
Hamiltonian Operator for Spectral Shape Analysis
YONI CHOUKROUN, ALON SHTERN, ALEX BRONSTEIN and RON KIMMEL
Technion - Israel Institute of Technology

Many shape analysis methods treat the geometry of an object as a metric
space that can be captured by the Laplace-Beltrami operator. In this paper,
we propose to adapt the classical Hamiltonian operator from quantum me-
chanics to the field of shape analysis. To this end we study the addition of a
potential function to the Laplacian as a generator for dual spaces in which
shape processing is performed. We present a general optimization approach
for solving variational problems involving the basis defined by the Hamilto-
nian using perturbation theory for its eigenvectors. The suggested operator
is shown to produce better functional spaces to operate with, as demon-
strated on different shape analysis tasks.

1. INTRODUCTION

The field of shape analysis has been evolving rapidly during the last
decades. The constant increase in computing power allowed image
and shape understanding algorithms to efficiently handle difficult
problems that could not have been practically addressed in the past.
A large set of theoretical tools from metric and differential geom-
etry, and spectral analysis has been imported and translated into
action within the shape understanding arena. Among the numerous
ways of analyzing shapes, a common one is to embed them into a
different space where they can be processed more efficiently.

1.1 Related efforts

[Elad and Kimmel 2003] introduced a method for analyzing sur-
faces based on embedding the intrinsic geometry of a given shape
into a Euclidean space, extending previous efforts of [Schwartz
et al. 1989; Zigelman et al. 2002; Grossmann et al. 2002]. Their key
idea was to consider a shape as a metric space, whose metric struc-
ture is defined by geodesic distances between pairs of points on
the shape. Two non-rigid shapes are compared by first having their
respective geometric structures mapped into a low-dimensional Eu-
clidean space using multidimensional scaling (MDS) [Cox and Cox
2008], and then comparing rigidly the resulting images, also called
canonical forms.

[Mémoli and Sapiro 2005] proposed a metric framework for non-
rigid shape comparison based on the Gromov-Hausdorff distance
that was suggested by Gromov as a theoretical tool to quantify dis-
imilarity between metric spaces. Using the Gromov-Hausdorff for-
malism, the distance between two shapes is defined by matching
pairwise distances on the shapes. However, the Gromov-Hausdorff
distance is difficult to compute when treated in a straightforward
manner. To overcome this difficulty [Bronstein et al. 2006a; Bron-
stein et al. 2006b] proposed an efficient numerical solver based on
a continuous optimization problem, known as Generalized MDS
(GMDS). Recently, other relaxation schemes have been proposed,
see for example [Chen and Koltun 2015; Aflalo et al. 2016].

In the past decade, the Laplace-Beltrami operator (LBO) – the
extension of the Laplacian to non-Euclidean manifolds, has become
growingly popular. Its properties have been well studied in differ-
ential geometry and it was used extensively in computer graphics.
The LBO can be found in countless applications such as mesh filter-
ing [Vallet and Levy 2008], mesh compression [Karni and Gotsman

2000], shape retrieval [Bronstein et al. 2011], to name just a few. It
has been widely used in shape matching where several approaches
treat the correspondence problem by comparing isometric invari-
ant pointwise descriptors between the two shapes. For example, the
Global Point Signature (GPS) [Rustamov 2007], the Heat Kernel
Signature (HKS) [Sun et al. 2009] and the Wave Kernel Signature
(WKS) [Aubry et al. 2011], all use the eigenfunctions and eigenval-
ues of the LBO to compute local shape descriptors. Matching only
signatures at a small set of points, the correspondence between the
points on the two shapes can be found. These points can serve as an-
chors and interpolated for the entire shape [Ovsjanikov et al. 2010]
where refinement of the basis can be performed to produce precise
dense correspondence [Ovsjanikov et al. 2012; Pokrass et al. 2013;
Shtern and Kimmel 2014a].

Recently, learning based approaches [Litman and Bronstein
2014; Wei et al. 2016; Boscaini et al. 2016] have also become
highly popular in the shape matching arena.

The use of the basis defined by the LBO is in many senses a nat-
ural choice for surfaces analysis. It was chosen in the functional
map framework [Ovsjanikov et al. 2012] because of its compact-
ness, stability, and invariance to isometries. Subsequently, it was
proven to be optimal [Aflalo et al. 2015] for representing smooth
functions on the surface. In an attempt to overcome the topological
sensitivity of the LBO and the non-local support of its eigenfunc-
tions, compressed eigenfunctions have been adapted from mathe-
matical physics to shape analysis [Neumann et al. 2014; Bronstein
et al. 2016]. Here, we try to find a richer family of basis functions
that are based on intrinsic properties that can go beyond the geom-
etry of the shape. Exploring a similar goal, [Kovnatsky et al. 2011]
combined geometric and photometric information within a unified
metric for shape retrieval. [Iglesias and Kimmel 2012] used artifi-
cial surface textures on shapes to define elliptic operators that give
birth to a new family of diffusion distances. Along the same line of
thought, [Hildebrandt et al. 2012] designed a new family of eigen-
vibrations using extrinsic curvatures and deformation energies.

We suggest to further explore those ideas and construct the so-
called potential operator that is added to the Laplace Beltrami op-
erator. Here, a designed perturbation to the Laplacian permits a su-
pervised control of the vibrational modes on the manifold.

1.2 Contributions

The main contribution of this paper is the exploration of the Hamil-
tonian operator on manifolds. We study spectral properties of the
operator and the impact of an additional potential function to the
Laplacian for shape analysis applications. The properties of the
Hamiltonian allow it to be efficiently utilized by many spectral-
based methods. The potential part can lead to a more descriptive
operator when treated as a truncated basis generator. Modulated
harmonics on the surface are obtained by treating different regions
of interest as different values of the potential. We show that by sim-
ply plugging the resulting basis into existing spectral shape analysis
pipelines could improve their performance.

The rest of the paper is organized as follows: in Section 2, we
propose to study the Hamiltonian on manifolds from the variational
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calculus point of view with motivation from quantum mechanics.
We prove optimality properties of its eigenspace, characterize the
associated diffusion process, the resulting nodal sets, introduce a
discretization method and analyze the robustness of the operator.

