
APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 1

Edit Distance between Merge Trees
Raghavendra Sridharamurthy, Student Member, IEEE , Talha Bin Masood, Adhitya Kamakshidasan,

and Vijay Natarajan, Member, IEEE

Abstract—Topological structures such as the merge tree provide an abstract and succinct representation of scalar fields. They facilitate
effective visualization and interactive exploration of feature-rich data. A merge tree captures the topology of sub-level and super-level
sets in a scalar field. Estimating the similarity between merge trees is an important problem with applications to feature-directed
visualization of time-varying data. We present an approach based on tree edit distance to compare merge trees. The comparison
measure satisfies metric properties, it can be computed efficiently, and the cost model for the edit operations is both intuitive and
captures well-known properties of merge trees. Experimental results on time-varying scalar fields, 3D cryo electron microscopy data,
shape data, and various synthetic datasets show the utility of the edit distance towards a feature-driven analysis of scalar fields.

Index Terms—Merge tree, scalar field, distance measure, persistence, edit distance.

F

1 INTRODUCTION

THE study of the behavior of physical quantities over
time helps in understanding underlying scientific pro-

cesses. Physical quantities are either measured using imag-
ing devices or computed via simulation. In either case,
they are often modeled as scalar functions (also referred to
as scalar fields). Direct analysis and visualization of such
a scalar function using isosurfaces or volume rendering
provides a good overview but is limited by two factors.
First, increasing size of data makes storage and retrieval
inefficient. Second, the analysis often requires a sweep over
a large subset of the domain or range of the function even
when the features of interest may be contained within a
small region. These limitations are amplified when we con-
sider time-varying scalar functions. Thus, these techniques
are not well suited for feature directed analysis and visu-
alization. Topological structures such as the merge tree [1]
shown in Figure 1 provide a succinct representation of the
scalar function, support feature-directed visualization and
exploration, and hence enable the user to quickly identify
patterns and gain insights. Multiple scenarios demand a
method for comparing scalar functions. For example, a
distance or similarity measure between scalar functions is
essential for detecting periodicity in a time-varying dataset.
The matrix of distances between all pairs of time steps will
display a characteristic pattern if the function is periodic.
A method for comparing scalar functions is also useful for
tracking features in time-varying phenomena [2], topologi-
cal shape matching [3], detecting symmetry/asymmetry in
scalar fields [4], [5], [6], [7], [8], or clustering [9], computing
temporal summaries of large data sets, to identify fea-
tures that are preserved in ensemble simulations or multi-
field data, or to compare simulated data against measured
data [10], [11], [12], [13]. In the above-mentioned scenarios,
the similarity or dissimilarity between scalar functions is
often captured by a distance measure between topological

• R. Sridharamurthy, T.B. Masood, A. Kamakshidasan, and V. Natarajan
are with the Department of Computer Science and Automation, Indian
Institute of Science, Bangalore, 560012.
E-mail: {raghavendrag,talha,adhitya,vijayn}@iisc.ac.in

a be

f lk

g

h

c

m i n

j d

(a) 2D scalar field (b) left: join tree and right: split tree

Fig. 1. Merge trees. (a) A 2D scalar field (b) A merge tree tracks the
connectivity of sub-level sets (preimage of f−1(−∞, c]) or the super-
level sets (preimage of f−1[c,∞)).

structures that represent the functions. We want such a
distance measure to satisfy useful theoretical properties
and be efficiently computable in order to be applicable in
practice.

1.1 Related Work

Assuming identical domains, RMS distance, Chebyschev
distance, and other norms such as Lp, 1 ≤ p ≤ ∞ can be
used for point-to-point comparisons. However, a direct com-
parison of the two scalar functions may not be appropriate
because of its sensitivity to noise and minor perturbations.

Distance measures between various topological struc-
tures have been studied in the literature, beginning with
the bottleneck distance between persistence diagrams [14].
A topological feature is often represented by a creator-
destructor pair, a critical point pair in the case of scalar
functions. For example, a minimum creates a 0-dimensional
topological feature (connected component) in the sub-level
set that is destroyed by a saddle. A persistence diagram
(see Figure 3) depicts the persistence or “lifetime” of all
topological features by plotting their orresponding time of
creation (birth) and destruction (death) as points in R2. The
bottleneck distance (DB) between two persistence diagrams
is equal to the weight of the minimum weight mapping be-
tween points of the two diagrams. The weight of a mapping
is equal to the largest L∞ distance between a point and
its image under the mapping. We say that the persistence
diagram is stable with respect to a distance measure if it is

ar
X

iv
:2

20
7.

08
51

1v
1

 [
cs

.C
G

]
 1

8
Ju

l 2
02

2

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 2

bounded above by the L∞ distance between the two scalar
functions. Intuitively, we require that small perturbations
to the scalar functions translate to small changes in the
distance between the respective persistence diagrams. The
persistence diagram is stable with respect to DB . But, the
persistence diagram is only a multiset. It does not capture
the spatial configuration of critical points, which reduces
its discriminative capability. Morozov et al. [15] proposed
the interleaving distance between merge trees. This distance
is defined by a continuous map that shifts points of one
merge tree onto the other and vice-versa. The distance is
equal to the smallest value of the shift such that the map
satisfies certain compatibility conditions. The merge tree
is stable under this distance and the distance measure is
more discriminative compared to the bottleneck distance
but computing it is not a tractable problem. Beketayev et
al. [16] define a distance measure between merge trees that
can be computed by considering all possible branch de-
compositions. This measure can be computed in polynomial
time but provide no guarantees on stability.

Distance measures have been also defined for other
topological structures. The Reeb graph captures the topology
of both sub-level sets and super-level sets of scalar functions
defined on a manifold [17]. Bauer et al. [18] imposed a metric
on Reeb graphs called the functional distortion distance.
They proved its stability and connections with other dis-
tances such as the bottleneck and interleaving distance. The
computation depends on the Gromov-Hausdorff distance,
which is proven to be NP-hard [19] to even approximate
up to a constant factor for general metric graphs. Di Fabio
and Landi [20] defined an edit distance for Reeb graphs
on surfaces. They also proved its stability and showed
connections with interleaving distance and function distor-
tion distance but there is no polynomial time algorithm to
compute the distance. Dey et al. [21] defined the persistence
distortion distance to compare metric graphs, proved its
stability, and described a polynomial time algorithm with
asymptotic running time O(m12 log n) (continuous version)
and O(n2m1.5 logm) (discrete version), where m is the
number of edges and n is the number of vertices in the larger
graph. They also reported applications to shape matching.

Narayanan et al. [22] defined a distance measure to
compare extremum graphs, whose nodes corresponds to
critical points of the scalar function and arcs correspond
to integral lines. The distance measure is based on the
maximum weight common subgraph and they use pruning
techniques to speedup the computation. While stability is
not guaranteed, they present many experimental results on
time-varying data to demonstrate its application to time-
varying data analysis and visualization.

In contrast to the rigorous definitions of distance mea-
sures introduced in the above-mentioned works, simpler but
practical similarity measures have also been studied. Saikia
et al. [7] introduced the extended branch decomposition
graph (eBDG) that describes a hierarchical representation
of all subtrees of a join/split tree and designed an efficient
algorithm to compare them. They also present experimental
results on time-varying data. Saikia et al. [23] studied a mea-
sure that compared histograms that are constructed together
with the merge trees. As in the case of bottleneck distance,
this measure ignores the structure but it can be computed

efficiently and is therefore useful in practice. Saikia and
Weinkauf [2] later extended this measure and demonstrated
applications to feature tracking in time-varying data.

Edit distances and alignment distances for trees are
inspired by edit distances defined on strings. They have
found various applications, such as comparing neuronal
trees [24], comparing shapes [25], comparing music genre
taxonomy [26], analysis of glycan structures [27], comparing
RNA structures [28], and comparing plant architectures [29].
Given two strings, one is transformed into the other via
a sequence of operations where each operation has a non-
negative associated cost. The distance is defined as the min-
imum cost over all such transformations. Similar distance
measure may be defined for labeled trees with edit opera-
tions like relabeling, addition, and deletion of nodes. Zhang
and Shasha [30] described an algorithm to compute the tree
edit distance for ordered labeled trees. Later, Zhang [31]
proposed a new algorithm for constrained tree edit distance
for ordered labeled trees. The computation of tree edit
distance for unordered labeled trees is NP-complete [32].
However, the constrained version of the problem can be
solved in polynomial time using a dynamic programming
based algorithm [33]. A gap corresponds to a collection
of nodes that are inserted / deleted during a sequence
of edit operations. Edit distance with arbitrary gap costs
were first proposed by Touzet [34], who showed that the
distance computation is NP-hard. But, the distance between
ordered labeled binary trees can be computed in polynomial
time [35].

