LLE. This is evidence
that DimReader helps bridge Sedlmair et. al’s guidance
gap [42], giving an indication for which NDR algorithm
performs better for this data.

4.1.4 t-SNE

t-SNE is among the most powerful techniques for dimen-
sionality reduction, and also one of the hardest to interpret
appropriately [35,52]. As such, it is a natural target for Dim-
Reader. In addition, t-SNE is significantly different from
Isomap and LLE in both formulation and implementation.
This provides us with an opportunity to explore practical
issues of using DimReader to explain its results.

We highlight two separate issues to discuss: the presence
of multiple local minima, and its formulation in terms of the
gradient of an energy function. While the first issue presents
challenges for implementations that depend on repeated exe-
cutions, the second issue allows us to achieve a significant
speedup.

Multiple minima The energy function that t-SNE mini-
mizes has more than one local minimum. This means that
any source of randomness in the implementation will cause
multiple runs to possibly diverge, presenting a challenge for
our approach. Most implementations of t-SNE require an
initial guess for the projection, and we take central advantage
of this. Specifically, in our first execution of t-SNE we use
a random initial guess and regular floating-point numbers
to calculate a local minimum that is then used as the initial
guess for subsequent runs. In the initial run we also capture
variables that serve as parameters for subsequent runs to
ensure that they reach the same local minimum.

Gradient descent t-SNE is implemented as an explicit
gradient descent formulation through an additive update of
the parameters. Specifically, the main loop of t-SNE is
roughly as follows:
pos = initial_guess

g = gradient(energy(pos), pos)

while mag(g) > epsilon:

pos = pos - rate * g

g = gradient(energy(pos), pos)

%\end{minted}

As a result, when the loop exits, we know that the gradient
of the energy with respect to the position will be close to zero.
This means that to recover any one perturbation of the t-SNE
formulation with respect to an input point, all that is required
is to run one single iteration of t-SNE with dual numbers. By
providing the dual-number implementation the result of the
execution of the floating-point implementation (as explained
in the previous paragraph), the loop will execute at most
once before exiting – in fact, in order for the sensitivity of
the positions with respect to the input to be recorded in the
pos variable, we must force the loop to execute at least once.
Still, since t-SNE typically executes between 100 and 1000
iterations in this loop, this simple optimization achieves a
significant speedup.

t-SNE Experiments T-SNE is often considered to be the
state of the art in NDR methods, but one of the main ob-
jections to its use in practice is the opaque nature of its

optimization criteria [52]. It is unclear how effectively the
projection recovers high dimensional information. Consider
the t-SNE axes in Figure 7. t-SNE is detecting variation in
the petal length and petal width of the Virginica and Versi-
color cluster and subsequently spreading the cluster based
on these dimensions. This helps explain how petal length be-
haves in the projection, providing evidence that DimReader
helps bridge the non-linear unmapping gap [42].

4.2 Discovering Perturbations

The implementation of the equations in 3.4 for discovering
perturbations is straightforward as long as the machine has
sufficient memory to hold the expanded laplacian matrix, Ls.
This matrix becomes very large for very high-dimensional
data and thus requires significant memory. To solve this
problem, we were again able to exploit the block structure
of the tangent map as well as the structure of the Laplacian
matrix: the diagonal values are ∑ j 6=i Si, j and the off diagonal
values are −Si, j. We implemented a version of power itera-
tion that does not require access to the matrix MT M−λLs
but instead requires a function that, when given a vector v, re-
turns (MT M−λLs)v. The multiplication function calculates
elements of the output vector individually and thus does not
require the entire Ls matrix.

Using this method, we uncovered perturbations for several
datasets projected with t-SNE. In the following experiments,
we use the method in Section 3.4.2 to find individual pertur-
bations for each point.

4.2.1 Iris

We first look at the best perturbation for the Iris dataset.
Figure 8 shows the DimReader plot for this perturbation as
well as a plot for each dimension that shows how much that
dimension was perturbed in each point through the color
(the darker purple a point is, the more it was perturbed).
The DimReader plot shows that the best perturbation only
perturbs points in the Setosa (red) cluster. In the individual
dimension plots, the Setosa cluster is perturbed primarily
in the Sepal length and Sepal width dimensions which tells
us that in this projection, points in the Setosa cluster are
sensitive to changes in the Sepal dimensions. Comparing 8
to the t-SNE plots in Figure 7, the movement of the Setosa
cluster with the discovered perturbation is similar to the
movement when the sepal width or sepal length is perturbed.

