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Abstract—The beta-complex is a construct derived from the Voronoi diagram of spherical balls of arbitrary radii and has proven a

powerful capability for proximity reasoning among spherical balls in three-dimensional space. Important applications related to

molecular shapes in structural/computational molecular biology have been correctly, efficiently, and conveniently solved in the unified

framework of the beta-complex and the Voronoi diagram. The beta-complex is a generalization of the ordinary alpha-complex.

However, there are similarities and dissimilarities between the two complexes and it is necessary to correctly understand these

similarities and dissimilarities to choose the right complex to solve application problems at hand. This paper presents the similarities

and dissimilarities between these constructs and illustrates the consequence of the dissimilarity in application problems from both

theoretical and practical points of view using examples of atomic arrangements.

Index Terms—Voronoi diagram of spheres, additively-weighted Voronoi diagram, power diagram, quasi-triangulation, alpha-complex,

beta-complex, proximity

Ç

1 INTRODUCTION

PARTICLES are everywhere in the universe. Many prob-
lems in science and engineering are frequently related

to particles, particularly to their proximity. Interpolating a
surface through a point cloud is an immediate example [1],
[2], [3], [4]. Emerging application areas include structual/
computational molecular biology andmaterial science where
the three-dimensional arrangement of spherical atoms,
hereafter referred to as amolecule, with arbitrary radii is fun-
damental. It is well-known that molecular function is deter-
mined by molecular structure and molecular shape is one of
the most critical factors of molecular structure. While there
have long been mathematical and computational efforts to
understand and characterize molecular shape, most studies
have used rather ad hoc approaches such as Monte Carlo
simulation or space enumeration using grid points. Only
recently have researchers attempted to use computational
geometry constructs with theoretical foundations [5], [6], [7],
[8], [9], [10], [11].

As far as we know, the ordinary Voronoi diagram of
points where the points were atom centers was first used for
molecules by Bernal and Finney to analyze the packing

characteristics of amorphous atomic arrangements in
1967 [12] and then by Richards to define the boundary sur-
face of molecule, now called the Connolly surface, in
1974 [13], [14]. The ordinary Voronoi diagrammay indeed be
good enough for problems that can be sufficiently modelled
by a set of monosized spherical atoms, and it is still popular
for solving such types of molecular structure problems.
However, if a problem requires to incorporate the size differ-
ence among atoms in more detail, a more advanced compu-
tational structure beyond this type of Voronoi diagram is
necessary.

In this regard, Gellatly and Finney, in 1982, employed
the radical plane as the bisector between two atoms after
experiencing a “vertex error” caused by a mismatch among
arbitrarily translated Voronoi bisectors (i.e., Voronoi edges
in R2 and Voronoi faces in R3) of the ordinary Voronoi dia-
gram for points [15]. The power diagram, formalized by
Aurenhammer in 1987 [16] and also called the Laguerre dia-
gram, is the formalization of using radical planes as the
bisectors between nearby atoms. However, Goede et al.
reported, in 1997, that the power diagram is not sufficient
for certain molecular problems such as the computation of
atomic volume distribution in molecules and suggested the
need for a Voronoi diagram of polysized atoms, also called
the additively weighted Voronoi diagram [17], [18]. Will, in
1999, indeed used the Voronoi cells in the Voronoi diagram
of atoms to compute the distribution of the volume of atomic
occupation in proteins [19]. In 2000, Kim et al. reported an
algorithm for computing the Voronoi diagram of circles with
arbitrary radii in the plane [20], [21], [22] and, in 2016, Lee
et al. reported a robust incremental algorithm for the circle
Voronoi diagram [23]. In 2004, Kim et al. reported its three
dimensional counterpart, the algorithms for the Voronoi dia-
gram of atoms: the edge-tracing algorithm [24], [25] and the
region-expansion algorithm [26] both stored the topology in
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a radial-edge data structure [27]. They have shown that the
Voronoi diagram can be used for solving various molecular
biology problems such as the Connolly surface [28], interac-
tion interface [29], etc. [30], [31].

On the other hand, efforts to devise more convenient and
efficient computational constructs derived from the Voronoi
diagram have also been made. In 1983, the concept of the
alpha-shape in a plane was proposed as a generalization of
the convex hull of a point set by Edelsbrunner et al. [32],
and Edelsbrunner and M€ucke [33], in 1994, extended the
two-dimensional alpha-shape to the three-dimensional one
and reported an algorithm based on the Delaunay triangula-
tion, i.e., the dual of the ordinary Voronoi diagram. In an
effort to account for the size differences among atoms,
Edelsbrunner also reported the weighted alpha-shape
using the regular triangulation, the dual of the power dia-
gram [34]. The weighted alpha-shapes have been used in
many protein related problems. Winter et al. reported a
review paper discussing (weighted) alpha-shape as well as
beta-shape and applications to various protein related prob-
lems [35]. Gameiro et al. proposed a method to measure the
softness of a protein by persistence diagrams which is
extracted from the weighted alpha-complexes [36]. Recog-
nizing that the generalization of the alpha-shape concept
through the Voronoi diagram of atoms could be useful for
solving various shape-related problems in molecular biol-
ogy, Kim et al. devised the concept of the beta-shape where
“beta” implies “b lending” using a rolling ball of radius
b [37]. Based on the quasi-triangulation, which is the dual
structure of the Voronoi diagram of atoms, they developed
the beta-complex theory and showed that many molecular
structure problems could be efficiently solved within the
unified framework of the beta-complex [38].

In visualization and computer graphics community,
many studies on molecular structures have been reported to
visualize and define molecular structures. Visualization
methods for molecular surfaces from molecular dynamics
simulations are reported in [39], [40]. Grottel et al. reported
a framework called MegaMol for visualizing large scale
molecular system including large molecular surfaces [41].
Lindow et al. proposed a new type of molecular surface
called ligand excluded surface which is defined by a few
geometric configurations of a ligand [42]. Detecting voids
and tunnels in molecules is known to be important to study
molecular behavior. Lindow et al. reported an extraction
and visualization method of molecular tunnels, which is
based on the Voronoi diagram of atoms [11]. Kim et al. also
reported a method to recognize molecular voids and tun-
nels using the Voronoi diagram of atoms and its derived
construct beta-complex [43], [44]. Their method also com-
putes geometric properties such as volume and surface area
of voids and tunnels accurately and efficiently. Fig. 1 shows
such an example of detected tunnel of a protein by Kim
et al.’s method. Byska et al. developed AnimoAminoMiner
which visualize tunnel properties of a protein over time in
molecular dynamics simulation [45].

Being a generalization of the ordinary alpha-complex, the
beta-complex has both similarities and dissimilarities with
the weighted alpha-complex. For users to choose an appro-
priate one for solving their problems at hand, it is necessary
to correctly understand these similarities and dissimilarities.

Through contacts with users of our software library, we
learned that there were misunderstandings that caused diffi-
culties for researchers to make a right choice. For this reason,
we report this paper to point out the differences as clearly as
possible. Voronoi Diagram Research Center (VDRC, http://
voronoi.hanyang.ac.kr) freely provides application pro-
grams, such as BetaVoid [44], BetaMol [46] and BetaCon-
cept [47], for molecular applications based on the Voronoi
diagram, the quasi-triangulation, and the beta-complex.

In this paper, an “atom” denotes a spherical ball with a
center and a radius. We prefer the “Voronoi diagram of
atoms” to the “additively weighted Voronoi diagram”
because it is more intuitive for researchers in application
areas, particularly in molecular biology and material sci-
ence. We denote “(weighted) alpha-complex” to be both
ordinary alpha-complex and weighted alpha-complex. Vor-
onoi diagrams and triangulations are sometimes referred to
as primary structures and dual structures, respectively.

This paper is organized as follows: Section 2 presents the
basics of the Voronoi diagrams of the different types and their
corresponding dual structures. Section 3 presents the basics
of three main structures: the ordinary alpha-complex, the
weighted alpha-complex, and the beta-complex. Section 4
compares the different distance functions used for the beta-
complex and the (weighted) alpha-complex and their influ-
ence on the topological structures. Section 5 summarizes the
similarities and dissimilarities between the beta-complex and
the (weighted) alpha-complex. Section 6 compares the beta-
shape and the (weighted) alpha-shape. Section 7 presents the
consequence of the dissimilarities between the beta-complex
and the weighted alpha-complex from the view point of
application problems. Then, the paper concludes.

