
 
 

Delft University of Technology

Controllable Motion-Blur Effects in Still Images

Luo, Xuejiao; Salamon, Nestor; Eisemann, Elmar

DOI
10.1109/TVCG.2018.2889485
Publication date
2019
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Visualization and Computer Graphics

Citation (APA)
Luo, X., Salamon, N., & Eisemann, E. (2019). Controllable Motion-Blur Effects in Still Images. IEEE
Transactions on Visualization and Computer Graphics, 26 (2020)(7), 2362-2372. Article 8587199.
https://doi.org/10.1109/TVCG.2018.2889485

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVCG.2018.2889485
https://doi.org/10.1109/TVCG.2018.2889485


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 1

Controllable Motion-Blur Effects in Still Images
Xuejiao Luo, Nestor Z. Salamon, and Elmar Eisemann

Abstract—Motion blur in a photo is the consequence of object motion during the image acquisition. It results in a visible trail along the
motion of a recorded object and can be used by photographers to convey a sense of motion. Nevertheless, it is very challenging to
acquire this effect as intended and requires much experience from the photographer. To achieve actual control over the motion blur, one
could be added in a post process but current solutions require complex manual intervention and can lead to artifacts that mix moving and
static objects incorrectly. In this paper, we propose a novel method to add motion blur to a single image that generates the illusion of a
photographed motion. Relying on a minimal user input, a filtering process is employed to produce a virtual motion effect. It carefully
handles object boundaries to avoid artifacts produced by standard filtering methods. We illustrate the effectiveness of our solution with
various complex examples, including multi-directional blur, reflections, multiple objects, and illustrate how several motion-related artistic
effects can be achieved. Our post-processing solution is an alternative to capturing the intended real-world motion blur directly and
enables fine-grained control of the motion-blur effect.

Index Terms—motion blur, long exposure, image processing, post-production.

F

1 INTRODUCTION

MOTION blur, as an artistic effect, is able to convey a sense
of motion in still images. A photographer can create such

effects by opening the camera shutter for an extended period of
time. During the exposure, moving objects with respect to the
camera will result in a different projection location on the camera
sensor, which produce visible trails in the final image [1]. While
being an important technique [2], it is very challenging to control
or acquire an intended result. Parameters such as the shutter speed,
camera motion, illumination, lens and filter configurations strongly
influence the result but their effect is difficult or even impossible
(e.g., if the object is moving irregularly) to estimate. Further,
capturing slowly moving objects, such as stars or clouds, requires
a very long exposure to convey even a small sense of motion.
In some other cases, a photographer might want to keep a fast
moving object in focus, which results in only the background being
affected by the motion blur. To achieve this, the photographer needs
to precisely follow the object with the camera to keep the position
perfectly stable, which is very challenging. Similarly difficult is
the production of a precise camera/object trajectories on the image
plane.

Easier than capturing the result directly, is to produce it in a
post-process. However, current image editing software provides
mostly blur tools for general purposes, which requires users to
manually extract regions of interest and experiment with different
effects. Additionally, standard filters typically result in artifacts at
object boundaries, such as undesired color leakage.

Our method enables a user to easily add motion blur to a single
still image with only little user intervention. To this extent, we
propose a segmentation tool to select objects of interest to then
define the intended motion blur. Multiple objects can be extracted
and motion paths freely chosen. Our method relies on an edge-
aware filtering to deliver convincing results, while keeping the user
interaction simple and avoiding additional scene information. The
algorithm in this paper builds upon our original method presented
in [3]. This extended version provides a user evaluation and several

• X. Luo, N. Z. Salamon and E. Eisemann are with the Computer Graphics
and Visualization Lab (CGV), TU Delft, The Netherlands.

Manuscript received xxxx, 2018; revised xxxx, 201x.

new contributions, namely, a multi-directional motion blur to
support more complex object and camera motions, as well as
several approaches to produce artistic effects based on commonly
applied shutter techniques.

This article is organized as follows. In the next section, we
revisit previous work. We then describe our approach (Sec. 3),
including methods to produce various artistic effects (Sec. 4),
before presenting the results of our method (Sec. 5) and conclud-
ing (Sec. 6).

2 RELATED WORK

Blur in photography is often used for artistic purpose, to guide the
observer, emphasize important elements, or achieve a desired look
and composition. The two most common sources of camera blur
are motion blur and depth of field.

Depth of field has received much attention and is also a percep-
tually well explored effect [4]. Several hardware and algorithmic
solutions have been proposed. Light-field cameras [5], special
sensors [6], coded apertures [7], stereo setups [8], or synthetic
reconstruction [9], enable post-processing of the depth-of-field
effect.

Motion blur conveys a sense of motion but is often considered
an undesirable artifact, as it can result from camera shake.
In consequence, modern cameras usually involve stabilization
systems [10] to avoid the effect. Our goal is to allow a user to
control motion blur for artistic purpose.