In Section 3, we propose a global optimization framework for
variational problems involving the basis defined by the Hamilto-
nian. We provide an approach for computing derivatives with re-
spect to the potential based on eigenvectors perturbation theory. We
demonstrate the effectiveness of the framework on the task of data
representation.

In Section 4, we review recent improvement of the computation
of the compressed modes [Ozolins et al. 2013] that make use of the
decomposition of the Hamiltonian. Finally, in Section 5 we present
properties of the proposed basis that make it a better alternative for
the task of shape matching where priors can be inserted through the
potential in order to improve performance.

2. HAMILTONIAN OPERATOR

2.1 The Laplace Beltrami Operator

Consider a parametrized surfaceM : Ω ⊂ R2 → R3 with a met-
ric tensor (gij). The space of square-integrable functions onM is
denoted by L2(M) = {f : M → R|

∫
M f2da < ∞} with the

standard inner product 〈f, g〉M =
∫
M fg da , where da is the area

element induced by the Riemannian metric 〈·, ·〉g . The Laplace Bel-
trami Operator acting on a scalar function f ∈ L2(M) is defined
as

∆Mf ≡ divM(∇Mf) =
1
√
g

∑
ij

∂i(
√
ggij∂jf), (1)

where g is the determinant of the metric matrix and (gij) = (gij)
−1

is the inverse metric. IfM is a domain in the Euclidean plane, the
metric matrix is generally the identity matrix and the LBO reduces
to the well-known Laplacian

∆f =
∂2f

∂x2
+
∂2f

∂y2
. (2)

The LBO is self-adjoint and thus admits a spectral decomposi-
tion {λi, φi}, where λi ∈ R and 0 = λ1 ≤ λ2 ≤ ... ↑ ∞, such
that,

−∆Mφi = λiφi,

〈φi, φj〉M = δij .
(3)

with δij the Kronecker delta. In caseM has boundary, we add ho-
mogeneous Neumann boundary condition

〈∇Mφi, n̂〉 = 0 on ∂M, (4)

where n̂ is the normal vector to the boundary ∂M.
The LBO eigendecomposition can be extracted from the Euler

Lagrange solution to Dirichlet energy minimization

min
φi

i∑
j=1

∫
M
‖∇Mφj‖2g da,

s.t. 〈φi, φj〉M = δij .

(5)

Here, each ordered eigenfunction composing the basis on the man-
ifold corresponds to the function with the smallest possible energy
that is orthogonal to all the previous ones. Therefore, the LBO
eigenfunctions can be seen as an extension of the Fourier harmon-
ics in Euclidean spaces to manifolds and are often referred to as
Manifold Harmonics.

Fig. 1. Influence of different potentials on the harmonics in one dimen-
sion.

2.2 Hamiltonian

A Hamiltonian operator H on a manifold M acting on a scalar
function f ∈ L2(M), is an elliptic operator of the form

Hf = −∆Mf + V f, (6)

where V : M → R is a real-valued scalar function. It plays a
fundamental role in the field of quantum mechanics appearing in
the famous Schrödinger equation that describes the wave motion of
a particle with mass m under potential V ,

i~
∂Ψ

∂t
=
−~2

2m
∆Ψ + VΨ, (7)

where ~ is the Planck’s constant and Ψ(x, t) represents the wave
function of the particle such that |Ψ(x, t)|2 is interpreted as the
probability distribution of finding the particle at a given position x
at time t.
The Schrödinger equation can be analyzed via perturbation theory
by solving the spectral decomposition {ψi, Ei}∞i=0 of the Hamilto-
nian

Hψi = Eiψi (8)

also known as the time-independent Schrödinger equation, where
Ei is the eigenenergy of a particle at the stationary eigenstate ψi.

Since the potential V is a diagonal operator, the Hamiltonian is
self-adjoint as a sum of two self-adjoint operators and its eigen-
functions form a complete orthonormal basis on the manifoldM.
As a generalization of the regular Laplacian, its spectral theory can
be derived almost straightforwardly from that of the latter. Clas-
sical examples of the influence of potential functions in a one-
dimensional Euclidean domain are depicted in Figure 1.

2.3 Variational principle

Let us consider the following variational problem

min
ψi

i∑
j=1

∫
M

(
‖∇Mψj‖2g + V ψ2

j

)
da,

s.t. 〈ψi, ψj〉M = δij ,

(9)

whose the Euler-Lagrange equation defines the eigendecomposi-
tion of the Hamiltonian defined in (8).

The basis defined by the Hamiltonian operator corresponds to
the orthogonal harmonics modulated by the potential function. The
potential defines the trade-off between the orientation and the com-
pactness of the basis and its global support. Larger values of the
potential will enforce smooth solutions that concentrate on the low
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potential regions, while smaller ones will give solutions that better
minimize the total energy at the expense of more extended wave
functions.

2.4 Finite step potential

The time-independent Schrödinger equation can yield a rather com-
plicated problem to solve analytically, even in one dimension. Let
us consider a system with an ideal step potential in one dimen-
sion [Griffiths 2005]. We need to solve the differential equation
HΨ = EΨ, with E denoting the energy of the particle, and V the
Heaviside function with step of magnitude V0 > 0, at point x0,
given by

V (x) =

{
0, x < x0

V0, otherwise. (10)

The step divides the space in two constant-potential regions. At the
zero potential region, the particle is free to move and the harmonic
solutions are known. In the high potential region, on the other hand,
for E < V0, the solution is a decaying exponentially, meaning that
the particle cannot pass the potential barrier and is reflected accord-
ing to classical physics. If E > V0, the solution is also harmonic,
which means there is a probability for the particle to penetrate into
the effective potential region with a different energy than that of
particles in the zero potential region. We illustrate this effect in
Figure 2 by numerically computing the eigenvectors of the LBO
and the Hamiltonian with a potential V defined on a human body
surface.

Fig. 2. Absolute values of the 1st, 2nd, 5th, 7th, 8th and 11th eigen-
functions {φi} of the LBO (top). Absolute values of the corresponding
eigenfunctions {ψi} of the Hamiltonian with a step-function potential V
(bottom left), with step value V0. For this potential, the first eigenstate ψi
with energy Ei greater than V0 is the eighth. As analyzed, the eigenfunc-
tions corresponding to lower eigenenergies are restricted to the region with
V = 0, while the higher ones can have effective values (and oscillate) at the
V = V0 > 0 region. An evanescent wave can be observed at the seventh
eigenstate.