2 PRIMAL AND DUAL STRUCTURES

Let P ¼ fp1; p2; . . . ; png be a set of point sites in Rd. The Vor-
onoi cell of pi is defined as VCðpiÞ ¼ fx 2 Rd j dðx; piÞ �

Fig. 1. A recognized tunnel of a protein (PDB code: 1jd0) using the beta-
complex. The tunnel (blue) allows a spherical probe of radius 1.4A

�
to freely

move through the protein (Amovie file showing the 3D views of this exam-
ple is presented as a supplemental material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2018.2873633/): (a) Notice the direct (white) hole through
the protein modeled by 4,699 spherical atoms, (b) the protein with the rec-
ognized tunnel (blue), (c) the tunnel with the partially transparent atoms,
and (d) another view of 90-degree rotation around the horizontal axe.
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dðx; pjÞ; i 6¼ jg where dðx; pÞ is the Euclidean distance
between two points x, p 2 Rd. The Voronoi diagram of P is
defined as VDðP Þ ¼ fVCðp1Þ;VCðp2Þ; . . . ;VCðpnÞg where
the connectivity among the vertices, edges, faces, and
cells of the Voronoi diagram in R3 is appropriately repre-
sented [48], [49]. Efficient and robust codes for computing
VDðP Þ in R2 and R3 are available [50], [51], [52]. The dual of
VDðP Þ is the Delaunay triangulation DTðP Þ and the trans-
formation between VDðP Þ and DTðP Þ takes linear time in
the number of simplexes. DTðP Þ is a simplicial complex.
The number of vertices, edges, faces, and tetrahedral cells in
DTðP Þ is bounded by O(n2) in R3 [33].

Suppose that pi 2 P is now assigned a weight wi � 0. Let
Pw ¼ fpw1 ; pw2 ; . . . ; pwng where pwi ¼ ðpi; wiÞ. Let PCðpwi Þ ¼
fx 2 Rd j powðx; pwi Þ � powðx; pwj Þ; i 6¼ jg be the power cell
of pwi where powðx; pwi Þ ¼ dðx; piÞ2 � wi is the power distance
from x to pwi . PDðPwÞ ¼ fPCðpw1 Þ;PCðpw2 Þ; . . . ;PCðpwn Þg is
called the power diagram where the connectivity among the
vertices, edges, faces, and cells in R3 are appropriately rep-
resented [16]. The power distance powðx; pwi Þ from a point x
to a weighted point pwi has the following geometric interpre-
tation: pwi ¼ ðpi; wiÞ corresponds to a spherical atom ai ¼
ðpi; riÞ with the center pi and the radius ri ¼ ffiffiffiffiffi

wi
p

. See
Fig. 2a. Then, powðx; pwi Þ is the square of the tangential dis-
tance from x to ai. The power bisector between pwi and pwj is
a set of points fx 2 Rd j powðx; pwi Þ ¼ powðx; pwj Þg, and it
forms a plane. Hence, every power cell is bounded by pla-
nar facets. The power bisector passes through @ai \ @aj if
ai \ aj 6¼ ; where @ai denotes the boundary of ai, and there-
fore it translates toward the smaller weighted point from
the perpendicular bisector of pi and pj. Hence, the power
diagram reflects atom size difference from the power dis-
tance sense, although no accuracy in Euclidean distance
sense. A power cell PCðpwi Þ may not contain pi. This prob-
lem occurs frequently to cause computational trouble in bio-
molecules around hydrogen [17]. The dual of a power
diagram PD is called a regular triangulation RT and is a
simplicial complex [53]. The transformation between PD
and RT takes linear time with respect to the number of sim-
plexes [48]. The number of vertices, edges, faces, and tetra-
hedral cells in RT are bounded by O(n2) in R3 [49], [54].

The Voronoi diagram of atoms is defined as follows. Let
A ¼ fa1; a2; . . . ; ang be a set of atoms where ai ¼ ðpi; riÞ is a
sphere with the center pi and radius ri. We assume that
an atom is not fully contained by another. Let VCðaiÞ
denote the Voronoi cell of ai defined as VCðaiÞ ¼ fx 2 Rd j
dðx; piÞ � ri � dðx; pjÞ � rj; i 6¼ jg. Then, the Voronoi
diagram of atoms A is defined as VDðAÞ ¼ fVCða1Þ;

VCða2Þ; . . . ;VCðanÞg where the connectivity among the
topological entities are appropriately represented by an effi-
cient data structure like a radial-edge data structure. Since
the initial concept and following studies of the Voronoi dia-
gram of atoms [16], [19], [55], [56], [57], its robust and effi-
cient computation has long been a challenge. Kim et al.
reported two algorithms with Oðn3Þ time complexity in
the worst-case: the edge-tracing algorithm [24], [25] and the
region-expansion algorithm [26]. They have shown that this
Voronoi diagram is powerful for solving various geometry-
related problems in molecular biology [29], [30], [44], [58],
[59], [60], [61]. While this Voronoi diagram has been dis-
cussed since mid-eighties, its dual was never discussed
until Kim et al. [62] proposed the quasi-triangulation QT in
2006. QT is not necessarily a simplicial complex. It is a
quasi-triangulation because most simplexes locally satisfy
the simplicial complex condition and is a quasi-triangulation
because there may be some, mostly very few, simplexes
which violate the simplicial complex condition and their
influences are mostly local. The condition that causes the
violation is called an anomaly and has been well-studied [63].
For the details, see [62], [64].

3 BETA-COMPLEXES AND (WEIGHTED)
ALPHA-COMPLEXES

3.1 Ordinary Alpha-complexes

The following paragraph, quoted from [33], explains alpha-
shapes very intuitively yet clearly for a point set P and a
nonnegative real number a: “Think of R3 filled with Styro-
foam and the points of P made of more solid material, such
as rock. Now imagine a spherical eraser with radius a. It is
omnipresent in the sense that it carves out Styrofoam at all
positions where it does not enclose any of the sprinkled
rocks, that is, points of P . The resulting object will be called
the alpha-hull. To make things more feasible we straighten
the surface of the object by substituting straight edges for
the circular ones and triangles for the spherical caps. The
obtained object is the alpha-shape of P .” If a ¼ 1, the
alpha-shape is identical to the convex hull of P . If a ¼ 0, the
alpha-shape is reduced to the point set P itself. An alpha-
shape may contain triangular faces and edges and may be
non-manifold due to possible handles, interior voids, and
dangling edges (The weighted alpha-shape and the beta-
shape also have this property). The boundary of an alpha-
shape is a simplicial complex because it is a subset of the
Delaunay triangulation DT. This type of alpha-shape for a
point set P is called an ordinary alpha-shape. The subset of
the DT contained within an ordinary alpha-shape, including
the simplexes on its boundary, is the ordinary alpha-complex,
which is also a simplicial complex.

The formal definition of ordinary alpha-complex is given
in [33] and we rewrite as the following.

Definition 1 (Ordinary alpha-complex). Let T � P be the
set of points constituting a simplex sT 2 DT, and let rT be the
radius of the smallest sphere bT touching all the points in T .
Then, the ordinary alpha-complex of P with a parameter
a is defined as a subcomplex of DT that contains sT 2 DT if
(1) rT < a and bT is empty, or (2) sT is a face of another sim-
plex in the alpha-complex.

Fig. 2. Relationship between a weighted point and an atom: (a) the
power distance from a point x to a weighted point pwi ¼ ðpi; wiÞ, and (b)
the two weighted point bw ¼ ðpb; rwÞ and pwi are orthogonal.
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The algorithm for alpha-complexes is based on a set of
simple rules about the conditions for each simplex s in
DT [33]. The rule determines whether s 2 DT will be a
member of the resulting alpha-complex for a given parame-
ter a by checking its state among four possibilities: exterior,
singular, regular, or interior. A simplex s is exterior if it
does not belong to the corresponding alpha-complex; s is
singular if it belongs to the boundary of the alpha-shape
but it does not bound the interior of the alpha-shape; s is
regular if it belongs to the boundary of the interior of the
alpha-shape; s is interior if it belongs to the interior of the
alpha-shape. For the details, see [33].