For an image sequence, a computational solution to reconstruct
motion blur has been proposed in form of the virtual exposure [11].
Here, short exposure shots are combined to simulate a long-
exposure result. Originally conceived to simulate high-dynamic
range photography, the work addresses also moving objects. Direct
accumulation of the images would result in ghosting artifacts due
to an exposure gap between the individual shots. They rely on an
optical-flow algorithm to fill in the missing transitions to obtain a
motion-blurred output. Commercial systems, such as Reel Smart
Motion Blur [12] rely on optical flow to estimate the movement
between images to then apply a directed blur kernel. A virtual



1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 2

Fig. 1: Overview. From left to right: the user can select target regions of an input image using simple annotations (bounding box,
scribbles). A motion can be defined for the desired target region, which launches a filtering process to add plausible motion blur. (Input
image source: pixabay.com)

exposure was also used for light painting, which is able to describe
the motion blur caused by a moving light source [13].

When relying on video input, a pixel-wise blur can be generated
from an estimated motion trajectory of the object [14]. The authors
create a blur kernel from the disparity along motion vectors in the
stabilized video. However, background and camera motion cannot
be decoupled and the blur is limited to moving areas. Moreover, the
video input can grow significantly when dealing with slow moving
objects, such as clouds or stars. Our method can be applied to any
object/region in a single image.

Commercial solutions for computational motion blur on a
single image exist. One example is the GIMP [15] motion blur tool
and the Adobe Photoshop [16] motion-blur effect. These require
significant manual intervention; object segmentation, inpainting and
manual organization of layers need to be performed beforehand.
Our integrated solution works directly on a single image and
facilitates control and definition of motion blur.

Motion depiction has also been investigated for virtual scenes,
even with a programmable interface for expressive results [17].
For efficient motion blur computation, perceptual factors can be
integrated in the computations [18]. Most real-time 3D applications,
such as [19], [20], [21], [22], make use of deferred shading [23]
to derive information such as per-pixel motion, depth, or object
id, which are used in a filtering process. Our method shares ideas
regarding post-processing but relies on a single photograph.

3 OUR APPROACH

Our algorithm adds motion-blur effects to a single image based on
a few simple user annotations. Fig. 1 shows an overview of our
solution.

The user can select objects via an image-segmentation
method (Sec. 3.1) and can then define the motion of the selected
object or area. The algorithm produces a motion-blurred result
while avoiding artifacts around object boundaries (Sec. 3.2). First,
we will describe our solution for linear motion per object before
addressing general motion paths per pixel (Sec. 3.3). Additionally,
we present several extensions of our approach to add high dynamic
range (Sec. 4.1), and artistic effects inspired by photographic
techniques (Sec. 4.2 and Sec. 4.3).

3.1 Object Selection

A moving object in the foreground blends with the background,
while a moving background does not blend into a static foreground.
The differing visibility relationships lead to very different outcomes;
a static foreground object will cover the background during the
entire exposure and will maintain crisp boundaries, while a moving
foreground object will result in a fuzzy boundary. This difference
makes it necessary to distinguish the order of the objects present
in the image. Consequently, we will first focus on how to extract
objects from the image.

For the segmentation of objects, a variety of methods could be
used. Recently, machine learning techniques (e.g. [24], [25], [26])
are increasingly successfully employed for segmentation tasks. Still,
for creative content creation, users might desire segmentation masks
that differ from the typical automatic segmentation inferred from a
learning process. For this reason, we opted for a constrained seg-
mentation based on user annotations. One of the most user-friendly
segmentation methods is GrabCut [27]. The user defines a rectangle
containing the potential foreground object. Additional scribbles
can be provided to refine the mask segmentation. GrabCut then
partitions the image into foreground and background pixels. We
then separate the foreground pixels into connected components [28]
to define the different objects.

Fig. 2 shows two examples of the GrabCut extraction. The
user defined an object’s bounding box and, if necessary, scribbles,
which assign potential foreground and background regions. The
extracted mask defines the foreground object (the thumbnails in
the lower right corner).

Fig. 2: GrabCut foreground extraction. (Images source: pix-
abay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 3

In case that foreground objects overlap, the algorithm can be
recursively applied by running the GrabCut on the previously
extracted foreground regions. In each step, the output results in a
fore- and a background label, which induces an ordering of the
objects, which can be adapted by the user. These objects can then
be processed individually with their own motion path.

During our experiments, we found that we rarely need to
distinguish more than four objects. Hence, we allow the user
to determine directly four levels of ordering in the interface by
drawing corresponding scribbles. Fig. 3 illustrates a multi-object
labeling.

Fig. 3: Multiple objects segmentation. Distinct target regions can be
segmented, allowing localized and distinct effect control. (Images
source: pexels.com (top) and pixabay.com (bottom))

In order to ease explanations, we will drop the foreground and
background labels and refer to all extracted regions as objects,
which are ordered from back to front.

3.2 Uniform Motion Blur
A linear motion can be defined by a motion direction and length.
We simulate the motion blur by convolving an object with a motion-
blur kernel (psf ) defined by the motion trajectory. For example, a
horizontal translation by n pixels results in a horizontal kernel of n
pixels, which is normalized such that its integral (sum of all pixels)
is equal to one (here, each kernel pixel contains 1/n). The latter
avoids creating energy when convolving the input. To compute
the kernel for a general linear motion we use the formulation
proposed in Matlab. First the bounding box of the provided segment
indicating the motion is determined and extended by two pixels.
Then, for each bounding-box pixel, we compute one minus the
distance of the pixel center to the segment. Next, all values are
clamped between zero and one to eliminate negative values. Finally,
the resulting kernel is normalized by the total sum of all pixels. For
general motion paths, the provided path is decomposed into linear
segments, which are individually handled as before.