While tree edit distance based algorithms have been
employed in many applications, they have not been well
studied for comparing topological structures like merge
trees except in very recent work. Riecke et al. [36] defined
a hierarchy of persistence pairs and a tree edit distance
based dissimilarity measure to compare hierarchies. Srid-
haramurthy et al. [37] adapt Xu’s algorithm [35] for com-
puting distance between ordered labeled binary trees to
the case of the general subtree gap model that preserve
the merge tree structure. The general subtree gap model
allows for interior nodes to be inserted / deleted while
retaining the child nodes. The cost model is intuitive and
they present preliminary experimental results to show its
utility. However, this method has multiple shortcomings:

• The gap model is too general. In the case of merge
trees, we require a constrained version that considers
gaps as persistence pairs in order to preserve the
structural integrity of the tree. These pairs depend
on function values. So, the constraints are ad hoc,
difficult to express directly and to incorporate into
the dynamic programming based algorithm that is
used to compute the measure.

• The above-mentioned pairs are not stable under per-
turbations to the scalar function.

• Merge trees constructed on real world data are not
necessarily binary trees.

• Absence of a natural left-to-right ordering of children
of a node in the merge tree. The algorithm requires
such an ordering, random or canonical orderings
lead to instabilities.

• The running time of the algorithm is approximately

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 3

Fig. 2. Persistence pairs in the join (left) and split (right) trees.

O(n5), where n is the number of nodes in the tree.
This is very slow for practical applications.

In summary, existing work either propose a rigorous def-
inition of distance with theoretical guarantees but without
practical value (with very few exceptions) or describe a sim-
ilarity / dissimilarity measure with practical applications
but without theoretical analysis. Further, existing methods
do not provide natural support for a fine grained analysis
of similar/dissimilar regions.

1.2 Contributions
In this paper, we propose a tree edit distance based approach
to compare merge trees. The distance measure is an adap-
tation of the constrained unordered tree edit distance [33],
but is a significant modification that caters to merge trees
and alleviates the shortcomings of the measure proposed
by Sridharamurthy et al. [37]. Individual edits correspond
to topological features. The edit operations may be subse-
quently studied for a fine grained analysis. The paper makes
the following key contributions:

1) An intuitive and mathematically sound cost model
for the individual edit operations.

2) A proof that the distance measure is a metric under
the proposed cost model.

3) A computational solution to handle instabilities.
4) Experiments to demonstrate the practical value of

the distance measure using various applications —
2D time-varying data analysis by detecting peri-
odicity, summarization to support visualization of
3D time-varying data, detection of symmetry and
asymmetry in scalar fields, study of topological
effects of subsampling and smoothing, and shape
matching.

In addition, we describe a comprehensive set of validation
experiments that are designed to help understand the prop-
erties of the measure.

2 BACKGROUND

In this section, we introduce necessary definitions and back-
ground on merge trees, list some desirable properties of
distance measures, and describe three edit operations on a
merge tree that define a tree edit distance.

2.1 Merge tree
A merge tree [1] captures the connectivity of sub-level sets
(join tree) or super-level sets (split tree) of a scalar function
f : X −→ R defined on a manifold domain X, see Figure 1.
A value c in the range of f is called an isovalue. Given
an isovalue, an isocontour is defined as the collection of

Fig. 3. A 1D scalar function (left) and the persistence diagram of the
function (right). Each birth-death pair (bi, di) is a feature of the scalar
function and its persistence is defined as di − bi. Each pair is repre-
sented as a point in R2.

all points x ∈ X such that f(x) = c. Nodes of join trees
consist of minima M = {mi}, saddles S = {sj}, and
the global maximum. In theory, the structure of a join tree
is simple. Excluding the global maximum, which is the
root of the tree, every node has either 0 (minimum) or 2
children (saddle). All minima are paired with saddles based
on the notion of topological persistence [38] except for one
which is paired to the lone global maximum. Each such pair
(m, s) represents a topological feature and its persistence is
defined as pers(m) = pers(s) = f(s) − f(m). In practice,
saddles may have more than two children. We discuss how
to handle them in Section 4.4. A split tree is defined likewise.
It contains a set of maxima and saddles together with the
global minimum. Figure 2 shows the persistence pairing
for the trees from Figure 1. Several fast algorithms have
been developed for computing merge trees (join or split)
for piecewise linear functions defined on simply connected
domains [1], [39], [40].

2.2 Distance measures
Designing distance measures is a well studied problem
and has several applications in data analysis, visualization,
pattern recognition, data mining, and machine learning. A
distance measure D : X × X −→ R on a domain X satisfies
the metric properties:

1) Non-negativity: D(x, y) ≥ 0
2) Identity of indiscernibles: D(x, y) = 0 iff x = y
3) Symmetry: D(x, y) = D(y, x)
4) Triangle inequality: D(x, z) ≤ D(x, y) +D(y, z)

When metric properties such as triangle inequality are re-
laxed, we get a dissimilarity measure rather than a distance
measure. Further, while comparing scalar fields or topo-
logical structures constructed based on scalar fields, it is
desirable that the distance measure satisfies two additional
properties – stability and discrimination. In the following
discussion, we will use D to refer to the distance between
topological structures that represent the functions. Given
two scalar functions f, g,

1) Stability: D(f, g) ≤ ‖f − g‖∞
2) Discrimination: DB(f, g) ≤ D(f, g).

Intuitively, stability requires that if the functions are not
too “different” in terms of the L∞ norm of the difference
between the functions then the distance measure between
the topological structures representing the scalar functions
should also be small. Discrimination, on the other hand,

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 4

Fig. 4. The discriminative power of the bottleneck distance DB is low.
Two scalar functions (blue and red) and the corresponding persistence
diagrams and merge trees. Even though the scalar functions are differ-
ent, DB is not able to capture the difference because the persistence
diagrams are equal. A distance measure that considers the structure of
the merge tree would discriminate the two scalar functions.

requires that however “small” the difference between two
functions, it should be captured by the distance measure.
Specifically, the distance measure equals 0 should imply that
the functions are equal. Since the bottleneck distance DB

between persistence diagrams of f and g was among the
first measures defined between topological structures, we
typically state this property in terms of how the distance
D is related to bottleneck distance. Figure 4 shows an
example where DB = 0 for a pair of functions that are not
equal, which implies that DB is not discriminative enough.
One reason for the low discriminative power is that the
persistence diagram, and hence DB , does not incorporate
the connectivity between critical points as in the merge tree.
We wish to design a distance measure that satisfies the
following property:

DB(f, g) ≤ D(f, g) ≤ ‖f − g‖∞ (1)

From the computational perspective, D should be com-
putable either exactly or within a constant factor of approx-
imation in polynomial time in order for it to be useful in a
practical application.

2.3 Tree edit distance

Tree edit distances have been studied extensively in the past
few decades [41]. All these measures typically employ a set
of edit operations with associated costs and try to minimize
the total cost over the set of all edit operations. Let T be
a rooted tree with node set V and edge set E. For a node
v ∈ V , deg(v) is the number of children of v, and parent(v)
is its parent in the tree. The maximum degree of a node in
the tree is denoted as deg(T). We denote an empty tree by
θ. Since we are interested in labeled trees, let Σ be the set of
labels, and λ /∈ Σ denote the null or empty character, which
corresponds to a gap. In the following discussion, we use
notations and definitions from Zhang [33].
Edit operations. The edit operations differ based on the gap
model. For this discussion we consider edit operations that
modify the tree, one node at a time. Xu [35] gives a detailed
discussion of general gaps where edits modify multiple
nodes. We consider a total of three edit operations as shown
in Figure 5.

1) relabel: A relabel a −→ b corresponds to an opera-
tion where the label a ∈ Σ of a node is changed to a
label b ∈ Σ.

(a) delete (b) insert

(c) relabel

Fig. 5. Three different tree edit operations. Each edit affects only one
node in the tree. The null character λ corresponds to a gap.

2) delete: A delete operation a −→ λ removes a node
nwith label a ∈ Σ and all the children of n are made
the children of parent(n).