3.2 Weighted Alpha-complexes

The weighted alpha-complex is an effort to incorporate atom
size into an ordinary alpha-complex. Each point pi 2 P is
assigned a weight wi. Then, the weighted alpha-complex is
extracted from the regular triangulation RT of Pw [34]. The
edges and faces of RT, which are determined to be larger than
a spherical eraser, are removed from the regular triangu-
lation. Then, what is left is the weighted alpha-complex
and the space occupied by the weighted alpha-complex
defines the weighted alpha-shape. Both the weighted alpha-
complexes and the boundary of the weighted alpha-shapes
are also simplicial complexes. Weighted alpha-shapes are
non-manifold in general.

The formal definition is given in [34], and we rewrite as
the following by changing some symbols for notational
consistency.

Definition 2 (Weighted alpha-complex). Let T � Pw be
the set of weighted points constituting a simplex sT 2 RT. Let
bwT ¼ ðpb; rwT Þ be the weighted point with the minimum weight
rwT that is orthogonal to all pw 2 T . Let bwT be orthogonal to
pw ¼ ðp; wÞ if dðp; pbÞ2 � rwT � w ¼ 0. Fig. 2b shows such an
orthogonal case between two weighted points. The weighted
point bwT is called conflict-free if dðp; pbÞ2 � rwT � w < 0 for all
weighted point pw 2 Pw � T . Then, the weighted alpha-
complex of a parameter aw is defined as a subcomplex of RT
that contains sT 2 RT if (1) rwT < aw and bwT is conflict-free, or
(2) sT is a face of another simplex in the weighted alpha-complex.

The rules for extracting ordinary alpha-complexes app-
lies to weighted alpha-complexes.

The power diagram is based on the power distance, and
the weighted alpha-complex is extracted from the power
diagram. Hence, the weighted alpha-complex takes the size
variations among the spherical atoms into account in the
power distance sense. The power diagram and the weighted
alpha-complex can correctly provide with the information
on the intersections among atoms, and the weighted alpha-
complex is used to compute the volume and the surface
area of an atomic complex [65]. However, when two atoms
do not intersect, the weighted alpha-complex cannot prop-
erly convey the Euclidean distance between the two atoms.

3.3 Beta-complexes

To correctly account for the atom size difference of mole-
cules in the Euclidean distance, the concept of the beta-
complex was proposed initially in 2006 [37]. Think of R3

filled with styrofoam and some spherical rocks of arbitrary
radii are scattered within. Carving out the styrofoam with

an omnipresent spherical eraser of radius b will result in a
blended geometric object called the beta-hull. Since the
eraser is omnipresent, there can be interior voids and tun-
nels as well. The Connolly surface in biology is indeed
equivalent to the beta-hull of a molecule [66], [67]. The
spherical eraser is called a beta-probe. Suppose that we have
a beta-hull of an atom set A. We straighten the surface of
the beta-hull by substituting straight edges for circular ones
and triangles for spherical caps where the vertices are the
centers of the atoms contributing to the boundary of the
beta-hull. The straightened object bounded by the planar
facets is the beta-shape corresponding to the beta-probe. The
subset of the quasi-triangulation QT of A contained within
and on the boundary of the beta-shape is the beta-complex. A
beta-complex is extracted from QT by removing the edges
and faces determined to be larger than a probe. The extrac-
tion of beta-complexes from a QT is simply done by watch-
ing parsing tables given in [38]. The beta-complex is not
necessarily a simplicial complex but the beta-shape bound-
ary is a simplicial complex.

The formal definition of beta-complex is given in [38],
and we rewrite as the following.

Definition 3 (Beta-complex). Given a set A of atoms in R3,
let T � A be the set of atoms constituting a simplex sT 2 QT.
Let bT be the smallest empty sphere simultaneously tangent to
each atom in T with the same orientation as sT , and let rT be
the radius of bT . Then, the beta-complex of a parameter b is
defined as the simplex set fsT ; sT 0 jT 0 � T; 1 � jT j � 4; for all
possible T � A where rT � bg.
Fig. 3 shows a set of eight two-dimensional atoms and

two instances of the beta-complex for two different probe
radii b’s in the plane. Fig. 3a shows the beta-hull for a probe
of radius b1 > 0. Fig. 3b shows the quasi-triangulation of
the atom set: All the vertices, edges, and triangular faces
(which are blank for visualization convenience) belong to
the member of the quasi-triangulation. Figs. 3c and 3d show
the beta-complex and beta-shape corresponding to b1,
respectively. Note that the smallest atom a3 corresponds to
a non-manifold vertex in the beta-shape because a dangling
edge is connected to the vertex. Figs. 3e and 3f show the
beta-complex and beta-shape, respectively, for a probe of
radius b2 < b1 where the blank triangle does not belong to
a member of both beta-complex and beta-shape. New non-
manifold vertices and dangling edges are created in the
beta-shape for b2. Note that both beta-complexes, and thus
both beta-shapes as well, are computed from the unique
Voronoi diagram. The eight atoms are as follows: a1 ¼
ðx1; y1; r1Þ ¼ ð132; 304; 52Þ, a2 ¼ ð180; 140; 40Þ, a3 ¼ ð228;
216; 16Þ, a4 ¼ ð236; 320; 38Þ, a5 ¼ ð296; 232; 31Þ, a6 ¼ ð308;
312; 59Þ, a7 ¼ ð344; 252; 33Þ, and a8 ¼ ð416; 180; 44Þ. This
atom set is also used for other illustrations later on.

The beta-complex is very powerful for molecular struc-
ture problems due to the following dual properties. Accurate
proximity: The beta-complex has correct proximity informa-
tion among all the atoms both within and on the boundary
of molecule where the boundary is defined by a probe. Con-
cise abstraction: The beta-complex maintains the proximity
information among the nearest neighbors of each atom in
the topology among simplexes. The beta-shape is used for
the efficient computation of the Connolly surface [58], the
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recognition of pockets [68], the recognition of molecular
voids and tunnels [69], etc; the beta-complex is used for
molecular mass properties such as the volume and bound-
ary area [70].

3.4 Voronoi Diagrams, Triangulations, Complexes,
and Shapes

The primal structures (i.e., Voronoi diagrams) transform to
the dual structures (i.e., triangulations). Complexes are
extracted from the dual structures, and the boundaries of
(the space taken by) the complexes define the shapes. Fig. 4
shows this process for the case of a point set in a plane.

Fig. 5 summarizes the transformation in Fig. 4 for each
complex structure: Computation of the Voronoi diagram,
transformation to its triangulation, and extraction of the
complex and shape. We emphasize that the fidelity of each
complex to the Euclidean distance increases from the ordi-
nary alpha-complex to the weighted alpha-complex and to
the beta-complex. This is obvious because, for a given set of
atoms with arbitrary radii, the Euclidean fidelity increases

from the ordinary Voronoi diagram to the power diagram
and to the Voronoi diagram of atoms.

The time complexities for computing the three types of
Voronoi diagrams are all Oðn3Þ in the worst case, where n is
the number of input generators in R3. As the combinatorial
complexities of all three types of Voronoi diagrams are
Oðn2Þ in R3 [16], [48], [49], there can be Oðn2Þ vertices,
edges, and faces in the Voronoi diagram in R3. However,
our experiments show that the computation time of the Vor-
onoi diagrams for most molecular structures from the pro-
tein data bank (PDB) is strongly linear in the number of
atoms. The worst case scenario usually does not occur for
biomolecules because atoms are constrained to be connected
due to the chemical bonds and are clustered around each
other due to the van der Waals force, electrostatic force,
hydrogen bonding, etc. The actual computation time
requirement is in the order of the ordinary Voronoi diagram
of points, the power diagram, and the Voronoi diagram of
atoms. For all three structures, the dual transformation
takes OðmÞ time in the worst case, where m is the number
of simplexes in the dual structure and m ¼ OðnÞ in most
applications we encountered. It is noteworthy that the dual
transformation consists of only symbolic operations and
thus is very fast. Fig. 6a shows the computation time of QT
for 100 protein data in PDB. Each green diamond in the
graph denotes computation time to apply the dual transfor-
mation in addition to the time to compute the Voronoi dia-
gram of atoms. The graph shows linear time behavior and
approximately 1,600 atoms are processed in a second to
obtain QT on an ordinary desktop computer. The extraction
of a complex takes OðlogmÞ time for simple queries if the
complex is binary-searched from a sorted list. A discussion
of more general queries is presented in [71].