Having derived a blur kernel per object, it seems tempting
to visit every pixel of the labeled input image and simply apply
the corresponding psf kernel. Unfortunately, this results in color
bleeding artifacts, as illustrated in Fig. 4.

Similarly, when applying edge-aware filtering, which avoids
blurring across object boundaries, the result is unrealistic. Sharp
boundaries are maintained for moving foreground objects (Fig. 5),
while one would have expected a fuzzy boundary.

For a more plausible result, we will derive blending masks to
composite the objects from back to front, one by one. In other
words, a given object is motion blurred, and then composed with
the current background, which handles the problems in Fig. 5. After
explaining the corresponding details, we will show how to address
the issues of Fig. 4.

Fig. 4: Color leakage when not respecting object boundaries.

Fig. 5: Unrealistic sharp edges from edge-aware filtering.

Composing Fore- and Background
To describe the algorithm to compose fore- and background, we
will focus on the steps for a single object. Let Bk be the current
background image (B0 is initialized with zero). For an object Ok, we
produce an image Ik, which is a black image into which we copy all
pixels labeled with Ok from the input. Further, we produce a mask
Mk, which is black except having ones in pixels that correspond
to those labeled with Ok (one can interpret this step as adding an
alpha channel). We then convolve both images with the psf of Ok.
Intuitively, the image ps f ∗Mk, where ∗ denotes the convolution,
corresponds to a mask that indicates how much the foreground will
occlude the background. For example, if the object is not moving,
psf is by construction a Dirac (a single pixel equal to one), which
implies that the mask describes exactly the pixels of the original
object. Given the convolved results and the background Bk, we
compute the new background Bk+1 as

Bk+1 = ps f ∗ (MkIk)+(1− ps f ∗Mk)Bk.

In practice, it is possible to avoid the actual derivation of the
masks by performing an integration along the kernel directly on
the input image. Further, we do not need intermediate background
images and it is enough to incrementally compose the motion-
blurred objects in a single resulting image.

While conceptually simple, the above approach is still imperfect.
It relies on the assumption that each object is entirely visible in the
original input image. Unfortunately, this is rarely the case. As soon
as an object is moving, visibility relationships change and parts
previously-occluded by the object will be revealed. A challenge is
to estimate the content that is disoccluded. Neglecting disoccluded
regions and assuming that they look like the original image will
result in the artifacts shown in Fig. 4. Similarly, assuming the
disoccluded pixels are simply black results in a dark halo.

Handling Disocclusions
To correct for the disocclusion artifacts, we propose an inpainting
procedure. While more advanced solutions could be employed
(i.e. [29], [30], [31]), we found the simpler strategy usually

http://pexels.com
http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 4

sufficient. The reason is that the part will either be in motion
itself or overlapped by a moving element, which naturally hides
many of the details in the inpainted area.

Adding inpainting to our solution, the main algorithm remains
the same; objects are treated front to back, but before filtering
with their psf, an inpainting procedure is applied. For an object Ok,
we will examine its boundary to find pixels adjacent to an object
O j that is nearer (i.e., j > k, as objects are ordered). If there is
none, Ok does not require any inpainting. If there is an overlap, we
want to extend Ok beneath the potentially uncovered region of O j.
Inspired by recent real-time methods [22], we mirror the content
of Ok into the area that is covered by O j. We choose the mirror
direction d based on the motion direction of Ok (or of O j in case
that Ok is static). The value of a pixel p in O j is then defined by
finding a pixel q from which we copy the value. We determine the
position of q by walking from p towards Ok along d, one pixel at
a time. On the way, we maintain a counter, initialized at one, that
is incremented whenever an encountered pixel is inside O j and
decremented when outside O j. When the counter reaches zero, we
have found q. The zero counter indicates that we have traveled the
same distance inside O j as outside, it is then located at a reflected
position with respect to the object boundary. If we encounter an
object Ol (l > j) while following d, we reverse d, which performs
a ping-pong inpainting. Using this simple inpainting leads to a
significant improvement (Fig. 11).

3.3 Multi-Directional Motion Blur

Now that we have discussed the case of per object motion, more
complex motion paths for each pixel are addressed with our multi-
directional motion blur. This extension increases the expressiveness
of the algorithm significantly. For example, when photographers
move a camera forward or sideways, the perspective foreshortening
leads to blur effects that can enhance the impression of depth, yet
they cannot be described with a single linear path per object. In
other cases, such as a spinning wheel, a linear motion trajectory
fails in reproducing a plausible motion-blur effect. In this section,
we propose an extension to the previous principle. Here, unlike
convolving the original image region with a single motion-blur
kernel, each pixel will receive its own motion direction. In order to
facilitate the annotation, the user defines a few motion paths, whose
properties are propagated throughout the image using a diffusion
process [32], [33]. This diffusion process results in an image with
minimal gradient variation, under the constraint that the original
annotations are maintained.