Therefore, the potential energy can be tuned to enforce localiza-
tion of the basis at the expense of loss of smoothness.

THEOREM 1. Let {φi, λi}∞i=1 and {ψi, Ei}∞i=1 be the spec-
tral decompositions of the Laplacian, and the Hamiltonian, respec-

tively. Then, V ≥ 0 everywhere on the manifold implies that the
eigenvalues Ei satisfy

maxM(V ) + λi ≥ Ei ≥ minM(V ) + λi ≥ 0.

Proof. According to the Courant-Fischer min-max theorem, we
have

Ei = max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + V ϕ2

i )da∫
M ϕ2

i da

}

≥ max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + minM(V )ϕ2

i )da∫
M ϕ2

i da

}
= λi + minM(V ). (11)

Similarly,

Ei ≤ max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + maxM(V )ϕ2

i )da∫
M ϕ2

i da

}
= λi + maxM(V ). (12)

2

Since the family of eigenvalues of the Helmholtz equation (3) con-
sist of a diverging sequence (λn ∝ n as n→∞ [Weyl et al. 1950]),
there exists an i such that Ei ≥ λi + minM(V ) ≥ maxM(V ) and
the trade-off between local-compact and global support of the ba-
sis elements can be controlled by the potential energy. Then, we can
estimate the magnitude of the potential required in order to allow
for oscillations outside the regions where the potential vanishes.

Given a scalar µ ∈ R+ we can define the Hamiltonian as

Hµ = −∆M + µV, (13)

where µ controls the resistance to diffusion induced by the po-
tential. Let λi and Ei be the i-th eigenvalue of the LBO and
Hamiltonian, respectively. We seek for a constant µ such that
Ei > maxM(µV ) so the particle can penetrate the high po-
tential region. Considering the potential as small perturbation of
the Laplacian, up to first order, the eigenenergies are defined as
Ei ≈ λi + µ〈φi, V φi〉M. In order to contain the basis support at
most until the i-th eigenfunction, µ must satisfy

µ <
λi

maxM(V )− 〈ψi, V ψi〉M
. (14)

According to its potential energy, the basis can then provide super-
vised multiresolution analysis on the manifold by containing the
first eigenfunctions and allow global analysis for the following.

2.5 Optimality of the Hamiltonian eigenspace

Let us consider a function f ∈ L2(M). We define the representa-
tion residual function as

‖rn‖2M =

∥∥∥∥∥f −
∞∑
i=1

〈f, φi〉Mφi

∥∥∥∥∥
2

M

=

∥∥∥∥∥
∞∑

i=n+1

〈f, φi〉Mφi

∥∥∥∥∥
2

M

=

∞∑
i=n+1

〈f, φi〉2M.

(15)
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Defining ‖∇gf‖2M =
∫
M ‖∇gf‖

2
gda, we know that

‖∇gf‖2M + ‖
√
V f‖2M =

∫
M

(−∆Mf + V f)f da

=

n∑
i=1

∫
M

(〈f, ψi〉MEiψi)f da =

∞∑
i=1

Ei〈f, ψi〉2M

≥
∞∑

i=n+1

Ei〈f, ψi〉2M ≥ En+1

∞∑
i=n+1

〈f, ψi〉2M.

(16)

Thus, from (15) and (16) we obtain

‖rn‖2M =

∥∥∥∥∥f −
n∑
i=1

〈f, ψi〉Mψi

∥∥∥∥∥
2

M

≤ ‖∇gf‖
2
M + ‖

√
V f‖2M

En+1

.

(17)
Recall that for V = 0 we return to the LBO case. Among the
numerous reasons that motivated the selection of the Laplacian
for shape analysis, a major one is its efficiency in representing
functions with bounded gradient magnitude. This result was sub-
sequently proved to be optimal for representing functions with
bounded gradient magnitude over surfaces in [Aflalo et al. 2015],
which says that there exists no other basis with better representation
error for all possible L2(M) functions.

In case of the Hamiltonian, the Dirichlet energy is coupled with
the potential energy. Thus the Hamiltonian operator advocates mea-
suring smoothness differently for different regions of the domain
where smoothness remains a less important factor than avoiding vi-
brations in high potential areas. This is a useful property to exploit
in different shape analysis scenarios.

Next, we show that the Hamiltonian is optimal in approximat-
ing functions with both bounded gradient and low values in high
potential areas.

THEOREM 2. Let 0 ≤ α < 1. There is no integer n and no se-
quence {ψi}∞i=0 of linearly independent functions in L2(M) such
that∥∥∥∥∥f −

n∑
i=1

〈f, ψi〉Mψi

∥∥∥∥∥
2

M

≤
α
(
‖∇gf‖2M + ‖

√
V f‖2M

)
En+1

∀f.(18)

The proof of Theorem 2 is given in the Appendix.

2.6 Diffusion process

Let us be given a Riemannian manifoldM. The heat equation gov-
erning the diffusion process onM is defined as{

∂tu(x, t) = ∆Mu(x, t), ∀x ∈M,

u(x, 0) = u0(x),
(19)

with appropriate boundary conditions. A natural extension to the
new operator with a potential V , can be written as{

∂tu(x, t) = Hu(x, t) = ∆Mu(x, t)− V (x)u(x, t)

u(x, 0) = u0(x).
(20)

The solutions of (19) and (20) have the form [Iglesias and Kimmel
2012]

u(x, t) =

∫
M
u0(y)K(x, y, t)da(y), (21)

that represents the diffusion in time of heat on the manifold M
with potential V , where K(x, y, t) =

∑
i e
−Eitψi(x)ψi(y). We

refer to K(x, y, t) as the heat kernel. A standard proof is given in
the Appendix.

According to the Feynman-Kac formula [Simon 2005], the so-
lution of the diffusion process is expressed in terms of the Wiener
process,

u(x, t) = E
(
u0(Xt)exp

(∫ t

0

V (Xτ )dτ
)
|Xt = x

)
. (22)

In the Laplacian case, the initial value u0(x) is carried over random
paths in time, while the expected value of the stochastic process is
equal to the solution u(x, t). For V > 0, the diffusion spreads ac-
cording to the potential on the manifold, when the transported value
is modulated exponentially by the potential V , diffusing anisotrop-
ically to low potential regions, as shown in Figure 3.

