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Abstract—The seminal work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic
imagery by separating and recombining image content and style. This process of using CNNs to render a content image in different
styles is referred to as Neural Style Transfer (NST). Since then, NST has become a trending topic both in academic literature and
industrial applications. It is receiving increasing attention and a variety of approaches are proposed to either improve or extend the
original NST algorithm. In this paper, we aim to provide a comprehensive overview of the current progress towards NST. We first
propose a taxonomy of current algorithms in the field of NST. Then, we present several evaluation methods and compare different NST
algorithms both qualitatively and quantitatively. The review concludes with a discussion of various applications of NST and open
problems for future research. A list of papers discussed in this review, corresponding codes, pre-trained models and more comparison
results are publicly available at: https://github.com/ycjing/Neural-Style-Transfer-Papers.
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1 INTRODUCTION

PAINTING is a popular form of art. For thousands of
years, people have been attracted by the art of painting

with the advent of many appealing artworks, e.g., van
Gogh’s “The Starry Night”. In the past, re-drawing an image
in a particular style requires a well-trained artist and lots of
time.

Since the mid-1990s, the art theories behind the ap-
pealing artworks have been attracting the attention of not
only the artists but many computer science researchers.
There are plenty of studies and techniques exploring how to
automatically turn images into synthetic artworks. Among
these studies, the advances in non-photorealistic rendering
(NPR) [1], [2], [3] are inspiring, and nowadays, it is a firmly
established field in the community of computer graphics.
However, most of these NPR stylisation algorithms are
designed for particular artistic styles [3], [4] and cannot
be easily extended to other styles. In the community of
computer vision, style transfer is usually studied as a gener-
alised problem of texture synthesis, which is to extract and
transfer the texture from the source to target [5], [6], [7], [8].
Hertzmann et al. [9] further propose a framework named
image analogies to perform a generalised style transfer by
learning the analogous transformation from the provided
example pairs of unstylised and stylised images. However,
the common limitation of these methods is that they only
use low-level image features and often fail to capture image
structures effectively.
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Figure 1: Example of NST algorithm to transfer the style
of a Chinese painting onto a given photograph. The style
image is named “Dwelling in the Fuchun Mountains” by
Gongwang Huang.

Recently, inspired by the power of Convolutional Neural
Networks (CNNs), Gatys et al. [10] first studied how to use
a CNN to reproduce famous painting styles on natural
images. They proposed to model the content of a photo as
the feature responses from a pre-trained CNN, and further
model the style of an artwork as the summary feature
statistics. Their experimental results demonstrated that a
CNN is capable of extracting content information from an
arbitrary photograph and style information from a well-
known artwork. Based on this finding, Gatys et al. [10] first
proposed to exploit CNN feature activations to recombine
the content of a given photo and the style of famous art-
works. The key idea behind their algorithm is to iteratively
optimise an image with the objective of matching desired
CNN feature distributions, which involves both the photo’s
content information and artwork’s style information. Their
proposed algorithm successfully produces stylised images
with the appearance of a given artwork. Figure 1 shows
an example of transferring the style of a Chinese painting
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“Dwelling in the Fuchun Mountains” onto a photo of The
Great Wall. Since the algorithm of Gatys et al. does not have
any explicit restrictions on the type of style images and also
does not need ground truth results for training, it breaks the
constraints of previous approaches. The work of Gatys et
al. opened up a new field called Neural Style Transfer (NST),
which is the process of using Convolutional Neural Network
to render a content image in different styles.

The seminal work of Gatys et al. has attracted wide
attention from both academia and industry. In academia,
lots of follow-up studies were conducted to either improve
or extend this NST algorithm. The related researches of NST
have also led to many successful industrial applications
(e.g., Prisma [11], Ostagram [12], Deep Forger [13]). How-
ever, there is no comprehensive survey summarising and
discussing recent advances as well as challenges within this
new field of Neural Style Transfer.

In this paper, we aim to provide an overview of cur-
rent advances (up to March 2018) in Neural Style Transfer
(NST). Our contributions are threefold. First, we investigate,
classify and summarise recent advances in the field of
NST. Second, we present several evaluation methods and
experimentally compare different NST algorithms. Third,
we summarise current challenges in this field and propose
possible directions on how to deal with them in future
works.

The organisation of this paper is as follows. We start our
discussion with a brief review of previous artistic rendering
methods without CNNs in Section 2. Then Section 3 ex-
plores the derivations and foundations of NST. Based on the
discussions in Section 3, we categorise and explain existing
NST algorithms in Section 4. Some improvement strategies
for these methods and their extensions will be given in
Section 5. Section 6 presents several methodologies for eval-
uating NST algorithms and aims to build a standardised
benchmark for follow-up studies. Then we demonstrate the
commercial applications of NST in Section 7, including both
current successful usages and its potential applications. In
Section 8, we summarise current challenges in the field of
NST, as well as propose possible directions on how to deal
with them in future works. Finally, Section 9 concludes the
paper and delineates several promising directions for future
research.

2 STYLE TRANSFER WITHOUT NEURAL NET-
WORKS

Artistic stylisation is a long-standing research topic. Due
to its wide variety of applications, it has been an impor-
tant research area for more than two decades. Before the
appearance of NST, the related researches have expanded
into an area called non-photorealistic rendering (NPR). In this
section, we briefly review some of these artistic rendering
(AR) algorithms without CNNs. Specifically, we focus on
artistic stylization of 2D images, which is called image-based
artistic rendering (IB-AR) in [14]. For a more comprehensive
overview of IB-AR techniques, we recommend [3], [14], [15].
Following the IB-AR taxonomy defined by Kyprianidis et al.
[14], we first introduce each category of IB-AR techniques
without CNNs and then discuss their strengths and weak-
nesses.

Stroke-Based Rendering. Stroke-based rendering (SBR)
refers to a process of placing virtual strokes (e.g., brush
strokes, tiles, stipples) upon a digital canvas to render a
photograph with a particular style [16]. The process of
SBR is generally starting from a source photo, incremen-
tally compositing strokes to match the photo, and finally
producing a non-photorealistic imagery, which looks like
the photo but with an artistic style. During this process,
an objective function is designed to guide the greedy or
iterative placement of strokes.

The goal of SBR algorithms is to faithfully depict a
prescribed style. Therefore, they are generally effective at
simulating certain types of styles (e.g., oil paintings, water-
colours, sketches). However, each SBR algorithm is carefully
designed for only one particular style and not capable of
simulating an arbitrary style, which is not flexible.

Region-Based Techniques. Region-based rendering is to
incorporate region segmentation to enable the adaption of
rendering based on the content in regions. Early region-
based IB-AR algorithms exploit the shape of regions to
guide the stroke placement [17], [18]. In this way, different
stroke patterns can be produced in different semantic re-
gions in an image. Song et al. [19] further propose a region-
based IB-AR algorithm to manipulate geometry for artistic
styles. Their algorithm creates simplified shape rendering
effects by replacing regions with several canonical shapes.

Considering regions in rendering allows the local control
over the level of details. However, the problem in SBR per-
sists: one region-based rendering algorithm is not capable of
simulating an arbitrary style.

Example-Based Rendering. The goal of example-based
rendering is to learn the mapping between an exemplar
pair. This category of IB-AR techniques is pioneered by
Hertzmann et al., who propose a framework named image
analogies [9]. Image analogies aim to learn a mapping
between a pair of source images and target stylised images
in a supervised manner. The training set of image analogy
comprises pairs of unstylised source images and the cor-
responding stylised images with a particular style. Image
analogy algorithm then learns the analogous transforma-
tion from the example training pairs and creates analogous
stylised results when given a test input photograph. Image
analogy can also be extended in various ways, e.g., to learn
stroke placements for portrait painting rendering [20].

In general, image analogies are effective for a variety of
artistic styles. However, pairs of training data are usually
unavailable in practice. Another limitation is that image
analogies only exploit low-level image features. Therefore,
image analogies typically fail to effectively capture content
and style, which limits the performance.

Image Processing and Filtering. Creating an artistic
image is a process that aims for image simplification and
abstraction. Therefore, it is natural to consider adopting and
combining some related image processing filters to render a
given photo. For example, in [21], Winnemöller et al. for the
first time exploit bilateral [22] and difference of Gaussians
filters [23] to automatically produce cartoon-like effects.

Compared with other categories of IB-AR techniques,
image-filtering based rendering algorithms are generally
straightforward to implement and efficient in practice. At
an expense, they are very limited in style diversity.
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Figure 2: A taxonomy of NST techniques. Our proposed NST taxonomy extends the IB-AR taxonomy proposed by
Kyprianidis et al. [14].

Summary. Based on the above discussions, although
some IB-AR algorithms without CNNs are capable of faith-
fully depicting certain prescribed styles, they typically have
the limitations in flexibility, style diversity, and effective
image structure extractions. Therefore, there is a demand for
novel algorithms to address these limitations, which gives
birth to the field of NST.

3 DERIVATIONS OF NEURAL STYLE TRANSFER

For a better understanding of the NST development, we
start by introducing its derivations. To automatically trans-
fer an artistic style, the first and most important issue
is how to model and extract style from an image. Since
style is very related to texture1, a straightforward way is to
relate Visual Style Modelling back to previously well-studied
Visual Texture Modelling methods. After obtaining the style
representation, the next issue is how to reconstruct an image
with desired style information while preserving its content,
which is addressed by the Image Reconstruction techniques.

3.1 Visual Texture Modelling
Visual texture modelling [24] is previously studied as the
heart of texture synthesis [25], [26]. Throughout the history,
there are two distinct approaches to model visual textures,
which are Parametric Texture Modelling with Summary Statis-
tics and Non-parametric Texture Modelling with Markov Ran-
dom Fields (MRFs).

1) Parametric Texture Modelling with Summary Statis-
tics. One path towards texture modelling is to capture
image statistics from a sample texture and exploit summary

1. We clarify that style is very related to texture but not limited to
texture. Style also involves a large degree of simplification and shape
abstraction effects, which falls back to the composition or alignment of
texture features.

statistical property to model the texture. The idea is first
proposed by Julesz [27], who models textures as pixel-
based N -th order statistics. Later, the work in [28] exploits
filter responses to analyze textures, instead of direct pixel-
based measurements. After that, Portilla and Simoncelli
[29] further introduce a texture model based on multi-
scale orientated filter responses and use gradient descent
to improve synthesised results. A more recent parametric
texture modelling approach proposed by Gatys et al. [30]
is the first to measure summary statistics in the domain
of a CNN. They design a Gram-based representation to
model textures, which is the correlations between filter
responses in different layers of a pre-trained classification
network (VGG network) [31]. More specifically, the Gram-
based representation encodes the second order statistics
of the set of CNN filter responses. Next, we will explain
this representation in detail for the usage of the following
sections.