To describe this process formally, we will derive an image,
in which each pixel will contain a motion vector defined by a
length l and a direction d := (cos(θ),sin(θ)) for a given angle θ .
Initially, the user will only sparsely annotate a few pixels. Let I
be the set of pixels for which the user provided an input. For an
index (i, j) ∈I , we denote the user-defined motion annotation as
mi, j. The image M containing the diffused three-component motion
vectors is defined by:

∆M = 0 with M(i, j) = mi, j ∀(i, j) ∈ I

The resulting image M is smooth, as the equation ∆M = 0
implies that the gradient is minimized, while the user annotations
are maintained. This equation system can be solved with an iterative
process. To this extent, one can iteratively average neighboring
pixels via M(i, j) = (Mi−1, j +Mi+1, j +Mi, j−1 +Mi, j+1)/4, while
maintaining the values of the pixels in I , until convergence. More

efficient solutions involve using multi-grid [32], sparse-system
solvers [33], or even optimized methods for diffusion curves [34].

The initial user annotations of the pixels in I are done using a
special annotation tool. The user defines the motion direction by
drawing a line segment whose orientation and length define the
desired values (d, l). By default, the pixels below the segment will
be added to I but it is also possible to mark an area, or single
pixel, with a brush to then associate the drawn segment to this area.

Given the diffused motion vectors M, the next step is to derive
the corresponding motion-blurred image Im from the input image I.
The idea is to start in each pixel and walk along the defined motion
trajectory. This path line integration is similar to the process of
visualizing flow [35]. For each pixel p, we compute the motion-
blurred result Im(p) by averaging the values along a path of the
motion length bM(p).lc over the input image I, guided by the
direction M(p).d:

Im(p) =
1

bM(p).lc

bM(p).lc

∑
i=0

I(pi),

where
p0 = p
pi+1 = pi +M(p).d

Disocclusions during this multi-directional motion blur are
handled similarly to before, only now the mirror-padding is applied
according to the motion path. Fig. 6 shows a result (bottom row,
right). The user-provided motion paths and the diffused result are
illustrated as well.

Fig. 6: Multi-directional motion blur. Top row: the input image with
user scribbles and multiple motion paths (left) and the segmentation
mask (right). Bottom row: the diffusion map M with the colors
encoding the direction and length of each motion path (left), and
the final result (right). (Image source: pixabay.com)

4 EXTENSIONS

Our method is able to add the illusion of a standard motion blur
to a still image. In this section, we will describe extensions of our
solution. First, we show how to increase the realism of the motion
blur for very bright sources by hallucinating high-dynamic range
content, then we propose two artistic additions, which are often
used in practice, the Harris shutter and addition of motion trails.

http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 5

4.1 High Dynamic Range Motion Blur

For strong light sources exceeding the range of the sensor sensitivity
and thus the pixel values, the impact on the appearance of the mo-
tion blur can be easily underestimated. In real-world environments
luminance can span a wide range. While our human eyes can adapt
to large intensity variations, with standard photography, values in
the sensor might saturate. Bright and glowing elements are often
clipped, e.g., a bright car headlight in a night scene. High-dynamic-
range (HDR) imagery is produced by recording several images
with different exposure times, which are fused to capture a larger
range of intensities. Typically, these images are then Working with
a high-dynamic range representation has a significant effect on the
result. A clipped value when blurred will lead to a dimmed result
in comparison with its original version. Having values that exceed
the limits of the display will still be dimmed by a blur, but will
maintain a higher intensity and potentially even still saturate after
the blur is applied. To achieve this effect, we propose to virtually
produce HDR content.

In our solution, a user can indicate regions in which values
were potentially clipped by placing a bounding rectangle around
them. Then our solution expands the values in this region from the
range of [t,1] to a range of [t,2T ], where t and T are user-defined
thresholds (per default, t = 0.98, T = 2) using the function f (x) =
t ∗ pow(1+(x− t)/(1− t),T ). While very coarse, the accuracy of
such an expansion is of lower perceptual significance, still advanced
conversions would be possible [36].

Fig. 7 shows an example of hallucinated HDR content created
with our solution. The light blue rectangles illustrate the selected
the region for the HDR expansion. The change affects the look
of the motion blur, which results in a more realistic effect (right)
compared to the standard approach (middle).

Fig. 7: Hallucinated HDR expanding high intensity values. The
bright lights of the car create visible trails (top), as does the sun
when applying a strong background blur (bottom). (Images source:
pixabay.com)

4.2 Harris Shutter using Motion Blur

To show the flexibility of our solution and ability to also reproduce
artistic effects used in photography, we added support for the
simulation of a Harris shutter effect. The effect conveys an
appealing and colorful outcome by masking certain channels over
time. Typically, the shutter effect consist of capturing the scene
in different time intervals, using only a single channel for each
exposure [37]. Alternatively, it can also be achieved by recording a
video and using the complementary channels from different frames
to composite the final image. In other words, motion in a scene
will result in several differently-colored projections.

In our solution, the motion blur is used to create the time-shifted
frames. The target region is defined by the user and we manipulate
each channel separately. The green channel is used as reference
(middle) point. The red and blue channels contain the result after
following half the length of the provided motion blur in opposite
directions. Results of the Harris shutter simulation are shown in
Fig. 8. With this artistic effect, one can steer attention to scene
composition.