3) insert: An insert operation λ −→ b inserts a node n
with label b ∈ Σ as a child of another node m by
moving all the children of m to children of n.

We define a cost function γ that assigns a non-negative
real number to each edit operation of the form a −→ b. It
is useful if the cost function γ satisfies metric properties i.e.
∀a, b, c ∈ Σ ∪ {λ}

1) γ(a −→ b) ≥ 0, γ(a −→ a) = 0
2) γ(a −→ b) = γ(b −→ a)
3) γ(a −→ c) ≤ γ(a −→ b) + γ(b −→ c)

In particular, Zhang [33] proved that if γ is a metric then
the edit distance is also a metric, else it will be merely
a dissimilarity measure. Given a tree T1, we can apply a
sequence of edit operations to transform it into another tree
T2. If S = s1, s2, . . . , sk is a sequence of edit operations,
where each si is an edit, we can extend the cost function to
S by defining γ(S) = Σ

|S|
i=1γ(si).

Edit distance. Formally, the distance between two trees
T1, T2 is defined as

De(T1, T2) = min
S
{γ(S)} (2)

where S is an edit operation sequence from T1 to T2.

3 EDIT DISTANCE MAPPINGS

Computing the edit distance between merge trees is a
minimization problem with a huge search space. In order
to understand this search space and how it affects the
computation, we first define some edit distance mappings
– unconstrained, constrained, and restricted – and their
properties as described by Zhang [33]. We refer the reader to
the supplementary material for additional description and
illustrations of the mappings.

3.1 Unconstrained edit distance mapping

The sequence of edit operations performed to transform T1
into T2 determines a mapping between the two trees. For
convenience, we order the nodes of both the trees. This
ordering does not affect the distance. Let t1 and t2 denote
the ordering of nodes in T1 and T2, respectively, and t1[i]

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 5

represents the ith node in the ordering. Let Me denote a
collection of ordered integer pairs (i, j). A triple (Me, T1, T2)
defines the edit distance mapping from T1 to T2, where each
pair (i1, j1), (i2, j2) ∈Me satisfies the following properties:

• i1 = i2 iff j1 = j2 (one-to-one)
• t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of

t2[j2] (ancestor ordering).

The cost of transforming T1 into T2 can be expressed
through the mapping as

γ(Me) =
∑

(i,j)∈Me

γ(t1[i] −→ t2[j])

+
∑

{i|@j,(i,j)∈Me}
γ(t1[i] −→ λ)

+
∑

{j|@i,(i,j)∈Me}
γ(λ −→ t2[j]) (3)

Given a sequence of edit operations S that transforms T1
into T2, there exists a mapping Me such that γ(Me) ≤ γ(S).
Conversely, given an edit distance mapping Me ,there exists
a sequence of edit operations S such that γ(S) = γ(Me).
Using the above, it can be shown that

De(T1, T2) = min
Me

{γ(Me)} (4)

where (Me, T1, T2) defines the edit distance mapping from T1
to T2. Zhang et al. [32] showed that computing De(T1, T2)
is NP-complete even when the trees are binary and |Σ| = 2.

3.2 Constrained and restricted mappings

Adding constraints to the edit distance mapping brings
it within the computationally tractable realm. The main
constraint imposed is that disjoint subtrees are mapped to
disjoint subtrees. Let T [i] denote the subtree rooted at the
node with label i and F [i] denote the unordered forest
obtained by deleting the node t[i] from T [i]. A node t1[i]
is a proper ancestor of t1[j] if t1[i] lies on the path from the
root to t1[j] and t1[i] 6= t1[j]. The triple (Mc, T1, T2) is called
a constrained edit distance mapping if,

• (Mc, T1, T2) is an edit distance mapping, and
• Given three pairs (i1, j1), (i2, j2), (i3, j3) ∈ Mc, the

least common ancestor lca(t1[i1], t1[i2]) is a proper
ancestor of t1[i3] iff lca(t2[j1], t2[j2]) is a proper
ancestor of t2[j3].

The constrained edit distance mappings can be com-
posed. Given two constrained edit distance mappings Mc1

from T1 to T2 and Mc2 from T2 to T3, Mc2 ◦ Mc1 is a
constrained edit distance mapping between T1 and T3. Also,

γ(Mc2 ◦Mc1) ≤ γ(Mc1) + γ(Mc2) (5)

which can be proven using the triangle inequality imposed
on the edit operation costs. This leads to the definition of
constrained edit distance

Dc(T1, T2) = min
Mc

{γ(Mc)} (6)

Dc also satisfies metric properties. Both Me and Mc deal
with mapping between unordered trees. Similar mappings
work for forests. We define a restricted mapping Mr(i, j)
between F1[i] and F2[j] as follows:

• Mr(i, j) corresponds to a constrained edit distance
mapping between F1[i] and F2[j].

• Given two pairs (i1, j1), (i2, j2) ∈ Mc, t1[l1] and
t1[l2] belong to a common tree in F1[i] if and only
if t2[j1] and t2[j2] belong to a common tree in F2[i].

Essentially, nodes within different trees of F1 are mapped to
nodes lying in different trees of F2.

3.3 Constrained edit distance

We recall the properties of Dc. Let t1[i1], t1[i2], . . . , t1[ini
]

be the children of t1[i] and t2[j1], t2[j2], . . . , t2[jnj
] be the

children of t2[j]. Further, let θ denote the empty tree. Then,

Dc(θ, θ) = 0, (7)

Dc(F1[i], θ) =
ni∑
k=1

Dc(T1[ik], θ), (8)

Dc(T1[i], θ) = Dc(F1[i], θ) + γ(t1[i] −→ λ), (9)

Dc(θ, F2[j]) =

nj∑
k=1

Dc(θ, T2[jk]), (10)

Dc(θ, T2[j]) = Dc(θ, F2[j]) + γ(λ −→ t2[j]), (11)

Dc(T1[i], T2[j])

= min

Dc(θ, T2[j]) + min

1≤t≤nj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

Dc(T1[i], θ) + min
1≤s≤ni

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

Dc(F1[i], F2[j]) + γ(t1[i] −→ t2[j]).

(12)

If the cost is not a metric, we need to include one additional
case, namely Dc(F1[i], F2[j]) + γ(t1[i] −→ λ) + γ(λ −→
t2[j]). The distance between two forests is given by

Dc(F1[i], F2[j])

= min

Dc(θ, F2[j]) + min

1≤t≤nj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

Dc(F1[i], θ) + min
1≤s≤ni

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

min
Mr(i,j)

γ(Mr(i, j)).

(13)

The minimum restricted mapping may be computed by
constructing a weighted bipartite graph in such a way
that the cost of the minimum weight maximum matching
MM(i, j) is exactly the same as the cost of the minimum
restricted mapping Mr(i, j),

min
Mr(i,j)

γ(Mr(i, j)) = min
MM(i,j)

γ(MM(i, j)) (14)

3.4 Algorithm

Zhang described an algorithm for computing the tree edit
distance for labeled unordered trees [33]. It is a dynamic
programming based algorithm that follows from the prop-
erties discussed in Section 3.3. The pseudo code is pre-
sented in the supplementary material (Section 2). The entry
D(T1[m], T2[n]) in the table with m = |T1| and n = |T2|
corresponds to the final result. The algorithm computes
the distance in O(|T1| × |T2| × (deg(T1) + deg(T2)) ×
log2(deg(T1) + deg(T2))) time in the worst case.

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 6

4 TREE EDIT DISTANCE

We now describe a new tree edit distance that is appropriate
for comparing merge trees, discuss its properties, and an
algorithm for computing the distance measure.

4.1 Comparing merge trees
Our proposed measure is based on a variant of tree edit
distance that applies to unordered general trees as opposed
to ordered binary trees. This variant is appropriate because

• Merge trees are unordered trees.
• Merge trees are not binary in general.
• Persistence pairs represent topological features. So,

it is natural that the edit operations are defined in
terms of persistent pairs.

• The pairs do not fit into any subtree gap model that
has been studied in the literature.