V

Fig. 3. Heat diffusion with a delta function at the centaur’s head as initial
condition. The diffusion is derived from the LBO (top) and the Hamiltonian
(bottom) for different values of t. The potential V used in this example is
the geodesic distance from the front left leg. A signature extracted from a
diffusion process using the Hamiltonian is more descriptive and in this case
allows to resolve ambiguities due to symmetry.

2.7 Nodal sets

An interesting property of the Laplacian is the relation between
its eigenfunctions, the number of connected nodal (zero) sets, and
the number of complementary regions they define. Given an eigen-
function ψi :M→ R, a nodal set is defined as the set of points at
which the eigenfunction values are zero. That is,

N (ψi) = {x ∈M|ψi(x) = 0}. (23)

The Nodal Theorem [Courant and Hilbert 1966] states that the i-th
eigenfunction of the LBO can splitM to at most i connected sub-
domains. In other words, the zero set of the i-th eigenfunction can
separate the manifold into at most i connected components.

PROPOSITION 1. Given the self-adjoint Hamiltonian operator
H onM, with arbitrary boundary conditions; if its eigenfunctions
are ordered according to increasing eigenvalues, then, the nodal
set of the i-th eigenfunction divides the domain into no more than i
connected sub-domains.

The proof is essentially the same as that of the Laplacian case. See
[Courant and Hilbert 1966] Vol.1 Sec. VI.6 for a proof.
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V

V

Fig. 4. Nodal domains obtained from the nodal sets of the Hamiltonian
(second and third columns) and the LBO (fourth and fifth columns). Two
potentials are depicted (first and second rows). One can observe a meaning-
ful segmentation induced by the nodal sets of the Hamiltonian.

As shown in Figure 2, the Hamiltonian eigenfunctions are tuned
by the potential. Thus, shape segmentation can be obtained by sep-
arating the surface according to the induced nodal sets as described
in [Levy 2006]. Given a potential V defined on the surface, mean-
ingful segmentation can be induced by the nodal domains of the
resulting eigenfunctions, as presented in Figure 4.

2.8 Discretization

In the discrete setting, we consider a triangular meshM in R3 with
the associated space of functions that are continuous and linear
in every triangle. According to the Finite Element Method (FEM)
[Dziuk 1988], the solution of the Hamiltonian eigenvalue problem
(8) can be computed by imposing that the equation Hf = Ef is
satisfied in a weak sense, that is,

〈Hf,ϕj〉M = E〈f, ϕj〉M, (24)

where ϕj denote the Lagrange basis of piecewiselinear hat-
functions on M , that take the value one at a vertex mj and van-
ishes at all the other vertices. E represents the eigenenergy of the
Hamiltonian. On the mesh, the bilinear form 〈·, ·〉M is evaluated by
splitting the integrals into a sum over the triangles T of M by

〈u, v〉M =
∑
T∈M

〈u, v〉T =
∑
T∈M

∫
T

uvda. (25)

Since the Hamiltonian is a linear operator we have

〈Hf,ϕj〉M = 〈−∆Mf, ϕj〉M + 〈V f, ϕj〉M. (26)

The matrix representation of 〈−∆Mf, ϕj〉M and λ〈f, ϕj〉M with
respect to the Lagrange basis are well known [Pinkall and Polthier
1993] and define the stiffness matrix W and the mass matrix A
with the entries

Wij = 〈∇ϕi,∇ϕj〉M and Aij = 〈ϕi, ϕj〉M. (27)

Thus,

〈V f, ϕj〉M =
∑
T∈M

〈V f, ϕj〉T

=
∑
T∈M

∑
i

fi〈V ϕi, ϕj〉T = AV f,
(28)

where the last equality is obtained by representing the potential
function V as a diagonal matrix V according to the Lagrange ba-
sis functions. The discretization of the eigenvalue problem (8) is
defined by finding all pairs {E,ψ} such that

Hψ = Wψ +AV ψ = (W +AV )ψ = EAψ. (29)

Efficient solution methods can be found in [Vallet and Levy 2008].
Among the possible explicit representations of the matrices A and
W , we use here the cotangent formula [Pinkall and Polthier 1993;
Meyer et al. 2003] where the stiffness matrix is defined as

Wij =

{
−
∑
j 6=iWij , i = j, (i, j) ∈ Ni

(cotαij + cotβij)/2, i 6= j, (i, j) ∈ Ni,
(30)

with Ni = {j : (i, j) ∈ Γ}, where Γ is the set of edges of the tri-
angulated surface interpreted as a graph and αij , βij denote the an-
gles ∠ikj and ∠jhi of the triangles sharing the edge ij. The mass
matrix is replaced by a diagonal lumped mass matrix of the area of
local mixed Voronoi cells about each vertexmi. The manifold inner
product is discretized as 〈f, g〉A = fTAg. Since V only modifies
the diagonal of W , our operator remains a sparse matrix with the
same effective entries, and thus, there is no increase in the com-
putational cost of the generalized eigendecomposition compared to
that of the LBO.

2.9 Robustness to noise

As a generalization of the Laplacian, the Hamiltonian exhibits sim-
ilar robustness to noise. Consider the Hamiltonian matrix H =
A−1(W +AV ) with V the potential. Then, the perturbed Hamilto-
nian has the form H̃ = Ã−1(W̃+ÃṼ ). Let us define δA = |A−Ã|
and δW = |(W − W̃ ) + (AV − ÃṼ )|. Based on perturbation the-
ory, and up to second-order corrections, the i-th eigenfunction ψ̃i
of H̃ has the form

ψ̃i = ψi(1−
ψTi δAψi

2
) +

∑
k 6=i

ψTi (δW −EiδA)ψk
Ei −Ek

ψk, (31)

with ψi andEi being respectively the i-th eigenfunction and eigen-
value of the unperturbed Hamiltonian. Assuming uniformly dis-
tributed random noise on the mesh, the eigenfunctions of the reg-
ular Laplacian may present smaller distortion to noise than the
Hamiltonian since the perturbation is amplified by area and po-
tential distortions. Still, in case of potential with small values the
distortion is insignificant. In Figure 5, we present the original sur-
face and its noisy version in which vertex positions have been cor-
rupted by additive Gaussian noise with σ2

x = 20% of the mean
edge length. The potential is also modified by adding a Gaussian
noise with σ2

