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Abstract-We propose a technique to represent two-dimensional data using stipples. While stippling is ollen regarded as an illustrative 
method, we argue that it is worth investigating its suitability for the visualization domain. For this purpose, we generalize the 
Linde-Buzo--Gray stippling algorithm for information visualization purposes to encode continuous and discrete 20 data. Our proposed 
modifications provide more control over the resulting distribution of stipples for encoding additional information into the representation, 
such as contours. We show different approaches to depict contours in stipple drawings based on locally adjusting the stipple distribution. 
Combining stipple-based gradients and contours allows for simultaneous assessment of the overall structure of the data while preserving 
important local details. We discuss the applicability of our technique using datasets from different domains and conduct 
observation-validating studies to assess the perception of stippled representations. 

Index Terms-Stippling, contours, semiotics, evaluation, scalar field visualization, abstraction, sampling 

1 INTRODUCTION 

V ISUAL abstraction has been identified as one of the 
top visualization research problems by Johnson [1]. 

When it comes to visual representation of univariate data, 
we usually think of bar charts, line charts or possibly dot 
plots, where abstraction is often achieved through binning 
or smoothing. Although binning reduces the amow1t of 
visualized data, task performance for continuous geospatial 
data does not necessarily decrease [2]. However, it has been 
shown that dot representations significantly outperform 
contour representations for memorization tasks [3]. Moreover, 
there is an aesthetic aspect to abstraction which is a lso an 
irnportant concern for many applications 

In this work, we propose a dot-based technique for visual 
abstraction of scalar fields based on stippling. Stippling is 
a form of abstraction, where stipples (<lots) are carefully 
distributed to approximate shading. In that sense, stippling 
of scalar fields can be seen as a controlled s irnplification or 
non-linear smoothing of the dataset. Traditional algorithms 
for stippling are difficult to steer and therefore challenging 
to use in a visualization context. We aim to close this gap by 
modifying a technique from computer graphics to support 
binned and continuous data sirnultaneously. 

Encoding continuous data with color scales can be 
problematic because color perception is highly dependent 
on the surrounding illumination [4). In contrast, stipples 
allow us to encode information in their size and density 
and therefore do not require color. They are usually drawn 
as black circles on a white background, making them more 
robus t agains t varyin g illumination. Another characteristic 

• Görtler, Spicker, n11d De11ssen are witil /Ire U11iversity of Ko11stnnz. 
E-mnil: { joche11.goertler, mnrc.spicker, oliver.deussen }@1mi-ko1rsta11z.de 

• Schulz n11d Weiskopf nre witlr tlre University of Stuttgnrt. 
E-mnil: { c/1ristopl1.scl111/z, dnniel.weiskopf }@vis11s.1111i-st11ttgnrt.de 

of stippling is what has been previously explored as view­
dependent information in the context of visualization [S]: by 
loolking closely at a region, local differences and patterns 
can be inves tigated (in-depth information). With increased 
v iewing distance, larger-scale patterns dominate the visual 
impression (overview). Stipples can convey information 
through size and density. Our method provides fine control 
over these visual variables, which can be used to either 
encode additional information about the distribution, such 
as contours, encode information redundantly which can 
improve the overall visual impression, or combine multiple 
sources of data, as shown in Figure 1. 

IRegarding perception, we expect stippling parameters 
to have a highly non-linear effect on the result. Therefore, 
we have performed crowdsourcing experirnents to better 
u.nderstand the influence of stipple sizes and density on 
perception. Through these experirnents, we also airn to give 
guidance in choosing the right parameters for our a lgorithm. 

Our contributions are as follows: We modify a stippling 
algorithm for arbitrary scalar fields with adjustrnents to 
control the point size and add restrictions for binning. With 
this mechanism we introduce structure to our visualization 
through more deliberate stippte placement. We also verify 
our approach using psychophysical experirnents and discuss 
implications for usage. 

2 RELATED WORK 

In general, our method shares sirnilarities with different 
techniques used in cartography (6), (7]. Choropleth maps 
use lightness of colors to encode quantitative areal data, 
requiring the data to already be partitioned, for example 
i.nto administrative areas. However, such data is also weU 
suited to be depicted using symbol representations. Brewer 
andl Campbell (8) explore the usage and perception of such 
symbols for representing quantitative data on maps. 

P roportional symbol maps use the size of glyphs to 
represent quantitative data either at specific locations or in 
areas around it. In contras t, dot maps represent the quantity 
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Fig. 1. Stippled illustration of the 2016 election data from the United States (right) that combines the population density as the distribution of stipples 
(top-left, illustrated as dot map), and the vote difference for each administrative region (bottom-left, depicted using choropleth maps). Note how the 
stippled abstraction visualizes both aspects of the data simultaneously. 

of a feature by sampling the corresponding amowlt of 
symbols. Dot maps are sometimes used to depict population 
d istributions, where each dot represents a fixed number of 
people. This can lead to regions that are very dense or even 
over-plotted. To solve this problem, De Berg et al. [9] describe 
an approach to simplify these maps while maintaining 
the given distribution. Our approach also samples a given 
distribution, but also respects the size of the point that will 
be placed at each location. 

Non-photorealistic rendering (NPR) is a major field of 
research in computer graphics and some of the developed 
techniques have also been explored in the context of visual­
ization (10]. Wood et al. (11] propose sketchy rendering as a 
visual variable. They conclude that this type of representation 
can be used to encode additional information and may lead 
to an increased engagernent with the visualization. Kirn et 
al. (12) present a technique for aggregation, abstraction, and 
stylization in the context of maps. Their visual elements are 
similar to brush strokes which vary in length, density, color, 
and orientation depending on the underlying multivariate 
data. In contrast to our method, both of these approaches 
use lines as primitives. 