Consider the properties of edit distance mapping men-
tioned in Section 3.1, but now in the context of merge
trees. The one-to-one property is applicable but ancestor
ordering might not hold in all cases. Small perturbations in
the function value may result in swaps similar to rotations
in AVL or red-black trees [42, Chapter 13], which violate the
ancestor ordering. Such violations also result in instabilities
i.e., cause significant fluctuations in the distance (see Section
4.4). Computing the edit distance with the ancestor order
preserving mappings is already infeasible. Removing that
constraint will make the computation more difficult. We
introduce a stability parameter to ensure that ancestor order
preserving mappings are identified in practically all cases.
More details on this computational solution to handling
instabilities can be found in Section 4.4. This solution does
discard some mappings and may lead us away from the
optimum solution. But, the stabilization ensures that the
mapping remains meaningful and helps reduce the search
space thereby making the problem tractable.

To summarize,Dc between unordered trees with suitable
modifications seems to be a good candidate for comparing
merge trees. In this section, we describe one such distance
measure and demonstrate its use in the following section.
The additional constraint of mapping disjoint subtrees to
disjoint subtrees may seem limiting. Also, De(T1, T2) ≤
Dc(T1, T2), which implies that the constrained edit distance
may not be optimal in many cases. But, we observe that, in
practice, it is not as limiting and gives good results in many
applications.

4.2 Cost model
The edit distance mapping Me and the constrained edit
distance mapping Mc need to be suitably modified so that
they are applicable for comparing merge trees. We begin by
considering the edit operations as applicable to merge trees
together with appropriate cost models. The literature on tree
edit distances study generic trees and hence do not describe
particular cost models. The following discussions focus on
join trees but all results hold for split trees also.

Tree edit operations on the join tree need to preserve the
structural integrity of the join tree. This reduces the number
of operations, say insertions and deletions. Consider a min-
saddle pair (m2, s1) in Figure 6. If s1 is deleted, then it’s pair

Fig. 6. Permitted and forbidden edit operations. (left) A gap is introduced
by removing a persistence pair. (right) An edit operation that is permitted
for generic trees but is invalid for a join tree. Nodes and arcs are
repositioned to improve the tree layout.

m2 should also be deleted, and vice-versa. After deletion,
m1 is adjacent to s2. But deletion of s1 does not necessarily
require that the entire subtree rooted at s1 be deleted. In
fact, deleting the entire subtree may not result in a valid join
tree as illustrated in Figure 6. In this particular illustration,
we consider the pairing imposed by the persistence. But,
in general, we may consider other pairings based on say
volume, hyper-volume, etc.

Gaps in the join tree can be represented as a collection of
min-saddle pairs. In Figure 6, we can transform the first tree
into the last tree by deleting the pairs {(m2, s1), (m3, s2)}.
We propose two cost models that capture the preservation
of topological features and are applicable for join trees.
Consider nodes p ∈ T1 and q ∈ T2. Then p and q are
creators or destroyers of topological features in T1 and T2,
respectively. Let the birth and death times of these features
be (bp, dp) and (bq, dq), respectively. These birth-death pairs
correspond to points in the persistence diagrams. Alterna-
tively, they are represented as closed intervals [bp, dp] and
[bq, dq] in a persistence barcode.

4.2.1 L∞ cost CW

γ(p −→ q) = min

{
max(|bq − bp|, |dq − dp|),
(|dp−bp|+|dq−bq|)

2

(15)

γ(p −→ λ) =
|dp − bp|

2
(16)

γ(λ −→ q) =
|dq − bq|

2
(17)

This cost model is based on the bottleneck and Wasserstein
distances. Note that the insert / delete cost is based on the
L∞-distance of the points p (or q) from the diagonal in the
persistence diagram. The relabel cost is the minimum of the
L∞-distance between the points p and q and the sum of
the L∞-distance from the points p (or q) to the diagonal.
This corresponds to the scenario where transforming p to
q (p −→ q) by deleting p and inserting q (p −→ λ and
λ −→ q) has a lower cost in some cases. Figure 7 shows
how these costs can be derived from the persistence diagram
when there is no overlap in the barcodes and when there is
overlap between the barcodes.

4.2.2 Overhang cost CO

γ(p −→ q) = min

{
|bq − bp|+ |dq − dp|,
|dp − bp|+ |dq − bq|

(18)

γ(s −→ λ) = |dp − bp| (19)
γ(λ −→ t) = |dq − bq| (20)

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 7

Fig. 7. Illustration of the cost models when there is no overlap in the
barcodes (left) and when there is overlap (right). We distinguish between
birth and death events in the barcode by using different glyphs for the
start and the end of the intervals.

This cost model is based on the overlap of the barcodes or
the intervals. We consider the lengths of the overhang or the
non-overlapping section to determine the costs. Consider
p −→ λ, the interval corresponding to p is given by [bp, dp]
with length |dp − bp| and the interval corresponding to λ is
∅ with length 0. Since there is no overlap, the cost is |dp −
bp| + 0 = |dp − bp|. The cost of λ −→ q can be derived
similarly. Let us now consider the cost of p −→ q. If there
is an overlap, we discard the overlap and obtain |bq − bp|+
|dq − dp|. If there is no overlap then the cost is equal to
|dp − bp| + |dq − bq|. The minimum of the two expressions
is the relabel cost. The barcodes are shown in the fourth
quadrant of the persistence diagrams in Figure 7.

4.3 Metric properties
Metric property enables us to study the space of all the
trees, compute the mean, and also compose transformations
between merge trees. From Sections 2.3 and 3.2, we know
that if the cost model satisfies the metric property then the
distance measure is also a metric. We now prove the metric
properties for our cost model.

The overhang cost is similar to symmetric difference,
which is a well-known metric [43]. We now prove that the
L∞ cost CW is a metric.

4.3.1 CW is a metric
We show that the cost CW is equal to the Wasserstein
distance between two corresponding persistence diagrams.
Let N denote the set of all nodes in the merge trees and λ
denote a node corresponding to the null character. We define
a mappingM : N ∪ {λ} −→ Dgm, where Dgm is set of all
persistence diagrams, as follows:

1) ∀p ∈ N, M(p) = {(bp, dp)} ∪ {(x, x), x ≥ 0},
2) M(λ) = {(x, x), x ≥ 0}.

Define the distance on the set N ∪ {λ} as the Wasserstein
distance of the first order i.e., given p, q ∈ N ∪ {λ}

d(p, q) = W1(M(p),M(q))

Now, the cost CW can be rewritten as

γ(p −→ q) = W1(M(p),M(q)) (21)
γ(p −→ λ) = W1(M(p),M(λ)) (22)
γ(λ −→ q) = W1(M(λ),M(q)). (23)

Fig. 8. The cost of edit operations can be reformulated as the weight of a
minimum weight maximum matching in a bipartite graph. Bipartite graph
for a relabel operation p −→ q (left) and a delete operation (right).

Since the Wasserstein distance W1(·, ·) between persistence
diagrams is known to be a metric [44, Chapter 6], CW is
also a metric. However, this proof of the metric property
is for general distributions. We have an alternative proof
for merge trees from first principles with the aim to better
understand the cost.

4.3.2 CW is a metric : proof from first principles

Non-negativity and symmetry follows by definition because
CW is based on sum, max, min of absolute values.

To prove the triangle inequality, we first reformulate the
cost of the edit operations as the weight of a minimum
weight maximum matching. The matching is defined in a
bipartite graph. Nodes of the bipartite graph consists of the
merge tree nodes together with an equal number of copies
of λ. We collect the nodes of the graph to construct sets of
the form P = {p, λ} and a special multiset Λ = {λ, λ},
see Figure 8. All pairs of nodes from different multisets
are connected by an edge. The edge weight c is given by
the L∞ distance between the corresponding points in the
persistence diagram:

cpq = L∞(p, q) = max(|bq − bp|, |dq − dp|) (24)

cpλ = L∞(p, λ) =
|dp − bp|

2
(25)

cλq = L∞(λ, q) =
|dq − bq|

2
(26)

cλλ = L∞(λ, λ) = 0 (27)

The cost of the edit operations is equal to the cost of the
minimum weight maximum matching MM in this bipartite
graph. In Figure 8, one of the two matchings will determine
the cost of the edit operation.