V = 20% of the initial variance of the potential.
The construction of the Laplacian depends crucially on the mesh

connectivity making it sensitive to topological noise such as holes
and part removal that can be found in many depth acquisition sce-
narios. The compact support of the basis elements of the Hamilto-
nian makes it robust to noise compared to the basis elements that
are generated by the Laplacian. We illustrate the robustness prop-
erty in Figure 5 where 30% of the surface area was removed due to
topological noise in the form of small holes.
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Fig. 5. Robustness to noise of the Hamiltonian. First eigenfunctions ψi
of the Hamiltonian under potential V (top). First eigenfunctions ψ̃i of the
Hamiltonian subject to Gaussian noise in positions of the vertices and the
potential (middle). First eigenfunctions ψ̃i of the Hamiltonian subject topo-
logical noise (bottom).

3. OPTIMIZATION OF THE POTENTIAL

One natural problem emerging when working with the Hamiltonian
is the ability to define an optimal potential function for a specific
task. The choice of the potential is application dependent but can
be represented through minimization problem generically defined
as

min
V

D(X,V )

s.t. V ∈ Rn,
(32)

whereD(X,V ) denotes the data term depending on the data matrix
X and the vector V defining the diagonal potential matrix. Regu-
larization terms can be further be added. If the analytical solution
remains complex, a common approach is to minimize the goal func-
tion with an optimization algorithm involving the gradient of the
goal function with respect to the potential. In this section we pro-
pose an optimization framework based on perturbation theory of
the eigenvectors where optimal potential is obtained. To that end,
we need to derive the gradient∇VD for a given objective D.

Here we will consider the problem of data representation using
the discrete basis of the Hamiltonian referred to as Ψk(V ) = Ψk ∈
Rn×k representing the k eigenvectors of the Hamiltonian such that
ΨT
k Ψk = Ik. The discretized minimization problem is defined as

min
V

‖ΨkΨT
kX −X‖2F

s.t. V ∈ Rn,
(33)

with k < n. The objective defines the representation error of the
data X in the subspace spanned by the columns of Ψk and in the

sense of the Frobenius norm ‖ · ‖F . For a general orthonormal ma-
trix Ψk, the problem is equivalent to Principal Component Analysis
(PCA). We can straightforwardly obtain that

L = ‖ΨkΨT
kX −X‖2F = trace

(
(ΨkΨT

kX −X)T (ΨkΨT
kX −X)

)
= trace

(
XTX

)
+ trace

(
XTΨkΨTΨΨT

kX
)

− 2trace
(
XTΨkΨT

kX
)

= −trace
(
ΨkΨT

kXX
T
)

+ trace
(
XXT

)
.

(34)
Thus, the differential of the loss function L with respect to V is
obtained by

dL = −dtrace
(
ΨkΨT

kXX
T
)

= −trace
(
dΨkΨT

kXX
T
)
− trace

(
ΨkdΨT

kXX
T
)

= −2trace
(
ΨT
kXX

T dΨk

)
.

(35)

It remains to derive the differential of the Hamiltonian eigenvec-
tors. Let us consider the full matrix of eigenvectors Ψn ∈ Rn×n,
the n × n diagonal matrix of eigenenergies [Λ]ii = λi and the
discrete Hamiltonian operator H . The eigenvalue decomposition
problem is given by HΨn = ΨnΛ. Thus, the differential of the
spectral decomposition problem is given by

dHΨn +HdΨk = dΨnΛ + ΨndΛ. (36)

Multiplying by ΨT
n on the left side and denoting dΨn = ΨnC with

C ∈ Rn×n, we have

ΨT
ndHΨn + ΨT

nHΨnC = ΨT
nΨnCΛ + ΨT

nΨndΛ

ΨT
ndHΨn + ΛC = CΛ + dΛ,

(37)

since ΨT
nΨn = In. We readily obtain that the off diagonal elements

of the matrix C can be defined by

Cij =
(Ψi)T dHΨj

λj − λi
,∀i 6= j. (38)

Here Ψj represents the j-th column of the matrix of eigenvectors.
The diagonal elements of C are defined by the following

(Ψn + dΨn)T (Ψn + dΨn) = I

ΨT
nΨn + ΨT

ndΨn + dΨT
nΨn + dΨT

ndΨn = I

I + ΨT
nΨnC + CTΨT

nΨn + CTΨT
nΨnC = I

C + CT + CTC = 0.

(39)

The diagonal elements are then defined by 2Cii +
∑n
k=1 C

2
ki = 0.

Since second order elements are negligible, we have Cii = 0. We
obtain that dΨn = ΨnC = Ψn(ΨT

ndHΨn)�B, with � denoting
the Hadamard product and the matrix B defined as

Bij =


1

λj−λi
, i 6= j

0 , i = j.
(40)

The selection of the first k eigenvectors dΨk are obtained by
multiplying dΨn by the truncated identity matrix Z = In×k. The
differential is now known and can be plugged into (35) in order to
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extract dH , that is:

dL = −2trace
(
ΨT
kXX

T dΨk

)
= −2trace

(
ΨT
kXX

TΨnCZ
)

= −2trace
(
ΨT
kXX

TΨn

(
ΨT
ndHΨn �B

)
Z
)

= −2trace
(
Ψn

(
ZΨT

kXX
TΨn

)
�BΨT

ndH
)

= 〈
(
− 2
(
Ψn

(
ZΨT

kXX
TΨn

)
�BΨT

n

)T
, dH〉.