Assume that the feature map of a sample texture image
Is at layer l of a pre-trained deep classification network is
F l(Is) ∈ RC×H×W , where C is the number of channels, and
H and W represent the height and width of the feature map
F(Is). Then the Gram-based representation can be obtained
by computing the Gram matrix G(F l(Is)′) ∈ RC×C over
the feature map F l(Is)′ ∈ RC×(HW ) (a reshaped version of
F l(Is)):

G(F l(Is)′) = [F l(Is)′][F l(Is)′]T . (1)

This Gram-based texture representation from a CNN is
effective at modelling wide varieties of both natural and
non-natural textures. However, the Gram-based represen-
tation is designed to capture global statistics and tosses
spatial arrangements, which leads to unsatisfying results
for modelling regular textures with long-range symmetric
structures. To address this problem, Berger and Memisevic
[32] propose to horizontally and vertically translate feature
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maps by δ pixels to correlate the feature at position (i, j)
with those at positions (i + δ, j) and (i, j + δ). In this
way, the representation incorporates spatial arrangement
information and is therefore more effective at modelling
textures with symmetric properties.

2) Non-parametric Texture Modelling with MRFs. An-
other notable texture modelling methodology is to use non-
parametric resampling. A variety of non-parametric meth-
ods are based on MRFs model, which assumes that in a
texture image, each pixel is entirely characterised by its
spatial neighbourhood. Under this assumption, Efros and
Leung [25] propose to synthesise each pixel one by one
by searching similar neighbourhoods in the source texture
image and assigning the corresponding pixel. Their work is
one of the earliest non-parametric algorithms with MRFs.
Following their work, Wei and Levoy [26] further speed
up the neighbourhood matching process by always using
a fixed neighbourhood.

3.2 Image Reconstruction

In general, an essential step for many vision tasks is to ex-
tract an abstract representation from the input image. Image
reconstruction is a reverse process, which is to reconstruct
the whole input image from the extracted image represen-
tation. It is previously studied to analyse a particular image
representation and discover what information is contained
in the abstract representation. Here our major focus is on
CNN representation based image reconstruction algorithms,
which can be categorised into Image-Optimisation-Based On-
line Image Reconstruction (IOB-IR) and Model-Optimisation-
Based Offline Image Reconstruction (MOB-IR).

1) Image-Optimisation-Based Online Image Recon-
struction. The first algorithm to reverse CNN representa-
tions is proposed by Mahendran and Vedaldi [33], [34].
Given a CNN representation to be reversed, their algo-
rithm iteratively optimises an image (generally starting
from random noise) until it has a similar desired CNN
representation. The iterative optimisation process is based
on gradient descent in image space. Therefore, the process is
time-consuming especially when the desired reconstructed
image is large.

2) Model-Optimisation-Based Offline Image Recon-
struction. To address the efficiency issue of [33], [34],
Dosovitskiy and Brox [35] propose to train a feed-forward
network in advance and put the computational burden at
training stage. At testing stage, the reverse process can be
simply done with a network forward pass. Their algorithm
significantly speeds up the image reconstruction process.
In their later work [36], they further combine Generative
Adversarial Network (GAN) [37] to improve the results.

4 A TAXONOMY OF NEURAL STYLE TRANSFER
ALGORITHMS

NST is a subset of the aforementioned example-based IB-AR
techniques. In this section, we first provide a categorisation
of NST algorithms and then explain major 2D image based
non-photorealistic NST algorithms (Figure 2, purple boxes)
in detail. More specifically, for each algorithm, we start by
introducing the main idea and then discuss its weaknesses

and strengths. Since it is complex to define the notion of
style [3], [38] and therefore very subjective to define what
criteria are important to make a successful style transfer
algorithm [39], here we try to evaluate these algorithms in
a more structural way by only focusing on details, semantics,
depth and variations in brush strokes2. We will discuss more
about the problem of aesthetic evaluation criterion in Sec-
tion 8 and also present more evaluation results in Section 6.

Our proposed taxonomy of NST techniques is shown
in Figure 2. We keep the taxonomy of IB-AR techniques
proposed by Kyprianidis et al. [14] unaffected and extend
it by NST algorithms. Current NST methods fit into one of
two categories, Image-Optimisation-Based Online Neural Meth-
ods (IOB-NST) and Model-Optimisation-Based Offline Neural
Methods (MOB-NST). The first category transfers the style
by iteratively optimising an image, i.e., algorithms belong
to this category are built upon IOB-IR techniques. The
second category optimises a generative model offline and
produces the stylised image with a single forward pass,
which exploits the idea of MOB-IR techniques.

4.1 Image-Optimisation-Based Online Neural Methods

DeepDream [40] is the first attempt to produce artistic
images by reversing CNN representations with IOB-IR tech-
niques. By further combining Visual Texture Modelling tech-
niques to model style, IOB-NST algorithms are subsequently
proposed, which build the early foundations for the field
of NST. Their basic idea is to first model and extract style
and content information from the corresponding style and
content images, recombine them as the target representa-
tion, and then iteratively reconstruct a stylised result that
matches the target representation. In general, different IOB-
NST algorithms share the same IOB-IR technique, but differ
in the way they model the visual style, which is built on the
aforementioned two categories of Visual Texture Modelling
techniques. The common limitation of IOB-NST algorithms
is that they are computationally expensive, due to the itera-
tive image optimisation procedure.

4.1.1 Parametric Neural Methods with Summary Statistics

The first subset of IOB-NST methods is based on Parametric
Texture Modelling with Summary Statistics. The style is char-
acterised as a set of spatial summary statistics.

We start by introducing the first NST algorithm proposed
by Gatys et al. [4], [10]. By reconstructing representations
from intermediate layers of the VGG-19 network, Gatys
et al. observe that a deep convolutional neural network
is capable of extracting image content from an arbitrary
photograph and some appearance information from the
well-known artwork. According to this observation, they
build the content component of the newly stylised image
by penalising the difference of high-level representations
derived from content and stylised images, and further build
the style component by matching Gram-based summary
statistics of style and stylised images, which is derived from
their proposed texture modelling technique [30] (Section
3.1). The details of their algorithm are as follows.

2. We claim that the visual criteria with respect to a successful style
transfer are definitely not limited to these factors.
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Given a content image Ic and a style image Is, the algo-
rithm in [4] tries to seek a stylised image I that minimises
the following objective:

I∗ = arg min
I
Ltotal(Ic, Is, I)

= arg min
I

αLc(Ic, I) + βLs(Is, I),
(2)

where Lc compares the content representation of a given
content image to that of the stylised image, and Ls compares
the Gram-based style representation derived from a style
image to that of the stylised image. α and β are used to
balance the content component and style component in the
stylised result.

The content loss Lc is defined by the squared Euclidean
distance between the feature representations F l of the con-
tent image Ic in layer l and that of the stylised image I
which is initialised with a noise image:

Lc =
∑

l∈{lc}
‖F l(Ic)−F l(I)‖2, (3)

where {lc} denotes the set of VGG layers for computing
the content loss. For the style loss Ls, [4] exploits Gram-
based visual texture modelling technique to model the style,
which has already been explained in Section 3.1. Therefore,
the style loss is defined by the squared Euclidean distance
between the Gram-based style representations of Is and I :

Ls =
∑

l∈{ls}
‖G(F l(Is)′)− G(F l(I)′)‖2, (4)

where G is the aforementioned Gram matrix to encode the
second order statistics of the set of filter responses. {ls}
represents the set of VGG layers for calculating the style
loss.

The choice of content and style layers is an important
factor in the process of style transfer. Different positions
and numbers of layers can result in very different visual
experiences. Given the pre-trained VGG-19 [31] as the loss
network, Gatys et al.’s choice of {ls} and {lc} in [4] is
{ls} = {relu1 1, relu2 1, relu3 1, relu4 1, relu5 1} and
{lc} = {relu4 2}. For {ls}, the idea of combining multiple
layers (up to higher layers) is critical for the success of Gatys
et al.’s NST algorithm. Matching the multi-scale style repre-
sentations leads to a smoother and more continuous stylisa-
tion, which gives the visually most appealing results [4]. For
the content layer {lc}, matching the content representations
on a lower layer preserves the undesired fine structures
(e.g., edges and colour map) of the original content image
during stylisation. In contrast, by matching the content on
a higher layer of the network, the fine structures can be
altered to agree with the desired style while preserving the
content information of the content image. Also, using VGG-
based loss networks for style transfer is not the only option.
Similar performance can be achieved by selecting other pre-
trained classification networks, e.g., ResNet [41].

In Equation (2), both Lc and Ls are differentiable. Thus,
with random noise as the initial I , Equation (2) can be
minimised by using gradient descent in image space with
backpropagation. In addition, a total variation denoising
term is usually added in practice to encourage the smooth-
ness in the stylised result.

The algorithm of Gatys et al. does not need ground truth
data for training and also does not have explicit restrictions

on the type of style images, which addresses the limitations
of previous IB-AR algorithms without CNNs (Section 2).
However, the algorithm of Gatys et al. does not perform well
in preserving the coherence of fine structures and details
during stylisation since CNN features inevitably lose some
low-level information. Also, it generally fails for photore-
alistic synthesis, due to the limitations of Gram-based style
representation. Moreover, it does not consider the variations
of brush strokes and the semantics and depth information
contained in the content image, which are important factors
in evaluating the visual quality.

In addition, a Gram-based style representation is not the
only choice to statistically encode style information. There
are also some other effective statistical style representations,
which are derived from a Gram-based representation. Li
et al. [42] derive some different style representations by
considering style transfer in the domain of transfer learning,
or more specifically, domain adaption [43]. Given that training
and testing data are drawn from different distributions, the
goal of domain adaption is to adapt a model trained on
labelled training data from a source domain to predict labels
of unlabelled testing data from a target domain. One way for
domain adaption is to match a sample in the source domain
to that in the target domain by minimising their distribution
discrepancy, in which Maximum Mean Discrepancy (MMD)
is a popular choice to measure the discrepancy between
two distributions. Li et al. prove that matching Gram-based
style representations between a pair of style and stylised
images is intrinsically minimising MMD with a quadratic
polynomial kernel. Therefore, it is expected that other kernel
functions for MMD can be equally applied in NST, e.g.,
the linear kernel, polynomial kernel and Gaussian kernel.
Another related representation is the batch normalisation
(BN) statistic representation, which is to use mean and
variance of the feature maps in VGG layers to model style:

Ls =
∑

l∈{ls}

1

Cl

Cl∑
c=1

‖µ(F lc(Is))− µ(F lc(I))‖2+

‖σ(F lc(Is))− σ(F lc(I))‖2, (5)

where F lc ∈ RH×W is the c-th feature map channel at layer
l of VGG network, and Cl is the number of channels.

The main contribution of Li et al.’s algorithm is to
theoretically demonstrate that the Gram matrices matching
process in NST is equivalent to minimising MMD with the
second order polynomial kernel, thus proposing a timely
interpretation of NST and making the principle of NST
clearer. However, the algorithm of Li et al. does not resolve
the aforementioned limitations of Gatys et al.’s algorithm.

One limitation of the Gram-based algorithm is its in-
stabilities during optimisations. Also, it requires manually
tuning the parameters, which is very tedious. Risser et al.
[44] find that feature activations with quite different means
and variances can still have the same Gram matrix, which is
the main reason of instabilities. Inspired by this observation,
Risser et al. introduce an extra histogram loss, which guides
the optimisation to match the entire histogram of feature
activations. They also present a preliminary solution to
automatic parameter tuning, which is to explicitly prevent
gradients with extreme values through extreme gradient
normalisation.
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By additionally matching the histogram of feature ac-
tivations, the algorithm of Risser et al. achieves a more
stable style transfer with fewer iterations and parameter
tuning efforts. However, its benefit comes at an expense of
a high computational complexity. Also, the aforementioned
weaknesses of Gatys et al.’s algorithm still exist, e.g., a lack
of consideration in depth and the coherence of details.