γ(p −→ q) = MM(P,Q) = min

{
cpq + cλλ,

cpλ + cλq
(28)

γ(p −→ λ) = MM(P,Λ) = min

{
cpλ + cλλ,

cλλ + cpλ
(29)

γ(λ −→ q) = MM(Λ, Q) = min

{
cλλ + cλq,

cλq + cλλ
(30)

Consider three multisets as shown in Figure 9. Using
the above construction, we prove triangle inequality by con-
sidering the two cases, namely when the minimum weight
matching is equal to either the red or blue matching.
Case RED:MM(P,R) is given by the red matching. The cost
of the relabel γ(p −→ r) = cpr + cλλ = cpr. Two different

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 8

Fig. 9. The cost function satisfies triangle inequality. (left) The blue
or the red matching may be the minimum weight maximum matching
that corresponds to the cost of the edit operation. (right) The matching
between P and R is a composition of matching between P,Q and
Q,R. The inequality can be proved via case analysis by considering
all possible compositions.

paths from p lead to r, p −→ q −→ r and p −→ λ −→ r.
Consider the first path,

γ(p −→ r) = cpr = L∞(p, r) ≤ L∞(p, q) + L∞(q, r) (31)
= cpq + cqr (32)
= γ(p −→ q) + γ(q −→ r)

(33)

Now, let us consider the second path. If cpr ≤ cpλ+cλr then
cpr ≤ cpλ + cλq + cqλ + cλr and we are done. Else, we have
two sub-cases

cpr > cpλ + cλq + cqλ + cλr > cpλ + cλr, or (34)
cpr > cpλ + cλr but cpr < cpλ + cλq + cqλ + cλr. (35)

In both sub-cases, we have a matching with weight
MM ′(P,R) = cpλ + cλr ≤ MM(P,R) = cpr + cλλ, which
contradicts our assumption.

The cost γ(λ −→ λ) = cλλ = 0. Both paths via Q, λ −→
λ −→ λ and λ −→ q −→ λ, should necessarily have a
non-zero total cost. So, the inequality holds trivially.
Case BLUE: MM(P,R) is given by the blue matching. The
cost of the relabel is equal to the sum cpλ + cλr . We consider
the two weights individually.

Two paths from p ∈ P lead to λ ∈ R via a node in Q,
p −→ λ −→ λ and p −→ q −→ λ. Similarly, two paths from
λ ∈ P lead to r ∈ R, λ −→ λ −→ r and λ −→ q −→ r.

In both cases, triangle inequality holds trivially for the
first path via Q, cpλ ≤ cpλ + cλλ and cλr ≤ cλλ + cλr .
We need to show that the inequality holds for the second
paths as well. From the persistence diagram, we observe
that L∞(p, λ) ≤ L∞(p, q) + L∞(q, λ) for all q, even when
q lies on the perpendicular from p onto the diagonal. So,
cpλ ≤ cpq + cqλ. A similar argument can be used to show
that cλr ≤ cλq + cqr.

The red and blue cases together imply that the cost CW
satisfies the triangle inequality and is therefore a metric. It
follows that the tree edit distance measureD is also a metric.

4.4 Handling instabilities
Saikia et al. [7] discuss two kinds of instabilities, vertical
and horizontal, that affect branch decompositions and hence
the distance measures. Figure 10 illustrates how horizontal
instability can occur. In our case, the horizontal stability has
a more drastic effect on the measure because

• It changes the persistence pairing, which in turn
affects the cost.

• It also changes the subtrees thereby affecting the
matching found by the algorithm.

Fig. 10. Illustrating instabilities. Since the difference in the function
values between s1 and s2 is small, a slight perturbation leads to a
change in the structure of the tree, which affects the distance measure.

We employ a strategy similar to the one used for branch
decompositions by Thomas and Natarajan [4] and apply it
to merge trees. We introduce a stability parameter ε and use
it to determine how to merge simple saddles into a multi-
saddle where instabilities occur. We merge the saddles in a
bottom-up manner as follows. Begin from the lower saddle
sl that is further from the root and merge it into a higher
saddle sh that is nearer to the root if the function difference
|f(sh) − f(sl)| < ε. Repeat this process until none of the
saddles satisfy the merging condition. In the implementa-
tion, the multi-saddle is represented by the saddle with the
highest persistence. We compute the distance between the
stabilized trees. Optionally, a fixed value may be added to
the final distance to incorporate the cost incurred due to
the stabilization. In Section 5.2, we experimentally analyze
how varying the stability parameter ε affects the distance
measure.

4.5 Algorithm

We adapt Zhang’s algorithm [33] (See supplementary mate-
rial, Section 2) with the edit costs discussed in Section 4.2 to
compute the tree edit distance between merge trees. The
input to this algorithm is a pair of merge trees that are
stabilized using the strategy described in Section 4.4.

4.6 Implementation

The computation proceeds in a bottom up manner. Dis-
tances for the subtrees are computed and stored in a ta-
ble. These are next used for computing distances between
subtrees at higher levels of the merge trees. This proof of
concept implementation does not include code and mem-
ory optimizations for efficiently computing and storing the
dynamic programming tables. We use the simple Kuhn-
Munkres algorithm [45] for computing MM(i, j). We still
observe reasonable running times for most of the data sets
as reported in the individual experiments in the following
section.

5 EXPERIMENTS AND CASE STUDIES

We demonstrate the utility of the tree edit distance mea-
sure by applying it to analyze time-varying data, to study
symmetry in scalar fields, for summarizing data, and for
shape matching. We use the Recon library [46] to compute
merge trees, the algorithm described in Section 4.5 to com-
pute the tree edit distance between the merge trees, and
Paraview [47] together with the Topology ToolKit TTK [48]
to generate renderings of the merge trees together with the
scalar fields. We uniformly use the L∞ cost CW (4.2.1). All

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 9

(a) Three scalar field f1, f2, f3

(b) Merge tree driven segmentation for each field.

(c) Mapping determined by W1 for (f1, f2) and (f2, f3)

(d) Mapping determined by D for (f1, f2) and (f2, f3)

Fig. 11. Comparing mappings established by tree edit distance measure
D and Wasserstein distance W1. (a) Three scalar functions f1, f2, f3 in
the synthetic data set. (b) Regions corresponding to the maxima and
arcs incident on them in the merge trees of f1, f2, f3. Each region
is assigned a unique color. (c) Mapping determined by W1 between
(f1, f2) and between (f2, f3). (d) Mapping determined by the tree edit
distance D between (f1, f2) and between (f2, f3). Merge tree nodes
and their corresponding spatial regions have the same color.

experiments were performed on a machine with an Intel
Xeon CPU with 8 cores running at 2.0 GHz and 16 GB main
memory.

5.1 Understanding the distance measure

We construct three synthetic datasets to understand the
difference between the tree edit distance D and other well
known distances between topological structures. The scalar
functions f1, f2, f3 are sums of gaussians whose extrema
are fixed in space. The scalar values change in a controlled
manner for the three functions so that the values at the
extrema increase / decrease monotonically as we step from
f1 to f2 to f3. We compute the tree edit distances together
with the corresponding mapping for each pair (f1, f2) and
(f2, f3).

Figure 11 shows the three scalar functions f1, f2, f3.
We observe in Figure 11(d) that D establishes intuitively
correct mappings. The mappings also preserve the tree

0 50 100 150 200
0

0.5

1

TED D W1 DB

0 50 100 150 200
0

0.5

1

ε = 0% ε = 1.5% ε = 5%

0 50 100 150 200
0

0.5

1

ε = 5% ε = 10% ε = 20%

0 50 100 150 200
0

0.5

1

Timesteps

ε = 20% ε = 50%
ε = 100% W1

Fig. 12. Comparing distance measures on the von Kármán vortex street
dataset. (top) Plot of distance measures between the first time step
and others when stability parameter ε is set to 0 and comparison with
the Wasserstein distance W1 and bottleneck distance DB . (rows 2-
4) Effect of stabilization parameter ε = 0, 1.5, 5, 10, 20, 50, 100% and
comparison with Wasserstein distance W1. Results are shown in three
plots to reduce clutter.
hierarchy. On the other hand, the Wasserstein distance W1

(Figure 11(c), left) maps the brown regions to the null
character. The tree edit distance prefers the relabel over a
sequence of delete-insert operations. The reason W1 does
not find the correspondence between the two brown nodes
is because their birth-death intervals do not overlap. As a
result, these nodes are mapped to the null character i.e.,
inserted or deleted. The intervals corresponding to the two
nodes in question are [1.17, 1.39] in f1 and [1.06, 1.08] in f2.