(41)

The passage in the fourth line stems from the equivalence
trace(A(B � C)) = trace((A � CT )B). Since dH = d(L +
diag(V )) = diag(dV ), we obtain finally

∇V L = diag
(
− 2
(
Ψn

(
ZΨT

kXX
TΨn

)
�BΨT

n

))
. (42)

Two problems arise from the suggested scheme. First, the high
computational cost of a full (sparse) matrix diagonalization. Sec-
ond, the matrix C remains undefined when eigenvectors have non-
trivial multiplicities. The first problem can be relaxed by approx-
imating the matrix dΨ with less eigenvectors. This is especially
justified for distant indices, where the eigenenergies are well sep-
arated and the corresponding elements of matrix B become neg-
ligible. Also, the data can be projected onto the LBO basis so the
solution complexity remains constant with the size of the mesh.
Even if the second problem has been treated in [Van Der Aa et al.
2007], it seems that lack of smoothness at isolated points is not crit-
ical for computation and convergence by resorting to a sub-gradient
approach. The alternative opted for here is to stabilize the matrixB
in order to avoid exploding gradients. We use the approximation

Bij ≈
1

(|λj − λi|+ ε)(sign(λj − λi))
, (43)

where the sign function is not vanishing.
In its geometric setting, the solution remains similar and is

obtained by defining a new basis Ψ̃k = A
1
2 Ψk, such that

Ψ̃T
k Ψ̃k = Ik, coupled with the consistently discretized Frobenius

norm ‖X‖2A = 〈X,X〉A = ‖A 1
2X‖2F . In the following exper-

iments we allowed negative potential for performance considera-
tion only, since the potential is defined over the whole codomain
R. Also, for physically interpretable solutions we enforced posi-
tive potential by using quadratic function V 2. The extension of the
derivation is straightforward but decreased the performance since it
is more restrictive.

As a toy experiment, we propose to find the best potential for the
representation of a function in the one dimensional Euclidean do-
main. Given a function f ∈ Rn, we seek for the best potential mini-
mizing ‖ΨkΨT

k f−f‖22. We compare in Figure 6 the reconstruction
performance on a one dimensional linear function with the Lapla-
cian and the Hamiltonian built from the optimized potential. In Fig-
ure 7, we propose to reconstruct the matrix of coordinates of a mesh
so the data matrix is defined by X = (x, y, z) ∈ Rn×3. The ex-
periments were implemented using the quasi-Newton method with
initial zero potential.

An important application related data representation is spectral
mesh compression. [Karni and Gotsman 2000] proposed to project
the coordinates functions of the mesh onto the LBO eigenfunc-
tions in order to encode the mesh geometry via the first coefficients
only. Since most of the function energy is generally contained in
the first coefficients, the reconstruction distortion is low, up to fine
details related to higher frequencies. Since matrix decomposition
is an expensive operation, they suggested to segment the shape into
smaller parts that can be processed separately. By sending the mesh
topology (triangles) separately, the combinatorial graph Laplacian

Fig. 6. Reconstruction of a linear function using the Laplacian and the
Hamiltonian constructed with the proposed framework. 15 eigenvectors
were used in this experiment. Observe that the potential is high close to
the boundary to reduce the representation error.

V LBO Hamiltonian

Fig. 7. Potential function defined on the original mesh (left), reconstruc-
tion of the mesh coordinates with 50 eigenvectors using the LBO (middle)
and the Hamiltonian constructed with the proposed method (right). Blue and
red colors represent negative and positive values respectively. The Hamil-
tonian is able to focus on sharp regions of the mesh designated by the blue
regions of the potential for a better reconstruction (fingers). The errors are
0.0015 and 0.00061 for the LBO and the Hamiltonian respectively.

is built on the decoder side and the signal can be reconstructed with
the received coefficients. We suggest to apply this idea to our basis
which potential V is obtained by the proposed optimization frame-
work. However, one major drawback is that we need to encode the
potential as well as the coefficients. Also, some methods use the
ordering of the vertices in order to encode information [Touma and
Gotsman 1998]. Here we suggest to reorder the vertices such that
the vertex with the smallest potential is be assigned the index 1 and
the vertex with the largest potential is be assigned the index n. By
using a fixed potential defined as

Ṽ = diag(1, ..., n), (44)

the decoder simply appliesL+αṼ +β in order to obtain the Hamil-
tonian basis. Here α and β are the regression coefficients minimiz-
ing ‖αṼ +β−V ‖22 that are also encoded. We present compression
results in Figure 8.
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Fig. 8. Geometry compression performance comparison between the
Laplacian (MHB), the proposed projected operator (H) and the optimal
Hamiltonian (H opt) using the proposed framework for the sharp Fandisk
shape. The optimal Hamiltonian performance are presented with no encod-
ing of the potential itself.

4. COMPRESSED MANIFOLD MODES

[Ozolins et al. 2013] proposed a a novel method to create a set
of localized eigenfunctions in Euclidean domains. To that end,
they modified the construction of standard differential operators by
adding an L1 regularization term to the variational leading to the
decomposition of the operator. The resulting eigenfunctions were
called compressed modes and were shown to be compactly sup-
ported [Brezis 1974]. [Neumann et al. 2014] extended this con-
struction to manifolds, suggesting the following discrete L1 regu-
larization problem

min
Φ

trace(ΦTWΦ) + µ‖Φ‖1

s.t. ΦTAΦ = I.
(45)

with the parameter µ that controlling the localization of the basis.
Proposed solutions require the use of expensive and unstable opti-
mization techniques ([Neumann et al. 2014; Kovnatsky et al. 2016])
based on ADMM and proximal operators.

The latter optimization problem (45) can be written as an Hamil-
tonian eigendecomposition problem [Bronstein et al. 2016]

min
Φ

trace(ΦTWΦ) + µ trace(ΦTViΦ)

s.t. ΦTAΦ = I,
(46)

where Vi is the diagonal matrix operator defining the potential that
corresponds to the i-th eigenvector that localizes the support of φi
in low-potential areas. The potential is defined iteratively using a
reweighted least squares scheme

Vi =
1

2|φi|
, (47)

ensuring that the minimizers of (45) and (46) coincide. Interest-
ingly, the potential here is defined as a function of the eigenfunc-
tion, namely Vi = Vi(φi). The potential and the resulting eigen-
state are then intrinsically linked, meaning that the potential is in-
fluenced by the state of the particle itself. Consequently, a perturba-
tion of the potential enforces perturbation of the eigenfunction and
vice versa until reaching steady state.