Stippling has also been explored in the visualization 
community. Biological cell maps have been represented using 
stipples (13] and share visual similarities to our visualization. 
However, the point positions for these maps are part of 
the input and do not need to be sampled. Lu et at. (14], 
(15) propose a stippte and feature enhancement method 
for volume rendering. Stippling has also been used to 
visualize brain fibers [16) using diffusion tractograms. These 
approaches sample stipples in predefined cells of a grid, 
whereas we use an algorithm that is based on adaptively 
changing Voronoi cells. 

Stippling Algorithms-Generating random point sets 
with alrnost uniform point-to-point distances is necessary 
for sampling, halftoning, remeshing, and artistic rendering 
methods such as stippling (17]. Lloyd's method (18) is 
one widely used optimization method based on Voronoi 
diagrams to generate such point sets. Fora given point set, it 
iteratively moves each point to the centroid of its correspond-

ing Voronoi cell until the points are distributed equally. The 
met.hod has been extended to create different point densities, 
for example, based on underlying image information (19]. 
Stippling with varying point sizes has also been explored [20). 
A more recent stippling method is also based on Yoronoi 
diagrams: Weighted Linde-Buzo-Gray (LBG) stippling (21) 
provides more intuitive parameters to control the final result 
and can also handle variable point sizes. Some stippling 
algorithms have been proposed with the goal of recreating 
or introducing controlled patterns (22], (23]. However, these 
algorithms focus on specific artistic effects and are lirnited 
in their applicability for other purposes. We generalize the 
algorithm of Deussen et al. [21] to work on scalar fields and 
extend it to encode additional structure in the results. 

Structure Highlighting-A popuJar approach to empha­
size structure is image enhancement, which is often used 
to improve the quality of an image in a post-processing 
step. Techniques range from simple contrast enhancement 
methods to more elaborated ones, such as histogram equal­
ization (24], and wavelet-based approaches [25). Luft et 
al. (26) use depth information to locally enhance the contrast 
between objects at different depths with unsharp masking. 
This improves the perception of the spatial arrangement 
w ithin a scene. Similar ideas have been proposed in scientific 
visualization: Bruckner and Gröller [27) present a method 
that uses halos to emphasize the spatial relationships in 
volumetric data, making it easier to judge occlusion. Everts 
et aJ. (28) also use halos for 30 rendering of dense line data. 
They highlight tight line bundles while less structured lines 
are de-emphasized. Hertzmann and Zorin [29] use Mach­
bands to improve the perception of surface structure. We 
employ ideas from these works, extending our stippling 
algorithm to encode additional structure in the form of 
contour lines. 

IPsychophysics in Visualization-Many studies of color 
and brightness perception have been carried out, which is 
reflected in the overview about color maps by Zhou and 
Hansen (30). One of the earliest studies resulted in the well­
known MacAdam ellipses [31] in which the color space 
was measured through repeated pairwise comparisons of 
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Fig. 2. Overview of our technique. Our approach can handle scalar fields as weil as discrete points as input. We use a modified version of the 
Linde-Buzo-Gray stippling algorithm that provides more control over the fina l appearance. By locally modifying the stipple distribution, we can 
encode additional information such as contour lines into the final representation. Our method encodes distributions of the underlying data into 
corresponding distributions of stipples, leaving other visual variables, such as color, free for encoding additional attributes. 

a single subject (method of adjustment). Oue to the high 
effort involved, these measurements provided the basis 
for standardized color spaces for a long time. Recently, 
these studies were refined by Froehlich et al. [32] using 
an adaptive procedure which iteratively attenuates a high­
intensity stimulus depending on the observers' rnistakes 
(staircase method). 

Because color perception is highly non-linear and context­
dependent, specialized studies for information visualization 
have been conducted. For example, Ware (33] investigated 
univariate color maps. Later, Mittelstädt etal. (34] developed 
a technique to compensate for contrast effects. To verify 
their model, they conducted an experiment in which the 
participants had to draw a curve based on a non-linear 
gray scale stimulus (magnitude estimation method). In fact, 
such psychophysical methods can even be applied to higher 
levels of perception, as shown by Rensink (35] in his study 
on the perception of correlation in scatter plots. Recently, 
Szafir [36] studied color differences in the context of informa­
tion visualization and questioned some of the well-known 
ColorBrewer [37] color schemes. Similar to MacAdam, but 
in a crowdsourcing study, she used a two-altemative forced 
choice (2AFC) task-based design to obtain psychophysical 
functions. In our user study we decided to use a sirnilar 
crowdsourcing-based approach. For a thorough discussion 
on crowdsourcing in the context of visual representations, 
we refer to the work of Archambault et al. (38]. 

3 0 VERV1EW 

Given 20 data, we aim to find a stippled representation of the 
distribution of its values. To achieve this, we adapt the Linde­
Buzo-Gray (LBG) stippling algorithm (21) to continuous and 
discrete scalar fields. The algorithrn is based on Voronoi 
diagrams: By iteratively moving each stipple to the centroid 
of its Voronoi cell, global point-to-point distances become 
more and more equalized. In addition to simply moving the 
points, the LBG algorithm also splits and merges cells based 
on the corresponding density fw1ction. 

Figure 2 provides an overview of the individual s teps 
of our approach. First, the input data is transformed to the 
target density using a mapping function. This density aJJows 
us to establish a relation between the data that falls into the 
region of a stipple, i.e, its Voronoi cell, and the conceptual 
amount of ink that a stipple carries. AdditionaJly, non­
linear mapping functions can be used to highlight relevant 
information. For discrete input points in 20, this mapping 
deterrnines how multiple data points are aggregated. 