As the size of biomolecules such as proteins is usually
big, i.e., tens of thousand or hundreds of thousand, the com-
putation speed of 1,600 atoms/sec for constructing QT may
not be sufficiently fast for practical applications. Hence, we
have developed an approach to preprocess to construct the
Voronoi diagram structure of molecules and store the dual
structure in a database, called QTDB, to upload to solve
applications. The file format is called a quasi-triangulation
file format (QTF) which stores the topology information of
QT [72]. Once a QTF file is available in QTDB, it can be
quickly uploaded (and can be transformed to the corre-
sponding Voronoi diagram in the linear time about the
number of simplexes, if necessary). The red rectangles in
each Fig. 6a and 6b represent the loading time of the QTs of
the 100 protein structures from QTDB: We compare it with
the computation time of RT and DT as shown in Fig. 6b. RT
and DT were computed using CGAL [51] of version 4.0.2 in
our experiment. Fig. 6b shows that the loading time of QT
from QTDB is comparable to the construction of RT. Hence,
we propose to preprocess each PDB file to generate a QTF
file and store in QTDB to solve application problems using

Fig. 4. The transformation from the primal structure of a point set to the
dual structure to the complex and to the shape in R2. The shaded and
blank triangles are of significance and will be later explained.

Fig. 5. The transformations for the (weighted) alpha-complexes and the
beta-complex. The euclidean fidelity increases from the ordinary alpha-
complex to the weighted alpha-complex and to the beta-complex.

Fig. 3. Relationship among the beta-hull, beta-complex, beta-shape, and
quasi-triangulation: (a) the beta-hull for b1, (b) the quasi-triangulation (all
blank triangles belong to the member), (c) the beta-complex for b1, (d)
the beta-shape for b1, (e) the beta-complex for b2 < b1 (the blank trian-
gle does not belong to the member), and (f) the beta-shape for b2.
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QT. Details on QTF is presented in [72]. We estimate that the
RT construction algorithm processes approximately 30,000
atoms per second. As the edge-tracing algorithm of the Vor-
onoi diagram can process approximately 1,600 atoms per
second, the construction of RT is roughly 19 times faster
than that of QT.

4 DIFFERENCES DUE TO DIFFERENT DISTANCE

FUNCTIONS

We now compare the influence of the difference between
the Euclidean distance and the power distance on the prox-
imity among atoms. Fig. 7 shows the cases where an edge
is created between two particles in the ordinary alpha-
complex (Figs. 7a and 7b) and the beta-complex (Figs. 7c
and 7d). Fig. 7a shows that an edge is created between the
two points p1 and p2 when the alpha-probe (shown by the
dashed circle) is sufficiently large so that it can touch the two
points simultaneously. Fig. 7b is an alternative interpretation
of this case that the two circles enlarged by the radius a and
centered at the two points intersect each other. Figs. 7c and 7d
shows a corresponding situation for the beta-complex. Let
a0i ¼ ðpi; ri þ bÞ be the enlarged atom from ai ¼ ðpi; riÞ. In

Fig. 7c, an edge is created between the centers of two atoms
a1 and a2 because the beta-probe simultaneously touches the
two atoms, and in Fig. 7d, the two circles a01 and a02 enlarged
by the beta-probe radius b intersect each other. Therefore,
the creation of an edge simplex in both the ordinary alpha-
complex and beta-complex is intuitive.

While the parameters a and b are the radii of the alpha-
and beta-probes for the ordinary alpha-complex and beta-
complex, respectively, the parameter aw of the weighted
alpha-complex used in [34] is the weight of the probe. Then,ffiffiffiffiffiffi
aw

p
corresponds to the radius of the spherical probe in the

weighted alpha-complex. This is similar to the fact that the
weighted point pwi ¼ ðpi; wiÞ in the power diagram is inter-
preted as a spherical atom whose radius is

ffiffiffiffiffi
wi

p
as shown in

Fig. 2. Therefore, the interpretation of aw of the weighted
alpha-complex in relation to a probe radius is different from
that of the parameter a of an ordinary alpha-complex.
Hereafter, we will use a as the unified parameter to denote
the probe radius of both the ordinary and weighted alpha-
complexes for notational consistency and convenience. If
distinction is required, we use aord and awei as parameters of
ordinary alpha-complexes and weighted alpha-complexes,
respectively, i.e., awei ¼

ffiffiffiffiffiffi
aw

p
. This interpretation shall be

clear in the context.
While the creation of an edge is intuitive in the beta-com-

plex as shown in Figs. 7c and 7d, it is not so in the weighted
alpha-complex. In the weighted alpha-complex, an edge is
created if the alpha-probe of radius a can intersect two
atoms at a right angle simultaneously [34]. This condition
can be detected by checking if the two enlarged atoms,
whose radii ~ri are given as

~ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ a2

q
; (1)

Fig. 6. Computation time for QT, DT, and RT in R3 of 100 protein data in
PDB. QT is computed by the Voronoi diagram of atoms using edge-trac-
ing algorithm. DT and RT are computed by CGAL [51] (version 4.0.2).
QT via QTF is obtained by loading QTF file from QTDB. This experiment
was done by a PC of Intel Core 2 Duo 3.0 GHz CPU and 2 GB RAM.
(a) Computation time of QT: QT from scratch and QT by loading QTF
file. (b) Computation time of QT via QTF, RT, and DT.

Fig. 7. The conditions when the edges of an ordinary alpha-complex and
a beta-complex are created. (a) An edge created with respect to the
alpha-probe, (b) an edge created with respect to enlarged disks, (c) an
edge created with respect to a beta-probe, and (d) an edge created with
respect to enlarged disks.
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i ¼ 1 and 2, intersect or not. Fig. 8a shows an example of an
alpha-probe and two atoms in the weighted alpha-complex
in R2. Note that the alpha-probe intersects both atoms at a
right angle, and therefore an edge simplex is defined
between the centers of the two atoms. Let ~ai ¼ ðpi; ~riÞ be the
enlarged atom from ai where ~ri is given by Eq. (1). Then, ~a1
and ~a2 intersect each other and thus an edge is created in
the weighted alpha-complex. In this case, the alpha-probe
intersecting both atoms at a right angle is centered at one of
the two intersections between @~a1 and @~a2, as shown in
Fig. 8b. Figs. 8c and 8d shows a case that an edge is not
defined between the two atoms. Note that the a-probe
cannot be located so that it intersects the boundaries of
both atoms at a right angle even if it can simultaneously
intersect both atoms. Be aware that ~a’s are atoms enlarged
by different amounts, whereas a0’s are those enlarged by a
constant amount as shown in Fig. 10b. The parameters
and the enlarged radius for each complex structure are
summarized in Table 1.

It is obvious that the radius ~r of each enlarged atom
increases monotonically as a increases. For a fixed a,
however, the amount of radius difference decreases as r

increases, which means that the parameter a has less influ-
ence on larger atoms.

Lemma 1. Let di ¼ ~ri � ri be a radius increment when a > 0 is
fixed. Then, di > dj iff ri < rj.

Proof. Let dðr;aÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � r. Then,

d

dr
dðr;aÞ ¼ r� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; (2)

is always negative if a > 0. Therefore, dðr;aÞ decreases
as r increases. tu
Therefore, given an a-value in the weighted alpha-com-

plex, the smaller the atom radius r is, the larger the radius
increment d is in the enlarged atom. Fig. 8b clearly verifies
Lemma 1: r1 < r2 and therefore d1 > d2. Also we know that
radius increment dðr;aÞ is non-linear with respect to r and/
or a from Eq. (2).

Fig. 9 shows two atomic arrangements: the atoms in
Fig. 9a are smaller than those in Fig. 9b. Let distðai; ajÞ be
the Euclidean minimum distance between the two atoms ai
and aj. In both figures, distða1; a2Þ ¼ distða3; a4Þ ¼ 2:0 and
both alpha-probe radii are kept identically as 2.0. In this
configuration, ~a1 and ~a2 intersect each other but ~a3 and ~a4
do not. Therefore, an edge is created between a1 and a2.
However, no edge is created between a3 and a4 even if the
minimum distances are same. In this sense, the weighted
alpha-complex may not be very intuitive for applications
where a bottleneck distance plays an important role. See
Section 7 for the consequence of this property in applica-
tions. Therefore, this observation leads to the following
lemma that easily generalizes to higher dimensions.