All these aforementioned neural methods only compare
content and stylised images in the CNN feature space to
make the stylised image semantically similar to the content
image. But since CNN features inevitably lose some low-
level information contained in the image, there are usually
some unappealing distorted structures and irregular arte-
facts in the stylised results. To preserve the coherence of
fine structures during stylisation, Li et al. [45] propose to
incorporate additional constraints upon low-level features
in pixel space. They introduce an additional Laplacian loss,
which is defined as the squared Euclidean distance between
the Laplacian filter responses of a content image and stylised
result. Laplacian filter computes the second order deriva-
tives of the pixels in an image and is widely used for edge
detection.

The algorithm of Li et al. has a good performance in pre-
serving the fine structures and details during stylisation. But
it still lacks considerations in semantics, depth, variations in
brush strokes, etc.

4.1.2 Non-parametric Neural Methods with MRFs
Non-parametric IOB-NST is built on the basis of Non-
parametric Texture Modelling with MRFs. This category con-
siders NST at a local level, i.e., operating on patches to
match the style.

Li and Wand [46] are the first to propose an MRF-
based NST algorithm. They find that the parametric NST
method with summary statistics only captures the per-
pixel feature correlations and does not constrain the spatial
layout, which leads to a less visually plausible result for
photorealistic styles. Their solution is to model the style in a
non-parametric way and introduce a new style loss function
which includes a patch-based MRF prior:

Ls =
∑

l∈{ls}

m∑
i=1

‖Ψi(F l(I))−ΨNN(i)(F l(Is))‖2, (6)

where Ψ(F l(I)) is the set of all local patches from the
feature map F l(I). Ψi denotes the ith local patch and
ΨNN(i) is the most similar style patch with the i-th local
patch in the stylised image I . The best matching ΨNN(i)

is obtained by calculating normalised cross-correlation over
all style patches in the style image Is. m is the total number
of local patches. Since their algorithm matches a style in
the patch-level, the fine structure and arrangement can be
preserved much better.

The advantage of the algorithm of Li and Wand is that
it performs especially well for photorealistic styles, or more
specifically, when the content photo and the style are similar
in shape and perspective, due to the patch-based MRF
loss. However, it generally fails when the content and style
images have strong differences in perspective and structure
since the image patches could not be correctly matched.
It is also limited in preserving sharp details and depth
information.

4.2 Model-Optimisation-Based Offline Neural Methods
Although IOB-NST is able to yield impressive stylised im-
ages, there are still some limitations. The most concerned
limitation is the efficiency issue. The second category MOB-
NST addresses the speed and computational cost issue by
exploiting MOB-IR to reconstruct the stylised result, i.e.,
a feed-forward network g is optimised over a large set of
images Ic for one or more style images Is:

θ∗ = arg min
θ
Ltotal(Ic, Is, gθ∗(Ic)), I

∗ = gθ∗(Ic). (7)

Depending on the number of artistic styles a single g can
produce, MOB-NST algorithms are further divided into Per-
Style-Per-Model (PSPM) MOB-NST methods , Multiple-Style-
Per-Model (MSPM) MOB-NST Methods, and Arbitrary-Style-
Per-Model (ASPM) MOB-NST Methods.

4.2.1 Per-Style-Per-Model Neural Methods
1) Parametric PSPM with Summary Statistics. The first
two MOB-NST algorithms are proposed by Johnson et al.
[47] and Ulyanov et al. [48] respectively. These two methods
share a similar idea, which is to pre-train a feed-forward
style-specific network and produce a stylised result with
a single forward pass at testing stage. They only differ in
the network architecture, for which Johnson et al. ’s design
roughly follows the network proposed by Radford et al. [49]
but with residual blocks as well as fractionally strided con-
volutions, and Ulyanov et al. use a multi-scale architecture
as the generator network. The objective function is similar
to the algorithm of Gatys et al. [4], which indicates that they
are also Parametric Methods with Summary Statistics.

The algorithms of Johnson et al. and Ulyanov et al.
achieve a real-time style transfer. However, their algorithm
design basically follows the algorithm of Gatys et al., which
makes them suffer from the same aforementioned issues as
Gatys et al.’s algorithm (e.g., a lack of consideration in the
coherence of details and depth information).

Shortly after [47], [48], Ulyanov et al. [50] further find
that simply applying normalisation to every single image
rather than a batch of images (precisely batch normalization
(BN)) leads to a significant improvement in stylisation qual-
ity. This single image normalisation is called instance normal-
isation (IN), which is equivalent to batch normalisation when
the batch size is set to 1. The style transfer network with
IN is shown to converge faster than BN and also achieves
visually better results. One interpretation is that IN is a form
of style normalisation and can directly normalise the style
of each content image to the desired style [51]. Therefore,
the objective is easier to learn as the rest of the network only
needs to take care of the content loss.

2) Non-parametric PSPM with MRFs. Another work
by Li and Wand [52] is inspired by the MRF-based NST
[46] algorithm in Section 4.1.2. They address the efficiency
issue by training a Markovian feed-forward network using
adversarial training. Similar to [46], their algorithm is a
Patch-based Non-parametric Method with MRFs. Their method
is shown to outperform the algorithms of Johnson et al. and
Ulyanov et al. in the preservation of coherent textures in
complex images, thanks to their patch-based design. How-
ever, their algorithm has a less satisfying performance with
non-texture styles (e.g., face images), since their algorithm
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lacks a consideration in semantics. Other weaknesses of
their algorithm include a lack of consideration in depth
information and variations of brush strokes, which are im-
portant visual factors.

4.2.2 Multiple-Style-Per-Model Neural Methods
Although the above PSPM approaches can produce stylised
images two orders of magnitude faster than previous IOB-
NST methods, separate generative networks have to be
trained for each particular style image, which is quite time-
consuming and inflexible. But many paintings (e.g., impres-
sionist paintings) share similar paint strokes and only differ
in their colour palettes. Intuitively, it is redundant to train
a separate network for each of them. MSPM is therefore
proposed, which improves the flexibility of PSPM by further
incorporating multiple styles into one single model. There
are generally two paths towards handling this problem: 1)
tying only a small number of parameters in a network to
each style ( [53], [54]) and 2) still exploiting only a single
network like PSPM but combining both style and content as
inputs ( [55], [56]).

1) Tying only a small number of parameters to each
style. An early work by Dumoulin et al. [53] is built on
the basis of the proposed IN layer in PSPM algorithm [50]
(Section 4.2.1). They surprisingly find that using the same
convolutional parameters but only scaling and shifting pa-
rameters in IN layers is sufficient to model different styles.
Therefore, they propose an algorithm to train a conditional
multi-style transfer network based on conditional instance
normalisation (CIN), which is defined as:

CIN(F(Ic), s) = γs
(F(Ic)− µ(F(Ic))

σ(F(Ic))

)
+ βs, (8)

where F is the input feature activation and s is the index
of the desired style from a set of style images. As shown in
Equation (8), the conditioning for each style Is is done by
scaling and shifting parameters γs and βs after normalising
feature activation F(Ic), i.e., each style Is can be achieved
by tuning parameters of an affine transformation. The in-
terpretation is similar to that for [50] in Section 4.2.1, i.e.,
the normalisation of feature statistics with different affine
parameters can normalise input content image to different
styles. Furthermore, the algorithm of Dumoulin et al. can
also be extended to combine multiple styles in a single
stylised result by combining affine parameters of different
styles.

Another algorithm which follows the first path of MSPM
is proposed by Chen et al. [54]. Their idea is to explicitly
decouple style and content, i.e., using separate network
components to learn the corresponding content and style
information. More specifically, they use mid-level convolu-
tional filters (called “StyleBank” layer) to individually learn
different styles. Each style is tied to a set of parameters
in “StyleBank” layer. The rest components in the network
are used to learn content information, which is shared
by different styles. Their algorithm also supports flexible
incremental training, which is to fix the content components
in the network and only train a “StyleBank” layer for a new
style.

In summary, both the algorithms of Dumoulin et al.
and Chen et al. have the benefits of little efforts needed to

learn a new style and a flexible control over style fusion.
However, they do not address the common limitations of
NST algorithms, e.g., a lack of details, semantics, depth and
variations in brush strokes.

2) Combining both style and content as inputs. One
disadvantage of the first category is that the model size
generally becomes larger with the increase of the number
of learned styles. The second path of MSPM addresses this
limitation by fully exploring the capability of one single
network and combining both content and style into the
network for style identification. Different MSPM algorithms
differ in the way to incorporate style into the network.

In [55], given N target styles, Li et al. design a selection
unit for style selection, which is a N -dimensional one-hot
vector. Each bit in the selection unit represents a specific
style Is in the set of target styles. For each bit in the
selection unit, Li et al. first sample a corresponding noise
map f(Is) from a uniform distribution and then feed f(Is)
into the style sub-network to obtain the corresponding style
encoded features F(f(Is)). By feeding the concatenation
of the style encoded features F(f(Is)) and the content
encoded features Enc(Ic) into the decoder part Dec of the
style transfer network, the desired stylised result can be
produced: I = Dec( F(f(Is)) ⊕ Enc(Ic) ).

Another work by Zhang and Dana [56] first forwards
each style image in the style set through the pre-trained
VGG network and obtain multi-scale feature activations
F(Is) in different VGG layers. Then multi-scale F(Is) are
combined with multi-scale encoded features Enc(Ic) from
different layers in the encoder through their proposed
inspiration layers. The inspiration layers are designed to
reshape F(Is) to match the desired dimension, and also
have a learnable weight matrix to tune feature maps to help
minimise the objective function.

The second type of MSPM addresses the limitation of
the increased model size in the first type of MSPM. At an
expense, the style scalability of the second type of MSPM
is much smaller, since only one single network is used for
multiple styles. We will quantitatively compare the style
scalability of different MSPM algorithms in Section 6. In ad-
dition, some aforementioned limitations in the first type of
MSPM still exist, i.e., the second type of MSPM algorithms
are still limited in preserving the coherence of fine structures
and also depth information.

4.2.3 Arbitrary-Style-Per-Model Neural Methods
The third category, ASPM-MOB-NST, aims at one-model-
for-all, i.e., one single trainable model to transfer arbitrary
artistic styles. There are also two types of ASPM, one built
upon Non-parametric Texture Modelling with MRFs and the
other one built upon Parametric Texture Modelling with Sum-
mary Statistics.

1) Non-parametric ASPM with MRFs. The first ASPM
algorithm is proposed by Chen and Schmidt [57]. They first
extract a set of activation patches from content and style
feature activations computed in pre-trained VGG network.
Then they match each content patch to the most similar
style patch and swap them (called “Style Swap” in [57]).
The stylised result can be produced by reconstructing the
resulting activation map after “Style Swap”, with either
IOB-IR or MOB-IR techniques. The algorithm of Chen and
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Schmidt is more flexible than the previous approaches
due to its characteristic of one-model-for-all-style. But the
stylised results of [57] are less appealing since the content
patches are typically swapped with the style patches which
are not representative of the desired style. As a result, the
content is well preserved while the style is generally not
well reflected.