We apply our modified version of the LBG stippling 
aJgorithm to compute the final representation. The result' 
point sizes can either be determined adaptively or directly 
specified by the user. In Section 5, we describe two ap­
proaches for adding contour lines to the visualization. These 
methods can be seen as extensions of our pipeline and 
require the extraction of contours from the mapped data. 
The final stippled result reflects the underlying data with the 
possibility to distinguish density changes locaJly. Moreover, 
it can display contours to provide an overall impression of 
the data simuJtaneous ly. Details for each step are described 
in their respective sections of this paper. 

4 STIPPLING 

The Linde-Buzo-Gray (LBG) stippling algorithrn has mainly 
been described in the context of computer graphics, where 
it is used to abstract images or for resampling meshes. In 
the following, we wan.t to generalize this method to scalar 
fields by means of formalization. Generally, 20 data can 
be discrete or continuous and potentially comprise a high 
dynarnic range. 

We define a 20 scalar field as a function <P : JR2 ~ IR. 
Sirnilar to color scales, we require a mapping p : IR ~ [O, 1] 
to transform the co-doma in of the scalar fi eld to unit range. 
We call this the derived scalar field <I>: 

<l>: IR2 ~ (0 , 1] , <l> = po </J 

In NPR, different rendering primitives and shapes have been 
proposed for stippling (39], [40]. Theoretically, our proposed 
method can handle arbitrary convex shapes, but for now 
we w ill use circles with a given extent and position. The 
goa 1 of the LBG stippling a lgorithm is to arrange stipples 
according to a given measure, in our case the values of 
the transformed scalar field <I>. The algorithrn starts with 
a random initial distribution of stipples. Then, it evaluates 
how weil each stipple represents its proximity in <!>. The 
neighborhood of each stipple s E S is found by computing 
the Voronoi diagram over the complete set of stipples. 

Conceptually, we want to relate the required amount of 
ink for a stipple to the values of the scalar field in its vicinity. 
For continuous scalar fields, we achieve this by integrating 
over its corresponding Voronoi cell V • . The target density for 
a stipple T8 is therefore given by: 

T. =ff <I>(x, y)dA 

v. 



In the case of discrete scalar fields and uniform grids, this is 
the same as accumulating the density over all points or grid 
cells that belong to the associated Voronoi cell: 

T. = L <P(i) 
iEVa 

According to the Linde-Buzo-Gray algorithm, we compare 
Ts with the area occupied by the stipple A8 • More precisely, 
with the area weighted by the values of the scalar field. 
Three different cases can occur, as shown in Figure 3: If 
a stipple represents the target density reasonably weil, up 
to a specified error threshold c (Ts E [As - c, As + c)), a 
relaxation step is performed. This moves the stipple toward 
the weighted centroid of its Voronoi cell (Lloyd relaxation). 
In the other two cases the stippte is either split (T. > A. + c) 
into two separate cells or deleted (Ts < As - c). This 
procedure is repeated iteratively until no more splits and 
merges occur and the algorithm converges. To increase 
the convergence rate, the threshold c is slightly increased 
with each iteration. This marginally affects the resulting 
quality in later steps, where very few changes are performed, 
but guarantees convergence due to the steadily increasing 
aJ lowed error. 

The main parameter of the algorithm is the stipple 
size and the required number of stipples is automatically 
determined. Choosing a smaller size results in more points 
and thus preserves more details, whereas a ]arger size yields 
a more abstract representation with fewer points. Because the 
split and merge operations compare the contained density 
of a cell to the density represented by the generating stipple, 
the stippte size can vary locally. lt can be set according 
to its position, attributes of the scalar field, or directly 
provided by the user. The original LBG stippling algorithm 
supports variable point sizes by adjusting the size of a stipple 
(within a provided range) according to T • . This, however, 
does not enforce the point size in any way and there are 
no guarantees that all sizes within the given range are 
reached. Our proposed method changes thls step of the 
algorithm: we set the point size according to the scalar field 
and then compare its area to the target density. Through 
this modification, information from the scalar field can be 
encoded independently in the point size as weil as the point 
density. Figure 4a shows how a constant density can be 
estabUshed using constant and variable point sizes. Varying 
the point size but keeping the density constant does not 
create a perceptually constant impression (the density of the 
left looks different compared to the right), even though the 
density is still accurately reflected. Figure 4b shows a density 
gradient stippled using constant and variable poin.t sizes. 
Increasing the point size can be used to boost the perception 
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Fig. 3. Schematic illustration of the LBG stippling algorithm. Based o~ the 
comparison between the density contained in each cell and the st1pple 
area, cells are either deleted, moved to the centroid of the cell, or split. 
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of the density. lt is important to note that these two channels 
are not independent: For a given density we might have 
only a subset of the preferred point sizes and we restrict the 
amount of required points by enforcing a certain point size. 
Therefore, it is not readily possible to use these two channels 
to encode two independent variables of the data. 

5 EMULATING CONTOURS 

lt is common to add contour lines to conventional represen­
ta tions of scalar fields to emphasize the overall structure. 
Therefore, we show how to emulate contours using stipples. 
Algorithm 1 shows the LBG stippling method with our 
changes to emulate contours highlighted in red. In the 
following, we detail the highlighted modifications to emuJate 
contours by carefuJly adjusting the placement of stipples. 

5.1 Restricted Stippling 

One way of adding contours to stipple drawings is to keep 
the areas belonging to the same bin visually similar and 
vice versa. We achieve this by keeping the stipple size 
constant within a contour. Then, we vary their density to 
represent the underlying scalar values. To further emphasize 
the borders between contours, we force stipples to stay within 
the boundary of their current quantized regions. This results 
in a visible line between these regions, because no stipples 
willl be placed inside the boundary region. Referring to the 
Gestalt principles, this technique is also called negative space. 