Mesh size n ×104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
un

tim
e 
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ec

)

10-1

100

101

102

103

104

IRLS (k=1)
Neumann (k=1)
IRLS (k=5)
Neumann (k=5)
IRLS (k=20)
Neumann (k=20)

Fig. 9. Runtimes of Neumann et al. and the proposed framework on
meshes of varying size (number of vertices n) and number of eigenvec-
tors k. Averages and standard deviations are presented over 10 runs. Same
stopping criteria were applied to all methods.

We formulate the compressed manifold modes problem as

min
φi

φT
i Hiφi + β

∑
j<i

‖φT
j Aφi‖22

s.t. φT
i Aφi = 1,

(48)

with Hi = W + µAVi and where β is a sufficiently large con-
stant such that the third term guarantees that the i-th mode φi is
A-orthogonal to the previously computed modes φj , j < i. Ob-
serve that albeit non-convex, the problem has a closed form global
solution, that is the smallest generalized eigenvector φi of

(Hi + Zi)φi = λiAφi (49)

with

Zi = UiU
T
i = βA

(∑
j<i

φjφ
T
j

)
A.

For small number of compressed modes, Zi is a low rank matrix
and finding the smallest generalized eigenvector can be solved effi-
ciently since the involved matrix is the sum of a sparse and a low-
rank matrix.

Several numerical eigendecomposition implementations use the
Arnoldi iteration algorithm. In our matrix decomposition problem,
the core operation is the multiplication by the inverse of the matrix
with a vector, operation that cannot be solved straightforwardly.
Also, shifting the maximum eigenvalue using power method is too
unstable since it depend on gap of the first eigenvalues, generally
tight. In our configuration the Woodbury identity

(Hi + UiU
T
i )−1 = H−1

i −H−1
i Ui(I + UT

i H
−1
i Ui)

−1UT
i H

−1
i

can be used to compute efficiently the vector multiplication with the
inverse of the matrix as a cascade of sparse and low-rank systems.
Unlike solutions of the inconsistently discretized problem 45, the
basis obtained with the proposed Hamiltonian framework is more
robust under various discretizations and can be computed at a frac-
tion of the computational cost (Figure 9).
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5. SHAPE MATCHING

The task of matching pairs of shapes lies at the core of many shape
analysis tasks and plays a central role in operations such as 3D
alignment and shape reconstruction. While rigid shape matching
has been well studied in the literature, non-rigid correspondence
remains a difficult task even for nearly isometric surfaces. When
dealing with rigid objects, it is sufficient to find the rotation and
translation that aligns one shape to the other [Chen and Medioni
1992]. Therefore, the rigid matching problem amounts to deter-
mining only six degrees of freedom. At the other end, non-rigid
matching generally requires dealing with many more degrees of
freedom. Since the LBO is invariant to isometric deformations, it
has been used extensively to aid the solution of correspondence
problem. Several properties of the Hamiltonian operator make it a
better choice for this task compared to its zero-potential particular
case that is the LBO.
Invariance. The Laplace-Beltrami Operator is defined in terms of
the metric tensor which is invariant to isometries. For a poten-
tial function defined intrinsically, the resulting Hamiltonian is also
isometry-invariant.
Compactness. Compactness means that scalar functions on a shape
should be well approximated by using only a small number of basis
elements. From Theorem 2 and as a generalization of the Lapla-
cian, the global support and compactness hold for a bounded (low)
potential.
Descriptiveness. The LBO eigenvalues are related to frequency.
Similarly, eigenenergies of the Hamiltonian relate to the number
of oscillations on the manifold. Theorem 1 demonstrates that the
modes corresponding to small eigenvalues of the Hamiltonian de-
fined with a positive potential, encapsulate higher frequencies, even
when localized, compared to the modes of the regular LBO. At the
other end, highly oscillating eigenfunctions can be used to repre-
sent fine details of the shape that can be crucial for shape matching.
Also, the potential enforces different oscillations in different re-
gions on the manifold, allowing for better discrimination of similar
areas and disambiguation of intrinsic symmetries with asymmetric
potential.
Stability. Deformations of non-rigid shapes and articulated objects
can stretch the surface. In such cases, the LBO eigendecomposition
of the two shapes will be different. We could compensate for such
local metric distortions by carefully designing a potential. Assign-
ing high potential to strongly distorted regions would lead to lower
values of the eigenfunctions in those areas (9). Such a potential
will reduce the discrepancy between corresponding eigenfunctions
at least for the lower eigenergies, as shown via the functional maps
representations [Ovsjanikov et al. 2012] in Figure 10. Let define
AM (mi) and AN (ni), the area at vertex mi on mesh M and ni
on the second mesh N respectively and τ : M → N a bijection
between two (discretized) surfaces M and N . Then, we define the
potential V at vertex mi = τ−1(ni) as

V (mi) = max

{
AM (mi)

AN (ni)
,
AN (ni)

AM (mi)

}
. (50)

Among the few stable intrinsic invariants that can be extracted
from the geometry, we will use the stable first eigenfunctions of the
LBO and geodesic distances. Additional non necessarily intrinsic
information such as photometric properties or even extrinsic shape
properties such as principal curvatures [Hildebrandt et al. 2012] can
also be integrated into the potential field.

(a) Nearly isometric shapes

(b) LBO (c) Hamiltonian

Fig. 10. Two nearly isometric meshes with high potential (hot colors) in
large distortion regions (a), functional maps matrix C of the LBO (b) and
the Hamiltonian (c).

5.1 Experimental Evaluation

We tested the proposed basis and compared its matching perfor-
mances to that the LBO basis as applied to pairs of triangulated
meshes of shapes from the TOSCA dataset [Bronstein et al. 2008]
and the SCAPE dataset [Anguelov et al. 2004]. The TOSCA data
set contains densely sampled synthetic human and animal surfaces,
divided into several classes with given ground-truth point-to-point
correspondences between the shapes within each class. The SCAPE
data set contains scans of real human bodies in different poses. The
evaluation method used is described in [Kim et al. 2011] where the
distortion curves describe the percentage of surface points falling
within a relative geodesic distance from what is assumed to be
their true locations. Symmetries were not allowed in all evalua-
tions. Note that we assume that the sign ambiguity of the first eigen-
functions generating the potential is resolved [Shtern and Kimmel
2014b].