Lemma 2. Consider a set A ¼ fa1; a2g in the plane, and an
alpha-probe is given with a � distða1; a2Þ=2. An edge between
a1 and a2 of the weighted alpha-complex may not be defined,
whereas the edge is always defined in the beta-complex of b ¼ a.

We observe the geometric implication of a in the
weighted alpha-complex in relation to the beta-complex.
Both Figs. 10a and 10b have an identical set of two atoms,
A ¼ fa1; a2g, and they correspond to the weighted alpha-
complex and the beta-complex, respectively. In Fig. 10, both
the probe radii are identical, i.e., a ¼ b ¼ 1:5. From the
figure, we know that the influence of a is much less than b

TABLE 1
Summary of the Parameter and Enlarged Atom’s

Radius for Each Complex Structure

Complex Parameter
(probe radius)

Radius of
enlarged atom

Beta-complex b r0i ¼ ri þ b

Weighted alpha-complex aweið¼
ffiffiffiffiffiffi
aw

p Þ ~ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ a2

wei

p
Ordinary alpha-complex aord r0i ¼ ri þ aord

The subscripts “wei” and “ord” of parameter a’s are omitted if its meaning is clear.

Fig. 9. Same-sized bottlenecks between atoms and a same a-value
leading to different consequences in the weighted a-complex. (a) An
edge is created between the centers of a1 and a2, and (b) no edge is
created between a3 and a4.

Fig. 8. The interpretation of the a-value in the weighted alpha-complex: a

is the radius of the alpha-probe, and ri ¼ ffiffiffiffiffi
wi

p
and ~ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ a2

p
,

i ¼ 1; 2. The alpha-probe intersects a1 and a2 simultaneously at the right
angle iff the boundaries of ~a1 and ~a2 intersect. The intersection points
become the centers of the alpha-probe.
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even if a ¼ b. In Fig. 10a, the two enlarged atoms ~a1 and ~a2 do
not intersect, and therefore the alpha-probe cannot intersect
both atoms at a right angle. On the other hand, the beta-probe
in Fig. 10b touches both atoms simultaneously and the
enlarged atoms a01 and a02 intersect each other. Therefore, for
the given probe of radius 1.5, an edge is created in the beta-

complex, whereas no edge is created in the weighted alpha-
complex. The beta-complex is obviouslymore intuitive.

It is informative to observe the evolution of the beta-
complex and the weighted alpha-complex for an identical
set of atoms as the parameters b and a increase from 0 to 1,
respectively. Figs. 11 and 12 show such evolutions of the
beta-complex and the weighted alpha-complex, respec-
tively. Each figure enumerates all possible complexes as the
parameter increases continuously. This atom set is identical
to the one used in Fig. 3.

When a beta-complex is defined by a probe of radius
b ¼ 0, it is called a zero beta-complex. Similarly, the beta-
shape of b ¼ 0 is called a zero beta-shape. Similar convention
applies to (weighted) alpha-complexes and (weighted)
alpha-shapes. Fig. 11a shows the zero beta-complex: There
is a triangle because three atoms a5, a6, and a7 have a com-
mon intersection; there is a dangling edge because the corre-
sponding two atoms a4 and a6 intersect each other; each of
the other four isolated atoms a1, a2, a3, and a8 maps to a dis-
connected vertex. Fig. 11b introduces a new edge between
a1 and a4 because distða1; a4Þ is the smallest among all the
possible pairs of the non-intersecting atoms. A similar pro-
cedure sequentially produces Fig. 11c through 11f by add-
ing one edge at a time as the beta-probe continues to grow.
Fig. 11g has a new triangle~p3p5p6 because the correspond-
ingly enlarged atoms a03, a

0
5, and a06 have a common intersec-

tion. Continuing this procedure, the beta-complex evolves

Fig. 10. For the same a and b values, a-value has less influence than
b-value: (a) no edge is defined in the weighted alpha-complex because
~a1 and ~a2 has no intersection, and (b) an edge is defined between a1 and
a2 in the beta-complex.

Fig. 11. The evolution of beta-complexes of the atom set A as the probe
radius b increases from 0 to 1. The set A is identical to the one used
in Fig. 3.

Fig. 12. The evolution of the weighted alpha-complexes as the probe
radius a increases from 0 to 1. The set A is identical to the one used
in Fig. 3.
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by adding one new simplex, either an edge or a triangle, at a
time as the beta-probe grows. Note that the last triangle
added in Fig. 11q has two dotted edges. Each dotted edge is
shared by two triangles and is interior topologically, but it
is on the boundary geometrically.

Fig. 12a shows the zero weighted alpha-complex (a ¼ 0).
Note that this weighted alpha-complex is identical to the
zero beta-complex in Fig. 11a. This is because both com-
plexes convey the same information of the intersection
among the atoms. Immediately after this initial complex,
the next weighted alpha-complex in Fig. 12b becomes differ-
ent from the beta-complex in Fig. 11b. Observe that the new
edge in Fig. 12b is added between a3 and a5. This is because
the sizes of the atoms a1 and a4 are larger than those of a3
and a5, and thus the enlargement of a1 and a4 is much
smaller than that of a3 and a5. Fig. 12c through 12f are iden-
tical to those of Fig. 11c through 11f, respectively. Then, the
weighted alpha-complex in Fig. 12g is different from the
beta-complex in Fig. 11g in the way a new triangle is
defined. Thus, this difference inherits to the succeeding
weighted alpha-complexes to the last one. Note that the last
triangle added in Fig. 12o is different from that in Fig. 11q
and it does not have any dotted edge.

Fig. 13 shows the evolution of the weighted alpha-com-
plex for the enlarged atom set A0. The radius of each atom
a0i 2 A0 is increased by 28 from the radius of ai 2 A,
i ¼ 1; 2; . . . ; 8. This figure presents an interesting issue.
Surprisingly, every weighted alpha-complex in Fig. 13 does
not have an identical counterpart in Fig. 12. Instead,
the weighted alpha-complexes from Fig. 13a through 13g are
identical to the beta-complexes of Fig. 11h through 11n. In
Figs. 13h and 11o, the newly added triangles are different.
The complexes in both Figs. 13i and 11p are identical: This is
the last step in the evolution of the weighted alpha-complex
ofA0 but there is onemore step for the beta-complex.

Fig. 14 shows the dual structures used in the previous
three examples. Figs. 14a and 14b shows the quasi-triangu-
lation and the regular triangulation of the same atom set A

from which the weighted alpha-complexes and the beta-
complexes are extracted, respectively. Fig. 14c shows the
regular triangulation of the enlarged atom set A0 from
which the weighted alpha-complexes in Fig. 13 are extr-
acted. Note that the three triangulations are all different.
These dual structures are entirely realized in all complexes
where the probe size approaches infinity.

5 BETA-COMPLEXES VERSUS (WEIGHTED)
ALPHA-COMPLEXES

In this section, we compare properties of the beta-complexes
and the (weighted) alpha-complexes. Let A be a set of atoms
and P be the set of the atom centers in A.

5.1 Equal Radii of Atoms

If the radii of atoms inA are identical, both the beta-complex
and the (weighted) alpha-complex have strong similarities.

Lemma 3. Suppose that the radii of all the atoms in A are
reduced to zero. Both the beta-complex and the weighted alpha-
complex of A are identical to the ordinary alpha-complex of P
if a ¼ b.

Proof. When all the atoms in A have zero radius, both the
quasi-triangulation and the regular triangulation reduce
to the Delaunay triangulation DT(P ). Hence, the simplexes
constituting the beta-complex as well as the weighted
alpha-complex are extracted from the same dual structure
DT(P ). In addition, both the beta-probe and alpha-probe
have the same radius a ¼ b; and the intersection criteria are
also identical since all the given atoms are points. There-
fore, the resulting three complex structures are identical. tu
In this paper, the identity of two structures means that

both they have identical sets of vertices and the topologies
among the vertices, edges, and cells are also identical. In
other words, the sets of the vertices, edges, faces, and cells
are all identical.