To enforce this behavior, we restrict the underlying 
Voronoi diagrams according to contour boundaries defined 
by a user-defined map. This approach has already been used 
to create decorative mosaics, where tiles shouJd not overlap 
sharp boundaries of regions (41). While previous approaches 
propose to delete regions where no tiles should be placed, 
we aggregate the density of the scalar field into each Voronoi 
cell for the contours separately instead. During integration 
of the density of a Voronoi cell, we consider only the density 
thatt is part of the contour C( 

r,; =ff ci(x, y)<J.> (x, y)dA, where (1) 

v. 

Ci x. ) = { 1, if (x, y) is endosed by contour i 
( · y 0, otherwise 

Thus, there can be up to n centroids per Voronoi cell, 
depending on the number of given bins n . Other cell 

(a) (b) 

Fig. 4. (a) Stipples distributed with a constant density <l;nd either. constant 
point size (top) or variable size (bottom). (b) lncreasmg dens1ty, agam 
with constant point size (top) and variable size (bottom). 



properties, such as area and average density are treated in the 
same fashion. When applying the LBG stippling algorithm, 
we just consider the sub-cell with the maximum contained 
density. This forces the stipple to move towards the center of 
said cell, which in turn means away from the corresponding 
region boundary. Figure 5 shows an example of this process. 
The resulting stippled representation is similar to quantized 
grayscale color, but instead of using different colors, contours 
are directly encoded into the distribution of tl1e stipples. 

5.2 Mach-Banding 

Our second approach to introduce contours is based on Mach­
banding. Mach-bands are an optical illusion that locally 
arnplify the contrast between areas that have slightly differ­
ent shading. In many applications this effect is undesirable 
because it changes the perception close to boundaries. In 
our method we take advantage of this illusion and show 
how it can be used to emulate stippled contours. Although 
we coined tl1e proposed approach as 'Mach-banding', it 
would be more precise to think of it as 'Mach-banding 
inspired'. Mach-banding has already been used in computer 
graphks, where it is called 11nsharp rnasking, to amplify edges 
or improve contrast by incorporating depth information (26]. 
We apply this concept in the domain of scalar fields: Starting 
from a quantized grayscale map c<I> that we want to stipple, 
we perform a frequency separation, keeping only the high­
pass result /::,.Cif>. In practice, this means applying a Gaussian 
blm Gdxd to obtain a low-pass filtered version of C<1> and 
then subtracting it from the original quantized map: 

ßCil> = C<1> - Gc1 xd * C<1> 

The size d of the Gaussian can be used to control the extent of 
the local contrast change. Setting its size similar to the stipple 
size has yielded good results in our experiments. Then, we 
use this information to modify the scalar field by blending 
6.Cil> with !!"? using the following blending function where 
the weight is denoted by w E [O, 1]: 

!!"?' = {clamp(<I> + 2w (/::,.C<T> - 0.5), 0, 1), 6.C<T> > 0.5 (2) 
clamp(<I> + 2w(6.C<1> - 1.0), 0, 1), 6.C<1> ::; 0.5 

The unweighted version of this function is commonly known 
in in1age mani pulation software as linear light blending. 
Figure 6 shows an example of the complete process. Due 
to the local nature of the technique, we vary only the 
representation of the scalar field close to boundaries, while 
maintaining correct values everywhere eise. We discuss the 
error introduced into the density map and corresponding 

Fig. 5. Contour lines restrict the density integration for each Voronoi cell 
r;. Solely the density of the largest area is considered for the stippling 
algorithm, and the centroid moves accordingly during the relaxation. 
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Voronoi cells later in Section 9. The size of each stipple is 
determined by the modified scalar field. By weighing the 
blending function, we can control how apparent tl1e contours 
will be in the visualization. lt is important to note that for this 
approach we modify tl1e density chaimel while keeping tl1e 
stipple size unmoditied to add contours to stipple drawings. 
This leaves the other channels for encoding additional data. 

We will apply our methods to real world data in Section 6, 
for now we compare the results on a synthetic dataset in 
Figure 7. Shown are different quadrants of the symmetric 
Eggcrate function. The top left shows the scalar field, and top 
right the results of the unchanged LBG stippling algorithm. 
While stippling facilitates estimation and comparison of local 
densities due to using discrete elements, the overall shape 
of the function is not retained very weil. Our proposed 
Mach-banding and restricted stippling approaches are shown 
on the bottom. Our contour emulation approach aUows 
distinguishing local density changes when looking at the 
visual ization from a close viewing distance, yet providing a 
comprehensive overview when looking from further away. 
Please note iliat sometimes the contours are more apparent 
in the printed version of the paper. 

6 E XAMPLES 

In this section, we showcase our technique using real-world 
geographic, election, and multivariate data to demonstrate 
the effectiveness as visualization and abstraction technique. 
Moreover, we aim to convey the potential design space 
of stipple visualizations. For this, we also refer to the 
supplemental material, which contains additional exarnples. 

Algorithm 1: Modified LBG stippling with contours 

foput : Target density function !!"? 
Output: List of stipples S 

1 S +- initialize random stipples 
2 repeat 

7 

8 

10 

11 

12 

13 

14 

lS 

16 

17 

18 

V +- compute Voronoi diagrarn of S using !!"? 
foreach s E S do 

Ts +- ff !f?(x, y ) dA 11 dcnsity for each cell 
v. 

if restricted stippling then 

1 

T8 +-argmaxJ{ Ci(:r, y)<I> (::r . y)dA 11(1) 
' v. 

eise if Mncll-banding then 

1 

1 :, +-Jf<I>'(J:, y)dA 11(2) 
v. 

end 
foreach Voronoi cell V8 E V and resp. stipple s do 

if Density T3 too low then 
I remove s from S 

eise if Density T8 too high then 
1 split s into two and add to S 

eise 
1 move s to weighted centroid of Vs 

end 
19 end 
20 until no more splits and merges 
21 retum S 
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(a) scalar field 4> (b) contour map C<r> (c) high-pass filtered 6 C q, (d) Mach-banding 4>' 

Fig. 6. The different steps that are required to emulate contours using the Mach-banding effect. Starling from a scalar field input (a) together with 
the corresponding quantized grayscale map (b), we can compute a high-pass filtered version (c). The final result (d) can be obtained by stippling a 
combined version of (a) and (c). Essentially, We manipulate the underlying density in the vicinity of the contours, shown in the top image of (c). 