2) Parametric ASPM with Summary Statistics. Con-
sidering [53] in Section 4.2.2, the simplest approach for
arbitrary style transfer is to train a separate parameter
prediction network P to predict γs and βs in Equation (8)
with a number of training styles [58]. Given a test style
image Is, CIN layers in the style transfer network take affine
parameters γs and βs from P (Is), and normalise the input
content image to the desired style with a forward pass.

Another similar approach based on [53] is proposed by
Huang and Belongie [51]. Instead of training a parameter
prediction network, Huang and Belongie propose to modify
conditional instance normalisation (CIN) in Equation (8) to
adaptive instance normalisation (AdaIN):

AdaIN(F(Ic),F(Is)) =

σ(F(Is))

(F(Ic)− µ(F(Ic))

σ(F(Ic))

)
+ µ(F(Is)). (9)

AdaIN transfers the channel-wise mean and variance fea-
ture statistics between content and style feature activations,
which also shares a similar idea with [57]. Different from
[53], the encoder in the style transfer network of [51] is
fixed and comprises the first few layers in pre-trained VGG
network. Therefore, F in [51] is the feature activation from
a pre-trained VGG network. The decoder part needs to
be trained with a large set of style and content images
to decode resulting feature activations after AdaIN to the
stylised result: I = Dec( AdaIN(F(Ic),F(Is)) ).

The algorithm of Huang and Belongie [51] is the first
ASPM algorithm that achieves a real-time stylisation. How-
ever, the algorithm of Huang and Belongie [51] is data-
driven and limited in generalising on unseen styles. Also,
simply adjusting the mean and variance of feature statistics
makes it hard to synthesise complicated style patterns with
rich details and local structures.

A more recent work by Li et al. [59] attempts to exploit a
series of feature transformations to transfer arbitrary artistic
style in a style learning free manner. Similar to [51], Li et al.
use the first few layers of pre-trained VGG as the encoder
and train the corresponding decoder. But they replace the
AdaIN layer [51] in between the encoder and decoder
with a pair of whitening and colouring transformations
(WCT): I = Dec( WCT(F(Ic),F(Is)) ). Their algorithm is
built on the observation that the whitening transformation
can remove the style related information and preserve the
structure of content. Therefore, receiving content activations
F(Ic) from the encoder, whitening transformation can filter
the original style out of the input content image and return a
filtered representation with only content information. Then,
by applying colouring transformation, the style patterns
contained in F(Is) are incorporated into the filtered content
representation, and the stylised result I can be obtained by
decoding the transformed features. They also extend this

single-level stylisation to multi-level stylisation to further
improve visual quality.

The algorithm of Li et al. is the first ASPM algorithm to
transfer artistic styles in a learning-free manner. Therefore,
compared with [51], it does not have the limitation in
generalisation capabilities. But the algorithm of Li et al. is
still not effective at producing sharp details and fine strokes.
The stylisation results will be shown in Section 6. Also, it
lacks a consideration in preserving depth information and
variations in brush strokes.

5 IMPROVEMENTS AND EXTENSIONS

Since the emergence of NST algorithms, there are also some
researches devoted to improving current NST algorithms
by controlling perceptual factors (e.g., stroke size control,
spatial style control, and colour control) (Figure 2, green
boxes). Also, all of aforementioned NST methods are de-
signed for general still images. They may not be appropriate
for specialised types of images and videos (e.g., doodles,
head portraits, and video frames). Thus, a variety of follow-
up studies (Figure 2, pink boxes) aim to extend general NST
algorithms to these particular types of images and even
extend them beyond artistic image style (e.g., audio style).

Controlling Perceptual Factors in Neural Style Trans-
fer. Gatys et al. themselves [60] propose several slight
modifications to improve their previous algorithm [4]. They
demonstrate a spatial style control strategy to control the
style in each region of the content image. Their idea is to
define guidance channels for the feature activations for both
content and style image. The guidance channel has values in
[0, 1] specifying which style should be transferred to which
content region, i.e., the content regions where the content
guidance channel is 1 should be rendered with the style
where the style guidance channel is equal to 1. While for the
colour control, the original NST algorithm produces stylised
images with the colour distribution of the style image.
However, sometimes people prefer a colour-preserving style
transfer, i.e., preserving the colour of the content image
during style transfer. The corresponding solution is to first
transform the style image’s colours to match the content im-
age’s colours before style transfer, or alternatively perform
style transfer only in the luminance channel.

For stroke size control, the problem is much more com-
plex. We show sample results of stroke size control in
Figure 3. The discussions of stroke size control strategy need
to be split into several cases [61]:

1) IOB-NST with non-high-resolution images: Since current
style statistics (e.g., Gram-based and BN-based statistics)
are scale-sensitive [61], to achieve different stroke sizes, the
solution is simply resizing a given style image to different
scales.

2) MOB-NST with non-high-resolution images: One possi-
ble solution is to resize the input image to different scales
before the forward pass, which inevitably hurts stylisation
quality. Another possible solution is to train multiple mod-
els with different scales of a style image, which is space and
time consuming. Also, the possible solution fails to preserve
stroke consistency among results with different stroke sizes,
i.e., the results vary in stroke orientations, stroke configu-
rations, etc. However, users generally desire to only change
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(a) Content (b) Style (c) Small Stroke Size (d) Large Stroke Size

Figure 3: Control the brush stroke size in NST. (c) is the output with smaller brush size and (d) with larger brush size. The
style image is “The Starry Night” by Vincent van Gogh.

the stroke size but not others. To address this problem, Jing
et al. [61] propose a stroke controllable PSPM algorithm.
The core component of their algorithm is a StrokePyramid
module, which learns different stroke sizes with adaptive
receptive fields. Without trading off quality and speed, their
algorithm is the first to exploit one single model to achieve
flexible continuous stroke size control while preserving
stroke consistency, and further achieve spatial stroke size con-
trol to produce new artistic effects. Although one can also
use ASPM algorithm to control stroke size, ASPM trades
off quality and speed. As a result, ASPM is not effective at
producing fine strokes and details compared with [61].

3) IOB-NST with high-resolution images: For high-
resolution images (e.g., 3000 × 3000 pixels in [60]), a large
stroke size cannot be achieved by simply resizing style
image to a large scale. Since only the region in the content
image with a receptive field size of VGG can be affected
by a neuron in the loss network, there is almost no visual
difference between a large and larger brush strokes in a
small image region with receptive field size. Gatys et al. [60]
tackle this problem by proposing a coarse-to-fine IOB-NST
procedure with several steps of downsampling, stylising,
upsampling and final stylising.

4) MOB-NST with high-resolution images: Similar to 3),
stroke size in stylised result does not vary with style image
scale for high-resolution images. The solution is also similar
to Gatys et al. ’s algorithm in [60], which is a coarse-
to-fine stylisation procedure [62]. The idea is to exploit a
multimodel, which comprises multiple subnetworks. Each
subnetwork receives the upsampled stylised result of the
previous subnetwork as the input, and stylises it again with
finer strokes.

Another limitation of current NST algorithms is that
they do not consider the depth information contained in the
image. To address this limitation, the depth preserving NST
algorithm [63] is proposed. Their approach is to add a depth
loss function based on [47] to measure the depth difference
between the content image and the stylised image. The
image depth is acquired by applying a single-image depth
estimation algorithm (e.g., Chen et al.’s work in [64]).

Semantic Style Transfer. Given a pair of style and
content images which are similar in content, the goal of
semantic style transfer is to build a semantic correspondence
between the style and content, which maps each style re-
gion to a corresponding semantically similar content region.
Then the style in each style region is transferred to the
semantically similar content region.

1) Image-Optimisation-Based Semantic Style Transfer. Since
the patch matching scheme naturally meets the require-
ments of the region-based correspondence, Champandard
[65] proposes to build a semantic style transfer algorithm
based on the aforementioned patch-based algorithm [46]
(Section 4.1.2). Although the result produced by the algo-
rithm of Li and Wand [46] is close to the target of semantic
style transfer, [46] does not incorporate an accurate segmen-
tation mask, which sometimes leads to a wrong semantic
match. Therefore, Champandard augments an additional
semantic channel upon [46], which is a downsampled se-
mantic segmentation map. The segmentation map can be
either manually annotated or from a semantic segmentation
algorithm [66], [67]. Despite the effectiveness of [65], MRF-
based design is not the only choice. Instead of combining
MRF prior, Chen and Hsu [68] provide an alternative way
for semantic style transfer, which is to exploit masking out
process to constrain the spatial correspondence and also
a higher order style feature statistic to further improve
the result. More recently, Mechrez et al. [69] propose an
alternative contextual loss to realise semantic style transfer
in a segmentation-free manner.

2) Model-Optimisation-Based Semantic Style Transfer. As
before, the efficiency issue is always a big issue. Both [65]
and [68] are based on IOB-NST algorithms and therefore
leave much room for improvement. Lu et al. [70] speed
up the process by optimising the objective function in
feature space, instead of in pixel space. More specifically,
they propose to do feature reconstruction, instead of image
reconstruction as previous algorithms do. This optimisation
strategy reduces the computation burden, since the loss does
not need to propagate through a deep network. The result-
ing reconstructed feature is decoded into the final result
with a trained decoder. Since the speed of [70] does not reach
real-time, there is still big room for further research.

Instance Style Transfer. Instance style transfer is built
on instance segmentation and aims to stylise only a single
user-specified object within an image. The challenge mainly
lies in the transition between a stylised object and non-
stylised background. Castillo et al. [71] tackle this problem
by adding an extra MRF-based loss to smooth and anti-alias
boundary pixels.

Doodle Style Transfer. An interesting extension can be
found in [65], which is to exploit NST to transform rough
sketches into fine artworks. The method is simply discard-
ing content loss term and using doodles as segmentation
map to do semantic style transfer.
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Stereoscopic Style Transfer. Driven by the demand of
AR/VR, Chen et al. [72] propose a stereoscopic NST al-
gorithm for stereoscopic images. They propose a disparity
loss to penalise the bidirectional disparity. Their algorithm
is shown to produce more consistent strokes for different
views.

Portrait Style Transfer. Current style transfer algorithms
are usually not optimised for head portraits. As they do not
impose spatial constraints, directly applying these existing
algorithms to head portraits will deform facial structures,
which is unacceptable for the human visual system. Selim et
al. [73] address this problem and extend [4] to head portrait
painting transfer. They propose to use the notion of gain
maps to constrain spatial configurations, which can preserve
the facial structures while transferring the texture of the
style image.

Video Style Transfer. NST algorithms for video se-
quences are substantially proposed shortly after Gatys et
al.’s first NST algorithm for still images [4]. Different
from still image style transfer, the design of video style
transfer algorithm needs to consider the smooth transi-
tion between adjacent video frames. Like before, we di-
vide related algorithms into Image-Optimisation-Based and
Model-Optimisation-Based Video Style Transfer.

1) Image-Optimisation-Based Online Video Style Transfer.
The first video style transfer algorithm is proposed by Ruder
et al. [74], [75]. They introduce a temporal consistency loss
based on optical flow to penalise the deviations along point
trajectories. The optical flow is calculated by using novel
optical flow estimation algorithms [76], [77]. As a result,
their algorithm eliminates temporal artefacts and produces
smooth stylised videos. However, they build their algorithm
upon [4] and need several minutes to process a single frame.