We also see from Figure 11(c) that W1 maps the brown
region to the magenta region, thereby mapping nodes that
lie within different subtrees. This also causes a pair of
nodes being mapped to the null character. The tree edit
distanceD is constrained to map disjoint subtrees to disjoint
subtrees and establishes a better mapping. To summarize, D
in general establishes mappings that are better than DB and
W1 because it is aware of the structure of the merge tree and
preserves the hierarchy captured in the tree.

5.2 Comparison with other distance measures
We compare the proposed tree edit distance measure D
with existing measures such as bottleneck distance DB and

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 10

Wasserstein distance W1 via computational experiments
on the 2D Bénard-von Kármán vortex street dataset [49].
Figure 13(a) shows a few time steps of the data, which
represents flow around a cylinder. The dataset contains the
velocity magnitude on a 400× 50 grid over 1001 time steps.
Each split tree contains approximately 55 − 65 nodes. We
calculate D and plot it together with the bottleneck and
Wasserstein distance, see top row of Figure 12. The tree edit
distance D is always greater than W1 and DB . Indeed, D is
likely to be more discriminative than W1 and DB because
it incorporates the structure of the merge tree in addition to
the persistence pairs.

We also compute and plot D for increasing values of
the stability parameter ε. The values of ε are reported as
a percentage of the maximum persistence of the particular
dataset. While there are some anomalies for small values of
ε, in general we observe in Figure 12 that with increase in
ε, D tends towards W1. For a high enough value of ε, D
becomes almost equal to W1. The reason for this behavior is
that the bottleneck/Wasserstein distance does not consider
the structure of the trees. Increasing the stability parameter
transforms the tree to become more like a bush. Finally, all
the nodes become children of the root thereby simplifying
and eliminating the tree structure. Varying ε from 0 − 5%
results in a decrease of up to 25 nodes in the split tree.
Further increasing ε led to an additional reduction by only
1−2 nodes. We observe this trend in the distance plots also.

5.3 Periodicity in time-varying data
Earlier studies of the Bénard-von Kármán vortex street
dataset have successfully identified periodicity in the
dataset. Narayanan et al. [22] detect both a half period of 38
and the full period of 75. We also aim to identify periodicity.
Towards this, we compare the split tree of time step 1 with
the remaining 1000 time steps of the dataset. We plot the tree
edit distance for time steps 1−220, see top plot of Figure 12.
We rerun the experiment and compare all 1000 time steps
with all other time steps. The distances are stored in a dis-
tance matrix (DM). Each split tree contains approximately
55 − 65 nodes. The distances were computed in parallel
using 12 threads and took approximately 25 minutes. A
truncated version is shown in Figure 13(b) for clarity. From
Figure 13(b), we can also observe a periodicity of 37, which
matches with the results reported by Narayanan et al. [22].
The tree edit distance was computed in this experiment
without stabilization.

5.4 Topological effects of subsampling and smoothing
The size of datasets are ever increasing and this mandates
the use of subsampling and/or smoothing of the data as
a preprocessing step. The aim of this preprocessing is to
reduce the data size while ensuring a limited effect on
geometric accuracy. However, the effect on the topological
features of the scalar field is often not quantified. We want
to observe how the tree edit distance measure captures these
topological effects.

We consider two synthetically generated datasets of size
300 × 300 (iteration 0), see Figures 14(a), 14(d). The data is
downsampled over 9 iterations to a 30×30 grid by reducing
the number of samples in each dimension by 30 within each

(a) Three time steps from the flow around a cylinder simulation.

(b) Distance matrix highlights the periodicity.

Fig. 13. (a) Time step 0 (top), 37 (middle) and 74 (bottom) of the
von Kármán vortex street dataset. The split tree and critical points
are overlaid. (b) A truncated version of the DM showing the tree edit
distance measure between all pairs of time steps. Blue bands indicate
periodicity with time period 74-75. A half period of 37, corresponding to
the alternating nature of vortex shedding, is also visible.

iteration. We also apply 9 iterations of laplacian smoothing
on both 300×300 datasets. Next, we compare all merge trees
corresponding to the subsampled and smoothed datasets
pairwise.

The distance matrix (DM) for the function f1 indicates
that the distances are monotonic, which conforms to the
expected behavior. But we see a different pattern in the
case of function f2. A small stabilization applied on f2 with
ε = 0.5% results in distance matrices that conform to the
expected behavior. This indicates that the stabilization may
indeed be required, particularly when the scalar functions
contain flat regions and multi-saddles. In both datasets,
we notice that the distances between the lowest resolution
(30× 30) dataset and others is relatively high. We identified
two reasons for the high values. First, the number of critical
points reduces significantly between iterations 8 and 9. For
example, in the case of f2, it goes down from 66− 70 in ear-
lier iterations to 58 in iteration 9. Second, the function value
at the critical points in the lowest resolution dataset are also
different. Hence, the relabel costs increase significantly, up
to a factor of 1.5 in some cases.

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 11

(a) f1 (b) subsampled f1 (c) smoothened f1

(d) f2 (e) subsampled f2 (f) smoothened f2

(g) DM for f1, origi-
nal and subsampled

(h) DM for f2, origi-
nal and subsampled

(i) DM for f2, ε =
0.5%

(j) DM for f1, origi-
nal and smoothened

(k) DM for f2, origi-
nal and smoothened

(l) DM for f2, ε =
0.5%

Fig. 14. Measuring the effect of subsampling and smoothing. (a),(d) Two
synthetic functions sampled over a 300 × 300 grid. (b),(e) Subsampled
down to 30 × 30 over 9 iterations. (c),(f) Smoothed in 9 iterations. (g)-
(i) DMs showing distance between all pairs of subsampled datasets
without and with stabilization. (j)-(l) DMs showing distances for all pairs
of smoothed datasets. Row and column indices correspond to the itera-
tion number, 0 corresponds to the original, 9 corresponds to the lowest
resolution/extreme smoothing. Red indicates high and blue indicates low
values. Colormaps for f1 and f2 are not on the same scale.

5.5 Detecting symmetry / asymmetry

Identifying symmetric or repeating patterns in scalar fields
enables feature-directed visualization. For example, it sup-
ports applications such as symmetry-aware transfer func-
tion design for volume rendering, anomaly detection, and
query-driven exploration. A distance measure is central to
any method for identifying symmetry. Consider the syn-
thetic dataset in Figure 15 that contains six regions corre-
sponding to six subtrees of the merge tree. Four regions
colored green in Figure 15(b) are symmetric copies. The
remaining two regions, colored orange and magenta, are
slightly perturbed to cause asymmetry. We compute the tree
edit distance measure to compare each subtree correspond-
ing to a region with other subtrees. The measure clearly
distinguishes between symmetric and asymmetric regions
as can be seen from the distance matrix (DM) in Figure 15(c).
These results are consistent with the premise upon which

(a) Synthetic field (b) Segmentation (c) Distance matrix

Fig. 15. Identifying symmetry and asymmetry. (a) Sum of 2D gaussians.
(b) The DM indicates presence of a symmetric group containing 4
regions. Two regions are correctly identified as being different from the
rest. (c) DM between various subtrees of the merge tree.

(a) EMDB 1654

(b) EMDB 1897

Fig. 16. Detecting groups of symmetric regions in EMDB datasets. (cen-
tre) DM showing tree edit distance between various pairs of subtrees
of the merge tree. Low values are mapped to blue and high values to
red. The DM indicates the presence of two distinct groups. All regions
within a group are symmetric copies of each other. (left, right) Volume
rendering where one region from each symmetric group is highlighted.

the data is generated.

We present additional case studies that demonstrate the
applicability of the tree edit distance measure to symme-
try identification. EMDB1 contains 3D electron microscopy
density data of macromolecules, subcellular structures, and
viruses. Some of these structures contain symmetric sub-
units. We study two structures, EMDB 1654, and 1897, see
Figure 16. First, we compute the split tree for each structure.
We then use a semi-automated method to extract sub-trees
corresponding to significant features from the merge tree
based on user specified persistence and minimum scalar
value thresholds. Next, we compute the tree edit distance
measure between sub-trees corresponding to these regions
of interest. We observe two distinct groups from the DMs.
The tree edit distance measure clearly identifies two groups
with 4 and 8 regions each in EMDB 1654, see Figure 16(a).
Similarly, it identifies two groups containing 3 and 6 sym-
metric regions each in EMDB 1897, see Figure 16(b).