Fig. 7. Stippling techniques applied to different quadrants of the sym­
metric Eggcrate function. Top-left: target density, top-right: stippled with 
the unmodified algorithm, bottom-left: contours using Mach-banding, 
bottom-right: contours using restricted stippling approach. 

Topographical Data- Figure 8 shows geographic height 
data of Australia. The dataset [42] is based on measurements 
collected during the Shuttle Radnr Topogrnphy Mission (SRTM). 
We use a quantized height map with four bins to guide our 
restricted stippling approach. Here we invert the usual point 
size mapping by using larger points in lower areas and vice 
versa. This allows us to display the (usually small) high 
altitude regions with more detail. The resulting visualization 
shows not only the different densities, but also emphasizes 
the contours and thus provides an overview of the topog­
raphy, sim ilar to contour lines on maps. Additionally, we 
encode non-quantized height information as stipple color 
to make differences more apparent. While double encoding 
is usually avoided in visualization, it can help people with 
color vision deficiency distinguish heights. 

Cartography-In cartography, it is common to show the 
re lationship between multiple variables. U one of these 
variables is continuous, our stippling approach can be 
used to compute a simplified, but still visually represen­
tative illustration of the underlying co-domain. Because 
our technique supports multiple channels, we can encode 
additional variables to create a bivariate visualization. An 
example of this approach is shown in Figure 1: The stipple 
distribution reflects the population density of the United 
States of America, as recorded by the 2010 census (43], 
whereas the color of the stipples shows the approximate vote 
share during the 2016 presidential election (44]. As we can 
see, the population density has a big influence on the result of 
the election. Here, our approach has certain advantages over 
existing teclmiques. Election results are often visualized with 
choropleth maps, where the color of an entire administrative 
region is based on vote share. However, this representation 

Fig. 8. Elevation data of Australia created with our restricted stippling 
approach. The data is quantized to four bins; each level is represented 
with a discrete point size to make the distinction more clear. Additionally, 
the non-quantized height is used to color-code each stipple. 

can be misleading because some regions might be !arge in 
area, and therefore visually dominant, but comprise only a 
small amount of the entire population. Our method samples 
the population and creates an abstract representation of the 
distribution and thus does not share this problem. Stipples 
aggregate the underlying data, therefore the distribution of 
colors contained in the Voronoi cell of each stipple needs to 
be carefully sampled as well. Our visualization was inspired 
in parts by the 2016 Election Mnp webcomic from xkcd. 

Bivariate proportional symbol maps are often used to 
alleviate the area problem of choropleth maps- they allow 
us to encode information in the color and size of the 
symbols. Figure 9a shows an excerpt of the same dataset 
with circles of different radii representing the population for 
each county and color representing the difference between 
the vote percentages. Figure 9b depicts the corresponding 
stipple drawing for comparison. A common problem w ith 
proportional symbol maps becomes immediately visible: the 
overlap between nearby symbols. Fi.nding the right drawi.ng 
order to reduce the overlap is a non-trivial problem [45]. 
Overlap caimot occur with our approach (or to a very limited 
extent) due to the space-partitioning property of Voronoi 
diagrams used by our algorithm. 

[socontours--ln Figure 10, we show a comparison of our 
contouring techniques using a stippled heightmap without 
color of Mount Fuji in Japan [42]. Both techniques emphasize 
the differences in height. This helps to highlight the slope 
of Mount Fuji and the large plateaus in its surrounding: 



(a) Proportional symbol map (b) Stippled distribution 

Fig. 9. Comparison between a bivariate proportional symbol map (a) and 
the according stippled representation (b). Proportional symbol maps can 
suffer from overlap, making it hard to make out the underlying distribution. 
The stippled representation does not have this problem, however the total 
maximum of the distribution is harder to spot. 

(a) Mach-banding (b) restricted stippling 

Fig. 10. Elevation data of the Akaishi mountain range and Mount Fuji in 
Japan. The Mach-banding technique (a) highlights ridges and valleys, 
while the restricted stippling approach (b) shows contours more clearly. 

the ocean in the south is the lowest part of this region and 
therefore not covered with stipples. We use five isocontours 
for both resuJ ts with the minimum and maximum point 
size set to 3 and 12 respectively. Here, a low number of 
contours facilitates comparability between our contouring 
techniques. Creati.ng bow1daries too close to each other in the 
restricted stippling approach would result in empty regions 
because the algorithm is not able to distribute points within 
the small region between adjacent bou.ndaries. In contrast, 
the Mach-banding approach does not share this problem 
because boundaries are created impliciHy-points of different 
contours can freely move between them. While borders are 
more emphasized with restricted stippling, finer details of 
the height differences are more apparent when using Mach­
banding, as can be seen on the left. However, due to the 
contrast enhancement, these details are also exaggerated. 
Compared to Figure 8, the point size mapping here is 
inverted. We use visually more prominent !arger points for 
higher altitude regions to steer the attention towards the 
peak of Mount Fuji, while preserving the structure of the 
mountain range to the left. 