2) Model-Optimisation-Based Offline Video Style Transfer.
Several follow-up studies are devoted to stylising a given
video in real-time. Huang et al. [78] propose to augment
Ruder et al.’s temporal consistency loss [74] upon cur-
rent PSPM algorithm. Given two consecutive frames, the
temporal consistency loss is directly computed using two
corresponding outputs of style transfer network to encour-
age pixel-wise consistency, and a corresponding two-frame
synergic training strategy is introduced for the computa-
tion of temporal consistency loss. Another concurrent work
which shares a similar idea with [78] but with an additional
exploration of style instability problem can be found in [79].
Different from [78], [79], Chen et al. [80] propose a flow
subnetwork to produce feature flow and incorporate optical
flow information in feature space. Their algorithm is built
on a pre-trained style transfer network (an encoder-decoder
pair) and wraps feature activations from the pre-trained
stylisation encoder using the obtained feature flow.

Character Style Transfer. Given a style image containing
multiple characters, the goal of Character Style Transfer is to
apply the idea of NST to generate new fonts and text effects.
In [81], Atarsaikhan et al. directly apply the algorithm in [4]
to font style transfer and achieve visually plausible results.
While Yang et al. [82] propose to first characterise style
elements and exploit extracted characteristics to guide the
generation of text effects. A more recent work [83] designs
a conditional GAN model for glyph shape prediction, and
also an ornamentation network for colour and texture pre-

diction. By training these two networks jointly, font style
transfer can be realised in an end-to-end manner.

Photorealistic Style Transfer. Photorealistic style trans-
fer (also known as colour style transfer) aims to transfer
the style of colour distributions. The general idea is to
build upon current semantic style transfer but to eliminate
distortions and preserve the original structure of the content
image.

1) Image-Optimisation-Based Photorealistic Style Transfer.
The earliest photorealistic style transfer approach is pro-
posed by Luan et al. [84]. They propose a two-stage opti-
misation procedure, which is to initialise the optimisation
by stylising a given photo with non-photorealistic style
transfer algorithm [65] and then penalise image distortions
by adding a photorealism regularization. But since Luan
et al.’s algorithm is built on the Image-Optimisation-Based
Semantic Style Transfer method [65], their algorithm is com-
putationally expensive. Similar to [84], another algorithm
proposed by Mechrez et al. [85] also adopts a two-stage
optimisation procedure. They propose to refine the non-
photorealistic stylised result by matching the gradients in
the output image to those in the content photo. Compared
to [84], the algorithm of Mechrez et al. achieves a faster
photorealistic stylisation speed.

2) Model-Optimisation-Based Photorealistic Style Transfer. Li
et al. [86] address the efficiency issue of [84] by handling this
problem with two steps, the stylisation step and smoothing
step. The stylisation step is to apply the NST algorithm in
[59] but replace upsampling layers with unpooling layers
to produce the stylised result with fewer distortions. Then
the smoothing step further eliminates structural artefacts.
These two aforementioned algorithms [84], [86] are mainly
designed for natural images. Another work in [87] proposes
to exploit GAN to transfer the colour from human-designed
anime images to sketches. Their algorithm demonstrates a
promising application of Photorealistic Style Transfer, which
is the automatic image colourisation.

Attribute Style Transfer. Image attributes are generally
referred to image colours, textures, etc. Previously, image
attribute transfer is accomplished through image analogy
[9] in a supervised manner (Section 2). Derived from the
idea of patch-based NST [46], Liao et al. [88] propose a deep
image analogy to study image analogy in the domain of
CNN features. Their algorithm is based on a patch matching
technique and realises a weakly supervised image analogy,
i.e., their algorithm only needs a single pair of source and
target images instead of a large training set.

Fashion Style Transfer. Fashion style transfer receives
fashion style image as the target and generates clothing
images with desired fashion styles. The challenge of Fashion
Style Transfer lies in the preservation of similar design
with the basic input clothing while blending desired style
patterns. This idea is first proposed by Jiang and Fu [89].
They tackle this problem by proposing a pair of fashion style
generator and discriminator.

Audio Style Transfer. In addition to transferring im-
age styles, [90], [91] extend the domain of image style to
audio style, and synthesise new sounds by transferring
the desired style from a target audio. The study of audio
style transfer also follows the route of image style transfer,
i.e., Audio-Optimisation-Based Online Audio Style Transfer and
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Figure 4: Diversified style images used in our experiment.

Table 1: Detailed information of our style images.

No. Author Name & Year
1 Claude Monet Three Fishing Boats (1886)
2 Georges Rouault Head of a Clown (1907)
3 Henri de Toulouse-Lautrec Divan Japonais (1893)
4 Wassily Kandinsky White Zig Zags (1922)
5 John Ruskin Trees in a Lane (1847)
6 Severini Gino Ritmo plastico del 14 luglio (1913)
7 Juan Gris Portrait of Pablo Picasso (1912)
8 Vincent van Gogh Landscape at Saint-Rémy (1889)
9 Pieter Bruegel the Elder The Tower of Babel (1563)
10 Egon Schiele Edith with Striped Dress (1915)

Note: All our style images are in the public domain.

then Model-Optimisation-Based Offline Audio Style Transfer.
Inspired by image-based IOB-NST, Verma and Smith [90]
propose a Audio-Optimisation-Based Online Audio Style Trans-
fer algorithm based on online audio optimisation. They start
from a noise signal and optimise it iteratively using back-
propagation. [91] improves the efficiency by transferring an
audio in a feed-forward manner and can produce the result
in real-time.

6 EVALUATION METHODOLOGY

The evaluations of NST algorithms remain an open and im-
portant problem in this field. In general, there are two major
types of evaluation methodologies that can be employed in
the field of NST, i.e., qualitative evaluation and quantitative
evaluation. Qualitative evaluation relies on the aesthetic
judgements of observers. The evaluation results are related
to lots of factors (e.g., age and occupation of participants).
While quantitative evaluation focuses on the precise evalu-
ation metrics, which include time complexity, loss variation,
etc. In this section, we experimentally compare different
NST algorithms both qualitatively and quantitatively.

6.1 Experimental Setup
Evaluation datasets. Totally, there are ten style images and
twenty content images used in our experiment.

For style images, we select artworks of diversified styles,
as shown in Figure 4. For example, there are impressionism,
cubism, abstract, contemporary, futurism, surrealist, and
expressionism art. Regarding the mediums, some of these
artworks are painted on canvas, while others are painted

on cardboard or wool, cotton, polyester, etc. In addition, we
also try to cover a range of image characteristics (such as de-
tails, contrast, complexity and color distributions), inspired
by the works in [92], [93], [95]. More detailed information of
our style images are given in Table 1.

For content images, there are already carefully selected
and well-described benchmark datasets for evaluating styli-
sation by Mould and Rosin [92], [93], [95]. Their proposed
NPR benchmark called NPRgeneral consists of the images
that cover a wide range of characteristics (e.g., contrast,
texture, edges and meaningful structures) and satisfy lots
of criteria. Therefore, we directly use the selected twenty
images in their proposed NPRgeneral benchmark as our
content images.

For the algorithms based on offline model optimisation,
MS-COCO dataset [96] is used to perform the training. All
the content images are not used in training.

Principles. To maximise the fairness of the comparisons,
we also obey the following principles during our experi-
ment:

1) In order to cover every detail in each algorithm, we try
to use the provided implementation from their published
literatures. To maximise the fairness of comparison espe-
cially for speed comparison, for [10], we use a popular torch-
based open source code [97], which is also admitted by the
authors. In our experiment, except for [32], [53] which are
based on TensorFlow, all the other codes are implemented
based on Torch 7.

2) Since the visual effect is influenced by the content and
style weight, it is difficult to compare results with different
degrees of stylisation. Simply giving the same content and
style weight is not an optimal solution due to the different
ways to calculate losses in each algorithm (e.g., different
choices of content and style layers, different loss functions).
Therefore, in our experiment, we try our best to balance the
content and style weight among different algorithms.

3) We try to use the default parameters (e.g., choice of
layers, learning rate, etc) suggested by the authors except
for the aforementioned content and style weight. Although
the results for some algorithms may be further improved by
more careful hyperparameter tuning, we select the authors’
default parameters since we hold the point that the sensitiv-
ity for hyperparameters is also an important implicit criterion
for comparison. For example, we cannot say an algorithm
is effective if it needs heavy work to tune its parameters for
each style.

There are also some other implementation details to be
noted. For [47] and [48], we use the instance normalisation
strategy proposed in [50], which is not covered in the
published papers. Also, we do not consider the diversity
loss term (proposed in [50], [55]) for all algorithms, i.e., one
pair of content and style images corresponds to one stylised
result in our experiment. For Chen and Schmidt’s algorithm
[57], we use the feed-forward reconstruction to reconstruct
the stylised results.

6.2 Qualitative Evaluation

Example stylised results are shown in Figure 5, Figure 7 and
Figure 9. More results can be found in the supplementary
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Group I Group II Group III Group IV Group V Group VI

Content & Style:

Gatys et al. [4]:

Johnson et al. [47]:

Ulyanov et al. [48]:

Li and Wand [52]:

Figure 5: Some example results of IOB-NST and PSPM-MOB-NST for qualitative evaluation. The content images are
from the benchmark dataset proposed by Mould and Rosin [92], [93]. The style images are in the public domain. Detailed
information of our style images can be found in Table 1.

Group I Group II Group III Group IV Group V Group VI

Content:

Gatys et al. [4]:

Johnson et al. [47]:

Ulyanov et al. [48]:

Li and Wand [52]:

Figure 6: Saliency detection results of IOB-NST and PSPM-MOB-NST, corresponding to Figure 5. The results are produced
by using the discriminative regional feature integration approach proposed by Wang et al. [94].
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Group I Group II Group III Group IV Group V Group VI

Content & Style:

Dumoulin
et al. [53]:

Chen et al. [54]:

Li et al. [55]:

Zhang and Dana
[56]:

Figure 7: Some example results of MSPM-MOB-NST for qualitative evaluation. The content images are from the
benchmark dataset proposed by Mould and Rosin [92], [93]. The style images are in the public domain. Detailed information
of our style images can be found in Table 1.

Group I Group II Group III Group IV Group V Group VI

Content:

Dumoulin
et al. [53]:

Chen et al. [54]:

Li et al. [55]:

Zhang and Dana
[56]:

Figure 8: Saliency detection results of MSPM-MOB-NST, corresponding to Figure 7. The results are produced by using the
discriminative regional feature integration approach proposed by Wang et al. [94].
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Group I Group II Group III Group IV Group V Group VI

Content & Style:

Chen and Schmidt
[57]:

Ghiasi et al. [58]:

Huang and
Belongie [51]:

Li et al. [59]:

Figure 9: Some example results of ASPM-MOB-NST for qualitative evaluation. The content images are from the benchmark
dataset proposed by Mould and Rosin [92], [93]. The style images are in the public domain. Detailed information of our
style images can be found in Table 1.

Group I Group II Group III Group IV Group V Group VI

Content:

Chen and Schmidt
[57]:

Ghiasi et al. [58]:

Huang and
Belongie [51]:

Li et al. [59]:

Figure 10: Saliency detection results of ASPM-MOB-NST, corresponding to Figure 9. The results are produced by using
the discriminative regional feature integration approach proposed by Wang et al. [94].
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material3.
1) Results of IOB-NST. Following the content and style

images, Figure 5 contains the results of Gatys et al.’s IOB-
NST algorithm based on online image optimisation [4]. The
style transfer process is computationally expensive, but in
contrast, the results are appealing in visual quality. There-
fore, the algorithm of Gatys et al. is usually regarded as the
gold-standard method in the community of NST.