1. https://www.ebi.ac.uk/pdbe/emdb/

https://www.ebi.ac.uk/pdbe/emdb/

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 12

Fig. 17. Collection of shapes from the TOSCA non-rigid world dataset.
The average geodesic distance field [3] is computed on the surface.
Each shape is available in multiple poses (number of poses mentioned
within parenthesis), only one pose is shown here.

5.6 Shape matching
Shape matching involves comparing geometric shapes and
finding similarity between them. A good distance measure
helps quantify this notion of similarity more concretely. The
TOSCA non-rigid world dataset2 contains a set of different
shapes, see Figure 17. The shapes are in different poses and
the project aims to develop methods to identify similarity
between shapes in a pose invariant manner. We compute
the average geodesic distance field [3] on the surface mesh.
This field is well studied in the literature and is known
to be a good shape descriptor. We apply a persistence
simplification threshold of 1% on the merge trees both to
remove topological noise and to reduce the number of
nodes. Next, we compute the tree edit distance measure
between all pairs of shapes. It takes around 15 seconds to
generate the distance matrix with the same setup used for
the periodicity experiment. Figure 18 shows the distance
matrix. Each collection of shape appears as a blue block
irrespective of variations in pose. We also observe higher
values for a pair of shapes that are different. Note the
blue blocks away from the diagonal. They correspond to
Michael vs Victoria, David vs Victoria, David vs Michael, and
David vs Gorilla. These pairs have similar shapes, which is
more apparent in a few poses. Not all poses are shown in
Figure 17.

5.7 Data Summarization
Exploring large scientific data, particularly time-varying
data, and identifying patterns of interest is often time con-
suming even with good visualization tools. Well designed
abstract representations provide good overviews of the data
and direct the user to features of interest. Abstractions such
as the merge trees present a summary of spatial features.
Temporal summaries enable effective visualization of time-
varying data. Central to the design of a temporal summary
is a good distance measure that can distinguish between
periods of significant activity and inactive time periods.

In this experiment, we consider the 3D Bénard-von
Kármán vortex street dataset. The velocity magnitude is
available as a scalar field on a 192 × 64 × 48 grid over
102 time steps [50]. Figure 19 shows volume renderings and
isosurfaces for a few time steps. Topological features of the
velocity magnitude scalar field are represented using the
split tree. Each split tree had approximately 180−200 nodes.
We compute the tree edit distance between all pairs of time

2. http://tosca.cs.technion.ac.il/book/resources data.html

Fig. 18. Tree edit distance matrix for all pairs of shapes from the TOSCA
non-rigid world dataset. Blocks of low values (blue) correspond to similar
shapes but in different poses.

Fig. 19. The 3D Bénard-von Kármán vortex street dataset. (top) Volume
rendering of the velocity magnitude field for time steps 15, 35, 58, 91, 98
ordered left to right. (bottom) Isosurfaces at isovalue 0.7 extracted for
the above time steps.

steps. It takes around 4 seconds to generate the distance
matrix (DM) with the same setup used for the periodicity
experiment.

The DM shown in Figure 20 contains multiple patterns.
A fluid dynamics expert helped study and interpret the
results. The distance between time steps 2 − 28 are small
because the flow does not contain any vortices and the
features do not change. The top left blue block in the matrix
corresponds to this time period. This is followed by the
period when new vortex structures are formed (small block
highlighted in green that corresponds to time steps 29−39).
Next, the vortices exhibit shedding, which is shown by
the repeating patterns present in the larger green block in
the matrix (time steps 40 − 85). Finally, the vortices are
significantly distorted, which is captured by the high values
of distance in the bottom right block. Thus we can use the
patterns that emerge in the distance matrix to distinguish
between different types of behavior and summarize the
scientific phenomena using these patterns.

http://tosca.cs.technion.ac.il/book/resources_data.html

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 13

Fig. 20. Tree edit distance matrix for all time steps of the 3D Bénard-
von Kármán vortex street dataset. Columns corresponding to time steps
15, 35, 58, 91, 98 are highlighted. Patterns that help in generating a
temporal summary are highlighted using black and green boxes.

6 CONCLUSIONS

We described a distance measure between two scalar fields
that compares their merge trees. The distance measure is
defined as the minimum cost of a set of restricted edit
operations that transforms one tree into another. The edit
operations and the associated costs are both intuitive and
mathematically sound. The measure satisfies metric proper-
ties, can be efficiently computed, and is useful in practice.
We study the properties of the measure and demonstrate its
application to data analysis and visualization using various
computational experiments. In future work, we plan to
develop a theoretical analysis of the stability properties
of the measure. Developing a comparative visualization
framework based on the tree edit distance measure is also
an interesting problem with potential applications to time-
varying data and multifield data visualization.

ACKNOWLEDGMENTS

This work is supported by the Department of Science and
Technology, India (DST/SJF/ETA-02/2015-16), and Joint
Advanced Technology Programme, Indian Institute of Sci-
ence (JATP/RG/PROJ/2015/16), and the Robert Bosch Cen-
tre for Cyber Physical Systems, Indian Institute of Science.
We thank Shrisha Rao for discussions on the data summa-
rization experiment.

REFERENCES

[1] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in
all dimensions,” Computational Geometry, vol. 24, no. 2, pp. 75–94,
2003.

[2] H. Saikia and T. Weinkauf, “Global feature tracking and similarity
estimation in time-dependent scalar fields,” in Computer Graphics
Forum, vol. 36, no. 3, 2017, pp. 1–11.

[3] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology
matching for fully automatic similarity estimation of 3d shapes,”
in Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. ACM, 2001, pp. 203–212.

[4] D. M. Thomas and V. Natarajan, “Symmetry in scalar field topol-
ogy,” IEEE Trans. Vis. Comp. Graphics, vol. 17, no. 12, pp. 2035–2044,
2011.

[5] ——, “Detecting symmetry in scalar fields using augmented ex-
tremum graphs,” IEEE Trans. Vis. Comp. Graphics, vol. 19, no. 12,
pp. 2663–2672, 2013.

[6] T. B. Masood, D. M. Thomas, and V. Natarajan, “Scalar field
visualization via extraction of symmetric structures,” The Visual
Computer, vol. 29, no. 6-8, pp. 761–771, 2013.

[7] H. Saikia, H. P. Seidel, and T. Weinkauf, “Extended branch decom-
position graphs: Structural comparison of scalar data,” Computer
Graphics Forum, vol. 33, no. 3, pp. 41–50, 2014.

[8] D. M. Thomas and V. Natarajan, “Multiscale symmetry detection
in scalar fields by clustering contours,” IEEE Trans. Vis. Comp.
Graphics, vol. 20, no. 12, pp. 2427–2436, 2014.

[9] P. Oesterling, C. Heine, G. H. Weber, D. Morozov, and G. Scheuer-
mann, “Computing and Visualizing Time-Varying Merge Trees for
High-Dimensional Data,” in TopoinVis IV. Springer, 2017, pp. 87–
101.

[10] N. Sauber, H. Theisel, and H.-P. Seidel, “Multifield-graphs: An
approach to visualizing correlations in multifield scalar data,”
IEEE Trans. Vis. Comp. Graphics, vol. 12, no. 5, pp. 917–924, 2006.

[11] S. Nagaraj, V. Natarajan, and R. S. Nanjundiah, “A gradient-based
comparison measure for visual analysis of multifield data,” in
Computer Graphics Forum, vol. 30, no. 3, 2011, pp. 1101–1110.

[12] I. Demir, C. Dick, and R. Westermann, “Multi-charts for compar-
ative 3d ensemble visualization,” IEEE Trans. Vis. Comp. Graphics,
vol. 20, no. 12, pp. 2694–2703, 2014.

[13] S. Dutta, J. Woodring, H.-W. Shen, J.-P. Chen, and J. Ahrens,
“Homogeneity guided probabilistic data summaries for analysis
and visualization of large-scale data sets,” in PacificVis, 2017, pp.
111–120.

[14] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of
persistence diagrams,” Disc. Comp. Geom., vol. 37, no. 1, pp. 103–
120, 2007.

[15] D. Morozov, K. Beketayev, and G. Weber, “Interleaving distance
between merge trees,” Discrete and Computational Geometry, vol. 49,
no. 52, pp. 22–45, 2013.

[16] K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and
B. Hamann, “Measuring the distance between merge trees,” in
TopoinVis III. Springer, 2014, pp. 151–165.

[17] G. Reeb, “Sur les points singuliers d’une forme de Pfaff complete-
ment intégrable ou d’une fonction numérique,” CR Acad. Sci. Paris,
vol. 222, no. 847-849, p. 2, 1946.