Stippled Scatter Plots-Traditional scatter plots often suf­
fer from over-plotting: many points are plotted on top of each 
other in dense regions, obscuring the undedying distribution. 
A standard technique to tackle this problem employs kerne! 
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(a) Scatter plot (b) Stippled scatter plot 

Fig. 11. Visualization of the diamond dataset, showing price over width. 
Color represents clarity ot each diamond. In (a) the dataset is depicted 
using a regular scatter plot with all 51 ,772 data points, while (b) shows 
the result of our stippling techn ique, reducing the amount of points to 
3,38-9, showing the actual distribution more clearly. 

density estimation or transforrns an existing continuous data 
donnain, e.g., velocity, to the image domain (46). The resulting 
density field is then colored using a transfer function which 
conveys an impression of depth and opacity. However, this 
approach has a major drawback: areas with low point density 
suffer from low contrast, making it difficult to spot outliers. 

Our proposed technique can be used to avoid both of 
these problems by sampling the data points. Figure lla 
shows a traditional scatter plot of diamond properties, 
namely width and price. Color is used to encode the clarihJ. 
In this example, the representation suffers from a lot of over­
plotting in the lower regions. The stippled representation 
behaves differently, as can be seen in Figure llb. Please note 
how our technique reveals clusters in the data, which were 
concealed by visual clutter in the traditional scatter plot. 
With our method, we were able to reduce the number of 
points from 51,772 points in the scatter plot down to 3,389 
poi.nts. Admittedly, the points in the stippled scatter plot 
do not necessarily fall onto points from the original dataset. 
However, other methods from information visualization, 
such as kerne! density estimation, make the same compro­
mise. Nevertheless, each point is a representative of the 
underlying distribution. One possible extension here would 
be to incorporate actual data locations into our algorithm. 
Sparse regions could use the actual data positions, whereas 
regions with higher density could maintain the intended 
stipple distribution, and everything in-between could use a 
comprom ise of both. This presents a trade-off between the 
accuracy of individual points and their overall distribution. 

7 E VALUATION 

In previous work, evaluation of NPR stippling techniques 
either targeted technical verification (21 ] or measuring 
perceived quality [47]. Therefore, our evaluation targets 
the area between: the relation between parameters and 
low-level perception. In contrast to the far more common 
user studies [48), our goal is not to prove the usefulness 
or acceptance of our technique but to discover possible 
problerns and opportunities for improvement. Thus, we 
strive to answer a set of research questions related to the 
verilication and validation of our technique (49): 
RQ 1 How linear is the perception of stippling? 
RQ 2 How does stippling compare to grayscaJe? 
RQ 3 How does stippling diminish regarding perception? 



Our questions cannot be answered by means of a traditional 
user study, because we want to acquire stimulus-response 
functions. Therefore, we do a combination of leveraging 
the idea of generative data models [SO] and psychophysical 
methods (Section 2). 

7.1 Experiment Design 

We conducted our experin1ents using the crowd-sourcing 
platform CrowdFlower (now Figure Eight) in separate sets of 
browser-based micro-tasks. In all of our experiments, one 
question corresponds to one micro-task and instructions 
briefly give users an introduction to stippling using artistic 
images. An important factor in crowdsourcing is quality 
control without scratching validity: We asked test questions 
with obvious stimuli (far above the just-noticeable difference 
threshold), but sti ll d ifficult to distinguish from regular 
stimuli. The test questions were randomly inserted, and 
the participant received a notification in case of an invalid 
answer. Participants with an accuracy rate below 70% on 
these questions were removed from the experiment. At 
the beginning of all experiments, each participant had to 
complete a quiz that was randomly compiled from test 
questions to verify the participants task comprehension. 

7.2 Experiment: Just-Noticeable Differences 

We address questions RQ1-RQ3 by determining and com­
paring the just-noticeable differences (JND) for stippled and 
grayscale images. To determine the JNOs, we chose a classic 
two-alternative forced choice (2AFC) experiment and the 
method of constant stimuli as known from psychophysics. 
Note that we consider only the original LBG stippling 
algorithm using three different constant point sizes to reduce 
the parameter space. 

Procedure-All participants were instructed to locate the 
dark side of linear gradient stimuli, i.e., judge the direction of 
the slope between a reference point and a comparison point. 
We sampled 11 even-distributed reference points between 
0 (white) and 1 (black), each with up to 9 comparison 
points at a distance of {O, 0.0375, 0.075, 0.15, 0.3} arow1d 
the corresponding reference point. Out of bounds sample 
points below 0 and above 1 were dropped. We verified the 
usefulness of the range around the reference points in a 
small-scale test run. Comparison points with the maximum 
possible distance of 0.3 were used as test questions. Each 
stimulus was surrounded by a gray border to reduce the 
influence of contrast. Moreover, we suggested participants 
optimizing their viewing angle, viewing distance, and avoid 
light shining directly on their screens. For each stimulus, the 
participants were asked to decide whether the left or right 
side were appearing darker. 

Analysis-We collected 23,753 responses from 841 partic­
ipants in tota l. In a first step, we plotted absolute and relative 
value differences along with their average detection rate to 
check data quality. Then, we joined symmetric difference 
pairs around each reference point to determine left/right 
biases. This was a precautionary measure as our sampling 
method does not necessarily produce a symmetrical result 
under symmetrical parameter transformations. We fitted 
logistic functions to our data with a common random 
guess rate of 0.5 for 2AFC experiments. Based on the fitted 
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Fig. 12. Visualization of the perceivable difference for increasing 
grayscale values in comparison to stippling from our user study. The 
ribbons show the 95% confidence intervals and mean values at measure­
ment points for a detection rate of 80%. 

functions we can determine difference thresholds for 80% 
detection rate, depicted in Figure 12. 