2) Results of PSPM-MOB-NST. Figure 5 shows the
results of Per-Style-Per-Model MOB-NST algorithms (Section
4.2). Each model only fits one style. It can be noticed that
the stylised results of Ulyanov et al. [48] and Johnson et
al. [47] are somewhat similar. This is not surprising since
they share a similar idea and only differ in their detailed
network architectures. For the results of Li and Wand [52],
the results are sightly less impressive. Since [52] is based
on Generative Adversarial Network (GAN), to some extent,
the training process is not that stable. But we believe that
GAN-based style transfer is a very promising direction, and
there are already some other GAN-based works [83], [87],
[98] (Section 5) in the field of NST.

3) Results of MSPM-MOB-NST. Figure 7 demonstrates
the results of Multiple-Style-Per-Model MOB-NST algorithms.
Multiple styles are incorporated into a single model. The
idea of both Dumoulin et al.’s algorithm [53] and Chen et
al.’s algorithm [54] is to tie a small number of parameters to
each style. Also, both of them build their algorithm upon the
architecture of [47]. Therefore, it is not surprising that their
results are visually similar. Although the results of [53], [54]
are appealing, their model size will become larger with the
increase of the number of learned styles. In contrast, Zhang
and Dana’s algorithm [56] and Li et al.’s algorithm [55] use
a single network with the same trainable network weights
for multiple styles. The model size issue is tackled, but there
seem to be some interferences among different styles, which
slightly influences the stylisation quality.

4) Results of ASPM-MOB-NST. Figure 9 presents the
last category of MOB-NST algorithms, namely Arbitrary-
Style-Per-Model MOB-NST algorithms. Their idea is one-
model-for-all. Globally, the results of ASPM are slightly less
impressive than other types of algorithms. This is acceptable
in that a three-way trade-off between speed, flexibility and
quality is common in research. Chen and Schmidt’s patch-
based algorithm [57] seems to not combine enough style
elements into the content image. Their algorithm is based
on similar patch swap. When lots of content patches are
swapped with style patches that do not contain enough style
elements, the target style will not be reflected well. Ghiasi
et al.’s algorithm [58] is data-driven and their stylisation
quality is very dependent on the varieties of training styles.
For the algorithm of Huang and Belongie [51], they propose
to match global summary feature statistics and successfully
improve the visual quality compared with [57]. However,
their algorithm seems not good at handling complex style
patterns, and their stylisation quality is still related to the
varieties of training styles. The algorithm of Li et al. [59] re-
places the training process with a series of transformations.

3. https://www.dropbox.com/s/5xd8iizoigvjcxz/
SupplementaryMaterial neuralStyleReview.pdf?dl=0

But [59] is not effective at producing sharp details and fine
strokes.

Saliency Comparison. NST is an art creation process.
As indicated in [3], [38], [39], the definition of style is
subjective and also very complex, which involves personal
preferences, texture compositions as well as the used tools
and medium. As a result, it is difficult to define the aesthetic
criterion for a stylised artwork. For the same stylised result,
different people may have different or even opposite views.
Nevertheless, our goal is to compare the results of different
NST techniques (shown in Figure 5, Figure 7 and Figure 9)
as objectively as possible. Here, we consider comparing
saliency maps, as proposed in [63]. The corresponding re-
sults are shown in Figure 6, Figure 8 and Figure 10. Saliency
maps can demonstrate visually dominant locations in im-
ages. Intuitively, a successful style transfer could weaken or
enhance the saliency maps in content images, but should not
change the integrity and coherence. From Figure 6 (saliency
detection results of IOB-NST and PSPM-MOB-NST), it can
be noticed that the stylised results of [4], [47], [48] preserve
the structures of content images well; however, for [52], it
might be harder for an observer to recognise the objects after
stylisation. Using similar analytical method, from Figure 8
(saliency detection results of MSPM-MOB-NST), [53] and
[54] preserve similar saliency of the original content images
since they both tie a small number of parameters to each
style. [56] and [55] are also similar regarding the ability to
retain the integrity of the original saliency maps, because
they both use a single network for all styles. As shown
in Figure 10, for the saliency detection results of ASPM-
MOB-NST, [58] and [51] perform better than [57] and [59];
however, both [58] and [51] are data-driven methods and
their quality depends on the diversity of training styles.
In general, it seems that the results of MSPM-MOB-NST
preserve better saliency coherence than ASPM-MOB-NST,
but a little inferior to IOB-NST and PSPM-MOB-NST.

6.3 Quantitative Evaluation

Regarding the quantitative evaluation, we mainly focus on
five evaluation metrics, which are: generating time for a
single content image of different sizes; training time for a
single model; average loss for content images to measure
how well the loss function is minimised; loss variation
during training to measure how fast the model converges;
style scalability to measure how large the learned style set
can be.

1) Stylisation speed. The issue of efficiency is the focus
of MOB-NST algorithms. In this subsection, we compare
different algorithms quantitatively in terms of the stylisation
speed. Table 2 demonstrates the average time to stylise one
image with three resolutions using different algorithms. In
our experiment, the style images have the same size as the
content images. The fifth column in Table 2 represents the
number of styles one model of each algorithm can produce.
k(k ∈ Z+) denotes that a single model can produce multiple
styles, which corresponds to MSPM algorithms. ∞ means
a single model works for any style, which corresponds to
ASPM algorithms. The numbers reported in Table 2 are
obtained by averaging the generating time of 100 images.
Note that we do not include the speed of [53], [58] in Table 2
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Table 2: Average speed comparison of NST algorithms for images of size 256×256 pixels, 512×512 pixels and 1024×1024
pixels (on an NVIDIA Quadro M6000)

Methods Time(s) Styles/Model
256 × 256 512 × 512 1024 × 1024

Gatys et al. [10] 14.32 51.19 200.3 ∞
Johnson et al. [47] 0.014 0.045 0.166 1
Ulyanov et al. [48] 0.022 0.047 0.145 1
Li and Wand [52] 0.015 0.055 0.229 1
Zhang and Dana [56] 0.019 (0.039) 0.059 (0.133) 0.230 (0.533) k(k ∈ Z+)

Li et al. [55] 0.017 0.064 0.254 k(k ∈ Z+)

Chen and Schmidt [57] 0.123 (0.130) 1.495 (1.520) − ∞
Huang and Belongie [51] 0.026 (0.037) 0.095 (0.137) 0.382 (0.552) ∞
Li et al. [59] 0.620 1.139 2.947 ∞

Note: The fifth column shows the number of styles that a single model can produce. Time both excludes (out of parenthesis) and includes (in
parenthesis) the style encoding process is shown, since [56], [57] and [51] support storing encoded style statistics in advance to further speed up
the stylisation process for the same style but different content images. Time of [57] for producing 1024 × 1024 images is not shown due to the
memory limitation. The speed of [53], [58] are similar to [47] since they share similar architecture. We do not redundantly list them in this table.

Table 3: A summary of the advantages and disadvantages of the mentioned algorithms in our experiment.

Types Methods Pros & Cons
E AS LF VQ

IOB-NST Gatys et al. [4] ×
√ √

Good and usually regarded as a gold standard.

PSPM-
MOB-NST

Ulyanov et al. [47]
√

× ×
The results of [47], [50] are close to [4]. [52] is generally less appealing
than [47], [50].

Johnson et al. [50]
√

× ×
Li and Wand [52]

√
× ×

MSPM-
MOB-NST

Dumoulin et al. [53]
√

× × The results of [53] and [54] are close to [4], but the model size generally
becomes larger with the increase of the number of learned styles. [55],
[56] have a fixed model size but there seem to be some interferences
among different styles.

Chen et al. [54]
√

× ×
Li et al. [55]

√
× ×

Zhang and Dana [56]
√

× ×

ASPM-
MOB-NST

Chen and Schmidt [57]
√ √

× In general, the results of ASPM are less impressive than other types of
NST algorithms. [57] does not combine enough style elements. [51], [58]
are generally not effective at producing complex style patterns. [59] is
not good at producing sharp details and fine strokes.

Ghiasi et al. [58]
√ √

×
Huang and Belongie [51]

√ √
×

Li et al. [59]
√ √ √

Note: E, AS, LF, and VQ represent Efficient, Arbitrary Style, Learning-Free, and Visual Quality, respectively. IOB-NST denotes the category
Image-Optimisation-Based Neural Style Transfer and MOB-NST represents Model-Optimisation-Based Neural Style Transfer.

as their algorithm is to scale and shift parameters based on
the algorithm of Johnson et al. [47]. The time required to
stylise one image using [32], [53] is very close to [47] under
the same setting. For Chen et al.’s algorithm in [54], since
their algorithm is protected by patent and they do not make
public the detailed architecture design, here we just attach
the speed information provided by the authors for reference:
On a Pascal Titan X GPU, 256×256: 0.007s; 512×512: 0.024s;
1024×1024: 0.089s. For Chen and Schmidt’s algorithm [57],
the time for processing a 1024× 1024 image is not reported
due to the limit of video memory. Swapping patches for
two 1024 × 1024 images needs more than 24 GB video
memory and thus, the stylisation process is not practical.
We can observe that except for [57], [59], all the other MOB-
NST algorithms are capable of stylising even high-resolution
content images in real-time. ASPM algorithms are generally
slower than PSPM and MSPM, which demonstrates the
aforementioned three-way trade-off again.

2) Training time. Another concern is the training time for
one single model. The training time of different algorithms
is hard to compare as sometimes the model trained with just

a few iterations is capable of producing enough visually
appealing results. So we just outline our training time of
different algorithms (under the same setting) as a reference
for follow-up studies. On a NVIDIA Quadro M6000, the
training time for a single model is about 3.5 hours for the
algorithm of Johnson et al. [47], 3 hours for the algorithm
of Ulyanov et al. [48], 2 hours for the algorithm of Li
and Wand [52], 4 hours for Zhang and Dana [56], and 8
hours for Li et al. [55]. Chen and Schmidt’s algorithm [57]
and Huang and Belongie’s algorithm [51] take much longer
(e.g., a couple of days), which is acceptable since a pre-
trained model can work for any style. The training time
of [58] depends on how large the training style set is. For
MSPM algorithms, the training time can be further reduced
through incremental learning over a pre-trained model. For
example, the algorithm of Chen et al. only needs 8 minutes
to incrementally learn a new style, as reported in [54].

3) Loss comparison. One way to evaluate some MOB-
NST algorithms which share the same loss function is to
compare their loss variation during training, i.e., the train-
ing curve comparison. It helps researchers to justify the
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Figure 11: Training curves of total loss, style loss and content loss of different algorithms. Solid curves represent the loss
variation of the algorithm of Ulyanov et al. [48], while the dashed curves represent the algorithm of Johnson et al. [47].
Different colours correspond to different randomly selected styles from our style set.
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Figure 12: Average total loss, style loss and content loss of different algorithms [4], [47], [48]. The reported numbers are
averaged over our set of style and content images.

choice of architecture design by measuring how fast the
model converges and how well the same loss function can
be minimised. Here we compare training curves of two
popular MOB-NST algorithms [47], [48] in Figure 11, since
most of the follow-up works are based on their architecture
designs. We remove the total variation term and keep the
same objective for both two algorithms. Other settings (e.g.,
loss network, chosen layers) are also kept the same. For the
style images, we randomly select four styles from our style
set and represent them in different colours in Figure 11. It
can be observed that the two algorithms are similar in terms
of the convergence speed. Also, both algorithms minimise
the content loss well during training, and they mainly differ
in the speed of learning the style objective. The algorithm in
[47] minimises the style loss better.