Fig. 8: Harris shutter motion blur results in a colorful outcome to
steer attention. (Images source: pixabay.com)

4.3 Motion Trails
Another artistic means to illustrate movement are motion trails.
These are used in photography but usually shot in front of a
dark background. Here, a flash or strong light is used at the end
of the capturing process. Hereby, the object in its final position
will be more visible than during the previous time frame. As a
consequence, it seems as if the object leaves a trail behind that
is easily understood by the observer as a displacement. We can
simulate such an effect by compositing the foreground object on
top of the motion-blurred result.

An example is shown on Fig. 9, using the multi-directional blur
to create motion trails simulating the punch impact. Please notice
that this effect can also be selectively applied on different parts of
an object by using the diffused multi-directional motion blur.

Fig. 9: Motion trails indicating the action while keeping the final
position on focus. (Image source: pixabay.com)

5 RESULTS

We have implemented our framework using OpenCV/C++. All
results were created on a laptop with an Intel i5 2.2GHz and
8GB RAM. We did not optimize the performance of our solution.
The uniform motion blur is linear in terms of complexity with

http://pixabay.com
http://pixabay.com
http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 6

respect to the image dimensions. It takes 3 seconds to segment
the content and apply a motion path on a 960×540 image. Since
the input is simple, novice users can create convincing results in
less than 10 seconds. For the multi-directional motion blur, the
computation time is directly linked to the diffusion process. The
image size, number of motion paths, and number of iterations until
convergence do govern the cost. While it would be possible to
use hierarchical [38] or advanced solvers [33], [34] on the GPU,
which can run at interactive rates, we use a standard CPU solver to
increase compatibility. In practice, users took around 2 minutes to
obtain the results shown in this paper.

A large variety of examples are illustrated in Fig. 25. The top
row (a-b) shows a boy with a ball, where the motion blur on the
ball adds activity to the scene and guides the observer’s focus. The
same row (c-d) adds a clear sense of speed to the horse movement
that was missing from the original shot. On the second row, a
similar result is obtained: in (a-b) the background was blurred
to underline the stormy sea and sky, which leads to an increased
focus on the surfer; (c-d) show that the gradient in the sky remains
almost perfectly unaltered. Row three illustrates how motion blur
can emphasize actions to underline the semantics of a photo. The
fourth row (a-b) illustrates the smoothness of the motion-blurred
results, even in the presence of a complex path, which adds to the
calm atmosphere of the photo. The same row (c-d) shows how our
HDR effect can add to the apparent brightness of the back lights.
The motion blur is used to add a sense of danger with regard to the
slippery road in the image. The fifth row, illustrates the effects of
the Harris Shutter, where the originally simple scenes are enriched
by the vivid color additions. Finally, the sixth and the seventh rows
show applications of the multi-directional motion blur involving
diffused motion vectors. In the sixth row, we show how the motion
blur can support the emphasis on the main character (a-b), or create
the impression of vertigo (c-d). The seventh row shows a subject
emphasized using motion lines (a-b) and also a spinning motion to
illustrate the generality of the solution (c-d). The images exemplify
the large variety of options for the controlled use of motion blur.
In the following, we demonstrate key features of our algorithm.

The user defines objects with very little effort, as evidenced
by the simple input previously shown in Figs. 2 and 3. To apply
motion blur to the background, a user can draw a motion vector
over the desired area. The color leakage artifacts seen in Fig. 4
are minimized by our approach, creating a natural transition along
object and background edges, as shown in Fig. 10(top). The user
can decide to change the motion path at any time to explore the
resulting effect and also can apply to more cases, such as in Fig. 10
(bottom). Fig. 11 illustrates cases where objects are set in motion,
like the car (left) and eagle (right). Fig. 11 (top) illustrates the
corrected result from Fig. 5. For a matter of comparison, Fig. 11
(bottom) shows a different motion direction applied to the target
objects.

For scenes with more than one object, each object can be
motion blurred with different motion paths and intensities. Fig. 12
(left) shows one motion-blurred target (one balloon, one dice),
while Fig. 12 (right) shows the result when simulating different
motion directions and speeds. Analogously, Fig. 13 illustrates how
the impression of a scene can be influenced when switching the
motion targets; here, either to the player (left) or to the ball (right).
Similarly, motion blur can be used to guide an observer, such as
in Fig. 14, where the hand motion influences the way an observer
analyzes the scene.

Fig. 10: Background motion blur results. Rows differ on the motion
vector chosen by the user for the same objects.

Fig. 11: Foreground motion blur results. Our artifact minimization
blending is applied to all results. Rows differ on the motion vector
chosen by the user for the same objects.

Fig. 12: Multiple objects with distinct motion directions. (Images
source: pixabay.com)

http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 7

Fig. 13: Motion blur on different targets, changing scene impression.
(Image source: pixabay.com)

Fig. 14: Motion blur indicating the semantics of the scene. (Image
source: pixabay.com)

When using general motion paths, they can be treated as several
linear segments. In practice, it is typically sufficient to directly
apply a convolution with the whole path and only perform a
vertical and horizontal occlusion handling, depending on the local
orientation, which is more efficient to evaluate. General motion
curves are well suited to simulate a long exposure with non-linear
motion, e.g., due to a hand-held acquisition. Fig. 15 demonstrates
a curved motion paths on the ball to simulate a non-linear bounce
(top) and a time-lapse sequence (bottom).