Figure 11 compares the two operators by matching diffusion ker-
nel descriptors derived from the corresponding eigenfunctions. The
diffusion on the shape using the Hamiltonian as the diffusion oper-
ator is more descriptive than regular diffusion that cannot resolve
the symmetries. Also, it would be natural to compute the WKS sig-
nature when the Schrödinger equation is governed by a given effec-
tive potential. As intrinsic positive potential we use the normalized
sum of the four first nontrivial eigenfunctions of the LBO on each
shape, adding a constant of minimal value in order to obtain a non-
negative potential. This way only the intrinsic unstable geometry of
the shape is involved in defining the Hamiltonian operator.

In case we know which regions are prone to elastic distortions,
like joints and stretchable skin in articulated objects, we could sup-
press the effect of those regions in our matching procedures by us-
ing an appropriate potential as a selective mask. Figure 12, com-
pares the operator with and without potential by matching the spec-
tral signatures computed by the framework of [Shtern and Kimmel
2015]. The potential we used is the local area distortion when com-
paring the meshes of two corresponding objects, as in (50). The
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(b) SCAPE

Fig. 11. Evaluation of the diffusion kernels signatures matches on the
TOSCA and SCAPE datasets.

descriptiveness of the potential and the localization of the harmon-
ics lead to more accurate matching results.
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(b) SCAPE

Fig. 12. Evaluation of the spectral signature matches on the TOSCA and
SCAPE data-sets.

To investigate the performances of the Hamiltonian with photo-
metric textures used as potential, we present in Figure 13 the results
of different signatures matching with a dalmatian texture defined
for the ”Dogs” shapes from the TOSCA data set.

(a) Photometric data
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(b) Signatures

Fig. 13. Evaluation of the descriptors matches on the ”Dogs” benchmark
from the TOSCA dataset with dalmatian texture.

Iterative refinement of functional representations have been
proven to be powerful in shape matching [Ovsjanikov et al. 2012].
Given an initial partial or dense map, it tries to recover iteratively
dense and accurate matching between two given shapes. Here we
use a similar refinement framework dubbed as Iterative Closest
Spectral Kernel Maps (ICSKM) [Shtern and Kimmel 2014a] for
performance comparison between the two bases. Figure 14 com-
pares the regular ICSKM algorithm working with the Laplacian
eigenspace and the Hamiltonian method when we provided one,
two, or three landmark points, that were randomly selected from
the ground-truth mapping. The potential used in these examples is

the geodesic distance from the landmark points. Note that again we
use only the geometry of the shapes in order to refine the match
between them using the new basis.
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Fig. 14. Evaluation of the ICSKM algorithm with different landmark ini-
tialization matches on the TOSCA dataset. We used geodesic distances from
given landmark points as intrinsic geometric potential on the shapes.

6. CONCLUSION

A classical operator was adopted from the field of quantum me-
chanics and adapted to shape analysis problems. Functional and
spectral properties of the Hamiltonian operator were presented and
compared to the popular Laplacian operator often used in many
shape analysis procedures. A general optimization method for solv-
ing variational problems involving the Hamiltonian operator have
been proposed and employed to the task of mesh compression. Fea-
tures and texture properties can be incorporated into the new oper-
ator to obtain a descriptive and stable basis that provides a power-
ful domain of operation for shape matching. Various directions for
future research include exploration of the operator on other shape
analysis tasks such as partial shape matching where occluded areas
could be refined via the potential.
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APPENDIX

A. PROOF OF THEOREM 2.

Let us be given the Hamiltonian operator H = −∆ + V .
Recall the CourantFischer min-max principle; see also [Aflalo

et al. 2015] and [Brezis 2010] Problems 37 and 49. We have for
every i ≥ 0,

Ei+1 = max
Λ

codimΛ=i

min
f∈Λ
f 6=0

{
‖∇f‖22 + ‖

√
V f‖22

‖f‖22
.

}
(51)

That is, the min is taken over a linear subspace Λ ⊂ H1(S) with
H1(S) is the Sobolev space {f ∈ L2,∇f ∈ L2} of co-dimension
i and the max is taken over all such subspaces.
Set Λ0 = {f ∈ H1(S); 〈f, ψk〉 = 0, k = 1, 2, ..., i}, so that Λ0 is
a subspace of co-dimension i.
By 51 we have that for all f 6= 0, f ∈ Λ0

‖∇f‖22 + ‖
√
V f‖22

‖f‖22
≥ Ei+1

α
, (52)

and thus

X0 = min
f∈Λ
f 6=0

‖∇f‖22 + ‖
√
V f‖22

‖f‖22
≥ Ei+1

α
. (53)

On the other hand, by 51,

Ei+1 ≥ X0. (54)

Combining 53 and 54 yields α ≥ 1. 2

B. DIFFUSION KERNEL OF THE HAMILTONIAN

In order to solve the diffusion equation, we first need to find the fun-
damental solution kernel K(x, y, t) to the Dirichlet problem that
yields the heat equation{

∂tK(x, y, t) = H(K(x, y, t))

lim
t→0

K(x, y, t) = δy(x).
(55)

Recall that for V = 0 we return to the regular LBO diffusion case.
Suppose that H has a eigendecomposition {ψi, Ei}∞i=1. In that
case, we can write

K(x, y, t) =
∑
i

〈K(x, y, t), ψi(x)〉Mψi(x) =
∑
i

αi(t)ψi(x),

(56)
and from the linearity of H we have

H(K(x, y, t)) =
∑
i

αi(t)H(ψi) =
∑
i

−Eiαi(t)ψi

∂tK(x, y, t) =
∑
i

∂tαi(t)ψi.
(57)

Since 〈ψi, ψj〉M = δij , we have from (55) and (57)

∂tαi(t) = −Eiαi(t), (58)

that leads to

αi(t) = αi(0)e−Eit. (59)

As δy(x) =
∑
i ψi(y)ψi(x), from the initial condition

K(x, y, 0) = δy(x), we obtain

K(x, y, 0) =
∑
i

αi(0)ψi(x) =
∑
i

ψi(y)ψi(x) = δy(x)

⇔ αi(0) = ψi(y)

⇒ K(x, y, t) =
∑
i

e−Eitψi(x)ψi(y).

(60)

The solutions have the form

u(x, t) =

∫
M
u0(y)K(x, y, t)da(y). (61)
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