Another related criterion is to compare the final loss
values of different algorithms over a set of test images. This
metric demonstrates how well the same loss function can be
minimised by using different algorithms. For a fair compar-
ison, the loss function and other settings are also required
to be kept the same. We show the results of one IOB-NST
algorithm [4] and two MOB-NST algorithms [47], [48] in
Figure 12. The result is consistent with the aforementioned
trade-off between speed and quality. Although MOB-NST
algorithms are capable of stylising images in real-time, they
are not good as IOB-NST algorithms in terms of minimising
the same loss function.

4) Style scalability. Scalability is a very important cri-
terion for MSPM algorithms. However, it is very hard to
measure since the maximum capabilities of a single model
is highly related to the set of particular styles. If most styles
have somewhat similar patterns, a single model can pro-
duce thousands of styles or even more, since these similar
styles share somewhat similar distribution of style feature
statistics. In contrast, if the style patterns vary a lot among
different style images, the capability of a single model will
be much smaller. But it is hard to measure how much these
styles differ from each other in style patterns. Therefore, to
provide the reader a reference, here we just summarise the
authors’ attempt for style scalability: the number is 32 for
[53], 1000 for both [54] and [55], and 100 for [56].

A summary of the advantages and disadvantages of
the mentioned algorithms in this experiment section can be
found in Table 3.

7 APPLICATIONS

Due to the visually plausible stylised results, the research of
NST has led to many successful industrial applications and
begun to deliver commercial benefits. In this section, we
summarise these applications and present some potential
usages.
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7.1 Social Communication
One reason why NST catches eyes in both academia and
industry is its popularity in some social networking sites,
e.g., Facebook and Twitter. A recently emerged mobile ap-
plication named Prisma [11] is one of the first industrial
applications that provide the NST algorithm as a service.
Due to its high stylisation quality, Prisma achieved great
success and is becoming popular around the world. Some
other applications providing the same service appeared one
after another and began to deliver commercial benefits,
e.g., a web application Ostagram [12] requires users to
pay for a faster stylisation speed. Under the help of these
industrial applications [13], [99], [100], people can create
their own art paintings and share their artwork with others
on Twitter and Facebook, which is a new form of social
communication. There are also some related application
papers: [101] introduces an iOS app Pictory which combines
style transfer techniques with image filtering; [102] further
presents the technical implementation details of Pictory;
[103] demonstrates the design of another GPU-based mobile
app ProsumerFX.

The application of NST in social communication rein-
forces the connections between people and also has positive
effects on both academia and industry. For academia, when
people share their own masterpiece, their comments can
help the researchers to further improve the algorithm. More-
over, the application of NST in social communication also
drives the advances of other new techniques. For instance,
inspired by the real-time requirements of NST for videos,
Facebook AI Research (FAIR) first developed a new mobile-
embedded deep learning system Caffe2Go and then Caffe2
(now merged with PyTorch), which can run deep neural
networks on mobile phones [104]. For industry, the applica-
tion brings commercial benefits and promotes the economic
development.

7.2 User-assisted Creation Tools
Another use of NST is to make it act as user-assisted
creation tools. Although there are no popular applications
that applied the NST technique in creation tools, we believe
that it will be a promising potential usage in the future.

As a creation tool for painters and designers, NST can
make it more convenient for a painter to create an artwork of
a particular style, especially when creating computer-made
artworks. Moreover, with NST algorithms, it is trivial to
produce stylised fashion elements for fashion designers and
stylised CAD drawings for architects in a variety of styles,
which will be costly when creating them by hand.

7.3 Production Tools for Entertainment Applications
Some entertainment applications such as movies, anima-
tions and games are probably the most application forms of
NST. For example, creating an animation usually requires 8
to 24 painted frames per second. The production costs will
be largely reduced if NST can be applied to automatically
stylise a live-action video into an animation style. Similarly,
NST can significantly save time and costs when applied to
the creation of some movies and computer games.

There are already some application papers aiming at
introducing how to apply NST for production, e.g., Joshi
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Figure 13: Example of aesthetic preference scores for the
outputs of different algorithms given the same style and
content.

et al. explore the use of NST in redrawing some scenes in a
movie named Come Swim [105], which indicates the promis-
ing potential applications of NST in this field. In [106], Fišer
et al. study an illumination-guided style transfer algorithm
for stylisation of 3D renderings. They demonstrate how to
exploit their algorithm for rendering previews on various
geometries, autocomplete shading, and transferring style
without a reference 3D model.

8 FUTURE CHALLENGES

The advances in the field of NST are inspiring and some
algorithms have already found use in industrial applica-
tions. Although current algorithms are capable of good
performance, there are still several challenges and open
issues. In this section, we summarise key challenges within
this field of NST and discuss possible strategies on how to
deal with them in future works. Since NST is very related
to NPR, some critical problems in NPR (summarised in [3],
[14], [107], [108], [109], [110]) also remain future challenges
for the research of NST. Therefore, we first review some of
the major challenges existing in both NPR and NST and
then discuss the research questions specialised for the field
of NST.

8.1 Evaluation Methodology

Aesthetic evaluation is a critical issue in both NPR and NST.
In the field of NPR, the necessity of aesthetic evaluation is
explained by many researchers [3], [14], [107], [108], [109],
[110], e.g., in [3], Rosin and Collomosse use two chapters
to explore this issue. This problem is increasingly critical as
the fields of NPR and NST mature. As pointed out in [3],
researchers need some reliable criteria to assess the benefits
of their proposed approach over the prior art and also a
way to evaluate the suitability of one particular approach
to one particular scenario. However, most NPR and NST
papers evaluate their proposed approach with side-by-side
subjective visual comparisons, or through measurements
derived from various user studies [59], [111], [112]. For
example, to evaluate the proposed universal style transfer
algorithm, Li et al. [59] conduct a user study which is to ask
participants to vote for their favourite stylised results. We
argue that it is not an optimal solution since the results vary
a lot with different observers. Inspired by [113], we conduct
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a simple experiment for user studies with the stylised results
of different NST algorithms. In our experiment, each stylised
image is rated by 8 different raters (4 males and 4 females)
with the same occupation and age. As depicted in Figure 13,
given the same stylised result, different observers with the
same occupation and age still have quite different ratings.
Nevertheless, there is currently no gold standard evaluation
method for assessing NPR and NST algorithms. This chal-
lenge of aesthetic evaluation will continue to be an open
question in both NPR and NST communities, the solution
of which might require the collaboration with professional
artists and the efforts in the identification of underlying
aesthetic principles.

In the field of NST, there is another important issue
related to aesthetic evaluation. Currently, there is no stan-
dard benchmark image set for evaluating NST algorithms.
Different authors typically use their own images for evalu-
ation. In our experiment, we use the carefully selected NPR
benchmark image set named NPRgeneral [92], [93] as our
content images to compare different techniques, which is
backed by the comprehensive study in [92], [93]; however,
we have to admit that the selection of our style images is far
from being a standard NST benchmark style set. Different
from NPR, NST algorithms do not have explicit restrictions
on the types of style images. Therefore, to compare the style
scalability of different NST methods, it is critical to seek
a benchmark style set which collectively exhibits a broad
range of possible properties, accompanied by a detailed
description of adopted principles, numerical measurements
of image characteristics as well as a discussion of limitations
like the works in [92], [93], [95]. Based on the above discus-
sion, seeking an NST benchmark image set is quite a sep-
arate and important research direction, which provides not
only a way for researchers to demonstrate the improvement
of their proposed approach over the prior art, but also a tool
to measure the suitability of one particular NST algorithm
to one particular requirement. In addition, as the emergence
of several NST extensions (Section 5), it remains another
open problem to study the specialised benchmark data set
and also the corresponding evaluation criteria for assessing
those extended works (e.g., video style transfer, audio style
transfer, stereoscopic style transfer, character style transfer
and fashion style transfer).

8.2 Interpretable Neural Style Transfer

Another challenging problem is the interpretability of NST
algorithms. Like many other CNN-based vision tasks, the
process of NST is like a black box, which makes it quite
uncontrollable. In this part, we focus on three critical issues
related to the interpretability of NST, i.e., interpretable and
controllable NST via disentangled representations, normali-
sation methods associated with NST, and adversarial exam-
ples in NST.

Representation disentangling. The goal of representa-
tion disentangling is to learn dimension-wise interpretable
representations, where some changes in one or more specific
dimensions correspond to changes precisely in a single
factor of variation while being invariant to other factors
[114], [115], [116], [117]. Such representations are useful to
a variety of machine learning tasks, e.g., visual concepts

Table 4: Normalisation methods in NST.

Paper Author Name

[50] Ulyanov et al. Instance Normalisation

[53] Dumoulin et al. Conditional Instance Normalisation

[51] Huang and Belongie Adaptive Instance Normalisation

learning [118] and transfer learning [119]. For example, in
style transfer, if one could learn a representation where
the factors of variation (e.g., colour, shape, stroke size,
stroke orientation and stroke composition) are precisely
disentangled, these factors could then be freely controlled
during stylisation. For example, one could change the stroke
orientations in a stylised image by simply changing the cor-
responding dimension in the learned disentangled represen-
tation. Towards the goal of disentangled representation, cur-
rent methods fit into two categories, which are supervised
approaches and unsupervised ones. The basic idea of super-
vised disentangling methods is to exploit annotated data to
supervise the mapping between inputs and attributes [120],
[121]. Despite their effectiveness, supervised disentangling
approaches typically require numbers of training samples.
However, in the case of NST, it is quite complicated to
model and capture some of those aforementioned factors
of variation. For example, it is hard to collect a set of
images which have different stroke orientations but exactly
the same colour distribution, stroke size and stroke com-
position. By contrast, unsupervised disentangling methods
do not require annotations; however, they usually yield
disentangled representations which are dimension-wise un-
controllable and uninterpretable [122], i.e., we could not
control what would be encoded in each specific dimension.
Based on the above discussion, to acquire disentangled
representations in NST, the first issue to be addressed is
how to define, model and capture the complicated factors
of variation in NST.