Fig. 15: Uniform motion blur with a non-linear path. (Images
source: pixabay.com (top) and freegreatpicture.com (bottom))

Fig. 16 shows multi-directional motion blur results with a
complex motion per pixel. The purple arrows indicate the different
directions of the motion paths. The results artistically emphasize
the character (top), increase the perception of speed (middle), and
simulate the spinning motion on a timelapse (bottom).

Fig. 17 uses hallucinated HDR content to maintain the bright-
ness of the sun. Fig. 18 adds the Harris shutter effect, while Fig. 19
shows expressive motion trails.

Fig. 16: Multi-directional motion blur results. (Images source: un-
splash.com (top), pexels.com (middle), and pixabay.com (bottom))

Fig. 17: High Dynamic Range motion blur keeping high intensity
values. (Image source: pixabay.com)

Fig. 18: Harris Shutter motion blur results creating subtly colored
motion and vintage effects. (Images source: pixabay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com
http://maxpixel.freegreatpicture.com
http://unsplash.com
http://unsplash.com
http://pexels.com
http://pixabay.com
http://pixabay.com
http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 8

Fig. 19: Motion trails simulating distinct movements while keeping
the subject on focus. (Image source: pixabay.com)

Discussion
Our approach introduces novel effects that are not easily repro-
ducible in standard software. Motion blur can also be applied to
an object using Photoshop, but it requires an extended workflow
explained in the following. Fig. 20 shows the outcome of our
method and a manual manipulation in Photoshop. Here, the back-
ground received a linear motion blur. Just applying Photoshop’s
Motion Blur and Path Blur tools (left, center-left) leads to similar
artifacts as in Figs. 4 and 5. In consequence, an artist needs to
first derive layers, which can be non-trivial. Further, each layer
requires manual inpainting, which can be a difficult task and require
experience, especially for complex content. After processing the
layers, a manual compositing is needed to derive an acceptable
result (center-right). Our approach leads to similar results (right),
while avoiding manual layering and compositing automatically.

Fig. 20: Comparison with Photoshop tools for the background
motion blur. From left to right, Photoshop results using Motion
Blur, Path Blur, Content Aware Fill with layer compositing, and
our approach. (Image source: pixabay.com)

Despite its simplicity, our method’s inpainting typically enables
natural looking motion-blurred result for moderately strong motion
blur and requires no user interaction for occlusion handling. The
inpainting mechanism provided by Photoshop [29], [39] is more
general and often provides a very detailed infilling. Nevertheless, it
does not take the motion direction into account and might create
unwanted structures that cannot be found in close proximity of the
inpainted area. A comparison is shown in Fig. 21.

Fig. 21: Inpainting results from Photoshop (center) and our solution
(right) when a large object is removed. (Image source: pixabay.com)

A direct comparison of our method to manually recreating
motion blur effects in professional software tools is difficult, as
the expertise of the users plays a significant role. To still provide
some insights on practical usage, we chose to perform a simple
evaluation with 10 users. These users had varying degrees of
expertise in Photoshop, but used our solution for the first time. We
gave them three photos that were relatively easy to segment and
decompose in Photoshop to not require much expertise. They were
asked to mimic a motion-blurred result. Overall, our system was
still considered easier to use (4.3 (our) vs. 2.9 (PS) on a Likert scale
of 5 - higher being better). Less time was spent using our method
to create the desired results (average: 6 minutes 13 seconds (our)
vs. 15 minutes 25 seconds (PS)) and the users were more satisfied
with their results (4.4 (our) vs. 3 (PS), on a Likert scale of 5 -
higher being better). While giving an indication, this evaluation did
not even cover all aspects of our solution. A more extensive study
remains future work. The user-evaluation details are presented in
the supplementary material.

While our approach can produce convincing results, it also
has its limitations. When moving objects overlap, a decision is
needed to determine which element is to be considered in front,
as illustrated in Fig. 22. However, our solution does not support
object motion that would lead to several encounters of two objects
changing their respective order.

Fig. 22: Motion blur with overlapping objects. Arbitrary depth
assignment with artifacts (left) and our back-to-front ordering
(right). (Image source: pixabay.com)

Very strong motion is problematic because the area behind the
moving object can become entirely visible (in the limit, the moving
object would be completely transparent). A second problem can
also occur when a moving object is initially partially covered. If
the object has a shape that is easy to estimate for an observer, a
discrepancy might arise. Fig. 23 illustrates such case. The head of
the soccer player (left), for example, was enlarged in the inpainting,
which darkens the motion trail. However, extreme motion blur is
rarely attractive and usually not employed by a user. For most other
cases, our inpainting is sufficient, as evidenced by the examples in
this paper.