IResults-Regarding RQ2, we can see that stippling 
outperforms grayscale maps in the lower range of values (0.0 
to 0.2). This supports our claim that stippling is useful in low 
density regions because of the representation with discrete 
elements. TI1e explanation for this is quite obvious: black dots 
have a much higher contrast on white background compared 
to a gray gradient. Grayscale outperforms stippling in the 
mid range of values (0.4 to 0.8) and there are almost no 
differences in the upper value range. 

Concerning RQ 1, all curves describing the perception 
of stippling are non-linear, with a stipple size of 8 being 
the closest to linear. Moreover, the dependency between the 
threshold and stipple size is non-linear, as can be seen by the 
bump (0.3 for size 4, 0.5 for 8 and 0.6 for 16). Note how the 
bum.p moves from the lower third to the upper third with 
increasing point size. 

For RQ3 we expected stippling to perform worse with 
increasing point density, however this kind of bump was 
surprising. We suspect that there are several reasons for 
this: On the one hand, the algorithm tends to create regular 
patterns at the border due to the handling of Voronoi cells. As 
a result, stipples at the border become countable with increas­
ing size. On the other hand, perceived density might also be 
related to frequency perception in our stipple visualizations. 
In Figure 13, we transform two stipple sets, having low and 
high constant density, to frequency space using the Fourier 
trarlsform. In contrast to standard sampling in computer 
graphics, we do not transform the point positions but the 
final inrnges that also contain the stipple sizes. The resulting 
frequency plots show rings that represent frequencies relating 
to reoccurring distances between stipples. In the case of 
lower density, these rings are clearly visible because the 
point density allows distribution of stipples with similar 
distances. The opposite is true for higher densities, where 
placement of stipples becomes more difficu lt for the stippling 
algorithm, to the point where individual stipples become 
almest indistinguishable. This manifests as blurred rings 
in the frequency plot because undesired frequencies are 
introduced. We expect this effect in frequency space to 



...... . . . . . . . . . . . . . . . . ... ... ..... ·. . . ... 
Fig. 13. Stipples with low and high density in image and frequency space. 
The blurred rings in the high density case (right) are due to frequencies 
introduced by our algorithm in dense regions. We suspect this to be 
detrimental for the performance in distinguishing local densities. 

translate to a worse performance in distinguishing local 
densities. Lastly, we cannot control parameters such as 
display resolution, rasterization, and viewing distance of 
each study participant. Therefore, we assume that some 
combinations of these factors combined with point sizes 
might have Jed to the bump artifact. In practical terms, this 
means mid-range value differences should be boosted for 
example by employing our contouring techniques. 

8 PARAMETRIZATION 

In this section, we give guidance by discussing the impact 
of different parameters, provide some reasoning behind the 
parameter selection, and !ist trade-offs to help others in 
creating their own stippled visualizations. 

Stippling-Choosing a smaller stipple size improves the 
spatial resolution and amount of preserved details, whereas 
a larger stipple size increases the degree of abstraction. With 
increasing viewing distance, smaller points become less 
visible, filtering out details represented with such point sizes. 
Choosing a variable point size, either akin to the original 
LBG stippling algorithm, or by specifying it via a point size 
map, increases the contrast in the stippled resuJt. TypicalJy, 
we used a factor of 3 to 5 between maximum and minimum 
point size to create a reasonable contrast in the results. 

The computation time is similar to the original stippling 
algorithm. lt mainJy depends on the number of created 
stipples and therefore the point size. The algorithm required 
several seconds on commodity hardware (Intel Core i7-4790K 
CPU at 4.0 GHz, Nvidia GTX 980 Tt CPU) for a typical 
visualization in this paper ("' 1 Ok points). The initial number 
of points and their distribution affect onJy the runtime of 
the algorithm, not the quality of the result: The algorithm 
converges to a similar number of stipples, usualJy after 50 to 
100 iterations. In general, our method does not significantly 
change the runtime of the original algorithm and adds onJy 
a small overhead. The mach-banding technique requires a 
pre-processing of the input, whereas the restricted stippling 
approach increases the memory requirement proportional 
to the number of contours. For a more in-depth runtime 
analysis, we refer to the original LBG stippling paper [21). 

Contours-Apart from the number of contours, the Mach­
banding technique has two parameters that influence the 
resuJt. Recall that we use a Gaussian blur as part of our 
technique to modify the scalar field locally. The radius of this 
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Gaussian blur corresponds directly to the affected adjacent 
stipples. We found that using the maximum stipple size as 
blul!' radius yields good results. The weight w of the blending 
function used to combine the high-pass filtered version with 
the scalar field, on the other hand, is used to steer how much 
the density changes in the vicinity of the contour, making it 
more or Jess visually prominent. We used values between 0.3 
andl 0.8 depending on the desired emphasis of the contours . 

Restricted stippling does not require parameters, but since 
the s tipp Je sizes are constant for each contour, setting suitable 
point sizes becomes even more important. This was either 
done with a user-provided point size map, or by distributing 
the point sizes equally between the minimum and maximum 
point size of the LBG stippling algorithm. 

IEncoding--Our presented stippling approach allows 
different forms of encoding in each element (d. Figure 14). 
In this paper, we mainJy used size and sometimes color as 
visua l variables. Additional information can also be encoded 
in shape, or in Gestalt principles when looking at groups of 
stipples. We already use Gestalt principles for introducing 
contours, which become apparent because of proximity and 
similarity. Combinations of these visual variables can be 
used to encode different information or encode the same 
information redundantly to further increase the perceived 
difference and improve the visual impression. The core 
of the algorithm works by comparing the density of a 
representa tional element, in our case filled circles. However, 
the algorithm supports arbitrary convex shapes without any 
changes apart from an adapted calculation of the Voronoi 
d iagram. The application of glyphs in context of visualization 
has been investigated thoroughly [51). However, we consider 
the exploration of this large design space for stippling to be 
beyond the scope of this work. 