Lemma 4. Suppose that the radii of all the atoms in A are identi-
cally r. Then, the beta-complex of A is identical to the ordinary
alpha-complex of P if a ¼ bþ r.

Proof. Because all the atom radii in A are identically r, QT
(A) and DT(P ) are identical. It is obvious that the mini-
mum tangent sphere of the atoms defining each simplex
in the dual structure has a smaller radius by r than that of
the atom centers. Hence the same simplex set is extracted
from the dual structure if a ¼ bþ r. tu
A stronger equivalence condition follows.

Lemma 5. Suppose that the radii of all the atoms in A are identi-
cally r. Then, the beta-complex of A is identical to the weighted

Fig. 14. Dual structures. (a) The quasi-triangulation of A, (b) the regular
triangulation of A, and (c) the regular triangulation of A0.

Fig. 13. The evolution of the weighted alpha-complexes for the enlarged
atoms A0 as the probe radius a increases from 0 to 1. The radius of
each atom in A0 is increased by 28 from the radius of each correspond-
ing atom in A where A is the one used in Fig. 3.
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alpha-complex of A with parameter a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2rb

p
, and the

weighted alpha-complex of A is identical to the beta-complex of

A with parameter b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � r.

Proof. Because all the atom radii are r, QT(A) and RT(A) are
identical to DT(P ). For each simplex of the triangulation,
each atom touches the beta-probe when d ¼ rþ b where
d is the distance between the atom center and the beta-
probe. Similarly, each atom and the alpha-probe are
orthogonal when d2 ¼ r2 þ a2. From the above equations,

we obtain ðrþ bÞ2 ¼ r2 þ a2. Then, we get a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2rb

p

and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � r. tu
Lemma 6. Suppose that the radii of all the atoms in A are identi-

cally r. Then, the ordinary alpha-complex of P with the parame-
ter aord is identical to the weighted alpha-complex of A with the

parameter awei if aord ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
wei þ r2

p
.

Proof. By Lemma 5, the weighted alpha-complex is identi-

cal to the beta-complex if bþ r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
wei þ r2

p
. In addition,

by Lemma 4, the beta-complex is identical to the ordinary
alpha-complex if aord ¼ bþ r holds. Hence, the ordinary
alpha-complex is identical to the weighted alpha-complex

if aord ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
wei þ r2

p
. tu

Summary. Given that the radii of all the atoms in A are
identically r with the set P of their centers, the beta-complex
of A reduces to the ordinary alpha-complex of P if aord ¼
bþ r, the beta-complex reduces to the weighted alpha-

complex if awei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2rb

p
, and the weighted alpha-

complex reduces to the ordinary alpha-complex if
aord ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
wei þ r2

p
. Fig. 15 shows this observation.

5.2 Unequal Radii of Atoms

When the atoms have arbitrary radii, the beta-complex and
the weighted alpha-complex of an atom set A may differ
from each other even if the parameters a and b are identical.
This is because their dual structures, i.e., the quasi-triangu-
lation and the regular triangulation for the same set A, are
not identical, as illustrated in Fig. 14.

Lemma 7. Let A0 ¼ fa01; a02; . . . ; a0ng be the set of atoms where
a0i ¼ ðpi; ri þ bÞ. The regular triangulations of A and A0 are

not necessarily identical, whereas the quasi-triangulations of A
and A0 are identical.

Proof. Suppose that there are two atoms a1 ¼ ðp1; r1Þ and
a2 ¼ ðp2; r2Þ, and there are two enlarged atoms a01 ¼
ðp1; r1 þ bÞ and a02 ¼ ðp2; r2 þ bÞ. Let diffEucða1; a2Þ be the
difference between the Euclidean distances to the atoms
a1 and a2 from an arbitrary point p. Then, diffEucða1; a2Þ ¼
fdðp; p1Þ � r1g � fdðp; p2Þ � r2g, and diffEucða01; a02Þ ¼ fdðp;
p1Þ � ðr1 þ bÞg � fdðp; p2Þ � ðr2 þ bÞg. Due to diffEucða1;
a2Þ ¼ diffEucða01; a02Þ, we know that the value b does not
affect the distance difference from an arbitrary point to
the atoms, and therefore VD(A) and VD(A0) become iden-
tical as well as the corresponding quasi-triangulations.
Similarly, let diffpowða1; a2Þ ¼ powðp; a1Þ � powðp; a2Þ be
the difference between the power distances to the atoms
a1 and a2 from an arbitrary point p. Then, diffpow ða1; a2Þ ¼
fdðp; p1Þ2 � r21g � fdðp; p2Þ2 � r22g and diffpowða01; a02Þ ¼
fdðp; p1Þ2 � ðr1 þ bÞ2g � fdðp; p2Þ2 � ðr2 þ bÞ2g. From the
equation diffpowða1; a2Þ � diffpowða01; a02Þ ¼ 2bðr1 � r2Þ 6¼ 0,
we know that the radius increment b influences the differ-
ence in distance, and therefore PD(A) and PD(A0) are
different for b 6¼ 0. Therefore, the corresponding regular
triangulations may not be identical. tu
Figs. 14b and 14c show an example of Lemma 7.

Lemma 8. Let A0 ¼ fa01; a02; . . . ; a0ng be the set of atoms where
a0i ¼ ðpi; ri þ bÞ. Then, the beta-complex of A with parameter
b is not necessarily identical to the zero weighted alpha-
complex of A0.

Proof. The beta-complex may not be a simplicial complex,
whereas the zero weighted alpha-complex of A0 is always
a simplicial complex. tu
The following lemma states the uniqueness property of

complexes.

Lemma 9. Given a set A of atoms with arbitrary radii, some beta-
complex may not have an identical weighted alpha-complex,
and some weighted alpha-complexes may not have an identical
beta-complex.

From Figs. 11 and 12, we see that only five beta-com-
plexes in Figs. 11a, 11c, 11d, 11e, and 11f are identical to the
weighted alpha-complexes in Figs. 12a, 12c, 12d, 12e, and
12f, respectively. Each of the other twelve beta-complexes
and ten weighted alpha-complexes is unique and does not
have an identical counterpart.

Lemma 10. The zero beta-complex of A is not necessarily identi-
cal to the zero weighted alpha-complex of A.

Proof. The zero beta-complex may not be a simplicial com-
plex, whereas the zero weighted alpha-complex of A0 is
always a simplicial complex. tu

6 BETA-SHAPES VERSUS (WEIGHTED)
ALPHA-SHAPES

Since shape structure is defined from the corresponding
complex structure, all the identity conditions among com-
plex structures, i.e., Lemmas 3 through 6, also hold among
the shape structures. We will omit such lemmas for the

Fig. 15. (Equal radii) The transformation among the beta-complex, the
alpha-complex, and the weighted alpha-complex when all the atoms
have the same radii r. “A , B” means that A becomes identical to B
when the proper one of the conditions on the shoulder is satisfied, and
vice versa.
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shape structures in this section. Summarizing similarity
among complex structures, all the identity conditions hold
only when the atoms have identical radii, but such condi-
tions do not hold when atoms have arbitrary radii among
complex structures. However, identity conditions exist
between the beta-shape and the weighted alpha-shape even
if atoms have arbitrary radii.

Fig. 16 shows beta-shapes and beta-complexes for two
beta-values where 0 < b1 < b2 ¼ 1 for given atom set
A ¼ fa1; a2; a3; a4g. In this figure, p4, the center of a4, is
located outside the triangle ~p1p2p3. The dashed lines in
the beta-complexes in Figs. 16c and 16f denote the interior-
state edges, and the hollow circle denotes the interior-state
vertex. Note that the interior-state edges and vertices are
topologically interior, and thus they are shared by other sim-
plexes and do not exposed topologically to the exterior. As
illustrated in Fig. 16f, some interior-state edges and vertices
are located outside the corresponding beta-shape. Such a
case occurs only in quasi-triangulations (thus in the beta-
complexes) but not in Delaunay or regular triangulations
(thus in the (weighted) alpha-complexes). However, the bou-
ndary of a beta-shape consists of only singular and regular
simplexes and thus they always form a simplicial complex.

Lemma 11. The boundary of a beta-shape is a simplicial complex.

Because the beta-shape boundary forms a simplicial com-
plex, we can use this property for efficient solution for the
problems in close relation to the molecular boundary
such as the Connolly surface construction, van der Waals
surface (area) calculation, offset surface (area) computa-
tion, and so on.