Fig. 23: Inpainting artifacts with strong motion and small occluded
areas. (Images source: pixabay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com
http://pixabay.com
http://pixabay.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 9

Finally, a challenge when applying motion blur is to deal with
transparent and reflective surfaces. Fortunately, a human observer
is typically not very strong in interpreting physical effects correctly
and with ease. Regarding reflections, if the blur of the original
object and its reflected counterpart do not perfectly match, the
illusion might still be sufficient. To facilitate adding plausible
reflections, we use also created a simple extension to our interface
that allows a user to scribble a mirror axis, which is used to copy
the annotations from one side of the reflection to the other when
using uniform motion blur. An example is shown in Fig. 24.

Fig. 24: Motion applied to target object and its reflection. (Image
source: pixabay.com)

6 CONCLUSION

We presented a solution to add motion-blur effects to a single
image in a post-process. It allows for a simple user interaction
and requires only little user effort. Despite the method’s simplicity,
convincing results can be obtained in seconds and the outcome
is easier to control than with a real-world capture. We illustrate
that our solution provides support for complex motion paths and is
able to reproduce several motion-blur-related photographic effects.
Our algorithm can be applied to any image and does not require a
specialized acquisition routine, which eases its use and increases
its applicability.

ACKNOWLEDGMENTS

This work was partially funded by the Brazilian agency CNPq.
We also would like to thank unsplash.com, pexels.com, max-
pixel.freegreatpicture.com, pixabay.com and easylife-online.com
for the copyright-free (CC0) images used in this paper.

REFERENCES

[1] F. Navarro, F. J. Serón, and D. Gutierrez, “Motion blur rendering: State of
the art,” Computer Graphics Forum, vol. 30, no. 1, pp. 3–26, 2011.

[2] B. Peterson, Understanding Shutter Speed: Creative Action and Low-Light
Photography Beyond 1/125 Second. Amphoto Books, 2008.

[3] X. Luo, N. Z. Salamon, and E. Eisemann, “Adding motion blur to still
images,” in Graphics Interface 2018, ser. GI 2018. Canadian Human-
Computer Communications Society, 2018, pp. 99–105.

[4] R. T. Held, E. A. Cooper, J. F. O’brien, and M. S. Banks, “Using blur to
affect perceived distance and size,” ACM Trans. Graph. (TOG), vol. 29,
no. 2, 2010.

[5] “Lytro camera,” https://www.lytro.com/, accessed: 2017-10-20.
[6] H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible

depth of field photography,” in European Conference on Computer Vision.
Springer, 2008, pp. 60–73.

[7] M. J. Cieślak, K. A. Gamage, and R. Glover, “Coded-aperture imaging
systems: Past, present and future development–a review,” Radiation
Measurements, vol. 92, pp. 59–71, 2016.

[8] J. T. Barron, A. Adams, Y. Shih, and C. Hernández, “Fast bilateral-space
stereo for synthetic defocus,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[9] “Synthcam,” http://bit.ly/2FQy4LZ, 2011, accessed: 2017-12-09.

[10] C. MacManus, “The technology behind sony alpha dslr’s steadyshot
inside,” http://bit.ly/2CWbMDw, accessed: 2017-12-20.

[11] J. Telleen, A. Sullivan, J. Yee, O. Wang, P. Gunawardane, I. Collins, and
J. Davis, “Synthetic shutter speed imaging,” Computer Graphics Forum,
vol. 26, no. 3, pp. 591–598, 2007.

[12] “Realsmart motion blur,” http://revisionfx.com/products/rsmb/.
[13] N. Z. Salamon, M. Lancelle, and E. Eisemann, “Computational light

painting using a virtual exposure,” in Computer Graphics Forum, vol. 36,
no. 2. Wiley Online Library, 2017, pp. 1–8.

[14] S. Liu, J. Wang, S. Cho, and P. Tan, “Trackcam: 3d-aware tracking shots
from consumer video.” ACM Trans. Graph. (TOG), vol. 33, no. 6, 2014.

[15] “GNU Image manipulation program (GIMP),” https://www.gimp.org/,
accessed: 2017-12-15.

[16] “Adobe photoshop,” https://adobe.ly/1g8lSDp, accessed: 2017-12-15.
[17] J. Schmid, R. W. Sumner, H. Bowles, and M. H. Gross, “Programmable

motion effects,” ACM Trans. Graph. (TOG), vol. 29, no. 4, 2010.
[18] F. Navarro, S. Castillo, F. J. Serón, and D. Gutierrez, “Perceptual

considerations for motion blur rendering,” ACM Trans. on Applied
Perception (TAP), vol. 8, no. 3, p. 20, 2011.

[19] G. Rosado, “Motion blur as a post-processing effect,” in GPU Gems 3,
H. Nguyen, Ed. Addison-Wesley, 2008, pp. 575–581.

[20] M. McGuire, P. Hennessy, M. Bukowski, and B. Osman, “A reconstruction
filter for plausible motion blur,” Proc. of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, 2012.

[21] J.-P. Guertin, M. McGuire, and D. Nowrouzezahrai, “A fast and stable
feature-aware motion blur filter,” in Proc. of High Performance Graphics,
ser. HPG ’14, 2014, pp. 51–60.

[22] J. Jimenez, “ACM Siggraph courses: Advances in real-time rendering -
next generation post processing in call of duty,” 2014.

[23] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d shapes,”
in Proc. of the 17th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’90, 1990, pp. 197–206.