[18] U. Bauer, X. Ge, and Y. Wang, “Measuring distance between Reeb
graphs,” in Proc. 13th Symp. Comp. Geom. ACM, 2014, pp. 464–474.

[19] P. K. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang,
“Computing the Gromov-Hausdorff distance for metric trees,” in
Int. Symp. Alg. Comp. Springer, 2015, pp. 529–540.

[20] B. Di Fabio and C. Landi, “The edit distance for Reeb graphs of
surfaces,” Disc. Comp. Geom., vol. 55, no. 2, pp. 423–461, 2016.

[21] T. Dey, D. Shi, and Y. Wang, “Comparing Graphs via Persistence
Distortion,” Proc. 31rd Annu. Sympos. Comput. Geom., pp. 491–506,
2015.

[22] V. Narayanan, D. M. Thomas, and V. Natarajan, “Distance between
extremum graphs,” in PacificVis, 2015, pp. 263–270.

[23] H. Saikia, H.-P. Seidel, and T. Weinkauf, “Fast similarity search in
scalar fields using merging histograms,” in TopoInVis 2015, 2015,
pp. 1–14.

[24] T. A. Gillette, P. Hosseini, and G. A. Ascoli, “Topological charac-
terization of neuronal arbor morphology via sequence representa-
tion: II - global alignment,” BMC Bioinformatics, vol. 16, no. 1, pp.
209–226, 2015.

[25] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia, “A tree-edit-
distance algorithm for comparing simple, closed shapes,” in Proc.
11th annual ACM-SIAM symposium on Discrete algorithms, 2000, pp.
696–704.

[26] M. McVicar, B. Sach, C. Mesnage, J. Lijffijt, E. Spyropoulou, and
T. De Bie, “SuMoTED: An intuitive edit distance between rooted
unordered uniquely-labelled trees,” Pattern Recognition Letters,
vol. 79, pp. 52–59, 2016.

[27] D. Fukagawa, T. Tamura, A. Takasu, E. Tomita, and T. Akutsu,
“A clique-based method for the edit distance between unordered
trees and its application to analysis of glycan structures,” BMC
bioinformatics, vol. 12, no. Suppl 1, p. S13, 2011.

APPEARED IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI:10.1109/TVCG.2018.2873612 14

[28] S. Schirmer and R. Giegerich, “Forest alignment with affine gaps
and anchors, applied in RNA structure comparison,” Theoretical
Computer Science, vol. 483, pp. 51–67, 2013.

[29] P. Ferraro and C. Godin, “A distance measure between plant
architectures,” Annals of Forest Science, vol. 57, no. 5, pp. 445–461,
2000.

[30] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems,” SIAM Journal on
Computing, vol. 18, no. 6, pp. 1245–1262, 1989.

[31] K. Zhang, “Algorithms for the Constrained Editing Distance
between Ordered Labeled Trees and related Problems,” Pattern
Recognition, vol. 28, no. 3, pp. 463–474, 1995.

[32] K. Zhang, R. Statman, and D. Shasha, “On the editing distance
between unordered labeled trees,” Information Processing Letters,
vol. 42, no. 3, pp. 133–139, 1992.

[33] K. Zhang, “A Constrained Edit Distance Between Unordered
Labeled Trees,” Algorithmica, vol. 15, pp. 205–222, 1996.

[34] H. Touzet, “Tree edit distance with gaps,” Information Processing
Letters, vol. 85, no. 3, pp. 123–129, 2003.

[35] H. Xu, “An algorithm for comparing similarity between two
trees,” arXiv preprint arXiv:1508.03381, 2015.

[36] B. Rieck, H. Leitte, and F. Sadlo, “Hierarchies and ranks for
persistence pairs,” in TopoInVis 2017, 2017.

[37] R. Sridharamurthy, A. Kamakshidasan, and V. Natarajan, “Edit
distances for comparing merge trees,” in IEEE SciVis Posters, 2017.

[38] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological
persistence and simplification,” in Foundations of Computer Science.
IEEE, 2000, pp. 454–463.

[39] D. Morozov and G. Weber, “Distributed merge trees,” in Proc.
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13, 2013, pp. 93–102.

[40] A. Acharya and V. Natarajan, “A parallel and memory efficient
algorithm for constructing the contour tree,” in PacificVis, 2015,
pp. 271–278.

[41] P. Bille, “A survey on tree edit distance and related problems,”
Theoretical Computer Science, vol. 337, no. 1-3, pp. 217–239, 2005.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, 3rd ed. MIT Press, 2009.

[43] M. Levandowsky and D. Winter, “Distance between sets,” Nature,
vol. 234, no. 5323, p. 34, 1971.

[44] C. Villani, Optimal Transport: Old and New. Springer-Verlag Berlin
Heidelberg, 2000.

[45] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics (NRL), vol. 2, no. 1-2, pp. 83–97, 1955.

[46] H. Doraiswamy and V. Natarajan, “Computing Reeb graphs as a
union of contour trees,” IEEE Trans. Vis. Comp. Graphics, vol. 19,
no. 2, pp. 249–262, 2013.

[47] J. Ahrens, B. Geveci, C. Law, C. Hansen, and C. Johnson, “Par-
aview: An end-user tool for large-data visualization,” The Visual-
ization Handbook, vol. 717, 2005.

[48] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux,
“The Topology ToolKit,” IEEE Trans. Vis. Comp. Graphics, vol. 24,
no. 1, pp. 832–842, 2018, https://topology-tool-kit.github.io/.

[49] T. Weinkauf and H. Theisel, “Streak lines as tangent curves of a
derived vector field,” IEEE Trans. Vis. Comp. Graphics, vol. 16, no. 6,
pp. 1225–1234, 2010.

[50] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel, “Smoke
surfaces: An interactive flow visualization technique inspired by
real-world flow experiments,” IEEE Trans. Vis. Comp. Graphics,
vol. 14, no. 6, pp. 1396–1403, 2008.

Raghavendra Sridharamurthy is a PhD can-
didate in computer science at Indian Institute
of Science, Bangalore. He received BE degree
in information technology from National Institute
of Technology Karnataka, Surathkal and M.Sc
degree in computer science from Indian Institute
of Science. His research interests include scien-
tific visualization, computational topology and its
applications.

Talha Bin Masood is a PhD candidate in com-
puter science at Indian Institute of Science, Ban-
galore. He received B.Tech degree from Ali-
garh Muslim University and ME degree in com-
puter science from Indian Institute of Science.
His research interests include scientific visual-
ization, computational geometry, computational
topology and its applications to various scientific
domains.

Adhitya Kamakshidasan is a Junior Research
Fellow at Visualization and Graphics Lab, Indian
Institute of Science. He holds a B.Tech degree
in computer science from Visvesvaraya National
Institute of Technology, Nagpur. His research in-
terests include fluid simulation, information visu-
alization and cartography.

Vijay Natarajan is an associate professor in the
Department of Computer Science and Automa-
tion at the Indian Institute of Science, Bangalore.
He received the Ph.D. degree in computer sci-
ence from Duke University in 2004. His research
interests include scientific visualization, compu-
tational topology, and geometry processing.

https://topology-tool-kit.github.io/

	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 Merge tree
	2.2 Distance measures
	2.3 Tree edit distance

	3 Edit Distance Mappings
	3.1 Unconstrained edit distance mapping
	3.2 Constrained and restricted mappings
	3.3 Constrained edit distance
	3.4 Algorithm

	4 Tree Edit Distance
	4.1 Comparing merge trees
	4.2 Cost model
	4.2.1 L cost CW
	4.2.2 Overhang cost CO

	4.3 Metric properties
	4.3.1 CW is a metric
	4.3.2 CW is a metric : proof from first principles

	4.4 Handling instabilities
	4.5 Algorithm
	4.6 Implementation

	5 Experiments and case studies
	5.1 Understanding the distance measure
	5.2 Comparison with other distance measures
	5.3 Periodicity in time-varying data
	5.4 Topological effects of subsampling and smoothing
	5.5 Detecting symmetry / asymmetry
	5.6 Shape matching
	5.7 Data Summarization

	6 Conclusions
	References
	Biographies
	Raghavendra Sridharamurthy
	Talha Bin Masood
	Adhitya Kamakshidasan
	Vijay Natarajan