The following equivalence relationship holds regardless
whether atoms have identical radii or not.

Lemma 12. The zero beta-shape of A and the zero weighted
alpha-shape of A are identical.

Proof. When b ¼ 0, the beta-shape boundary defines the
intersections among the boundary of the atoms in model
A. Similarly, when a ¼ 0, the boundary of the weighted
alpha-shape defines the same intersection information
of the same model. Therefore, the beta-shape and the

weighted alpha-shape are identical when a ¼ b ¼ 0 beca-
use A has a unique boundary. tu
Lemma 12 in fact states that both the beta-shape and the

weighted alpha-shape convey identical information regard-
ing the intersections among the atoms exposed to the out-
side. This is due to the fact that both the Voronoi diagram
and the power diagram provide an identically correct infor-
mation of the intersections among atoms.

From Figs. 11 and 12, we see that each of the beta-shapes
in Figs. 11b, 11g, 11l, 11o, and 11q has no identical weighted
alpha-shape counterpart in Fig. 12, and each of the weighted
alpha-shapes in Figs. 12b, 12g, 12j, and 12n has no identical
beta-shape counterpart in Fig. 11. In other words, some beta-
shapes and some weighted alpha-shapes are unique in their
respective structures. Hence, the following lemma holds.

Lemma 13. Given a set A of atoms with arbitrary radii, some
beta-shape of A may not have an identical weighted alpha-shape
of A, and some weighted alpha-shape of A may not have an
identical beta-shape of A.

However, for each beta-shape, there exists an identical
weighted alpha-shape instance for a set of enlarged atoms
by an appropriate amount, say d. As the beta-shape has the
offset-invariant property which facilitates a powerful capa-
bility for applications, it is useful to find the value of d. The
following lemma is from [37].

Lemma 14. Let A be a set of atoms with arbitrary radii. Let
A0 ¼ fa01; a02; . . . ; a0ng be the set of atoms where a0i ¼ ðpi; ri þ
bÞ. Then, the beta-shape of A with the parameter b is identical
to the zero weighted alpha-shape of A0. Let ~A ¼ f~a1;
~a2; . . . ; ~ang be the set of atoms where ~ai ¼ ðpi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ a2

p
Þ.

Then, the weighted alpha-shape of A with the parameter a is
identical to the zero beta-shape of ~A.

Let S a be the ordinary alpha-shape of a point set P . Let
S w

a and S b be the weighted alpha-shape and the beta-shape
of an atom set A, respectively.

Lemma 15. Let A be a set of atoms with arbitrary radii. Then,
S b of A for an arbitrary value of b � 0 is computed from the
unique quasi-triangulation of A, whereas the equivalent S w

a

can be computed by the regular triangulation which needs to be
re-computed for the enlarged atoms A0 by the amount b.

Hence, in the weighted alpha-shape, the regular triangu-
lation needs to be computed again whenever a new value
of b is given. On the other hand, the beta-shape can be
immediately computed from the unique quasi-triangulation
whatever value of b is. The computational advantage of the
beta-shape approach is significant particularly when multi-
ple beta-shapes of A should be used for large molecules.

Fig. 17 summarizes the equality relationships between the
beta-shape and the weighted alpha-shape from Lemmas 12
and 14. From the figure, we know that the beta-shape of A
with a probe radius b can also be obtained by the weighted
alpha-shape approach by computing zero weighted alpha-
shape of an enlarged atom set A0 by the amount of b. This
implies that if a program which is equipped with only the
weighted alpha-shape but a user needs to solve problems
based on the beta-shape for a particular b, the equivalence
relationship in Fig. 17a can be used, but in the cost of

Fig. 16. Beta-shapes and beta-complexes for four atoms in the plane.
(a) An atom set, (b) and (c): (a)’s beta-shape and beta-complex corre-
sponding to b1, respectively; (d) the identical atom set as before, (e) and
(f): (d)’s beta-shape and beta-complex for b2 ¼ 1, respectively.
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re-computing the regular triangulation for A0. On the other
hand, suppose that a user is allowed to use a program with
the beta-shape capability only but needs to have a capability
of the weighted alpha-shape for a particular a. Then, the
equivalence relationship in Fig. 17b can be used, but in the
cost of re-computing the quasi-triangulation for ~A. There-
fore, the decision to choose which structure to use depends
on the frequency of the use of each structure for solving
application problems. As far as we have experienced and we
have heard from researchers in various disciplines in science
and engineering, most problems, if not all, are based on the
Euclidean distance.

7 CONSEQUENCES OF THE DISSIMILARITIES

IN APPLICATIONS

Weighted alpha-complexes are more powerful than beta-
complexes for some problems. First, the weighted alpha-
complex requires less computation than the beta-complex
does. In our experiment, constructing the dual structure RT
is approximately 19 times faster than QT whereas the
extractions of the complex structures from RT and QT are
similar once the RT and QT are available. Second, the
weighted alpha-complex is a simplicial complex. Due to
this property, the weighted alpha-complex as well as RT
can be stored in a concise data structure without any special
treatment handling exceptional cases. In addition, this
property helps to make algorithms using weighted alpha-
complexes simpler and researchers can use already proven
properties about simplicial complexes in their application
problems. Third, the weighted alpha-complex and RT are
much easier to implement because their primal structure,
i.e., power diagram, consists of linear geometric elements
such as line segments and planes. In fact, power diagrams
and RT are already available in several well-known pro-
gramming libraries like CGAL in public.

However, dissimilarities between beta-complexes and
weighted alpha-complexes have important consequences.
Important applications arise in atomic arrangements which
can be easily solved by the beta-complex but with weighted
alpha-complexes, either i) they cannot be solved efficiently
or ii) they cannot be solved correctly by the weighted alpha-
complex. In this section, we show a few examples for read-
ers better understanding of the dissimilarities.

7.1 Consequences on the Efficiency to a Solution

Given a molecule A consisting of atoms with arbitrary radii,
the locus of the center of a spherical probe of a fixed radius

that touches A from outside is called the offset surface.
Computing the offset surface is one of the classic problems
in geometric modeling community.

Problem 1 (Offset Problem). Given a set A of atoms with
arbitrary radii, compute the offset surface of A by the offset
amount d.

Since the offset surface is the boundary of the union of
the enlarged atoms from A by d, this problem can be easily
and efficiently solved by the beta-complex as follows. Given
the quasi-triangulation of A, we extract the beta-shape of
b ¼ d which has necessary and sufficient information to
compute the correct offset boundary. Efficient computation
of the volume and surface area for a molecule and its offsets
using the beta-complex was reported [70].

The situation, however, is quite different for the weig-
hted alpha-complex. The power diagram knows only the
intersections among atoms but does not know about
the Euclidean proximity among non-intersecting atoms.
Because the weighted alpha-shape inherits this property,
any problem requiring the Euclidean proximity among
non-intersecting atoms has to be transformed into an inter-
section problem among appropriately enlarged atoms.
Hence, to compute offset surface by weighted alpha-com-
plex, it is necessary to produce an enlarged molecule A0 that
consists of the atoms enlarged by d. Then, the power dia-
gram of A0 is computed and transformed to the regular tri-
angulation RTðA0Þ from which the zero weighted alpha-
shape is extracted. This can also be explained by Lemma 14
in that the beta-shape of A with the parameter b ¼ d is iden-
tical to the zero weighted alpha-shape of A0.

Now, suppose that we want to compute another offset
boundary of A by d0 6¼ d. In the beta-complex approach, we
can use the same quasi-triangulation again to compute the
beta-shape of b ¼ d0 by Lemma 15. In the weighted alpha-
complex approach, however, it is not possible to reuse
RTðA0Þ, but repeating the previous procedure once more
with d0 is inevitable. Hence, it is necessary to make another
enlarged model A00 by d0, to compute PDðA00Þ, to transform
to RTðA00Þ, and then to extract the zero weighted alpha-
shape of A00.