4.2.2 MNIST Digits

Figure 9 (A) shows an sample of discovered perturbations
in the projection. The perturbation images often resemble
a variation of their corresponding digit or a nearby digit
(due to the constraints defined in Section 3.4.2). These
perturbations show us that t-SNE is capturing meaningful
information about the dataset. In Figure 9 (A), the perturba-
tion that moves the ”seven” the most turns the ”seven” into
a “two” and moves it toward the cluster of “two”s. Thus,
DimReader, is showing evidence that t-SNE is capturing
information about what constitutes a “two” and is using
that information to separate out the two’s into their own
(imperfect) cluster.
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Figure 10: DimReader axes and value heatmaps for the u,v,
and x dimensions of the swiss roll. A discussion of these
plots is in Section 4.3.

4.2.3 MNIST Fashion

The MNIST Fashion dataset is similar to the digits dataset
in that each point represents a 28×28 pixel image and there
are 10 different classes of images (articles of clothing) but is
more complicated than the digits dataset. A t-SNE plot with
selected perturbations found by our technique is shown in
Figure 9 (B). Just as in the digits perturbations, there is struc-
ture in these perturbations. In the example in Figure 1 (C),
our technique is finding perturbations that capture informa-
tion about how t-SNE is projecting the data. DimReadertells
us, that for the heel in the middle, the perturbation that moves
this point the most, changes it from a heel into a flat shoe.
This also shows us that t-SNE understand the difference
between flat shoes and heels and is able to separate them.

4.3 Synthetic Examples
In this section we will look at the DimReader plot with two
synthetic examples, the swiss roll and the interlocked rings,
and compare them to the value heatmaps for each dimension
from Stahnke et. al’s Probing Projections.

4.3.1 Swiss Roll

The swiss roll dataset is calculated from the equations x =
ucos(u), y = usin(u), z = v where 3π

2 ≤ u ≤ 9π

2 and 0 ≤
v ≤ 15. Figure 10 shows perturbations of the U,V, and X
dimensions.

PCA In the v dimension, the DimReader plot shows that
increasing the v in the original data moves the projected
points to the left. In comparison, the value heatmap for
the v dimension is difficult to read due to the high variance
in v between neighboring points. This highlights a funda-
mental difference between DimReader and value heatmaps:
DimReader is showing what the projection is doing while
value heatmaps show the values of a dimension based on the

Figure 11: DimReader axes and value heatmaps for the x,
y, and z dimension of the interlocked rings. A discussion of
these plots is in Section 4.3.

placement of points. If we created a projection that simply
mapped each point to its PCA coordinates through a table
lookup, the value heatmaps would not change whereas the
DimReader plots would show nothing because changing any
of the dimensions would not change the projection.

The DimReader plot for the u dimension shows that chang-
ing the u dimension would move the point along the spiral,
from red to blue. The isolines, however, are irregular from
green to orange. These irregularities could be due to the
resolution of the grid or the regularization. One direction
for future work is to automatically determine the appropriate
grid resolution and regularization for a projection.

t-SNE In the DimReader plot for t-SNE, the u dimension
behaves exactly as we would expect, increasing as we move
from red to blue. The spacing of the lines around the curve,
specifically how the curves are wider on the outside than
on the inside, indicates the bending does not reflect the
underlying data but rather is caused by the projection.

In the DimReader plot for v, t-SNE has flipped the green
and yellow segment (the points move to the bottom left rather
than the upper right). This appears less clear from the value
heatmap alone.

In the plots for x, the highest values in the heatmap do
not match the area in the DimReader plot where the biggest
change occurs.

4.3.2 Interlocked Rings

The DimReader plots and value heatmaps generated for the
interlocked rings dataset are shown in Figure 11.

PCA The PCA plots from DimReader show that changing
X or Z would move the points upward and changing the Y
dimension move points to the right. Again, the plots here
highlight the difference between our technique and the value
heatmaps: the heatmaps of x and z tell us that the x and z
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Figure 12: Performance figures for the MNIST digits dataset
and the S-Curve dataset, for progressively larger samples
and three different NDR methods. All figures are reported
in seconds.

values are only changing over one ring each whereas our
technique is showing that PCA will move the rings vertically
if the x or z dimension is changed. DimReader shows what
the projection does, whereas heatmaps shows where the
values go.

t-SNE T-SNE has separated the two rings well. In the
DimReader plot of the X dimension, the red ring will move
from left to right when the X dimension is changed. Com-
paring the X dimension to the Y dimension, for the red ring,
the two axes are nearly perpendicular to one another. This
suggests that t-SNE is primarily using these two dimensions
for projecting the red ring. Furthermore, in the red ring the
X dimension changes much quicker than the Y dimension
(the lines are closer together) which indicates that t-SNE is
distorting the shape of the red ring. Similar observations can
be made about the green ring with the Y and Z dimensions.
Again, the Y and Z are nearly perpendicular in the green
ring. In the Y dimension, the axes change their behavior
when they reach the gap in the green ring. Points in this
region move more slowly when changed which in turn tells
us that this is likely a tear in the ring caused by t-SNE that
does not reflect the structure of the underlying data. It is not
as clear from the value heatmaps that the gap is a tear in the
data caused by the projection.