Size Color 

••• 
Shape 

•*o 
Gestalt principles 

• •• ••••• 
Fig. 14. Different forms of encoding that can be utilized in the stipple 
visualization. Combinations can be used to encode additional information 
or introduoe redundancy to further increase the visual discrepancy. 

lDensity Mapping- In Section 7 we have already derived 
the 80% JNDs for three constant stipple sizes (Figure 12). 
From this, we can give some advice regarding the represen­
tation of the data. The density mapping shouJd be root or 
logarithm.ically scaled, because depiction works weil in the 
lower to mid range (0.0 to 0.5)-then the bump effect occurs, 
as discussed in the evaluation. This effect has an unfavorable 
impact on the value range above 0.5 with increasing stipple 
size, making these densities more difficult to distinguish. 
As already mentioned, we can use contours to alleviate th1s 
problem. The ideal solution to this problem would be an 
exhaustive psychophysical evaluation of the parameter space 
in order to Unearize it, similar to what has been achieved for 
color with CIELAB. Therefore, we see our experiments as 
preliminary work for further research. 

9 DISCUSSION AND LIMITATIONS 

Prior work [47) evaluated the relationship between the 
number of stipples and the perceived quality of the resulting 



(a) (b) (c) 

Fig. 15. Features embedded into stipplings strongly depend on the local 
context. For both (a) and (b), the space between the feature and the 
surrounding stipples is the same, but the space appears greater for the 
smaller stipples in (b). Both stipple densities are juxtaposed in (c). 

image. Their finding is that an abstraction with more stipples 
leads to a higher perceived quality, however a t an decreasing 
rate for higher nurnber of stipples. We were able to confirm 
this connection in Section 7. Similar to other visual variables, 
such as color, we have shown that the perception of stipples 
as visua l variable is non-linear. An important aspect of 
stippled images is that the local position of the stipples 
and their context can have a strong influence on how we 
understand the visualization. Figure 15 shows an example of 
this effect: Although the spacing between the feature and the 
surrounding stipples is the same, the gap is perceived )arger 
when stipples in the neighborhood are smaUer. We suspect 
that this difference in perception is due to how humans 
perceive frequency or more precisely frequency changes. 

Stippling artüacts-There are several important charac­
teristics of our stippling algorithm that are carried over into 
the visualization and could potentially introduce uncertainty 
regarding interpretation of the visualization. Due to how the 
Voronoi diagrams are calculated, stipples at the border of 
the visualization can end up in a confi.guration with a higher 
density than it is present in the data. To varying degree, 
an example of this can be seen at the border of Figure 4. 
One potential solution to alleviate this problem would be 
to use either smaller or partial stipples in boundary regions. 
However, it has tobe investigated how much this idea affects 
the density perception. 

Another artifact that can be introduced by the LBG 
stippling algorithm are hexagonal pattems. This happens 
wht::n tht:: algorithm convt::rges l;lowly (dut:: to parametrua­
tion) and the additional steps of Lloyd relaxation lead to 
stipples arranging in a regular hexagonal grid. Whiie this 
effect is certainly unwanted in the domain of rendering, it 
has to be investigated how disruptive these pattems are 
for inforrnation visualization. The effect can be reduced by 
jittering the positions in a post-processing step. 

Contour techniques- We proposed two approaches for 
adding structure to the stippled representation (Section 5). 
Both contouring techniques differ not only in their imple­
mentation but also in the visual result. Mach-banding leads 
to surface-like regions, whereas using the Voronoi diagram 
to restrict stipple position leads to lines that appear because 
stipples are constrained from moving too close to the region 
boundaries. The latter technique uses negative space as a 
means of adding information. Figure 16 shows the error that 
is introduced by the standard version of the LBG stippling 
algorithm for each Voronoi cell (left). The relative size error 
is color-coded so that red means a cell is too large and 
blue means too small. The error for the Mach-banding 
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Fig. 16. Relative error of Voronoi cells visualized for an excerpt of the 
bottom left quadrant of the Eggcrate function (see Figure 7). The error of 
Mach-banding follows the changes in density, while the error for restricted 
stippling is more localized. 

approach is shown in the middle. A higher error occurs 
close to the contours due to the local change in density. On 
the right, the error for the restricted stippling approach is 
shown. Since stipple movement and density integration is 
constrained and cannot cross a contour, an additional error 
is introduced which is less uniform compared to the Mach­
banding approach. As discussed previously, the number 
of potentia l contours differs between the two approaches. 
Wlille Mach-banding can even be used for a high number of 
contours, the restricted stippling approach creates artifacts 
when contours come too dose to each other, creating regions 
where the stippling algorithm cannot place points. 

10 C ONCLUSION 

We have presented a novel method to visualize and abstract 
continuous and discrete 2D data using stippling. The pre­
sented algorithm allows us to encode information in different 
channels of stipples, such as density, size, color, and shape. 
For example, we have shown how to encode additional 
data in the form of contour lines in the stipple drawings. 
This enables users to perceive information at different levels 
of abstraction and also in a viewing distance-dependent 
manner: Details are preserved at close range and can be 
inspected when viewing the visualization from dose-up, 
whereas the overall structure can become more apparent at a 
higher distance or when viewed in a smaller-than-usual size, 
for example when used in thumbnails. 

For future work, we want to further investigate how 
stippled visualizations are perceived and interpreted by 
the user. We see the potential for research on the influence 
that illurnination changes might have on stippling and how 
task performance behaves in comparison to conventional 
representations such as color scales. We also imagine in­
terestin g extensions to the process of stippling. One idea 
is to not restrict the representation to black stipples on a 
whiite background, but also use white stipples on a dark 
background in dense areas, further increasing the contrast. 
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