A graphical example is shown in Fig. 18. Fig. 18a shows a
two-dimensional molecule consisting of six atoms, its Voro-
noi diagram, and two correct offset boundaries. Note that
all the vertices on the offset boundaries are located on the
Voronoi edges. In other words, the same Voronoi diagram
can be used to compute the offset boundaries for any offset
amount. Suppose that the smaller offset corresponds to the
offset amount d1, and the larger one corresponds to the off-
set amount d2 > d1. Fig. 18b shows the power diagram of
the six atoms. Figs. 18c and 18d shows the offset boundaries
for d1 and d2 along with their corresponding power dia-
grams, respectively. Note that the topological structures of
the power diagram in Figs. 18b and 18c are identical,
whereas those of Figs. 18b and 18d are different (i.e., the
topologies of the tiny edges in the middle of the power dia-
grams are different). Lemma 7 states this property in terms
of dual structure counterpart.

In computational biology, the offset surface is usually
called the “solvent accessible surface”, and its area is an
important parameter that determines solvation energy. In

Fig. 17. Equality conditions among the beta-shapes and weighted alpha-
shapes. (a) The equivalence condition between the beta-shape and the
others, and (b) the equivalence condition between the weighted alpha-
shape and the others.
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addition, many molecular structure analysis problems are
in principle related to the offset surfaces. For example, rec-
ognizing molecular voids corresponding to an arbitrary
sized probe is an immediate application of this property.
Because of its importance for understanding molecular
behavior, there have been many studies of void recognition
in molecular biology.

7.2 Consequences on Solution Quality

An example that can be easily solved by the beta-complex
approach but is hard to solve correctly using the weighted
alpha-complex follows.

Problem 2 (Bottleneck Problem). Let A1 and A2 be mole-
cules where A1 \A2 ¼ ;. Compute the minimum Euclidean
distance between A1 and A2.

In the beta-complex approach to solve the problem, it is
obvious and easy as follows. We first compute the Voronoi
diagram ofA1 [A2, and collect the separating Voronoi bisectors
(i.e., Voronoi edges in R2 or Voronoi faces in R3) where each
bisector has one generating atom from A1 and the other one
from A2. It is guaranteed that the minimum distance (i.e., the
bottleneck) betweenA1 andA2 is given by one of the separat-
ing Voronoi bisectors. For each Voronoi bisector, the mini-
mum distance can be computed by the distance between the
two defining atoms of the bisector. Hence, this approach is
very intuitive, easy, and computationally very efficient.

However, the procedure using the weighted alpha-
complex is not so obvious due to the fact that no bisector
may be defined at the bottleneck in the power diagram. A
possible approach might be to enlarge all the atoms in both
A1 and A2 by a certain amount, say d, and see if the enlarged
molecules A0

1 and A0
2 intersect by looking at the power bisec-

tors of the power diagram of A0
1 [A0

2. If A
0
1 and A0

2 do not
intersect, we further enlarge both molecules and repeat the
intersection check. Suppose that A0

1 and A0
2 intersect each

other. Then, we shrink the two enlarged molecules a little

bit so that the intersection amount between the two mole-
cules becomes less than before. By iterating it a sufficient
number of times, we may eventually find the situation
where the two adjusted molecules touch each other at a
single point (in numerical sense). Thus the weighted alpha-
complex approach is time consuming and the resulting
solution is inevitably an approximation.

Fig. 19 shows a graphical example of the minimum dis-
tance computation between two molecules A1 and A2 in the
plane. Fig. 19a shows the Voronoi diagram of A1 [A2. The
orange disk denotes the location where the minimum dis-
tance (i.e., bottleneck) occurs. Note that the center of the
orange disk is precisely located on the Voronoi edge.
Fig. 19b shows the power diagram of the two molecules,
and we see that no edge is defined between the two atoms
of the minimum distance.

Problem 3 (Cavity Problem). Given a molecule A, identify
cavities such as voids and tunnels. The void is a space where a
spherical probe of radius d in the space cannot move outside
without intersection with atoms in A, and the tunnel is a path
where the probe can pass through the molecule A.

The beta-complex approach to solve the problem is very
intuitive and easy. We first compute the beta-shape from
the Voronoi diagram of of A. Then, we trim off the Voronoi
structure lying inside the union of the enlarged atoms A0 by
d. In this case, the interior Voronoi structure has one-to-one
correspondence with the beta-shape of the parameter b ¼ d.
Then, the remaining Voronoi structure is equivalent to
molecular exterior and can be used to recognize the tunnels
corresponding to the probe. Fig. 1 shows an example of a
detected tunnel that the probe of radius b ¼ d ¼ 1:4 can
pass through a protein (PDB code: 1jd0). For the details,
see [43], [44], [69].

Fig. 20 shows a two-dimensional example to recognize
voids and tunnels using bete-shapes for various probe sizes.
Fig. 20a shows input atoms and their Voronoi diagram.
Fig. 20b shows the beta-shape for a probe of radius b1 and
the corresponding offset of the atoms. The black solid disk
denotes the beta-probe. The offset boundary is represented
by the chains of red circular arcs. Each vertex and circular
arc of the offset boundary corresponds to an edge and a ver-
tex of the beta-shape, respectively. Note that the beta-probe
center cannot be located inside the offset, i.e., the shaded
region in the figure, but moves outside the offset only. The
beta-shape in Fig. 20b consists of three connected compo-
nents, and therefore the union of enlarged atoms consists of

Fig. 19. The difficulty of finding the minimum distance between two mole-
cules in a power diagram. (a) The minimum distance can be easily found
in the Voronoi diagram of atoms. (b) No edge is defined in the power
diagram between the two atoms of the minimum distance.

Fig. 18. Different power diagrams are required for different offset
amounts for a given molecule. (a) An identical Voronoi diagram is used
for different offsets. (b) A power diagram PD0 necessary for the zero
offset amount. (c) A power diagram PD1 has identical topology to PD0

(for the offset amount d1). (d) A power diagram PD2 is different from PD1

(for the offset amount d2 ¼ 2d1).
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the same number of components. There are two tunnels and
two voids. The probe can pass through the tunnels between
pairs of components. A probe is trapped within and cannot
escape from a void. Fig. 20c is the result when bigger probe
radius b2ð>b1Þ is used. The new beta-shape has two
connected components: The smaller void and the narrower
tunnel are disappeared. In Fig. 20d, a much bigger probe
radius b3ð>b2Þ is used, and the beta-shape merged into
one single component with neither void nor tunnel. Be
aware that we use a unique Voronoi diagram and quasi-
triangulation for all beta-shapes. However, it is not very
obvious how to solve the tunnel recognition problem in the
weighted alpha-complex approach unless the power dia-
gram of the inflated molecule is first computed for each
value of d. The computation of the bottleneck seems very
hard, too.

Solving this problem has an important implication for
significant problems in molecular biology. Tunnel structure
is important in cellular molecules: ions pass through ion
channels; proteins are synthesized in tunnel structures in
ribosome; ribosomal antibiotics usually function in ribo-
somal tunnels; proteasome disassembles proteins in its tun-
nel structure, etc. Therefore, recognition of tunnels in
biomolecules along with computation of their bottlenecks
has many important applications in life science.

The Cavity Problem can also be applied to material science
to analyze material’s property. Fig. 21 shows such an exam-
ple of recognizing voids in a metallic glass which corre-
spond to several probe radii. Since the atoms are densely
packed with a significant level of intersections, only tiny
probes can be located in the molecule. Fig. 21a shows a
metallic glass consisting of 250 atoms with three different
atom types. Figs. 21b, 21c, and 21d show recognized voids
with probe radii d ¼ 0:1A

�
, d ¼ 0:2A

�
, and d ¼ 0:3A

�
, respec-

tively. The recognized voids in this figure are represented
by the offset surfaces of the three different offset amounts,
which is the solution of the Offset Problem. We emphasized
that, in this example, only one QT and thus one Voronoi dia-
gram is used for the beta-complexes of various d’s.

8 CONCLUSIONS

Proximity among particles is fundamental for many prob-
lems in engineering and science and is critical in structural
molecular biology because many problems are in principle
proximity ones. While there are similarities between the
beta-complex and the (weighted) alpha-complex, the dis-
similarity results in a significant consequence in both
computational efficiency and solution quality for applica-
tions. In this paper, we have shown that the beta-complex is
a very intuitive, efficient, and convenient computational
construct for the proximity problems among spherical par-
ticles such as molecular atoms. Particularly when a problem
is related with offset operation in the Euclidean distance,
the capability of the beta-complex is far beyond that of the
weighted alpha-complex.
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