Normalisation methods. The advances in the field of
NST are closely related to the emergence of novel nor-
malisation methods, as shown in Table 4. Some of these
normalisation methods also have an influence on a larger
vision community beyond style transfer (e.g., image re-
colourisation [123] and video colour propagation [124]). In
this part, we first briefly review these normalisation meth-
ods in NST and then discuss the corresponding problem.
The first emerged normalisation method in NST is instance
normalisation (or contrast normalisation) proposed by Ulyanov
et al. [50]. Instance normalisation is equivalent to batch nor-
malisation when the batch size is one. It is shown that style
transfer network with instance normalisation layer converges
faster and produces visually better results compared with
the network with batch normalisation layer. Ulyanov et al. be-
lieve that the superior performance of instance normalisation
results from the fact that instance normalisation enables the
network to discard contrast information in content images
and therefore makes learning simpler. Another explanation
proposed by Huang and Belongie [51] is that instance normal-
isation performs a kind of style normalisation by normalising
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feature statistics (i.e., the mean and variance). With instance
normalisation, the style of each individual image could be
directly normalised to the target style. As a result, the rest
of the network only needs to take care of the content loss,
making the objective easier to learn. Based on instance nor-
malisation, Dumoulin et al. [53] further propose conditional
instance normalisation, which is to scale and shift parameters
in instance normalisation layers (shown in Equation (8)). Fol-
lowing the interpretation proposed by Huang and Belongie,
by using different affine parameters, the feature statistics
could be normalised to different values. Correspondingly,
the style of each individual sample could be normalised to
different styles. Furthermore, in [51], Huang and Belongie
propose adaptive instance normalisation to adaptively instance
normalise content feature by the style feature statistics
(shown in Equation (9)). In this way, they believe that
the style of an individual image could be normalised to
arbitrary styles. Despite the superior performance achieved
by instance normalisation, conditional instance normalisation
and adaptive instance normalisation, the reason behind their
success still remains unclear. Although Ulyanov et al. [50]
and Huang and Belongie [51] propose their own hypothesis
based on pixel space and feature space respectively, there
is a lack of theoretical proof for their proposed theories.
In addition, their proposed theories are also built on other
hypothesises, e.g., Huang and Belongie propose their inter-
pretation based on the observation by Li et al. [42]: channel-
wise feature statistics, namely mean and variance, could
represent styles. However, it remains uncertain why feature
statistics could represent the style, or even whether the
feature statistics could represent all styles, which relates
back to the interpretability of style representations.

Adversarial examples. Several studies have shown that
deep classification networks are easily fooled by adversar-
ial examples [125], [126], which are generated by applying
perturbations to input images (e.g., Figure 14(c)). Previous
studies on adversarial examples mainly focus on deep clas-
sification networks. However, as shown in Figure 14, we
find that adversarial examples also exist in generative style
transfer networks. In Figure 14(d), one can hardly recognise
the content, which is originally contained in Figure 14(c).
It reveals the difference between generative networks and
the human vision system. The perturbed image is still
recognisable to humans but leads to a different result for
generative style transfer networks. However, it remains un-
clear why some perturbations could make such a difference,
and whether some similar noised images uploaded by the
user could still be stylised into the desired style. Interpreting
and understanding adversarial examples in NST could help
to avoid some failure cases in stylisation.

8.3 Three-way Trade-off in Neural Style Transfer

In the field of NST, there is a three-way trade-off between
speed, flexibility and quality. IOB-NST achieves superior
performance in quality but is computationally expensive.
PSPM-MOB-NST achieves real-time stylisation; however,
PSPM-MOB-NST needs to train a separate network for each
style, which is not flexible. MSPM-MOB-NST improves the
flexibility by incorporating multiple styles into one single
model, but it still needs to pre-train a network for a set

(a) (b) (c) (d)

Figure 14: Adversarial example for NST: (a) is the original
content and style image pair and (b) is the stylised result of
(a) with [47]; (c) is the generated adversarial example and
(d) is the stylised result of (c) with the same model as (b).

of target styles. Although ASPM-MOB-NST algorithms suc-
cessfully transfer arbitrary styles, they are not that satisfy-
ing in perceptual quality and speed. The quality of data-
driven ASPM quite relies on the diversity of training styles.
However, one can hardly cover every style due to the great
diversity of artworks. Image transformation based ASPM
algorithm transfers arbitrary styles in a learning-free man-
ner, but it is behind others in speed. Another related issue
is the problem of hyperparameter tuning. To produce the
most visually appealing results, it remains uncertain how
to set the value of content and style weights, how to choose
layers for computing content and style loss, which optimiser
to use and how to set the value of learning rate. Currently,
researchers empirically set these hyperparameters; however,
one set of hyperparameters does not necessarily work for
any style and it is tedious to manually tune these parameters
for each combination of content and style images. One of
the keys for this problem is a better understanding of the
optimisation procedure in NST. A deep understanding of
optimisation procedure would help understand how to find
the local minima that lead to a high quality.

9 DISCUSSIONS AND CONCLUSIONS

Over the past several years, NST has continued to become
an inspiring research area, motivated by both scientific
challenges and industrial demands. A considerable amount
of researches have been conducted in the field of NST.
Key advances in this field are summarised in Figure 2. A
summary of the corresponding style transfer loss functions
can be found in Table 5. NST is quite a fast-paced area, and
we are looking forwarding to more exciting works devoted
to advancing the development of this field.

During the period of preparing this review, we are also
delighted to find that related researches on NST also bring
new inspirations for other areas [127], [128], [129], [130],
[131] and accelerate the development of a wider vision
community. For the area of Image Reconstruction, inspired
by NST, Ulyanov et al. [127] propose a novel deep image
prior, which replaces the manually-designed total variation
regulariser in [33] with a randomly initialised deep neural
network. Given a task-dependent loss function L, an image
Io and a fixed uniform noise z as inputs, their algorithm can
be formulated as:

θ∗ = arg min
θ
L(gθ∗(z), Io), I

∗ = gθ∗(z). (10)

One can easily notice that Equation (10) is very similar
to Equation (7). The process in [127] is equivalent with
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Table 5: An overview of major style transfer loss functions.

Paper Loss Description
Gatys et al. [4] Gram Loss The first proposed style loss based on Gram-based style representations.
Johnson et al. [47] Perceptual Loss Widely adopted content loss based on perceptual similarity.

Berger and Memisevic [32] Transformed Gram Loss
Computing Gram Loss over horizontally and vertically translated feature
representations. More effective at modelling style with symmetric properties,
compared with Gram Loss.

Li et al. [55] Mean-substraction Gram Loss
Subtracting the mean of feature representations before computing Gram Loss.
Eliminating large discrepancy in scale. Effective at multi-style transfer with
one single network.

Zhang and Dana [56] Multi-scale Gram Loss
Computing Gram Loss over multi-scale feature representations. Eliminating a
few artefacts.

Li et al. [42] MMD Loss with Different Kernels
Gram Loss is equivalent to MMD Loss with Second Order Polynomial Kernel.
MMD Loss with Linear Kernel is capable of comparable quality with Gram
Loss, but with lower computational complexity.

Li et al. [42] BN Loss
Achieving comparable quality with Gram Loss, but conceptually clearer in
theory.

Risser et al. [44] Histogram Loss
Matching the entire histogram of feature representations. Eliminating insta-
bility artefacts, compared with single Gram Loss.

Li et al. [45] Laplacian Loss Eliminating distorted structures and irregular artefacts.

Li and Wand [46] MRF Loss
More effective when the content and style are similar in shape and perspec-
tive, compared with Gram Loss.

Champandard [65] Semantic Loss
Incorporating a segmentation mask over MRF Loss. Enabling a more accurate
semantic match.

Li and Wand [52] Adversarial Loss
Computed based on PatchGAN. Utilising contextual correspondence be-
tween patches. More effective at preserving coherent textures in complex
images, compared with Gram Loss.

Jing et al. [61] Stroke Loss Achieving continuous stroke size control while preserving stroke consistency.

Wang et al. [62] Hierarchical Loss
Enabling a coarse-to-fine stylisation procedure. Capable of producing large
but also subtle strokes for high-resolution content images.

Liu et al. [63] Depth Loss
Preserving depth maps of content images. Effective at retaining spatial layout
and structure of content images, compared with single Gram Loss.

Ruder et al. [74] Temporal Consistency Loss
Designed for video style transfer. Penalising the deviations along point tra-
jectories based on optical flow. Capable of maintaining temporal consistency
among stylised video frames.

Chen et al. [72] Disparity Loss
Designed for stereoscopic style transfer. Penalising bidirectional disparity.
Capable of consistent strokes for different views.

the training process of MOB-NST when there is only one
available image in the training set, but replacing Ic with
z and Ltotal with L. In other words, g in [127] is trained
to overfit one single sample. Inspired by NST, Upchurch
et al. [128] propose a deep feature interpolation technique
and provide a new baseline for the area of Image Transfor-
mation (e.g., face aging and smiling). Upon the procedure
of IOB-NST algorithm [4], they add an extra step which
is interpolating in the VGG feature space. In this way,
their algorithm successfully changes image contents in a
learning-free manner. Another field closely related to NST
is Face Photo-sketch Synthesis. For example, [132] exploits
style transfer to generate shadings and textures for final face
sketches. Similarly, for the area of Face Swapping, the idea of
MOB-NST algorithm [48] can be directly applied to build a
feed-forward Face-Swap algorithm [133]. NST also provides
a new way for Domain Adaption, as is validated in the
work of Atapour-Abarghouei and Breckon [131]. They apply
style transfer technique to translate images from different
domains so as to improve the generalisation capabilities of
their Monocular Depth Estimation model.

Despite the great progress in recent years, the area of
NST is far from a mature state. Currently, the first stage of

NST is to refine and optimise recent NST algorithms, aiming
to perfectly imitate varieties of styles. This stage involves
two technical directions. The first one is to reduce failure
cases and improve stylised quality on a wider variety of
style and content images. Although there is not an explicit
restriction on the type of styles, NST does have styles it is
particularly good at and also some certain styles it is weak
in. For example, NST typically performs well in producing
irregular style elements (e.g., paintings), as demonstrated
in many NST papers [4], [47], [53], [59]; however, for some
styles with regular elements such as low-poly styles [134],
[135] and pixelator styles [136], NST generally produces
distorted and irregular results due to the property of CNN-
based image reconstruction. For content images, previous
NST papers usually use natural images as content to demon-
strate their proposed algorithms; however, given abstract
images (e.g., sketches and cartoons) as input content, NST
typically does not combine enough style elements to match
the content [137], since a pre-trained classification network
could not extract proper image content from these abstract
images. The other technical direction of the first stage lies
in deriving more extensions from general NST algorithms.
For example, as the emergence of 3D vision techniques,
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it is promising to study 3D surface stylisation, which is
to directly optimise and produce 3D objects for both pho-
torealistic and non-photorealistic stylisation. After moving
beyond the first stage, a further trend of NST is to not
just imitate human-created art with NST techniques, but
rather to create a new form of AI-created art under the
guidance of underlying aesthetic principles. The first step
towards this direction has been taken, i.e., using current
NST methods [53], [54], [62] to combine different styles.
For example, in [62], Wang et al. successfully utilise their
proposed algorithm to produce a new style which fuses the
coarse texture distortions of one style with the fine brush
strokes of another style image.
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“Benchmarking non-photorealistic rendering of portraits,” in
Proceedings of the Symposium on Non-Photorealistic Animation and
Rendering. ACM, 2017, p. 11.

[96] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in European conference on computer vision. Springer,
2014, pp. 740–755.

[97] J. Johnson, “neural-style,” https://github.com/jcjohnson/
neural-style, 2015.

[98] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 2223–2232.

[99] “DeepArt,” 2016. [Online]. Available: https://deepart.io/
[100] R. Sreeraman, “Neuralstyler: Turn your videos/photos/gif into

art,” 2016. [Online]. Available: http://neuralstyler.com/
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