[24] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 40, no. 4, 2018.

[25] A. Romero, M. Drozdzal, A. Erraqabi, S. Jégou, and Y. Bengio, “Image
segmentation by iterative inference from conditional score estimation,”
arXiv preprint arXiv:1705.07450, 2017.

[26] G. Lin, A. Milan, C. Shen, and I. D. Reid, “Refinenet: Multi-path
refinement networks for high-resolution semantic segmentation,” in
Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 2, 2017.

[27] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground
extraction using iterated graph cuts,” ACM Trans. Graph. (TOG), vol. 23,
no. 3, pp. 309–314, 2004.

[28] R. Laganiere, OpenCV 3 Computer Vision Application Programming
Cookbook. Packt Publishing Ltd, 2017.

[29] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of video,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 3,
2007.

[30] R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson,
and M. N. Do, “Semantic image inpainting with deep generative models,”
in Computer Vision and Pattern Recognition (CVPR), 2017.

[31] C. Barnes and F.-L. Zhang, “A survey of the state-of-the-art in patch-based
synthesis,” Computational Visual Media, vol. 3, no. 1, pp. 3–20, 2017.

[32] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: A vector representation for smooth-shaded
images,” in ACM Trans. Graph. (SIGGRAPH), vol. 27, 2008.

[33] H. Bezerra, E. Eisemann, D. DeCarlo, and J. Thollot, “Diffusion con-
straints for vector graphics,” in Proc. of the 8th International Symposium
on Non-photorealistic Animation and Rendering, 2010.

[34] S. Jeschke, D. Cline, and P. Wonka, “A gpu laplacian solver for diffusion
curves and poisson image editing,” Transaction on Graphics (Siggraph
Asia 2009), vol. 28, no. 5, pp. 1–8, 2009.

[35] J. J. van Wijk, “Image based flow visualization,” ACM Trans. Graph.
(TOG), vol. 21, no. 3, pp. 745–754, Jul. 2002.

[36] B. Masia, S. Agustin, R. W. Fleming, O. Sorkine, and D. Gutierrez,
“Evaluation of reverse tone mapping through varying exposure conditions,”
in ACM Trans. Graph. (TOG), vol. 28, no. 5, 2009.

[37] D. D. Busch, Nikon D200 Digital Field Guide. John Wiley & Sons,
2006.

[38] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: A vector representation for smooth-shaded
images,” ACM Trans. Graph. (TOG), vol. 27, no. 3, 2008.

[39] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patchmatch:
A randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph. (TOG), vol. 28, no. 3, 2009.

http://pixabay.com
http://unsplash.com
http://pexels.com
http://freegreatpicture.com
http://freegreatpicture.com
http://pixabay.com
https://easylife-online.com
http://www.lytro.com/
http://bit.ly/2FQy4LZ
http://bit.ly/2CWbMDw
http://revisionfx.com/products/rsmb/
http://www.gimp.org/
http://adobe.ly/1g8lSDp


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 10

R
ow

1
R

ow
2

R
ow

3
R

ow
4

R
ow

5
R

ow
6

R
ow

7

(a) (b) (c) (d)

Fig. 25: The diversity of scenes exploit by our framework. Blue and purple arrows indicate, respectively, the motion path of uniform and
multi-directional motion blur. (Images from: unsplash.com, pexels.com, pixabay.com and easylife-online.com)

http://unsplash.com
http://pexels.com
http://pixabay.com
https://easylife-online.com


1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2889485, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. YY, SEPTEMBER 2018 11

Xuejiao Luo received her diploma (MSc) from
Télécom ParisTech, France, in 2017. She is a
PhD student at Delft University of Technology in
the Computer Graphics and Visualization group.
Her research interests include computer graphics
and computer vision.

Nestor Z. Salamon received his Bachelor (2012)
and Master (2015) degrees in Computer Science
at Pontifical Catholic University of Rio Grande
do Sul (PUCRS), Brazil. From 2010 to 2015,
he worked as Software Designer at Hewlett-
Packard Brazil R&D. He is currently pursuing his
PhD in Computer Graphics at Delft University
of Technology (TU Delft), The Netherlands. His
research interests include computational photo-
graphy, image processing and multimedia content
creation.

Elmar Eisemann is a professor at TU Delft,
heading the Computer Graphics and Visualiza-
tion Group. Before he was an associated pro-
fessor at Telecom ParisTech (until 2012) and
a senior scientist heading a research group in
the Cluster of Excellence (Saarland University /
MPI Informatik) (until 2009). He studied at the
École normale supérieure in Paris (2001-2005)
and received his PhD from the University of
Grenoble at INRIA Rhône-Alpes (2005-2008). He
spent several research visits abroad; at the Mas-

sachusetts Institute of Technology (2003), University of Illinois Urbana-
Champaign (2006), Adobe Systems Inc. (2007,2008). His interests
include real-time and perceptual rendering, alternative representations,
shadow algorithms, global illumination, and GPU acceleration techniques.
He coauthored the book ”Real-time shadows” and participated in various
committees and editorial boards. He was local organizer of EGSR 2010,
2012 and HPG 2012. His work received several distinction awards and
he was honored with the Eurographics Young Researcher Award 2011.