4.4 Performance
4.4.1 Known Perturbations

In this section, we report performance figures for the pro-
totype implementation of DimReader. Although we were
reasonably careful with algorithmic and high-level design
decisions that impact performance, we did not make a sig-
nificant effort to make DimReader fast. We expect carefully-
implemented versions of our proposal in high-performance
languages such as C++ or Java to be significantly faster, pos-
sibly by an order of magnitude (typically the performance
difference between Python and aggressively optimized, com-
piled languages).

A table showcasing typical results is included in Figure 12.
The performance of DimReader for a given NDR method is
dependent on two main factors: the number of input points
and the overhead incurred by dual numbers. We need to
execute a number of repeated runs proportional to the base-2
logarithm of the number of input points, and that is essen-
tially unavoidable. We note that for the case of LLE and
t-SNE, the optimizations we described in the previous sec-
tion make the execution of the dual-number version of the

projection much faster than that of the regular numbers. As
a result, DimReader can extract axes with a relatively small
performance overhead.

For cases such as Isomap, on the other hand, where we
performed no such optimizations, the performance of our
method suffers a bit. We argue that this is an acceptable
tradeoff: DimReader still works in an acceptable amount of
time in the general case, but more careful implementations
can be significantly more efficient.

4.4.2 Discovering Perturbations

The most expensive part of searching for a perturbation is
calculating the tangent map. The tangent map is n∗d×n∗d
and requires d executions of DimReader to build it. For
datasets with a large number of data points and dimensions,
this quickly becomes slow. Once we have the matrix, the
performance for finding the best perturbation largely depends
on whether or not we can the expanded Laplacian matrix,
Ls, (described in Section 4.2) in memory. If we can’t and
have to use power iteration, the performance depends on the
speed of our multiplication function as well as the amount of
time it takes power iteration to converge. We did not make a
significant effort to increase the performance for calculating
the matrix or searching for perturbations; this remains for
future work.

5 Discussion
Can we trust DimReader plots? While we have shown
that DimReader can help determining how NDR plots can
be trusted, a natural question to ask is: can the DimReader
plots themselves be trusted? One natural scenario in which
this comes up is when perturbation vectors of nearby pro-
jections disagree with one another. It’s always possible to
show the vectors themselves as a diagnostic of the quality
of the reconstructed axis lines, but a proper, user-centric
evaluation of the settings in which DimReader’s axes are
more informative than naked NDR plots is clearly necessary,
and will be the subject of future work.

Inverse readings DimReader enables interpretation of for-
ward transformations: given a perturbation of an input and
a visualization, DimReader provides an answer. But a dif-
ferent natural reading is the inverse: given a projected point
and a direction of movement in the projection, what changes
in the data could generate such movement? In principle,
the derivative information obtained by autodiff also captures
this inverse relationship [10], but the fact that we are dealing
with projections makes the problem fundamentally harder.
A full investigation is beyond the scope of this work.

More algorithms, better infrastructure While Dim-
Reader shows that it is possible to adapt a large number
of existing NDR methods to run within an autodiff frame-
work, one goal is to provide DimReader axes to as much
existing visualization infrastructure as practically possible.
In such scenarios, reducing the implementation effort even
further would be desirable. The majority of our difficulties
porting algorithms to automatic differentiation arose due to
difficulties in evaluating derivatives of linear-algebraic con-
cepts, such as solutions of a linear system and eigenvectors.
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Some of these have explicit formulas [38], but incorporating
them in an autodiff system effectively and efficiently is a
fundamental challenge beyond the scope of our work. We
note, in addition, that our choice of automatic differentiation
is not strictly necessary. Other methods exist to evaluate
function derivatives, including manual derivation of the ex-
pressions. When using DimReader with a specific NDR
method, these alternatives might be more attractive. This
might be particularly true whenever approximations of the
derivative can be computed more efficiently than autodiff.

6 Conclusion

In this paper, we identified infinitesimal perturbations as a
tool to enable interpretation of NDR plots, and presented
DimReader, a technique that produces generalized axes for
studying such perturbations. While much work remains to be
done, DimReader strikes a favorable balance between gener-
ality and power, highlighting strengths and weaknesses of a
variety of NDR methods, and providing a novel perspective
into what NDR methods are actually visualizing.
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